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Appendix A: The Gibbs Algorithm for Estimating the RSV Model 

In the RSV model (2), we need to estimate the parameter vector θ ={β , γ, ση, φ1, 

p01, p10} along with the two latent variables Ht = {h1,...,ht} and St ={s1,….,st}. Thus, the 

parameter set consists of ω = {Ht, St, θ} for all t. We use Bayes theorem to decompose 

the joint posterior density as follows. 
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  We next draw the marginals f(Ht| Yt, St ,θ), f(St|Yt,Ht,θ), and f(θ|Yt, Ht St), using 

the Gibbs sampling algorithm described below: 

Step 1:  

Specify initial values θ(0) ={β1
(0), γ(0), σ η,(0) ,φ(0), p01

(0)
, p10 

(0)
  }. Set i =1. 

 

Step 2:  

Draw the underlying volatility using the multi-move simulation sampler described in De 

Jong and Shephard (1995), based on parameter values from step 1. The multi-move 

simulation sampler is used to draw the underlying volatility vector for all the data points 

as a single block (see De Jong and Shephard (1995) for details). Consider the RSV 

model (3), reproduced below:  

 

The conditional mean equation can be written as, 
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The term ln(ε t
2) can be approximated by a mixture of seven normal variates (Chib, 

Shephard, and Kim (1998)).  
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Now, (A-1) can be written as 
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where kt  is  one of the seven  underlying densities that generates zt. Once the underlying 

densities kt, for all t, are known, (A-3) becomes a deterministic linear equation and, along 

with the RSV model (3), can be represented in a linear state space model. Next, apply the 

De Jong and Shephard (1995) simulation smoother to extract the underlying log volatility 

from the observed data. 

In order to estimate α as a free parameter, rewrite (A-1 ) as  
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Then estimate α, approximating ln(ε t
2)  by  a lognormal distribution. Once α is known, 

follow (A-3) and extract the latent volatility. 

  

Step 3:  

Based on the output from steps 1 and 2, the underlying kt in (A-3) is sampled from a 

normal distribution as follows -see Chib,  Shephard and Kim (1998): 
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For every observation t, we draw the normal density from each of the seven normal 

distributions {kt = 1,2,..,7}. Then, we select a “k” based on draws from uniform 

distribution.  

 

Step 4:  

Based on the output from steps 1, 2 and 3, we draw the underlying Markov-state 

following Carter and Kohn (1994). We use the smoother for the above state-space model 

(3), to derive the vector of underlying state variable St, t = 1,2,...,n.  

 

Step 5: 



Cycle through the conditionals of parameter vector θ ={β , γ, ση, φ1, p01, p10} for the 

volatility equation using Chib (1993), based on the output from steps 1-4. Assuming that f 

(θ) can be decomposed as: 
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where θ-j refers to the θ parameters excluding the jth parameter. The respective 

conditional distributions (normal for β , γ and φ, inverse gamma for σ2 and beta for pij) are 

described in Chib (1993).  The parameter γ is drawn using an inverse CDF with the 

restriction that it is positive. The prior means and standard deviations are specified in 

Tables 3 and 5. 

 

Step 6: Go to step 2. 

 

Estimation of SSV model (2) has the same steps as in RSV model (3), except that we do 

not have to draw the latent states and transition probabilities. For the Gibbs estimation, 

we leave out the first 4000 draws (i.e., burn–in iterations are 4000) and sample from the 

next 6000 draws. We choose every fifth observation to minimize, and if possible 

eliminate, any possible correlation in the draws. Our effective number of draws therefore 

drops to 1200 (i.e., effective test iterations are 1200). We construct 95% confidence 

intervals for the parameters, based on 1200 draws. We construct the standard errors for 

the parameters using the batch-means method -see Chib (1993). We estimate the density 

functions for the parameters using a Gaussian kernel estimator (Silverman (1986)). The 

kernel estimator with kernel K is defined as:  
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where h is the band width, Xi {1,...…,n} are the observations  from the given sample and 

n is the sample size. When K is a normal density, we get the Gaussian kernel. 

 

 



Appendix B: A Monte Carlo Experiment of the RSV, using the Gibbs Algorithm  

We perform a Monte Carlo experiment of the RSV model (2), without level effects, i.e., 

we consider the following version of model 2:  

We first assume values for the parameter set θ ={β , γ, ση, φ1, p01, p10}-we designate them 

as “true” values; the true parameter values used in the simulation are listed in the table 

below. Using the true transition probabilities p01 and p10, we generate a state vector (with 

values 0 or 1) of size 1000. Using the state vector and the true parameters β , γ, ση, and φ1, 

we generate stochastic volatility, i.e ht.  Then, we generate the residual vector RESt  based 

on the RSV model described above. Then, taking RESt as given, we estimate the 

parameter set θ using the MCMC algorithm as explained in Appendix A. We set the 

number of burn–in iterations equal to 4000 and the number of effective test iterations 

equal to 1200. We construct the 95% confidence intervals for the parameters based on 

1200 draws. We estimate the standard errors for the parameters using the batch-means 

method -see Chib (1993). The results are reported in Table B.1.  

 
Table B.1 

Results from a Monte Carlo experiment 
Parameter True 

values 
Prior Values Posterior Values 

  Mean Std. Deviation Mean (Std. error) Std. deviation 95% Confidence Interval 
β 0.7 0 50 0.759 (0.003) 0.112 (0.500- 0.986) 
γ 1.5 1 50 1.477  (0.018) 0.191 (1.051 -1.819) 
φ 0.4 0 1 0.391 (0.005) 0.085 (0.202- 0.540) 
σ2 0.6 - - 0.733  (0.005) 0.109 (0.538 - 0.976) 
p01 0.01 0.2 0.16 0.011  (0.000) 0.007 (0.003-0.035) 
p10 0.04 0.2 0.16 0.074  (0.003) 0.036 (0.026-0.166) 

*Prior distribution of σ2 (inverse gamma) is improper. Sample size is T: 1000. 

 

We find that the posterior means of parameters are quite close to the true values. 

The standard errors are small, indicating a high precision of the posterior means. For the 

variance and the transition probability p10, the posterior means are slightly higher than 

true values. However, they clearly lie within the 95% confidence bounds.  
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Figure B.1 shows the latent volatility and states. The top panel consists of 

simulated residuals RESt obtained using the true parameter vector θ. The second panel 

presents both the true and latent volatility, the latter obtained using the simulation 

smoother. The latent smoother volatility appears to be smoother compared to the true 

volatility. This is not surprising because the smoother volatilities are smoother by 

construction compared to the filter volatilities. To investigate how close the simulated 

and true ht are to each other, we calculate the Wilcon test statistic and we find that it is 

0.79, i.e., insignificant at 5% level. The third panel presents the true states –i.e., either 0 

or 1- and smoother probabilities of being in the high vo latility state.  We see that the 

smoother probabilities track the latent volatility quite well. For example, for the second 

and third high volatility regimes, we find that the smoother probabilities begin to drop as 

the latent volatility begins to drop.  

 

Figure B.1. Simulated Monte-Carlo Residuals and Corresponding Latent Volatility and 
States 
 


