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CHAPTER VII 
 
CURRENCY RISK MANAGEMENT: OPTIONS 
 
In Chapter VI we introduced currency futures and forwards as currency risk management tools. 
This chapter introduces another risk management tool: currency option contracts. Options are 
contracts that help a firm to reduce the uncertainty created by having assets and liabilities 
denominated in foreign currency. An option contract provides a flexibility that a futures contract 
does not have. An option contract gives its holders a right, not obligation, as is the case of a futures 
contract.  
 
 
I. Currency Options 
 
1.A Options: Brief Review   
 
In general, an option gives to the buyer the right, but not the obligation, to buy or sell an asset, 
whereas the option seller must respond accordingly. Many different types of option contracts exist 
in the financial world. The two major types of contracts traded on organized options exchanges 
are calls (which gives the holder the right to buy) and puts (which gives the holder the right to 
sell). 
 
The complete definition of an option must clearly specify the exercise or strike price, X, (the price 
at which the right is "exercised"), the expiration date, and how the option can be exercised. A 
European-type option can only be exercised at expiration date. An American-type option can be 
exercised by the buyer at any time until the expiration date. 
 
A call (put) option is said to be in-the-money if the price of the underlying asset exceeds (is below) 
the exercise price. On the other hand, if the price of the underlying asset is below (exceeds) the 
exercise, the call (put) option is said to be out-of-the-money. When the current price of the 
underlying asset is approximately equal to the exercise price, both the call and the put are at-the-
money. 
 
The option to buy or sell an asset has a price that must be paid at the time of contracting. As we 
will discuss below, the price of an option, the premium, fluctuates over time depending on the 
value of the underlying asset and other parameters. The intrinsic value of an option is defined as 
the maximum of zero and the value it would have if it were exercised immediately. For a call 
option, the intrinsic value is max(S-X,0), where S represents the value of the underlying asset. 
For a put option, it is max(X-S,0). Often it is optimal for the holder of an in-the-money American 
option to wait rather than exercise immediately. The option is said to have time value. The total 
value of an option can be thought of as the sum of its intrinsic value and its time value. 
 
Exhibit VII.1 illustrates the concepts of time value and intrinsic value for a currency call option 
on the USD/GBP exchange rate. 
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Exhibit VII.1 
Time Value and Intrinsic Value of an American Call Option on the USD/GBP exchange rate 

 
    Premium (in USD)  
     
         Value of call  
                St-X  
 
 

 Time value 
 
 
          Intrinsic value 
 
     0   X  St (USD/GBP) 
 
     Out-of-the-money  In-the-money 
 
Options are priced using variations of a complex formula called the Black-Scholes formula. An 
intuitive derivation of the Black-Scholes formula is presented in Appendix VII. 
 
 
1.A.1 Currency Options 
 
Markets in currency options have become essential for coping with the volatility of the U.S. 
dollar. Currency options are traded on markets throughout the world, including the U.S., London, 
Amsterdam, Hong Kong, Singapore, Sydney, Vancouver and Montreal. In all these markets three 
types of contracts are negotiated: 
 
i. On December 10, 1980 the Philadelphia Stock Exchange (PHLX) introduced option 
contracts on currencies. These contracts have enjoyed a spectacular growth. Like futures 
contracts, these are standardized contracts. In section I.B, below, we discuss PHLX contracts and 
other institutional issues. 
 
ii. OTC currency options are not tradeable and can only be exercised at maturity (i.e., they 
are European-type options). Commercial customers often turn to a bank when they need a large 
number of options of this type for a specific date. For example, on October 31, 1994, a Canadian 
exporter expects a payment of USD 10 million in three months, --for example, February 10, 1995. 
Listed options do not offer this specific date, and the amount involved (270 contracts) may be too 
large for the usual volume of transactions. 
 
iii. Other listed currency options are options on currency futures contracts. For example, since 
1985, the CME trades options on its own currency futures. 
 
 
1.A.2 Factors Affecting Currency Option Prices (premium) 
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Currency options are priced using a variation of the Black-Scholes formula for stock prices. The 
main revision comes from the fact that the opportunity cost to invest in a foreign currency is not 
the domestic risk-free rate, as for an ordinary asset, but rather the interest rate differential 
(domestic minus foreign). The intuition behind this modification is very simple: an investment in 
a foreign currency costs the domestic interest rate (to finance the purchase of currency) but earns 
the foreign interest rate. The Black-Scholes formula for European currency call options is given 
by: 
 
Ct = 𝑒ି௜೑ ∗ ் St N(d1) - X 𝑒ି௜೏ ∗ ் N(d2), 
 
where 
d1 = [ln(S/X) + (id - if  + .5 2) T]/( T1/2), 
 
d2 = [ln(S/X) + (id - if - .5 2) T]/( T1/2). 
 
The constants id, if, and  are the continuously compounded riskless domestic interest rate per 
unit time, the continuously compounded riskless foreign interest rate per unit time and the 
standard deviation of the rate of return on the stock per unit time, respectively. 
 
The well-known put-call parity relationship implies that the price of a European currency put 
option, P, is given by: 
 
Pt = Ct  - 𝑒ି௜೑ ∗ ் St + X 𝑒ି௜೏ ∗ ். 
 
Note that there are six factors affecting the premium of a currency option: 
 
i. the current exchange rate (S) 
ii. the strike price (X) 
iii. the time to expiration (T), usually an annualized fraction 
iv. the annualized volatility of the exchange rate () 
v. the annualized domestic interest rate (id) 
vi. the annualized foreign interest rate (if) 
 
Table VII.1 presents the effect on the price of an option of increasing one variable while keeping 
all others fixed.  
 
 TABLE VII.1 
 Effect on the Premium of a Currency Option of a Ceteris Paribus Increase in One Variable 
Variable European Call European Put American Call American Put 
    S + - + - 
    X - + - + 
    T ? ? + + 
     + + + + 
    id + - + - 
    if - + - + 
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Table VII.1 is very easy to understand. For example, if it exercised at some time in the future, the 
payoff from a call currency option will be the amount by which the exchange rate exceeds the 
strike price (X). Call options on foreign currency become more valuable as the exchange rate 
increases and less valuable as the strike price increases. For a put currency option, when exercised, 
the payoff is the amount by which the strike price exceeds the exchange rate. Then, put options 
on foreign currency become less valuable as the exchange rate increases and become more 
valuable as the strike price increases. Similar arguments can be made for all the other variables. 
 
In addition to the above factors, the right to exercise at any time before expiration embedded in 
American options has a price. Therefore, American options are always worth more than their 
European counterparts. 
 
Example VII.1: Using the Black-Scholes formula to price currency options 
It is September 10, 1999. Nairong Co. wants to price an European GBP put option. The GBP put option 
has a strike price of 1.62 USD/GBP and matures in 40 days. In addition, Nairong has the following 
information: the 40-day Euro-USD rate is 4.79%, the 40-day Euro-GBP rate is 5.83%, the annual 
USD/GBP volatility during the recent past was 8%, and today's exchange rate is 1.6186 USD/GBP. 
 
Nairong Co. summarizes all the information: 
St = 1.6186 USD/GBP 
X = 1.62 USD/GBP. 
T = 40/365 = .1096. 
id = .0479. 
if = .0583. 
 = .08. 
 
Nairong obtains C, the call's premium, using the following steps: 
 
(1) Calculate d1 and d2. 
d1 = [ln(1.6186/1.62) + (.0479 - .0583 + .5 * .082) * .1096]/(.08 * .10961/2) = -0.062440, 
d2 = [ln(1.6186/1.62) - (.0479 - .0583 + .5 * .082) *.1096]/(.08 * .10961/2) = -0.088923, 
 
(2) Calculate N(d1) and N(d2). 
Nairong uses the Normal Table and draws a normal distribution. First, recall that the normal distribution 
is symmetric around zero and, therefore, the Normal Table tells the area under the right tail of the normal 
curve. If d1 is negative (positive), Nairong will subtract (add) the .50% of the distribution under the left 
tail of the normal curve to the area under obtain from the Normal Table. In this way, Nairong obtains the 
cumulative area N(d1). 
 
Second, Nairong looks for the cumulative normal distribution at z=-0.06244. The number obtained is 
.02489. But, since d1 (z) is negative, in order to obtain the whole area under the curve up to z=-.06244, 
Nairong subtract .02489 to .50. Nairong uses a similar procedure to calculate d2. Then, 
 
N(d1 = -0.06244) = .47511, 
N(d2 = -0.088923) = .46457. 
 
(3) Calculate C and P. 
Replacing in the Black-Scholes formula, Nairong obtains: 
 
C = 𝑒ି.05830 ∗ .1096  * 1.6186 * .47511 - 1.62 𝑒ି.0479 ∗ .1096 * .46457 = USD .015444. 
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Now, using the put-call parity equation, Nairong determines P: 
 
P = .01544 - 𝑒ି.05830 ∗ .1096   * 1.6186 + 1.62  𝑒ି.0479 ∗ .1096 = USD .01867. ¶ 
 
 
1.B Trading in Currency Options 
 
The market for foreign currency options mainly consists of an interbank market centered in 
London, New York, and Tokyo, and exchange-based markets centered in Philadelphia (PHLX) 
and Chicago (CME). At the European Options Exchange (EOE) there are exchange-traded 
options for some currencies; however the only significant volume is for minor currency options. 
 
The expiration dates of most foreign exchange options contracts are likewise set to correspond to 
the March, June, September, and December delivery dates on CME foreign exchange futures. 
PHLX foreign exchange options are opened with terms to maturity of one, three, six, and twelve 
months. As a consequence, options contracts expiring in March, June, September, December, 
and, in addition, the two nearby months not part of this cycle, are always trading. Exchange traded 
options have standardized strike price intervals, in addition to standardized expiration dates and 
currency amounts. PHLX options are on varying spot amounts, for the major currency usually 
the size is 10,000 units per contract. The exercise price of an option at the PHLX or CME is stated 
as the price in U.S. cents of a unit of foreign currency.  
 
As with exchange-traded futures contracts, exchange-traded options are registered with a 
clearinghouse that guarantees both the long and short sides of puts and calls. For example, PHLX 
contracts are guaranteed by the Options Clearing Corporation (OCC).  
 
OTC options, by contrast, can be tailor-made as to amount, maturity, and exercise price. The 
currency amount involved in OTC options is usually much larger than exchange-traded options 
(typically involving a minimum USD 1 million or so of foreign currency) and OTC options have 
been written on a variety of currencies. 
 
 
1.B.1 Newspaper Quotes 
 
Example VII.2: On September 10, 1999 the Wall Street Journal published the following option quotes 
for several currency options traded on Philadelphia Stock Exchange: 
 
  
  



VII.6 

 OPTIONS 
PHILADELPHIA EXCHANGE  

    Calls   Puts 
   Vol. Last Vol. Last 
Euro      105.54 
10,000 Euro-cents per unit. 
 102 Oct ... 0.01 3 0.38 
 104 Sep 3 0.74 90 0.15 
 104 Oct 3 1.90 ...  ... 
 104 Dec ... 0.01 25 1.70 
 106 Dec 8 1.85 12 2.83 
 108 Oct 75 0.43 ... 0.01 
 112 Dec 1 0.08 1 7.81 
Australian Dollar     65.37 
10,000 Australian Dollars-cents per unit. 
 64 Oct ... 0.01 20 0.31 
 65 Sep 20 0.30 ...  ... 
 66 Oct 30 0.42 ... 0.01 
British Pound     161.86 
10,000 British Pounds-European Style. 
 161 Sep 32 0.82 ...  ... 
 162 Oct 32 1.54 ... 0.01 
10,000 British Pounds-cents per unit. 
 159 Oct ...  ... 4 0.63 
 161 Sep 4 0.94 ... 0.01 
 
 
Recall that an option is usually defined by the underlying asset, the exercise price (X), and the expiration 
date (T). In the above WSJ example, the underlying asset is the foreign currency, exercise prices are given 
in the first column, and expiration dates are given in the second column. 
 
Consider the (American) option contract on the Euro (EUR). On September 10, 1999, the spot price is 
1.0554 USD/EUR. Ninety calls and one hundred thirty one puts are traded. The first call (put) contract 
represents the right to buy (sell) EUR 10,000 at USD 1.02 on October. The Oct 102 call is in-the-money 
since the spot rate exceeds the strike price. On the other hand, the Oct 102 put is out-of-the-money, since 
spot rate exceeds the strike price (1.554 > 1.02). Three puts were traded, the last contract was sold for a 
value of .38 cents per Euro. That is, the last put contract was bought by USD 38 = USD .0038 x 10,000. 
No calls were traded. ¶  
 
 
II. Hedging with Currency Options 
 
In Chapter VI we noted that hedging with futures contracts was very simple: one takes a position 
with a foreign exchange contract that is the reverse of the principal being hedged. We have been 
introduced to hedging with options in Chapter I. Hedging with options is also very simple. 
Suppose Cannigia Co., a U.S. firm, is long CHF for three months (say, Cannigia will receive a 
payment of CHF 20 million). Cannigia may buy today the right to sell those CHF at a given price 
in three months. That is, Cannigia would buy a CHF put. On the other hand, Balbo Co., another 
U.S. firm, who is short CHF for one month (say, Balbo has to pay CHF 10 million), might want 
to buy today the right to buy those CHF at a given price in one month. That is, in this case, Balbo 
would buy a CHF call. 
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Example VII.3: It is September 12. A U.S. investor wants to hedge a GBP 1 million investment in British 
gilts (U.K. government bonds). On the PHLX he/she buys GBP puts for December at 160 (X=1.60 
USD/GBP or 160 USD cents per GBP), at a premium of USD .015. Today, St=1.60 USD/GBP (GBP puts 
are in-the-money). On the PHLX, one contract covers GBP 10,000. Therefore, he/she should buy 100 
contracts. 
 
Suppose that GBP drops to 1.50 USD/GBP at expiration –i.e., below X=1.60 USD/GBP.  Then, a profit 
is made on the put that exactly offset the currency loss on the portfolio. As shown below, the USD loss in 
the portfolio is USD 100,000. 
 
Date   St Long Position (“Underlying)  
September 12  1.60 1,600,000   
Dec Expiration  1.50 1,500,000   
Gain    -100,000     
 
The gain in the hedging position (put position) is:  
 
 (1.60 - 1.50) USD/GBP * GBP 10,000 * 100 = USD 100,000.  
 
The premium keeps the investor from having a perfect hedge. The net profit on the put purchase equals 
the gain at expiration minus the premium. If we call V0, the number of GBP put options, and P0 the 
premium, the net dollar profit on the put at the time of exercise t is: 
 
Net dollar profit (put position) = V0 * (X - St) - V0 * P0, that is, we have: 
 
1,000,000 * (1.60 - 1.50) - 1,000,000 * .015 = USD 85,000. 
 
This profit does not cover the currency loss on the portfolio (equal to roughly USD 100,000) because the 
option premium cost USD 15,000. It would have been less profitable if the pound had dropped to only 
1.59 USD/GBP: 1,000,000 * (1.60 - 1.59) - 1,000,000 * .015 = USD -5,000. ¶ 
 
The advantage of buying options over buying futures is that options simply expire if the GBP 
appreciates rather than depreciates. 
 
Example VII.4: Reconsider Example VII.3. If at expiration the GBP moves to USD 1.80, the option is 
not exercised, but a futures contract with a price of 1.60 USD/GBP will generate a loss of USD 200,000, 
nullifying the currency gain on the portfolio of assets. ¶ 
 
In Example VII.3, the U.S. investor is taking a position on currency options, which is exactly 
equal in size to the position in the underlying (cash) position. That is, the hedge ratio is equal 
to one. Similar to hedging with forward and futures currency contracts, if there is a perfect 
match between the maturities of the cash position and the option position, a hedge ratio equal 
to one is quite appropriate. We will see, below, that for several hedging situations a hedge ratio 
equal to one will not provide an optimal hedge. 
 
The approach to hedging used in this section uses options as insurance contracts, since they 
provide a floor or a cap. Options protect a portfolio in case of adverse currency movements, as 
do currency futures, and maintain its performance potential in case of favorable currency 
movements, while futures hedge in both directions. The price of this asymmetric advantage is the 
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insurance cost implicit in the time value of the option. In this section, we treated the option 
premium as a sunk cost. Note, however, that options are usually resold on the market rather than 
left to expire, and when the option is resold part of the initial insurance premium is recovered. 
 
 
2.A Dynamic Hedging with Options 
 
Similarly to futures contracts, listed options are continually traded. An option position is usually 
closed by reselling the options in the market instead of exercising them. The profit on a position 
is the difference between the two market premiums and, therefore, completely dependent on 
market valuation. The modern approach to currency option hedging is similar to the dynamic 
approach to hedging with futures. Dynamic option hedging recognizes the fact that options are 
continuously traded, and is based on the relationship between changes in option premiums and 
changes in exchange rates. The objective of dynamic option hedging is to match changes in St 
with changes in currency option prices. 
 
Recall the Black-Scholes formula. There is a relation between an option premium and exchange 
rates. Unlike the relation between Ft,T and St, the option premium is non-linearly related to the 
underlying exchange rate. Graph VII.1 shows the relationship we usually observe between Pt (put 
premium) and St.  
 
 GRAPH VII.1 
 Value of a Pound Put in Relation to the Exchange Rate 
 
          Pt   
 
 
 
 
               
          A   
      USD .015     
 
 
 
 
 
    X=1.60    St (USD/GBP) 
      
Beginning with a specific point in the Graph VII.1, where St = 1.60 USD/GBP and Pt = USD 
.015, a put premium can go up or down in response to changes in the exchange rate. The slope of 
the curve at point A denotes the elasticity of the premium to any local movement in the USD/GBP 
exchange rate. In Graph VII.1, the premium is equal to 1.5 USD cents when St=1.60 USD/GBP, 
and the tangent at point A equals -0.5. This slope is called delta, . That is, delta represents the 
expected change in the option premium for a given small change in St. 
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Suppose that for every GBP of British gilts an investor buys one GBP put. One GBP put is defined 
here as a put option on one unit of British currency. One contract includes several unit puts, 
depending on the contract size (on the PHLX, one contract includes 10,000 GBP puts). The 
hedging position (the long put hedging the long position on British gilts) is hedged only at 
expiration. In the meantime, there is residual exposure, since for every 1 USD cent the GBP 
depreciates, each put goes up by only 0.5 USD cents. 
  
A perfect options hedge involves a situation where every USD loss in the underlying position due 
to changes in the exchange rate is covered by a USD gain in the value of the options position. In 
this example, a perfect hedge would be achieved by buying two GBP puts for every GBP of 
British gilts in the underlying position. If the GBP depreciates by 1 USD cent, each put will go 
up by approximately 0.5 USD cents, offsetting the currency loss on the portfolio. 
 

 Delta and Small Changes in Exchange Rates 
The option delta measures the amount the option changes relative to a small change in the spot 
rate (for options on spot) or futures prices (for options on futures). The option price change is 
always less in absolute value than the price change in the spot or future. Therefore, an option delta 
has an absolute value between 0 and 1. For example, suppose we go back to point A in Graph 
VII.1, where a put option on the GBP has a delta value of  = -0.5. This delta value implies that 
if the spot decreases by USD .01, say from 1.60 to 1.59 USD/GBP, the put option value will 
increase by approximately  
   USD -.01 * (-0.5) = USD 0.005.  
 
          Pt   
 
 
 
 
 USD .02             
         A   
      USD .015     
 
 
 
 
 
   1.59   1.60   St (USD/GBP)  
 
That is, we can (locally) approximate the change in Pt by the derivative. The approximated put price is  
   Pt  ≈ USD .015 + USD .005 = USD .02.  
 
In general, if n GBP options are purchased, the gain on the hedging position is:  
 
 Gain = n * (Pt - P0), 
 
where Pt is the put value at time t. For small movements in the exchange rate, we can write: 
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 Pt - P0 =  (St - S0)       (VII.1) 
 
Following the logic we used to determine the optimal hedge ratio for futures contracts, the options 
hedge ratio is equal to (-1/). For example, at point A, in Graph VII.1, the hedge ratio is (-1/-
0.5)=2. Therefore, an optimal currency hedge is obtained by holding n = - (V0/) options.  Note 
that the value of the hedging position changes by: 
 
 Pt - P0 = –V0 * (St-S0),  
 
which exactly offsets the change in the value of the underlying cash position. This method is 
called delta hedging. 
 
Example VII.5: Suppose we want to hedge GBP 1 million, and  is given by point A, in Graph VII.1 (Pt 
= USD .015; St = 1.60 USD/GBP). Then, n = -(1,000,000/-0.5)= 2,000,000. The number of contracts is: 
  n/size of contract = 2,000,000/ 10,000 = 200 contracts.  
 
Now, suppose that the GBP depreciates by USD .01. Therefore, Pt increases approximately by USD .005, 
that is, Pt = USD .02. The change in the hedging (put) position is:  
 2,000,000 * (.02 - .015) = USD 10,000.  
 
The change in the underlying GBP position is approximately: 1,000,000*(1.59 - 1.60) = USD -10,000. ¶ 
 
We must note that  and the hedge ratio change with the exchange rate. Thus, every time 
exchange rates change, the number of options held must be adjusted.  
 
Example VII.6: Go back to point A in Graph VII.1, the hedging ratio was 2 and n=2 million. If the pound 
depreciates, options protect the portfolio but its  changes. Suppose we move to point B, that is, St drops 
to 1.55 USD/GBP, with Pt = USD .025, where the slope moves to -0.8.  
 
 
 Pt 
     
 USD .025   B 
 
 
 
              
         A   
      USD .015     
 
 
 
 
 
      1.55   1.60   St (USD/GBP)  
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Therefore, the hedge ratio is 1.25 (=-1/-0.8) and n=1,250,000. Now, the number of contracts is: 
   n/size of contract = 1,250,000/10,000 = 125 contracts. 
 
To avoid over hedging, The investor closes part of the initial position (200 put contracts). That is, the 
investor sells 75 put contracts and receives  
   USD .025 * 10,000 * 75 = USD 18,750. 
 
For a profit on the 75 put contracts closed: 
   10,000 * (USD .025 - USD .015) = USD 100. ¶ 
  
 
Exchange rates change continually, thus, hedge ratios should also be adjusted continually. A 
continuous adjustment, however, is expensive. In practice, a good hedge can be achieved only 
with periodical revisions in the option position, that is, when there is a significant swing in 
exchange rates (say 2% or more). Between revisions, options offer their usual asymmetric 
insurance within the general hedging strategy. This strategy may be seen as a mixed hedging-
insurance strategy. 
 
 
2.A.1 Using Delta to Measure the Exposure of a Trader 
 
Delta is the first derivative of the premium with respect to the underlying spot price.  That is, for 
European call options, =N(d1), while for European put options, =N(d1)–1. Therefore, since N(d1) 
represents an area under the Normal distribution, the delta of a call option is positive, while the 
delta of a put option is negative. The absolute value of delta is always between zero and one. For 
a deep in-the-money call option,  is close to 1. For an at-the-money call option,  is close to .5. 
For an out-of-the-money call option,  is close to zero. The same values hold for put options, for 
which the values of delta are negative. By definition, the delta of a long position in the underlying 
asset is equal to 1. 
 
Example VII.7: Calculating delta. 
Go back to Example VII.1, where we valued an European option. We have the following data:  
St = 1.6186 USD/GBP,  
X = 1.62 USD/GBP, 
T = 40/365 = .1096. 
id = .0479. 
if = .0583. 
 = .08. 
 
The option is an at-the-money option,  = N(d1) = .47511, which is close to 0.5 as expected. 
 
Now, if St = 1.70 USD/GBP (the option is deep in-the-money),  = N(d1) = .9633, which is close to 1, as 
expected.  
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On the other hand, if St = 1.55 USD/GBP (the option is deep out-of-the-money), = N(d1) = .0448, which 
is close to 0, as expected. ¶ 
 
Delta measures the sensitivity of the option value to changes in the price of the underlying asset. 
Measuring this exposure, , is an important part of the risk management of options. Traders, for 
example, continuously take positions in different instruments, including options with different 
strike prices or maturities. It would be difficult -or too expensive- to have a zero net exposure in 
each traded option. Instead, traders use  to offset positions in different options. 
 
The net delta of a position represents an equivalent long or short position in the underlying foreign 
currency (cash) position. Therefore, hedgers use delta to determine their actual foreign exchange 
exposure. 
 
Example VII.8: Measuring exposure with puts and calls. 
Suppose it is September 20. The spot exchange rate is 1.6186 USD/GBP. Suppose Mr. Krang is long five 
162 Oct GBP European calls on spot GBP, with a = 0.475, and also long three 162 Oct European puts 
on spot GBP, with a = -0.525. Then, the net delta is: 
 5 * (0.475) + 3 * (-0.525) = 0.80. 
 
Since a standardized GBP represents GBP 10,000, the net position is equivalent to a long position in spot 
GBP of (0.80) * (GBP 10,000) = GBP 8,000. ¶ 
 
Because the net delta of a position represents the equivalent long or short position in foreign 
currency, it is a measure of one's total portfolio risk. For that reason, the CME uses delta factors 
as a basis for margin requirements.  
 
Traders try to attain a minimum exposure -hopefully, a delta-neutral position. An investor is said 
to be delta-neutral, when the investor's position has a net delta of zero. For small changes in the 
spot rate, the change in the value of the position will be zero. In this case, an investor is fully 
hedged for small changes in the spot rate.  
 
Example VII.9: Measuring exposure with options on futures and futures 
Suppose the delta on an American call on futures is .400. A trader is long 2 CME CHF futures contract 
and short 3 CME CHF call options on futures, the net delta of the position (per CHF) is: 
 2 + (-3) * (.400) = .800. 
 
That is, the total net position to a long position is .800 CME CHF futures contracts. There are CHF 125,000 
in a futures contract. Thus, the net position in futures is equivalent to a long position in futures of (.800) * 
(CHF 125,000) = CHF 100,000.  
 
Note: We are using the fact that the delta of a futures contract when the underlying position is also in 
futures contracts is equal to one. 
 
A trader can achieve a delta-neutral hedge. A CHF 250,000 long futures position hedged by 5 short CME 
CHF call options on futures produces a net delta of 
 2 + (-5) * (.400) = 0. ¶ 
 
We should note that the delta value represents a slope -see point A in Graph VII.1. Therefore, a 
delta-neutral (perfectly hedged) position produces no profit if the change in the exchange rate is 
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small. Then, there is a residual exposure through the speed at which  changes. This speed is 
measured by the option gamma. 
 
 
2.A.2 Gamma 
 
The option gamma measures how curved a graph relating the spot price to the option value is. 
Equivalently, gamma measures the amount the option delta changes relative to a small increase 
in the spot rate (for options on spot) or futures prices (for options on futures). It is a measure of 
the second derivative of the value of the option with respect to the spot rate (for options on spot) 
or futures prices (for options on futures), and then it is a valid measure for small changes in the 
price of the underlying asset.  
 
Long option positions have the gamma positive. If the gamma is positive, then the delta will 
increase with an increase in the underlying price and decrease with a decrease in the underlying 
price.  
 
Example VII.10: Consider the options of Example VII.8. Suppose the gamma of the GBP call option on 
the GBP is .065 (recall, =.475). If the spot rate increases by USD .01 (1 USD cent) from 1.6186 to 1.6286, 
the delta will increase from .475 to .540 (=.475 + (1) * .065).  
 
If an investor is long a 162 Oct GBP call option, then a USD .01 increase in St means a change in the long 
position of GBP 650 (= GBP 10,000 * .065). ¶ 
 
If the original delta were zero while the gamma was positive, then a rising (falling) price would 
result in a positive (negative) delta position. This is a very good situation: an investor would like 
to have a positive delta (net long position) if prices are rising but a negative delta (net short 
position) if prices are falling. 
 
Example VII.11: Consider an investor's position consists of a short spot CAD position of CAD 50,000, 1 
long CAD call with =.60 and =.15, and a short CAD put with =.40 and =.10. 
 
The net delta for the position is:  = -1 + .60 + (-1) * (-.40) = 0. 
 
The net gamma is:  = .15 + (-1) * (.10) = .05 
 
If the spot rate increases by USD .02, the net delta will change to .10 (=0 + (2) * .05). That is, the investor 
has a net long position. 
 
If the spot rate decreases by USD .02, the net delta will change to -.10 (=0 + (-2) * .05). That is, the investor 
has a net short position. ¶ 
 
 
2.B Hedging Strategies 
 
Hedging strategies with options can be more sophisticated than those with futures: an investor 
can play with several maturities and exercise prices with options only. For example, hedgers can 
hedge with out-of-the-money, at-the-money, or in-the-money options. These different options 
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have different prices and they also provide different coverage for the exposed cash flows of a 
given firm. Firms hedging with option face the same trade-off that buyers of insurance policies 
face when they select insurance coverage. Insurance with a high deductible is cheap, but the 
coverage starts at a high floor. On the other hand, insurance with a low deductible is more 
expensive, but the coverage starts at a low floor. This trade-off is also seen when hedgers use 
options to hedge. For example, out-of-the-money options are cheaper than at-the-money options, 
but they provide a lower degree of insurance protection to the company’s cash flows. 
 
Example VII.12: It is September 10, 1999. Suppose we want to hedge a long bond position worth EUR 1 
million using Dec options (see Example VII.2).  Suppose we can to use the options that are closer to St = 
1.0554 USD/EUR. Thus, we can use the out-of-the-money Dec 104 or the in-the-money Dec 106.  
 
(A) Out-of-the-money Dec 104 put. 
Total cost = USD .0170 * 1,000,000 = USD 17,000 
Floor = 1.04 USD/EUR * EUR 1,000,000 = USD 1,040,000. 
 
(B) Out-of-the-money Dec 106 put. 
Total cost = USD .0283 * 1,000,000 = USD 28,300 
Floor = 1.06 USD/EUR * EUR 1,000,000 = USD 1,060,000 
 
The typical trade-off is seen in this example. A higher minimum amount for the long gilt position (USD 
1,060,000) is achieved by paying a higher premium (USD 28,300). ¶ 
 
Hedgers are aware that the hedge ratio changes with St. In a dynamic hedging situation, a popular 
strategy to adjust the hedge ratio is to keep a fixed number of options, but replace in-the-money 
option with cheap out-of-the-money options to maintain the same hedge ratio. For instance, in the 
Example VII.6, if the GBP later reverses its depreciation against the USD, the puts will become 
worthless; however, most of the profit will have been locked in and saved. 
 
 
2.C Exotic Options 
 
Exotic options are complex options that typically incorporate two or more option features. For 
example, a compound option (an option on an option) is considered an exotic option. It provides 
its holder with the right to buy another option. Two popular exotic options in currency markets 
are the knock-outs and the knock-ins. These two exotic options are just an example of barrier 
options. 
 
 
2.C.1. Barrier Options: Knock-outs/Knock-ins 
 
Barrier options are options where the payoff depends on whether the underlying asset's price 
reaches a certain level during a certain period of time. We will consider two types of barrier 
options: knock-out and knock-in options. 
 
Knock-out: A standard option with an "insurance rider" in the form of a second, out-of-the-money 
strike price. This "out-strike" is effectively a stop-loss order: if the strike price is crossed by the 
cash-market spot price, the option contract ceases to exist. Knock-ins are just the reverse. The 
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option contract does not exist unless and until the spot market price crosses the out-of-the-money 
"in-strike" price that triggers the contract.  
 
Example VII.13: Suppose that the spot rate is 1.60 USD/GBP. Consider the following European option: 
a 1.65 USD/GBP March GBP call knock-out 1.75 USD/GBP. If in March the spot rate is 1.70 USD/GBP, 
the option will be exercised, and the writer of the option will lose USD .05 per GBP sold. But, if in March 
the spot rate is 1.75 USD/GBP or higher, the option is canceled. ¶ 
 
Think of knock-outs/knock-ins as insurance policies with higher deductibles and lower 
premiums. While nobody currently expects the USD/GBP to go to 2.00 or 1.00, knock-out or 
knock-in options -just in case- are a normally inexpensive form of risk protection. They also 
enable traders to maintain a position not just at a strike price but across a range of prices. You 
may think that the GBP when at 1.60 USD/GBP will go to 1.70 USD/GBP -but it might first dip 
to 1.50 USD/GBP. Knock and kick options make it possible to hold that position open despite 
fluctuations in the market. 
 
 
III. Looking Ahead: Which hedging technique is better? 
 
We have gone over two basic hedging tools: futures and options. Note that options give us a 
family of tools, since we have different strike prices to choose from. We have seen how futures 
and options help a firm or an investor to reduce currency risk. Option hedges tend to be more 
expensive than futures hedges. The choice of an instrument, however, will depend not as much 
on the cost of the hedge, but on the underlying situation that makes currency risk arise. For 
example, if a domestic firm acquires a foreign firm but the operation is subject to approval from 
foreign regulators, the best hedge is probably an option hedge, because it allows the domestic 
firm the freedom of not exercising the options contract if the acquisition does not go through.  
 
Futures and options are instruments designed by financial markets. Firms can also limit their 
currency risk exposure by using other non-market techniques. Firms can organize the operation 
of the firm to reduce the overall currency risk faced by the firm. For example, a firm can achieve 
a very good match between payables and receivables denominated in foreign currency. Non-
market techniques could have saved Laker Airways from bankruptcy.  
 
These are the issues waiting for us in Chapter VIII. 
 
 
Interesting readings 
 
Parts of Chapter VII were based on the following books: 
 
International Financial Markets, by J. Orlin Grabbe, published by McGraw-Hill. 
 
International Financial Markets and The Firm, by Piet Sercu and Raman Uppal, published by 
South Western. 
 
International Investments, by Bruno Solnik, published by Addison Wesley. 
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APPENDIX VII 
 
OPTIONS: BLACK-SCHOLES AND THE DIFFERENT INSTRUMENTS 
 
There are many option pricing models. The pioneering option pricing model of Black and Scholes (1973) 
has become the most popular model to price not just options, but derivatives in general. In the usual Black-
Scholes environment the underlying asset return is assumed to follow a lognormal random walk. Let P be 
the underlying asset price that follows a geometric Brownian motion  
 
dP = P dt +  P dz(τ), 
 
where z(τ) is a standard Gauss-Wiener process (think of it as a normal variable with zero mean and variance 
which equals the difference between the future time and current time), and  and  are the instantaneous 
mean and standard deviation of the underlying asset price, respectively. 
 
Using equation using the standard method delivers 
 
P(τ) = P exp [( - ½2) τ +  z(τ)]. 
 
Taking logarithm on both sides of the above equation yields: 
 
ln (P(τ)/P) = ( - ½2) τ +  z(τ), 
 
which is normally distributed. This is why the Black-Scholes model is also called a lognormal model. The 
lognormal distribution is skewed to the left and the variables cannot be negative. 
 
The Black-Scholes model requires many assumptions. Besides the lognormal assumption, the model 
requires: 
 
i. the short term interest rate is known and is constant. 
ii. the underlying asset pays no dividend 
iii.  the option is European. 
iv. no transaction costs. 
v. no penalties for short selling. 
vi. it is possible to borrow any fraction of the price of the security to buy it or hold it. Borrowing cost 
is the short-term interest rate. 
vii. trading can be carried on continuous basis. 
 
Of all the assumptions, the last one –continuous trading- is a big one. It makes possible the use of 
continuous time calculus. With these assumptions, Black and Scholes derived the price for a European call 
option, C, using a no-arbitrage argument. This formula is given by: 
 
C = P N(d1) - X e-r τ N(d2), 
 
where 
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where N(z) is the standard normal distribution function. 
 
 
A.VII.1 Binomial Model: Derivation of the Black Scholes formula 
 
Assumptions of the model: 
 
i. Two long-lived assets: a risky stock and a riskless bond, with prices pt and Bt. 
ii. We concentrate on the time interval: t = 0, 1,..., T. 
iii. The riskless bond earns a constant return, R = (1+irf) -where irf is the riskless rate. 
iv. The stock does not pay dividends until time T. 
v. The stock can move up by u or down by d. (u > (1+irf) > 1 > d). 
vi. The information in the economy is summarized by an event tree. For example: 
 
t=0  t=1  t=2 
 
    u2 p0 
   q 
  u p0 
 q     (1-q) 
p0    ud p0 
 (1-q)  q 
  d p0 
      (1-q) 
    d2 p0 
 
Note I: q represents the binomial probability for the stock to move up. Recall that the probability that a 
stock has n at time T upward moves is given by qn (1-q)T-n. 
 
Note II: Following note I, we have that the number of complete realizations that have exactly n upward 
moves is: 

 
A.VII.1.A  One-period formulation 
 
To see how to value a call on the stock, we start with the simplest situation: the expiration date, T, is the 
next period. To simplify notation, let now be time t=0 and T=1. The value of a call option, C, can take at 
time T=1 two values: 
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   Cu=max[up0-X,0] 
 q      
C     
 (1-q)   
   Cd=max[dp0-X,0] 
    
 
We form a portfolio containing  share of stock and the dollar amount B in the riskless bond. This will 
cost p0+B. At the end of the period the value of this portfolio will be 
     
           up0+RB 
                    q       
p0+B      
           (1-q)   
              dp0+RB 
     
 
We can choose B and  in any way we wish. Suppose we choose them to equate the end-of-period values 
of the portfolio and the call for each possible outcome: 
 
up0 + RB = Cu 
dp0 + RB = Cd 
 
Solving these equations, we find 
 
 = [Cu - Cd]/[(u-d)p0], and  B = [uCd - dCu]/[(u-d)R]. (A.VII.1) 
 
With  and B chosen in this way, we will call this the hedging portfolio. 
 
If there are no arbitrage opportunities, the value of the call at time T-1 should be equal to the value of the 
hedging portfolio, p0+B. 
 
 C = p0+B =  {[Cu - Cd]/[(u-d)p0]}p0 + {[uCd - dCu]/[(u-d)R]} = 
 
 = {[(R-d)/(u-d)]Cu + [(u-R)/(u-d)]Cd}/R. 
 
Let (R-d)/(u-d), and (1-)(u-R)/(u-d). We called  a risk-neutral probability. 
  
Then, 
 
C = [ Cu + (1-) Cd]/R.      (A.VII.2) 
 
Note III: the probability q does not appear in the formula. The only random variable on which C depends 
is p0. In equation (A.VII.2) preferences and tastes do not matter. 
 
Investors' attitude toward risk and the characteristic of other assets do not influence directly C, but they 
might have an indirect effect through p0, u, d, and R. 
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A.VII.1.B Two-periods formulation 
 
Now, we will consider the second easiest formulation, there are two periods remaining before T. Since 
now is time t=0, then T=2. That is, 
 
t=0  t=1  t=2 
 
    Cuu = max[u2p0-X,0] 
   q 
   Cu 
 q     (1-q) 
C    Cud = max[udp0-X,0] 
 
 (1-q)   q 
   Cd 
      (1-q) 
    Cdd = max[d2p0-X,0] 
 
 
At T-1, we know that  
 
Cu = [ Cuu + (1-) Cud]/R. 
 
Cd = [ Cdd + (1-) Cud]/R.     (A.VII.3) 
 
Again, we select a portfolio with  in stock and B in the bond, whose end-of-period value will be Cu if the 
stock price goes up to up0 and Cd if the stock price goes to dp0. To get these new values, we use (A.VII.1), 
with the new values of Cu and Cd. 
 
Since  and B have the same functional form in each period, At time t=0 -i.e., T=2- the current value of 
the call will be again  
 
C = [ Cu + (1-) Cd]/R  if C > p0-X, 
  = p0-X    otherwise. 
 
By substituting from equation (A.VII.3) into the above equations, we get 
 
C = {2 Cuu + 2(1-) Cud + (1-)2 Cdd}/R2 
 = {2 max[u2p0-X,0] + 2(1-) max[udp0-X,0] + (1-)2 max[d2p0-X,0]}/R2. 
 
C now depends on p0, X, u, d, R and T=2. 
 
 
A.VII.1.C T-period problem 
 
By starting at expiration date and working backwards, we can write down the general valuation formula: 

 (A.VI.4).X,0]     -dup[ )-(1 
n

T
 R = C n-Tn

0
n-Tn

T=n

=0n
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The more general formula for any t, is 

Let j be the minimum number of upward moves such that 
 
pt uj dT-t-j > X. 
 
Using logs on both sides, we get  
 
ln(pt) + j ln(u) + (T-t-j) ln(d) > ln(X). 
 
Solving for j, we could write j as the smallest non-negative integer such that: 
 
j [ln(u)-ln(d)] + ln(pt) + (T-t) ln(d) > ln(X),  
 
j  ln[X/(ptdT-t)]/ln(u/d). 
 
Replacing in (A.VII.4), we obtain (recall we are at time t=0): 

Of course, if j>T, the call will finish out-of-the-money even if the stock moves upward every period, so 
C=0! 
 
We break (A.VII.5) into two terms: 

 
Digression: In a series of T-t independent trials of an experiment whose success rate is  and whose failure 
rate is (1-), the probability that there will be at least j 0 successes is 

This is called the complementary binomial distribution function. The binomial distribution function is 
equal to: 1-, and it gives the probability that the number of successes is strictly less than j.  
 
Substituting into (A.VII.6) we obtain: 
 
C = p0 (j;T,') - X R-T (j;T,), 
 
where '  u/R, and (1-')  (d/R)(1-), 
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' is a probability, since 0<'<1. To see this, note that <(R/u) and 
 
n(1-)T-n (un dT-n/RT) = (u/R)n (d(1-)/R)T-n = 'n (1-')T-n. 
 
This is the binomial option pricing formula of Cox, Ross and Rubinstein (1979). All the features valid for 
the one period formula are also valid for any number of periods. In particular, the value of a call should be 
the expectation, in a risk-neutral world, of the discounted value of the payoff it will receive. 
 
Example A.VII.1: Suppose you are given the following data: p0=80, T=3, X=80, u=1.5, d=0.5, irf=10% 
(R=1.1). You want to price the call option, C. 
 
In this case,  = (R-d)/(u-d) = (1.1-0.5)/(1.5-0.5) = 0.6. 
 
R-1 = .909, R-2 = .826, R-3 = .751. 
 
The paths the stock price may follow and their corresponding probabilities are: 
 
     270 
   180  (.216) 
 120  (.36) 
 (.6)    90 
80   60  (.432) 
 40  (.48) 
 (.4)    30 
   20  (.288) 
   (.16) 
     10 
     (.064) 
 
Using the formula, the current value of the call would be 
 
C = 0.751 [0.064 (0) + 0.288 (0) + .432 (90-10) + .216 (270-80)] = 34.065. 
 
Recall that to form a riskless hedge, for each call we sell, we buy and subsequently keep adjusted a portfolio 
with  in stock and B in the bond. 
 
The following diagram gives the paths C may follow and the corresponding value of . 
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      190 
    107.272  
  60.463  (1.00) 
  (.848)    10 
34.065    5.454   
(.719)  2.974  (.167) 
  (.136))    0 
    0  
    (0.00) 
      0 ¶ 
      
 
Example A.VII.2: Reconsider Example A.VII.1. Suppose that when t=0, the market price of the call is 36. 
The option is overpriced, therefore we could plan to sell it and assure ourselves of a profit equal to the 
mispricing differential. 
 
For example, we could follow this steps under a udd price trajectory for the stock: 
 
Step 1 (t=0): p0=80. Sell the call for 36. Take 34.065 of this and invest it in a portfolio containing =.719 
shares of stock by borrowing .719(80)-34.065=23.455. The remainder 36-34.065=1.935 is invested in the 
bank. 
 
Step 2 (t=1): p1=120. The new =.848. Buy .129 (=.848-.719) more shares at 120 for a total of 15.480. 
Borrow to pay this amount. With irf=10%, we already owed 23.455(1.1)=25.801. Then, total current debt 
is 41.281 (=25.801+15.480). 
 
Step 3 (t=2): p2=60. The new =.167. Sell .681=(848-.167) shares at 60, taking in .681(60)=40.860. Use 
this to pay back part of your borrowing. Since we now owe 41.281(1.1)=45.409, the repayment will reduce 
debt to 4.549 (=45.409-40.860). 
 
Step 4 (T=3): p3=30. The call we sold has expired worthless. We own .167 shares of stock selling at 30, 
with a total value of 5. Sell the stock and repay the 4.549(1.1)=5. Go back to the bank and withdraw your 
original deposit, which has now grown to 1.935(1.1)3=2.575. 
 
Suppose the price trajectory for the stock is udu. 
 
Step 4' (T=3): p3=90. The call we sold is in the money. Buy back the call, or buy one share of stock and 
incur a loss of 10 (90-80). Borrow to cover this, bringing your total debt to 15 (=5+10). We own .167 
shares of stock selling at 90, with a total value of 15. Sell the stock and repay the 15. Go back to the bank 
and withdraw your original deposit, which has now grown to 1.935(1.1)3=2.575. 
 
Conclusion: if we are correct in our original analysis, and if we faithfully adjust the hedge portfolio, then 
if an option is miss-priced, we can assure ourselves a riskless profit equal to the misspricing differential.¶ 
 
 
A.VII.2 The Black-Scholes formula  
 
Basic intuition: As the number of trials -i.e., as the number of stock prices moves- increases to infinity, the 
central limit theorem shows that the binomial distribution converges to the standard normal distribution. 
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To increase the number of stock prices moves, we will allow more and more trading in the time interval 
[0,T].  
 
Let n be the number of periods of length h prior to expiration. Then, hT/n. 
 
As trading takes place more and more frequently, h gets closer and closer to zero. We must readjust R, u, 
and d in such a way that we obtain empirically realistic results as h becomes smaller or, equivalently as 
n. 
 
We will let R to continue mean the gross return on the bond over a fixed length of calendar time. We will 
use r to refer to the gross return over a period of length h. Then, for any choice of n, we will have 
 
rn = RT,  r = RT/n. 
 
We also want to define u and d in terms of n. Recall that over each period, the stock price moves up or 
down for a gross return of u or d, respectively (with associated probabilities of q and (1-q)). 
 
It will be easier to work with the natural logarithm of the one plus rate or return, ln(u) or ln(d). This gives 
the continuously compounded rate or return on the stock over each period. It is a r.v., which will be equal 
to ln(u) with probability q and ln(d) with probability (1-q), in each period. 
 
Example A.VII.3: Consider a typical price trajectory uduud. The final stock price will be p*=uduudp0. 
Then,  p*/p0 = u3d2, and ln(p*/p0) = 3 ln(u) + 2 ln(d).  ¶ 
 
More generally, over n periods, 
 
ln(p*/p0) = j ln(u) + (n-j) ln(d) = j ln(u/d) + n ln(d), 
 
where j is the (random) number of upward moves occurring during the n periods to expiration. The 
expected value of ln(p*/p0) is 
 
E[ln(p*/p0)] = ln(u/d) E[j] + n ln(d), 
 
and its variance is 
 
var[ln(p*/p0)] = [ln(u/d)]2 var[j]. 
 
Since each of the n possible upward moves has probability q, then E[j]=nq, and var(j)=nq(1-q). Replacing 
above, we have 
 
E[ln(p*/p0)] = [ln(u/d) q + ln(d)]n  cn, 
 
var[ln(p*/p0)] = [ln(u/d)]2 q(1-q)n  2n. 
 
We would not reach a reasonable conclusion if either cn or 2n went to zero as n became large. Since T 
is a fixed length of time, we must make the appropriate adjustments in u, d, and q,  
 
We would want at least the mean and variance of the continuously compounded rate of return of the 
assumed stock price to coincide with that of the actual stock price as n. Let T and 2T be the empirical 
counterparts of cn and 2n. Then we would like to choose u, d, and q, so that 
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[ln(u/d) q + n ln(d)]n  cT, 
 
[ln(u/d)]2 q(1-q)n  2T. 
 
Algebra shows we can accomplish this by letting 
 
u = exp((T/n)1/2, 
 
d = exp(-(T/n)1/2, 
 
q = ½ + ½(/)(T/n)1/2. 
 
Clearly as n, 2n2T, while cn=T for all values of n. 
 
Note: we are choosing r, u, d, and q in a way such that the multiplicative binomial distribution of stock 
prices goes to the lognormal distribution. 
 
To apply the central limit theorem, we need to check the following condition: 
 
{qln(u)-c3 + (1-q) ln(d)-c3}/(3n1/2)  0, as n. 
 
Intuition from this condition: higher-order properties such as skewness become less and less important 
relative to its standard deviation, as n. 
 
If the above condition holds, then 
 
Prob[(ln(p*/p0)-cn)/(n1/2)  z]  N(z), 
 
where N(z) is the standard normal distribution function. That is, as we trade more and more frequently, 
the probability that the standardized continuously compounded rate of return of the stock through T is not 
greater than the number z approaches the probability under a standard normal distribution. 
 
Using this framework, we can obtain the limiting case for the binomial formula:   
 
C(p,t;X) = P N(d1) - X R-(T-t) N(d2),    (A.VII.9) 
 
where 

This is the Black-Scholes formula. The two constants r and  are the continuously compounded riskless 
interest rate per unit time and the standard deviation of the rate of return on the stock per unit time, 
respectively. 
 
Let's rewrite Cox, Ross and Rubinstein (CRR) binomial option formula: 
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C = P0 (j;T,') - X R-T (j;T,). 
 
To show that the two formulas converge, CRR show that as n, 
 
(j;T,') N(d1) and (j;T,) N(d1-T1/2). 
 
Black and Scholes (1973) derived formula (A.VII.9) assuming continuous trading and a lognormal 
distribution for stock returns. Their solution relies on Ito's lemma.  
 
CRR's approach contains continuous trading and the lognormal distribution as a limiting case. 
 
Example A.VII.4: Approximating Black-Scholes with the binomial approximation. 
 
Suppose we are given the inputs:  
p0 = 40. 
X = 35 and 45. 
T = 1, 4, and 7  (months). 
 = .20 and .40  (annual standard deviations). 
irf = .05 (R = 1.05) (annual interest rates).  
 
Using this information we obtain u, d, and r using the relationships: 
 
d=1/u, u=e(T/n),  r=RT/n. 
 
   n=5    n= (B-S) 
 X 1-mo 4-mo 7-mo  1-mo 4-mo 7-mo 
 
0.2 35 5.14 5.77 6.45  5.15 5.76 6.40 
 45 0.02 0.54 1.15  0.02 0.51 1.10 
 
0.4 35 5.40 6.87 7.92  5.39 6.89 8.09 
 45 0.46 1.99 3.30  0.42 2.10 3.34 
 
The maximum difference is USD 0.11. For n=50, the maximum difference is less than $0.03. For even 
moderate sizes of n, the binomial approximation works fairly well. ¶ 
 
 
A.VII.3 Approximating the cumulative normal distribution, N(z) 
 
Abramowitz and Stegun (1972) provide a polynomial approximation to the cumulative function of a 
standard normal distribution N(z). This approximation is given by: 
 
N(z) = 1 – (a1 y + a2 y2 + a3 y3) f(z)  for z≥0, and 
N(z) = 1 –N(-z)    for z<0, 
where  
 y = 1/(1+a0 z) 
 a0 = .33267, 
 a1 = .4361836, 
 a2 = -.1201676, 
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 a3 = .9372980, and 
f(z) = exp(-z/2)/(2π)1/2 is the density function of a standard normal distribution. 
 
The Abramowitz and Stegun approximation is normally accurate to four decimal places and are always 
accurate to 0.0002. 
 
 
A.VII.4 The Different Instruments 
 
i. Stock options. 
Trading in listed options started with options on common stocks. Markets have developed through the 
world to the point where options on most active stocks are now traded. In the United States, the volume of 
shares traded through options is often larger than the volume of the actual stocks traded on the NYSE. 
 
Example A.VII.5: The Wall Street Journal publishes listed option contracts.  On November 1, 1994, the 
most active contracts were 
 
 Monday, October 31, 1994 
------------------------------------------------------------------------------------------ 
 MOST ACTIVE CONTRACTS 
------------------------------------------------------------------------------------------ 
      Net   Open 
Option/Strike  Vol Exch Last Chg. a-Close Int 
PhysCp Dec 25  5,121  CB  1/8 ... 245/8 65 
Ph Mor Nov 60  4,913   AM 2 - 2¼ 61¼ 4,685 
Novell Nov 17½  4,531  AM 13/8 +3/8  18½ 6,945 
I B M Nov 75  4,453  CB 1½ - 1/8 743/8 26,041 
G M Dec 40  4,006  CB 1¼ - ½ 39½ 6,414 
Hewlet Nov 90 p 3,355  CB ½ - 5/8 97¾ 3,625 
G M Nov 45  3,057  CB ½ - 7/8 39½ 15,209 
Merck Jan 35  2,784  CB 2 - 3/8 35¾ 26,046 
Cypr Mn Dec 25 p 2,760  CB ½ + 5/8 263/8 5 
Compaq Nov 40  2,743  PC 1¾ - ½ 407/8 8,996 
I B M Nov 75 p 2,736  CB 15/8 + ½ 741/8 8,119 
 
 
ii. Commodity options. 
The most active trading takes place in gold and silver options, which many money managers use for their 
gold-linked assets. It should be stressed that some of the exchanges trade in bullion options, which require 
physical delivery of the metal, while others trade in gold futures contracts. 
 
iii.  Interest rate options. 
Options are traded on U.S. debt instruments such as treasury bills, treasury bonds, and certificates of 
deposit (CDs). Similar options exist in a few countries with developed bond markets, including the U.K. 
and the Netherlands. Besides these exchange-traded options, some interest rate options are negotiated over 
the counter. These tend to be longer-term options on short-term interest rates. They often take the form of 
caps and floors. 
 
iv. Stock Index options. 
Options on stock indexes have developed in several countries. Stock index options are options on the level 
of the index. The contract size is equal to the index times a multiplier set by the exchange. For example, 
the Standard & Poor's 500 options traded on the CME have a contract multiplier of 500. In other words, 
the investment required to purchase one contract is equal to the premium multiplied by USD 500.  
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Example A.VII.6: On November 1, 1994 the Wall Street Journal reports a closing price for S&P 500 
(SPX) 472.35. The closing premium for the December 450 call on the S&P 500 was 25_. The investment 
required to purchase one contract is USD 12,812.50. ¶ 
 
All settlement procedures require cash, rather than physical delivery of an index. The option contracts on 
Indexes can be either American or European. 
 
Example A.VII.7: On September 21, 1994, the FT-SE 100 closed at 3037.3. The same day, the Financial 
Times reported the following quotes for the option on the FT-SE 100 (American and European style 
options): 
 
 FT-SE 100 INDEX OPTION (LIFFE) (*3436) £10 per full index point 
------------------------------------------------------------------------------------------------------------------------------------------ 
 2850 2900 2950 3000 3050 3100 3150 3200 
 C P C P C P C P C P C P C P C P 
Oct 196 12½ 153½ 19½ 115½ 31 82 47½ 53½ 70 33 99 18½ 135 10½ 176½ 
Nov 21½ 25½ 175½ 35½ 139½ 48 107½ 66½ 78½ 87 57 115 38½ 147 25½ 184 
Dec 233½ 33½ 196½ 62 160 65½ 130½ 87 100 107 78 134 56 162½ 42 197½ 
Mar 251 50½ 216½ 65 185 83½ 158 105½ 127 124 101 148 79½ 176½ 62½ 210½ 
Jan+  279½ 97   219½ 134   168 182   123½ 238 
 
Calls 4,909  Puts 6,865  
 
 EURO STYLE FT-SE 100 INDEX OPTION (LIFFE) £10 per full index point 
------------------------------------------------------------------------------------------------------------------------------------------ 
 2875 2925 2975 3025 3075 3125 3175 3225 
 C P C P C P C P C P C P C P C P 
Oct 175 17 133 24½ 94½ 36 67 58½ 42½ 83½ 25 116 14 154 7 196½ 
Nov 196 29½ 159 42 125 57½ 95 77½ 69½ 101 48½ 129½ 32 162½ 19½ 200 
Dec 210½ 41½ 174½ 55½ 142 72½ 113½ 93 88 116½ 66 144 48 175 33½ 210½ 
Mar   224½ 83   164½ 120½   114½ 167   75½ 225½ 
Jun+  269 105   209½ 141½   156½ 184½   114 238 
 
Calls 8,603  Puts 3,521 * Underlying Index Value. Premiums shown are based on settlement prices. 
+ Long dated expiry months  
 
 
v. Currency options. 
Currency options have already been discussed in this chapter. 
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Exercises: 
 
1. Go back to Exercise VI.4. The investor considers buying currency puts on the yen instead of 
selling futures contracts. In Philadelphia, a JPY put with a strike price of 0.009 USD cents and 3-
month maturity is worth 0.40 USD cents per 100 JPY (USD .00004 per JPY). 
 
Assume that three months later, the portfolio is still worth JPY 200 million. Simulate various 
values of the spot JPY/USD exchange rate. Compare the results of the following two currency 
hedging strategies for your different values of the exchange rate three months later. In the first 
strategy, the investor sell JPY 200 million forward, and in the second strategy he buys yen puts 
for JPY 200 million  
 
2. Consider the Euro contract on Example VII.2. Calculate the total price (premium) paid for the 
in-the-money December calls and puts. If you buy 2 Dec 106 EUR calls, what is the total price 
paid? Is the Dec 106 EUR call in-the-money or out-of-the money? 
 
3. Go back to Example VII.2. Suppose you bought 5 Sep 161 GBP PHLX calls --with a strike 
price of 161 (1.61 USD/GBP). Broker's fees are USD 28 + USD 1.50 per contract sold. 
i.- Ignoring broker’s fees, how many USD would you have paid? 
ii.- What approximate ceiling cost of GBP 156,250 would you have locked in? 
iii.- Suppose you had held the five options for 20 days and then sold them for "2.95" (USD 
cents per GBP). What was the net dollar profit (including transaction costs), assuming a USD 
interest opportunity cost of 10 percent per annum (per 360 days) on the premium? 
 
4. Go back to Graph VII.1 point A, suppose St drops to 1.57 USD/GBP and  changes to -.6. How 
many puts must the investor sell or buy to avoid over hedging at the same strike price? Answer 
the same question, but suppose St increases to 1.85 USD/GBP and  changes to -.31. 
 
5. A U.S. bank buys a Nov USD put (JPY call!) with a strike price of 103 JPY/USD and writes a 
Nov USD call (JPY put) with a strike price of 102 JPY/USD. What happens if at expiration the 
spot rate is 104.50 JPY/USD? 
 
6. Go back to equation (VII.1). Show that n = - (V0/) provides a good hedge. (Hint: show that 
for small movements in the exchange rate, the change in the hedge portfolio is zero when n = - 
(V0/).) 
 
7. Suppose that the spot rate is .28 USD/PLN (PLN = Polish zloty). Consider the following 
European option: a .30 USD/PLN June PLN call knock-in .35 USD/PLN. You buy 10,000 of 
these European call knock-in options. You paid .01 USD per option. 
a. What are the profits (losses) if in June the spot rate is .33 USD/PLN? 
b. What are the profits (losses) if in June the spot rate is .37 USD/PLN? 
 
8. You work for a Brazilian investment bank pricing OTC BRR/USD options. Suppose you are 
given the following data: 
X= 1.50 BRR/USD. 
S= 1.60 BRR/USD. 
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T= 3 years. 
iUSD = 5.5% (annual risk-free rate) 
iBRR = 14.7% (annual risk-free rate) 
 = 23%, 
 
where  is the annual volatility estimated using historical data for the past three years. Suppose 
you are long USD 10,000,000, determine the size of your options hedging position. 
 
Calculate C (call premium) and P (put premium) using the Black-Scholes formula. 
 
9. Reconsider Exercise VII.9. In the market, you observe that C is equal to BRR .4517, which is 
different from the theoretical price you have estimated. You feel that your estimate of , 
calculated using historical data, is not a good estimator of the future 3-year volatility. Given the 
observed C, you should be able to obtain an implied estimate for . You use the method of trial 
and error. What is this implied volatility? 
 
 


