
CHAPTER VI 
 
CURRENCY RISK MANAGEMENT: FUTURES AND FORWARDS 
 
In an international context, a very important area of risk management is currency risk. This risk 
represents the possibility that a domestic investor's holding of foreign currency will change in 
purchasing power when converted back to the home currency. Currency risk also arises when a firm 
has assets or liabilities expressed in a foreign currency. Consider the following example. 
 
Example VI.1: Spec’s, the Texas liquor store chain, regularly imports wine from Europe. Suppose Spec’s has 
to pay for those imports EUR 5,000,000 on March 2. Today, February 4, the exchange rate is 1.10 USD/EUR. 
 
Situation: Payment due on March 2: EUR 5,000,000. 
  SFeb 4 = 1.10 USD/EUR. 
 
Problem: St is difficult to forecast  Uncertainty  Risk.  
  Example: on January 2, St=Mar 2 > or < 1.10 USD/EUR. 
 
At SFeb 4, Speck’s total payment would be: EUR 5M x 1.10 USD/EUR = USD 5.5M. 
 
On March 2 we have two potential scenarios with respect to today’s valuation of EUR 5M: 
 If the SMar 2  (USD appreciates)      Spec’s will pay less USD.  
 If the SMar 2  (USD depreciates)      Spec’s will pay more USD. 
 
The second scenario introduces Currency Risk. ¶ 
 
We have seen that FX movements look like a random walk, then, currency risk is very difficult to 
avoid for transactions denominated in foreign currency. Then, currency risk becomes relevant when 
the value of an asset/liability change “a lot” when St moves. In finance, we relate “a lot” to the variance 
or volatility. For currency risk, we will look at the volatility of FX rates: More volatile currencies, 
higher currency risk. 
 
Example VI.1 (continuation): Consider the following situations: 
(A) SMar 2 can be  
(i) 1.09 USD/EUR, for a total payment: EUR 5M * 1.09 USD/EUR = USD 5.45M. 
(ii) 1.11 USD/EUR, for a total payment: EUR 5M * 1.11 USD/EUR = USD 5.55M. 
 
(B) SMar 2 can be  
(i) 0.79 USD/EUR, for a total payment: EUR 5M * 0.79 USD/EUR = USD 3.95M. 
(ii) 1.49 USD/EUR, for a total payment: EUR 5M * 1.49 USD/EUR = USD 7.45M. 
 
Situation B is riskier (more volatile) for Spec’s, since it may result in a higher payment. ¶ 
 
 
How do we measure FX risk in FX markets? We use the distribution of st to understand and 
measure FX risk. Below, Table VI.1 presents the distribution of st (with annualized mean & SD) 
from 1990:Jan - 2017:Dec, using monthly data. 



 
TABLE VI.1 

Distribution of Changes in Exchange Rates for Selected Currencies (1990-2017) 
 

Currency Mean 
Standard  
Deviation Skewness 

Excess  
Kurtosis Min Max Normal? 

GBP/USD 0.0090 0.0951 0.9681 3.4004 -0.0842 0.1386 No 

CHF/USD -0.0097 0.1101 0.2171 1.3365 -0.1226 0.1257 No 

EUR/USD 0.0118 0.1030 0.4803 1.2113 -0.0872 0.1139 No 

NOK/USD 0.0166 0.1102 0.5253 1.2145 -0.0707 0.1392 No 

INR/USD 0.0565 0.0820 3.0932 24.1434 -0.0655 0.2191 No 

JPY/USD -0.0010 0.1056 -0.1936 1.9347 -0.1474 0.1065 No 

KRW/USD 0.0295 0.1247 1.7968 15.9320 -0.1657 0.2723 No 

THB/USD 0.0179 0.1055 2.6493 32.3567 -0.1874 0.2843 No 

SGD/USD -0.0095 0.0563 0.5677 2.9251 -0.0557 0.0810 No 

CNY/USD -0.0122 0.0160 -0.4484 7.9325 -0.0337 0.0272 No 

SAR/USD 0.0000 0.0030 3.3228 119.9623 -0.0087 0.0109 No 

CAD/USD 0.0106 0.0792 0.8378 5.7371 -0.0823 0.1473 No 

MXN/USD 0.0818 0.1359 5.0008 51.7441 -0.1282 0.4531 No 

BRL/USD 0.0861 0.2262 5.1741 52.8000 -0.1735 0.7049 No 

ZAR/USD 0.0805 0.1416 -0.2684 1.3388 -0.1575 0.1276 No 

EGP/USD 0.0408 0.0530 13.9156 216.7728 -0.1662 1.0017 No 

AUD/AUD 0.0106 0.1144 0.8887 4.3249 -0.0846 0.2023 No 

Average 0.0349 0.1180 0.7657 29.5760 - - No 
 
 
• Observations (typical of financial time series): 
- On average, the USD appreciated against international currencies at an annualized mean of 3.50%. 
The average annualized SD is 11.80%. 
- Against developed currencies: 0.54% annualized change (SD=9.51%) 
- Excess Kurtosis. It describes the fatness of the tails. Under normality, excess kurtosis equals 0. All 
the currencies show excess kurtosis, that is, the tails are fatter than the tails of a normal –i.e., 
probability of a tail event is higher than what the normal distribution implies.  



- Skewness. If the distribution is symmetric (mean=median, for example, a normal), skewness is 0. 
Almost all the currencies show positive skewness (mean>median); that is, the fat part of the curve 
is on the left. 
- st does not follow a normal distribution, as clearly seen in Graph VI.I. 
 
Graph VI.1 show the histogram and empirical distribution (in red) of changes in the GBP/USD. It 
is the typical behavior of a developed currency (against the USD). 
 

GRAPH VI.1 
 Distribution of monthly changes in the GBP/USD exchange rate (1990-2017) 
 

 
 
FX volatility is a serious concern for many companies, especially during times of turbulence in FX 
markets, where extreme behavior can substantially swing the cash flows of firms (excess kurtosis 
helps to point out series with big swings). The following example illustrates this point: the Thai 
cement giant, Siam City Cement, had big losses during the 1997 Asian Financial crisis, mainly due 
to liabilities denominated in foreign currency. 
 
Example VI.2: On July 2, 1997, Thailand devalued its currency, the baht (THB), by 18%. Siam City Cement, 
Thailand's second largest cement producer, lost THB 5,870 million (USD 146 million), giving a net deficit 
for the nine-month period of 1997 of THB 5,380 million. Siam City Cement reported a net profit of THB 
817 million during the first nine months of 1996. Industry analysts said that the company was affected by 
foreign exchange losses on USD 590 million foreign debt, reported as of June 30. ¶ 



 
These examples show that FX risk is a serious concern for companies and investors in international 
markets. Managing this risk is very important. Chapter I introduced the instruments of currency risk 
management. This chapter studies the use of futures and forward contracts to lessen the impact of 
currency risk on positions denominated in foreign currencies. The next chapter studies currency 
options as a currency risk management tool. 
 
 
I.  Futures and Forward Currency Contracts 
 
Before we start talking about futures and forwards, we have to answer an important question: why 
do we care about futures or forward contracts? In order to answer this question, we should recall 
that the primary goal of risk management is to change the risk-return profile of a cash position (or 
portfolio) to suit given investment objectives. This involves one of three alternatives: preserving 
value, limiting opportunity losses, or enhancing returns. Futures and forward contracts are effective 
in meeting these risk management objectives because they can be used as cost-efficient substitutes 
or proxies for a cash market position. The determination of the proper equivalency ratio is critical 
to the use of futures or forwards as a cash market proxy, regardless of whether this ratio will be 
applied to a hedge, an income enhancement strategy or a speculative position. The difference 
between futures and forward contracts is the subject of Section I. The determination of the proper 
equivalency ratio is the subject of Section II. 
 
 
1.A Futures and Forwards Contracts in Risk Management 
 
This section presents the basic differences between futures and forwards. They are instruments used 
for buying or selling a stated amount of foreign currency at a stated price per unit at a specified time 
in the future. When a forward or futures contract is signed there is no up-front payment. Both 
forward and futures contracts are classified as derivatives because their values are derived from the 
value of the underlying security. Forward and futures contracts play a similar role in the 
management of currency risk. The empirical evidence shows that both contracts do not show 
significantly different prices. Although a futures contract is similar to a forward contract, there are 
many differences between the two.  
 
 
1.A.1 Forward Contracts 
 
Chapter I introduced forward contracts. A forward contract is a tailor-made contract. Forward 
contracts are made directly between two parties, and there is no secondary market. In general, at 
least one of the parties is a bank. Forward contracts are traded over the counter: traders and brokers 
can be located anywhere and deal with each other over the phone. To reverse a position, one has to 
make a separate additional forward contract. Reversing a forward contract is not common. Ninety 
percent of all contracts result in the seller making delivery of the underlying currency. 
 



Forward contracts are quoted in the interbank market for maturities of one, three, six, nine and 12 
months. Non-standard maturities are also available. For good clients, banks can offer a maturity 
extending out to 10 years.  
 
In Example I.8, 30-, 90-, and 180-day forward rate quotations appear directly under the Canadian 
dollar. The Wall Street Journal presents similar forward quotes for the other five major currencies: 
JPY, GBP, DEM, FRF, and CHF. These quotes are stated as if all months have 30 days. A 180-day 
maturity represents a six-month maturity. In general, the settlement date of a 180-day forward 
contract is six calendar months from the spot settlement date for the currency. For example, if today 
is January 21, 1998, and spot settlement is January 23, the forward settlement date would be April 
23, 1998, a period of 92 days from January 21. 
 
 
1.A.2 Futures Contracts 
 
A futures contract has standardized features and is exchange-traded, that is, traded on organized 
exchanges rather than over the counter. Foreign exchange futures contracts are for standardized 
foreign currency amounts, terminated at standardized times, and have minimum allowable price 
moves (called "ticks") between trades. Foreign exchange futures contracts are traded on the market 
floor of several exchanges around the world. For example, they are traded on the Chicago 
Mercantile Exchange (the "Merc"), the Tokyo International Financial Futures Exchange (TIFFE), 
the Sydney Futures Exchange, the New Zealand Futures Exchange, the MidAmerica Commodities 
Exchange, the New York Futures Exchange, and the Singapore International Monetary Exchange 
(SIMEX).  
 
The CME is the biggest and most important market in the world for foreign exchange futures 
contracts. CME futures contracts have been copied by other organized exchanges around the world. 
CME futures are quoted in direct quotes -U.S. dollar price of a unit of foreign exchange. CME 
futures specify a contract size, that is, the amount of the underlying foreign currency for future 
purchase or sale, and the maturity date of the contract. Futures contracts have specific delivery 
months during the year in which contracts mature on a specified day of the month. Contracts are 
traded on the traditional three-month cycle of March, June, September, and December. In addition, 
a current month contract is also traded. For some currencies, however, the CME offers currency 
futures with additional expiration dates. For example, for the GBP and the EUR contracts, the CME 
also offers January, April, July, and October as expiration dates. The month during which a contract 
expires is called the spot month. At the CME, delivery takes place the third Wednesday of the spot 
month or, if that is not a business day, the next business day. Trading in a contract ends two business 
days prior to the delivery date (i.e., the third Wednesday of the spot month). CME's trading hours 
are from 7:20 AM to 2:00 PM (CST).  
 
Futures contracts are netted out through a clearinghouse, so that a clearinghouse stands on the other 
side of every transaction. This characteristic of futures markets stimulates active secondary markets 
since a buyer and a seller do not have to evaluate one another's creditworthiness. The presence of a 
liquid clearing house substantially reduces the credit risk associated with all forward contracts. The 
clearing house makes a trader only responsible for his/her net positions. The clearinghouse is 
composed of clearing members. Clearing members are brokerage firms that satisfy legal and 



financial requirements set by the government and the exchange. Individual brokers who are not 
clearing members must deal through a clearing member to clear a customer's transaction. In the 
event of default of one side of a futures transaction, the clearing member stands in for the defaulting 
party, and seeks restitution from that party. Given this structure, it is logical that the clearinghouse 
requires some collateral from clearing members. This collateral requirement is called margin 
requirement. 
 
In the U.S., futures trading is regulated by the Commodities Futures Trading Commission (CFTC). 
The CFTC regulates the activities of all the players: futures commission merchants, clearinghouse 
members, floor broker and floor traders.  
 
Table VI.2 summarizes the differences between forward and futures contracts. 
 

TABLE VI.2 
Comparison of Futures and Forward Contracts 

 
 Futures Forward 

Amount Standardized Negotiated 
Delivery Date Standardized Negotiated 
Counter-party Clearinghouse Bank 
Collateral Margin account Negotiated 
Market Auction market Dealer market 
Costs Brokerage and exchange fees Bid-ask spread 
Secondary market Very liquid Highly illiquid 
Regulation Government Self-regulated 
Location Central exchange floor Worldwide 

 
 
1.A.2.i  Margin requirements 
 
Organized futures markets have margin requirements, to minimize credit risk. There are two types 
of margin requirements: the initial margin and the maintenance margin. The idea behind the margin 
account is that the margin should cover virtually all of the one-day risk. This reduces both one's 
incentive to default as well as the loss to the clearinghouse in the event of default. If margin is 
posted in cash, there is an opportunity cost involved in dealing with futures, because the cash could 
otherwise be held in the form of an interest-bearing asset. In general, however, a part of the initial 
margin can be posted in the form of interest-bearing assets, such as Treasury bills. This allows 
market participants to reduce the opportunity costs associated with margin requirements. 
 
A futures contract is marked-to-market daily at the settlement price. The settlement price is an 
exchange's official closing price for the session, against which all positions are marked to market. 
In a liquid contract this may be the last traded price, but for less liquid contracts it may be an average 
of the last few traded prices, or a theoretical price based on the traded prices of related contracts.  
 
Every favorable (adverse) move in exchange rates creates a cash inflow (outflow) to the margin 
account. In order to avoid the cost and inconvenience of frequent but small payments, losses are 



allowed to accumulate to certain levels before a margin call (a request for payment) is issued. These 
small losses are simply deducted from the initial margin until a lower bound is reached. The lower 
bound is the maintenance margin. Then, additional money should be added to the account to restore 
the account balance to the initial margin level. This amount of money, usually paid in cash, is called 
variation margin.  
 
Example VI.3: At the CME, the initial margin on a EUR contract is USD 2,565 and the maintenance margin 
is USD 1,900. As long as the investor's losses do not exceed USD 665 no margin calls will be issued. If the 
investor's losses accumulate to USD 665, a variation margin of USD 665 will be added to the account. ¶ 
 
The CME sets margin requirements according to a formula that takes into account the volatility of 
each currency. Currencies with lower volatility have lower margin requirements than currencies 
with higher volatility (see Table VI.3 below). 
 
Margin requirements and the associated cash flows are a major difference between forward and 
futures contract. In futures contracts traders realize their gains or losses daily, at the end of each 
trading day. In forward contracts, however, there are no cash flows until the position is closed, that 
is, the gains or losses are realized at maturity. 
 
Table VI.3 summarizes the contract terms for the major currency contracts traded on the CME as 
of December 2015. 
 
 TABLE VI.3 
 Most Active Currency Futures Contracts: Specifications 
 Margin Requirements 
Security Size Minimum price fluctuation Initial Maintenance 
AUD AUD 100,000 .0001 (USD 10.00) USD 1,890 USD 1,400 
BRR BRR 100,000 .0001 (USD 10.00) USD 5,280 USD 3,000 
CAD CAD 100,000 .0001 (USD 10.00) USD 1,705 USD 1,550 
CHF CHF 125,000 .0001 (USD 12.50) USD 4,950 USD 2,475  
GBP GBP 62,500 .0002 (USD 12.50) USD 2,035 USD 1,850  
JPY JPY 12,500,000 .000001 (USD 12.50) USD 2,970 USD 2,700 
MXN MXN 500,000 .000025 (USD 12.50) USD 2,035 USD 1,850  
EUR EUR 125,000 .0001 (USD 12.50) USD 3,905 USD 3,550 
 
 
Note: For certain transactions, usually big transactions, the minimum price fluctuation is cut in half. 
That is, for a big GBP transaction the minimum price fluctuation can be set at .0001, or USD 6.25. 
 
From now on, this chapter will use the word futures to denote both futures and forward contracts.  
 
1.A.2.ii Settlement 
 
Prior to expiration, traders have a number of options to either close out or extend their open positions 
without holding the trade to expiration. 
 



For those traders who take their contract to expiration, settlement will occur. For FX futures, the 
last trading day is, in general, the second business day prior to the third Wednesday of the contract 
month.  
 
The contract stops trading and, thus, it needs a reference price for settlement. The price difference 
between the expiring contract and the next deferred contract, called calendar spread, is used to 
adjust the final price of the expiring contract. The calendar spread is added to a value weighted 
average price (VWAP) obtained from the last moments (30”) of trading of the expiring contract to 
get the settlement price. 
  
CME FX futures can be cash-settled (BRL, RUB) or physically delivered (GBP, EUR, JPY). We 
will go over a detailed GBP futures example. 
 
Example VI.4: GBP/USD CME futures   
On the Monday preceding expiration, the expiring Dec contract is trading at 1.5530, and the next 
deferred contract, March, is trading at 1.5610.  
  
The calendar spread is -0.0080, or 80 ticks.  
 
GBP futures stop trading at 9:16 AM CT on that Monday. In the final 30”  of trading, CME Clearing 
determines the VWAP for the March contract is 1.5620. 
 
Settlement price of the expiring contract: 1.5620 - 0.0080 = 1.5540. 
 
Then, the short side deposits GBP 62,500 pounds per contract with an approved agent bank. The 
long position deposits USD 97,125 (=1.5540*62,500) per contract in an approved delivery 
bank. Cash versus currency are exchanged over bank wire. This process is completed by 10:00 AM 
CT on the third Wednesday of December, two business days after last trading day.  
 
Note: For cash-settled FX futures, the process is simpler. Any profit or loss is calculated by taking 
the difference between the final settlement price and the previous day’s mark-to-market. ¶ 
 
Like any other futures contract, an FX trader with an open position may decide to offset or roll 
forward a position to avoid expiration and delivery.  
 
 
1.A.2.iii Newspaper Quotes 
 
Financial newspapers publish daily quotes for futures currency contracts. For example, on 
November 7, 1994, the Wall Street Journal published the following quotes: 
 



 CURRENCY  
      Lifetime Open 
 Open High Low Settle Change High Low Interest 
   J A P A N   Y E N (CME)  -  12.5 million yen;  $ per yen (.00) 
Dec 1.0288 1.0293 1.0233 1.0290 +.0017 1.0490 .9525 62,308 
Mar95 1.0338 1.0380 1.0325 1.0377 +.0019 1.0560 .9680 7,722 
June 1.0470 1.0470 1.0455 1.0483 +.0021 1.0670 .9915 765 
Sept .... .... .... 1.0485 +.0023 1.0775 1.0200 184 
   Est vol 24,804; vol Thur 32,689; open int 71,055, -1,467. 
 
 
The title, JAPAN YEN, shows the size of the contract (12.5m JPY) and states that the prices are in 
USD cents. In each row, the settlement price (Settle) is representative of transaction prices around 
the close. On November 7, 1994, The settlement price of June 1995 increased .0021 cents, which 
implies that a holder of a purchase contract has made 12.5Mx(.0021/100) = USD 262.5 per contract 
and that a seller has lost USD 265.6 per contract. For the June 1995 contract, the High-Low range 
is narrower than for the older contracts, since the June 1995 contract has been trading for little more 
than four months. Open interest reflects the number of outstanding contracts. Notice that most of 
the trading is in the nearest maturity contract. The line below the price information gives an estimate 
of the volume traded on Friday, November 7, and the previous day, Thursday, November 6. The 
WSJ also shows the total open interest across the four contracts and the change in open interest 
relative to November 6. 
 
 
1.B The Value of a Forward Contract 
 
In many situations, a buyer or a seller of forward and futures contract might want to close their 
future commitment before the expiration of the contract. Before expiration, the market value of a 
forward or futures contract is given by the price at which it can be bought or sold in the market.  
 
Example VI.5: Six month ago, in December, Goyco Corporation, a U.S. firm, sold a one-year JPY forward 
contract at F0,one-year(Dec) = .0105 USD/JPY. That is, in June, Goyco Corp. is short a six-month forward contract 
initiated at the rate of .0105 USD/JPY. Suppose that in June a new six-month forward contract is initiated at 
the rate of .0102 USD/JPY. Given the new market conditions, Goyco Corp. wants to know the market value 
of the contract sold six months ago. 
 
An investor can close any outstanding contract by taking an opposite position on a similar contract. For 
example, Goyco Corp. can close its commitment to sell JPY 12.5 million in December (six months from 
now) by buying a JPY forward contract with a similar expiration date -in this case, six months. The new 
contract is traded at the current forward price, Ft=6-mo(Jun),6-mo(Dec). At expiration Goyco Corp. will receive: 
 
F0,one-year - Ft=6-mo,6-mo = JPY 12.5M x .0105 USD/JPY - JPY 12.5M x .01025 USD/JPY  = USD 
3,125   = USD 3,750 
 
Today the value of the forward contract would be given by the discounted value of its forward cash flows. 
Suppose that the U.S. interest rate is 6%. Then, today's value of the forward contract for Goyco Corp. is:  
 
Today's value of forward contract  = F0,one-year - F6-mo,6-mo      =       USD 3,125        =  USD 3,034. ¶ 
     [1 + iUSD x (6-mo/360)]  [1 + .06x(180/360)] 



 
 
Let r be the annual discount rate. In general, the value of a forward contract sold at time t that was 
initiated at time t0 at a rate Ft0,T is equal to 
 
       Ft0,T - Ft,T       .  
 [1 + r x (T-t)/360]  
 
On the other hand, the value of a forward contract bought at time t that was initiated at time t0 at a 
rate Ft0,T is equal to 
 
      Ft,T - Ft0,T        . 
 [1 + r x (T-t)/360] 
 
Value of Forward Contract at t0 and T 
 
When the contract is signed (inception) -that is, at time t0-, the value of a forward contract is equal 
to zero. This is true for both sides. This is not surprising, since there is no up-front payment when 
the contract is signed. The zero value of a forward contract at t0 can be easily seen from the above 
formula: 
 
     Ft0,T - Ft0,T     = 0. 
 [1 + r * (T-t0)/360] 
 
At expiration -that is, at time T-, the value of a futures value is given by the difference between the 
spot price and the forward price. For example, the value of a forward sold at expiration is:  Ft0,T -  
ST. 
 
 
1.C  Using a Forward/Futures Contract 
 
Forward and futures contracts are routinely used to hedge an underlying position or to speculate on 
the future direction of the exchange rate. In this book we will emphasize hedging. A forward or 
futures contract can completely eliminate currency risk. 
 
Example VI.6: Iris Oil Inc., a Houston-based energy company, will transfer CAD 300 million to 
its USD account in 90 days. To avoid currency risk, Iris Oil decides to sell a CAD forward contract. 
Bank Two offers Iris Oil a 90-day USD/CAD forward contract at Ft,90-day = .8493 USD/CAD. 

 
In 90-days, Iris Oil will receive with certainty: 

(CAD 300M) x (.8493 USD/CAD) = USD 254,790,000. 
 



Payoff Diagram for Iris Oil

St

USD 254.79M
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Note: Now, the exchange rate at time t+90 (St+90) is irrelevant. ¶ 
 
 
II. Hedging with Futures Currency Contracts 
 
A hedger uses the futures markets to reduce or eliminate the risk of adverse currency fluctuations. 
Usually, hedging involves taking a position in futures that is the opposite either to a position that one 
already has in the cash market or to a future cash obligation that one has or will incur. Therefore, the 
position in the futures market will depend on the position in the cash market.  
 
The short hedger sells short in the futures market against a long cash position in the underlying 
commodity. For example, a typical U.S. short hedger is someone who will receive in the future a 
payment denominated in a foreign currency. A long hedger is long the futures contract and is short 
a contract denominated in the underlying foreign currency. A short cash position in the underlying 
currency means that the hedger has a commitment to deliver a given amount of foreign currency. 
For example, a typical U.S. long hedger is someone who will pay in the future a given amount 
denominated in a foreign currency. 
 
Hedging with futures is very simple: one takes a position on futures contracts, which is the reverse 
of the underlying (cash) position. Many argue that the goal of hedging is to construct a perfect 
hedge. A perfect hedge completely eliminates currency risk. In a hedge, risk is eliminated to the 
extent that the gain (loss) on the futures position exactly compensates the loss (gain) on the 
underlying (cash) position.  
 
A hedger makes two decisions. First, a hedger has two decide which futures contract to use. Second, 
a hedger has to determine the hedge ratio, that is, the size of the opposite position relative to the size 
of the underlying position. In the rest of the section, we are going to analyze the determination of the 
hedge ratio, and second, the contract choice, which in the case of currency markets is easier to make. 
We will see that determining a hedge ratio that achieves a perfect hedge is, in general, a very difficult 
task. 
 
 
2.A Choice of Hedge Ratio: Naïve Approach (Equal Opposite Position) 
 
A simple approach to hedging is to take a position in foreign exchange contracts that is exactly the 
reverse of the principal being hedged. Under this simple approach, the hedge ratio is equal to one, 



that is, the size of the hedging position is exactly equal to the size of the underlying position. We 
will see that, in many situations, this simple approach to hedging is not an optimal approach. 
 
Example VI.7: Long Hedge and Short Hedge. 
Situation A: Long hedge. 
It is March 1, a U.S. company has to pay JPY 25 million in 180 days. The company decides to hedge currency 
risk. The company hedges the JPY payables by buying JPY September futures for JPY 25 million, that is, 
two CME contracts.  
 
Situation B: Short hedge. 
On September 12, a U.S. investor wants to hedge GBP 1 million invested in British gilts. He fears changes 
in U.S. interest rates in the next three months and decides to hedge his long GBP position. He sells futures 
with delivery in December for 1.55 USD/GBP; the spot exchange rate is 1.60 USD/GBP. At the CME one 
can buy and sell contracts of GBP 62,500 where the futures price is expressed in dollars per pound. That is, 
the U.S. investor hedges the long GBP position by selling 16 CME contracts. ¶ 
 
The hedger has a portfolio composed of two positions: the spot position (underlying position) and 
the futures position (hedging position). We want to explore the effects on the value of the hedger’s 
portfolio of fixing the hedge ratio equal to one.  
 
Let us introduce the following notation: 
Vt: value of the portfolio of foreign assets to hedge measured in foreign currency at time (in 
Example VI.7, Situation B, Vt= GBP 1,000,000). 
Vt*: value of the portfolio of foreign assets measured in domestic currency at time t (in Example 
VI.6, Situation B, Vt* = Vt St = USD 1,600,000). 
 
When exchange rates and future rates change, the value of the hedger’s portfolio will change. This 
change in value (profits) will be equal to: 
 
profits = VtSt - V0S0  + V0 x (F0,T - Ft,T).       (VI.1) 
 
Let St represent changes in St and Ft,T represent changes in Ft,T. Then, if Vt=V0, the profits are equal 
to: 
 
profits = V0 x (St  - Ft,T). 
 
If St changes by exactly the same amount as Ft,T –i.e., St=Ft,T-, then the hedger’s profits will be zero. The 
hedger has constructed a perfect hedge. The value of the hedger’s portfolio is unaffected by changes in 
exchange rates.  
 
Example VI.8: Calculating the short hedger's profits. 
Reconsider Example VI.7, Situation B. Assume that on October 29 the futures and spot exchange rates drop 
to 1.45 USD/GBP and 1.50 USD/GBP, respectively. 
 
Table VI.4 shows the change in Vt and Vt* and the associated profits from the short hedge. 
 
  



TABLE VI.4 
 A. Portfolio Value and Rate of Return 
 
  September 12    October 29  Rates of return (%) 
Vt  1,000,000 1,000,000 0.00 
Vt*  1,600,000 1,500,000 -6.25 
St  1.60 1.50 -6.25 
Ft,Dec  1.55 1.45 +6.25 
 
 B. USD Profits from a Short Hedge 
 
Date   Long Position ("Buy") December Futures ("Sell") 
September 12  1,600,000  1,550,000 
October 29  1,500,000  1,450,000 
Gain   -100,000  +100,000 
 
 
In USD terms, this loss in the value of the underlying position is USD 100,000, as we see below 
 
Vt* - V0* = (GPB 1,000,000 * 1.50 USD/GBP) - (GPB 1,000,000 * 1.60 USD/GPB) = USD -100,000. 
 
On the other hand, the realized gain on the futures contract (hedging position) sale is given by:  
 
V0 x (F0,Dec - Ft,Dec) = GBP 1,000,000 x (1.55 - 1.45) USD/GBP = USD 100,000. 
 
Therefore, the net profit on the hedged portfolio is USD 0, as we see below: 
 
Profit = VtSt - V0S0  + V0 x (F0,Dec - Ft,Dec) = USD -100,000 + USD 100,000 = USD 0.  
 
Now, suppose the investor, on October 29, liquidates his positions, he receives USD 1,600,000. That is, the 
investor experiences no loss due to the depreciation of the GBP against the USD. ¶ 
 
 

 Perfect Hedges are Rare 
In Example VI.8 the U.S. investor has constructed a perfect hedge. Two events run in the investor’s 
favor in Example VI.8: the value of the underlying cash position remained the same and the basis 
remained constant –i.e., the spot price and the futures price changed by the same amount (USD .10). 
As we will see below, maintaining a perfect hedge at any point in time, during the life of the futures 
contract, is not easy to do.  
 
 
2.A.1 Changes in Vt   
 
You should note, from formula (VI.1), that the net profits on the hedged position are also a function 
of Vt. That is, if Vt also changes, the net profit on the hedged position be affected. 
 
Example VI.9: Reconsider Example VI.8. On October 29 we have Ft,Dec=1.45 USD/GBP and St=1.50 
USD/GBP. Now, the GBP value of the British gilts rises to 2%. Thus, the USD loss in portfolio value is: 
 



(GBP 1,020,000 * 1.50 USD/GBP) - (GBP 1,000,000 * 1.60 USD/GBP) = USD -70,000. 
 
On the other hand, the realized gain on the futures contract sale is still USD 100,000. Therefore, the net profit 
on the hedged position is USD 30,000. This position is almost perfectly hedged, since the 2% return on the 
British asset is transformed into a 1.875% return (30,000/1,600,000), despite the drop in value of the GBP.  
 
The small difference between the two numbers is explained by the fact that the investor hedged only the 
principal (GBP 1 million). The investor did not hedge the price appreciation or the return on the British 
investment (2%). The 6.25% drop in the GBP value applied to the 2% return exactly equals .125%.  
 
Note: In order to have a perfect hedge, the U.S. investor should hedge the principal and the return 
on the British gilts, rgilts. If rgilts=.02 is known in advance, a perfect hedge will be achieved by setting the 
hedge ratio equal to 1.02. ¶ 
 
 

 Efficiency of a Hedge and Returns 
The larger the return (no hedge position), the less efficient the hedge. Let us analyze the result in 
Example VI.9. Define rt and rt*, as the rates of return on Vt and Vt*. The relation between USD and 
GBP returns on the foreign portfolio is as follows: 
 
 rt* = rt + st (1+rt). 
 
Hence, in Example VI.9, -.04375 = .02 - .0625 x (1.02).  
 
The cross-product term (st x rt = 0.125%) explains the difference between the return on the portfolio 
and the return on the futures position. 
 
Therefore, when the value of the portfolio in local currency fluctuates widely, it is very difficult to 
maintain a perfect hedge. This is a very common situation, since asset returns are unpredictable.  
 
 
2.B Choice of a Hedge Ratio: Optimal Hedge Ratio 
 
In Example VI.8, we presented an example where a hedge ratio equal to one delivers a perfect 
hedge. We should point out two things about that example: (1) Vt remains constant and (2) the spot 
price and the futures price change by the same amount (.10 USD/GBP). In the previous section, we 
analyzed the situation where Vt changes. Now, we will analyze the second situation. We will see 
that the hedge is not fully effective if the difference between the futures price and the price of the 
underlying asset does not converge smoothly during the life of the futures. Basis risk arises if the 
difference between the futures price and the spot price deviates from a constant basis per period (in 
general, per month). That is, 
 
Basis = Futures price - Spot Price = Ft,T - St. 
 
If the basis remains constant, rF = (Ft,T - F0,T)/S0 is equal to the spot exchange rate movement, s = 
(St - S0)/S0. As seen in Example VI.9, if there is no basis risk, i.e., the basis remains constant, the 
optimal hedging strategy is to completely hedge the position. In general, if the basis unexpectedly 



increases (or "weakens"), the short hedger loses. If the basis unexpectedly decreases 
("strengthens"), the short hedger gains. 
 
Example VI.10: Reconsider the situation in Example VI.8, Table VI.4, under the following scenarios:  
(A) Basis weakens. 
Suppose the futures exchange rate drops to 1.50 USD/GBP (that is, the basis has increased from -5 points to 
0 points). The basis has weakened from USD .50 to USD 0. Now, the USD profits from the short hedge are 
USD -50,000. 
 
Date   St Long Position ("Buy") Ft,Dec December Futures ("Sell") 
September 12  1.60 1,600,000  1.55 1,550,000 
October 29  1.50 1,500,000  1.50 1,500,000 
Gain    -100,000     +50,000 
 
That is, even when Vt remains constant, a hedge ratio equal to one is no longer perfect! In this case, suppose 
the investor, on October 29, liquidates his positions, he receives USD 1,550,000. That is, the investor 
experiences a loss of USD 50,000.  
 
(B) Basis strengthens. 
Suppose the futures exchange rate drops to 1.40 USD/GBP (that is, the basis has decreased from -5 points 
to -10 points). Now, the USD profits from the short hedge are USD 150,000. 
 
Date   St Long Position ("Buy") Ft,Dec December Futures ("Sell") 
September 12  1.60 1,600,000  1.55 1,550,000 
October 29  1,50 1,500,000  1.40 1,400,000 
Gain    -100,000     +150,000 
 
Suppose the investor, on October 29, liquidates his positions, he receives USD 1,650,000. That is, the 
investor experiences a profit of USD 50,000.  
 
Note: Under scenario A, the investor could have done better by establishing a futures position worth GBP 
966,667. This position in futures would have delivered a perfect hedge (value of hedging position = GBP 
966,667 * 1.50 USD/GBP = USD 1,450,000). Similarly, under scenario B, a futures position worth GBP 
1,035,714 would have also achieved a perfect hedge.  ¶ 
 
As Example VI.10 illustrates, when the basis changes, hedgers need to adjust the size of the futures 
position. A naive portfolio makes the value of the hedger’s portfolio dependent on changes in St; 
not an optimal situation. 
 
 
2.B.1 Basis risk 
 
In Chapter III, we examined the Interest Rate Parity Theorem (IRPT). Futures exchange rates are 
directly determined by two factors: the spot exchange rate and the interest rate differential between 
two currencies. For example, for the USD/GBP exchange rate, we have: 
 

 Ft,T = St  * 
ሺଵା ௜ೆೄವ ∗ 

೅
యలబ

ሻ

ሺଵା ௜ಸಳು ∗ 
೅
యలబ

ሻ
  



 
Note the effective interest rate is a function of time. Let us rewrite the above relation as 
 
 Ft,T =  St,         (VI.2) 
 
Equation (VI.2) shows the relation between movements in the futures price and in the spot price 
before the expiration date of the futures contract. Equation (VI.2) establishes a linear (proportional) 
Ft,T and St.  The proportional constant is . The coefficient  is referred to as the futures delta. If  
>1 (<1), the futures price will move more (less) than the spot price. Therefore, the hedge should 
involve a smaller (greater) amount of currency futures than the amount of underlying currency being 
hedged. 
 
The basis can also be written, for the USD and GBP case, as: 
 

Basis = Ft,T - St = St  * 
ሺ ௜ೆೄವ ି ௜ಸಳುሻ ∗ 

೅
యలబ

ሺଵା ௜ಸಳು ∗ 
೅
యలబ

ሻ
  

 
Note that, in general, as id and if change, the basis will also change. Also, a correlation between 
currency movements and changes in the interest rate differential will lead to an optimal hedge ratio 
different from one. This is because a component of the futures return is the change in interest rate 
differential or basis. Accordingly, the hedge ratio should compensate for this correlation.  
 
Using equation (VI.2) and with a little bit of algebra, we can redefine basis risk as  
 
Basis risk = Ft,T - St = ( - 1) St. 
 
Notice that the futures delta is not constant throughout the life of a futures contract. Thus, as the 
contract matures Ft,T converges to St. Mathematically, we express this result as: 
  (T  0)    1. 
That is, basis risk gets smaller as the contract matures and, thus, the optimal hedge ratio approaches 
one.  
 
We can also think of the relation between Ft,T and St in a different way. The correlation between 
Ft,T and St. is a function of the futures contract term. Futures prices for contracts near maturity 
closely follow spot exchange rates because the interest rate differential is a small component of 
the futures price. 
 
Example VI.11: Consider the futures price of BRR contracts with one, three, and twelve months left until 
delivery. Let St=0.80 USD/BRR, and the interest rates and the calculated values for the futures are as given 
in TABLE VI.5 
 
  



 TABLE VI.5 
 Importance of Interest Rate Differentials to Futures Prices 
 
Maturity:   Twelve months Three months  One month 
iBRR .120 .120 .120 
iUSD .040 .040 .040 
F(USD/BRR) 0.743 0.784 0.795 
Basis -0.057 -0.016 -0.005 
 
One-month calculations (assume a 30-day month):  
 

 Ft,T = St + St * 
ሺ ௜ೆೄವ ି ௜ಳೃೃሻ ∗ 

೅
యలబ

ሺଵା ௜ಳೃೃ ∗ 
೅
యలబ

ሻ
  

 

       = 0.80 + 0.80 * 
ି.଴଼ ∗ 

యబ
యలబ

ሺଵା .ଵଶ ∗ 
యబ
యలబ

ሻ
  = 0.795 USD/EUR. ¶ 

 
Example VI.11 shows that even though the interest differential is large, its effect on the futures 
price and the basis is decreasing with maturity. The intuition behind this result is very simple: the 
spot exchange rate is the driving force behind short-term forward exchange rate movements. This 
is less true for longer-term forward contracts. 
 
 
Expected Profits on the Hedge and the Initial Basis  
 
We want to derive the relation between the expected profits on the hedge and the initial basis. We 
introduce the following additional notation: 
 
ns: number of units of foreign currency held.(ns is positive for long positions and negative for short  
positions). 
nf: number of futures foreign exchange units held (nf is positive for long positions and negative for 
short positions). Note that number of contracts is given by nf/size of the contract. 
h,t: uncertain profit of the hedger at time t. 
 
The uncertain profit of the hedger at maturity (time T) who holds ns units of foreign currency and 
hedges using nf using futures contracts is: 
 
 h,T = (ST - S0)ns + (Ft,T - F0,T)nf.    
 
The expected gain to the hedger over the life of the contract at time t=0 is: 
 
 E0(h,T) = (E0(ST) - S0)ns + (E0(FT) - F0,T)nf. 
 
If we assume that the current futures price is an unbiased predictor of the futures price at time T, 
then, 



 
 F0,T = E0(FT). 
 
At maturity, convergence ensures E0(ST) = E0(FT). Therefore, the expected gain is: 
 
 E0(h,T) = (F0,T- S0)ns. 
 
In other words, at time t=0, the expected profit on the hedge is directly proportional to the initial 
basis. 
 
 
2.B.2 Derivation of the optimal hedge ratio  
 
To derive the optimal number of futures contracts to hedge a position in a foreign currency, let us 
rewrite the hedger’s profits in terms of profit per unit of the foreign currency position, that is, 
 
 h,T / ns = (ST - S0) + (Ft,T - F0,T) (nf/ns).    (VI.3) 
 
Let h denote the hedge ratio, that is, the number of contracts per unit of the underlying position in 
foreign currency. Now, using  to denote changes, we can write equation (VI.3) as 
 
 h,T / ns = ST + h Ft,T.      (VI.4) 
 
A hedger wants to minimize risk. In this case, the hedger wants to minimize the variance of the 
hedge portfolio profit (h

2), that is, the problem for the hedger is to choose h in such a way that the 
variability of the hedge portfolio profit is as small as possible. Formally, the hedger problem is: 
 
 minh  h

2 = S
2 + h2 F

2 + 2 h SF,     (VI.5) 
 
where S

2 is the variance of the spot price change, F
2 is the variance of futures price change and 

SF is the covariance between spot and futures price changes. The value of h that minimizes h
2 is 

obtained by taking the first derivative of (VI.5) with respect to h and setting it equal to zero: 
 
 dh

2  =  2 h* F
2 + 2 SF = 0.      (VI.6) 

 dh 
 
Solving for h*, the optimal hedge ratio is: 
 
 h* = - SF.        (VI.7) 
  F

2 
 
The optimal hedge ratio depends on the covariance between the spot and futures price changes 
relative to the variance of the futures price change. Note that a covariance over a variance is the 
estimated slope of a linear –i.e., ordinary least squares (OLS)- regression. 
 



 

 Remarks on Hedge Ratio Estimates 
(1) The expression for the h* is the estimated slope coefficient of an OLS regression of the spot 
price change on the futures price change. Like all slopes, it measures by how many units the 
dependent variable changes when the independent variable changes by 1 unit. 
 
(2) The OLS estimate of h* provides an estimate of  in equation (VI.2):   

  = 
ሺଵା ௜೏ ∗ 

೅
యలబ

ሻ

ሺଵା ௜೑ ∗ 
೅
యలబ

ሻ
 = - (1/h*).  

 
It should be clear that, for a perfect hedge, for each unit of an underlying currency you are long 
(short), you should go short (long) 1/ units of futures of the same currency. To see this, let PORt 
be the value of the portfolio made up by the long and short positions. Also, let St and Ft,T represent 
the change in the spot and futures price, respectively, for a change in the spot rate. Then, the change 
in the value of the portfolio will be: 
 
 PORt = St + (-1/) Ft,T =  St - (1/)[St] = 0, 
 
provided that the IRPT holds perfectly.  
 
(3) Recall equation (VI.2). When the futures contract is denominated in the same currency as the 
asset being hedged, we can use IRPT to get the hedge ratio, h*. As we will see below, however, for 
situations where the futures contract is denominated in a different currency than the asset being 
hedged (cross-hedging), OLS will provide an estimate of h*.  
 
Now, consider the third of the previous remarks. It is easy to estimate the hedge ratio using IPRT. 
 
Example VI.12: On December 20, Mr. Krang, a U.S. investor, is long BRR 2,500,000 for six months. Mr. 
Krang wants to hedge currency risk and therefore for each BRR long, he will sell (1/) June EUR futures. 
Recall that at the CME, the BRR futures contract is for BRR 100,000. Interest rates in the U.S. and Brazil 
are 4% and 12%, respectively.  
 
Then, assuming 30 days months, =.96226, which implies a hedge ratio of 1.03922. Mr. Krang will sell: 
 
 (-1.03922) * 2,500,000/100,000 = -25.98 contracts (26 contracts). 
 
Note: The hedge ratio is very close to one. This happens even though the interest rate differential is big, 8%. 
This is because IRPT defines a very precise relation between Ft,T and St. There is not a lot of uncertainty 
about this relation, especially when compared to commodity futures and commodity spot prices, where 
imbalances between supply and demand, and storage problems usually lead to a significantly higher basis 
risk. As seen in Table VI.5, basis risk in currency futures tends to be very small. ¶ 
 
 

 Dynamic hedging 



Recall that as T 0 (the contract matures), we have  1. To have a perfect hedge, at all times, 
we need to do continuous adjustments to our hedge portfolio. 
 
Example VI.13: In Example VI.12, suppose that in March the June BRR futures delta is =.9912. Hence, to 
obtain a perfect hedge, Mr. Krang now should go short 1/=1.0089 in June BRR futures for each BrR in the 
underlying position being hedged.  
 
Therefore, since Mr. Krang is long BRR 2,500,000, he should go short: 
 
(-1.0089) * (2,500,000/105,000) = 25.22  25 contracts.  
 
That is, he should go long 1 futures contract. ¶  
 
 
2.B.3 OLS estimation of hedge ratios 
 
Consider the following regression equation: 
 
 St =  +  Ft + t,       (VI.8) 
 
where  and  are constant parameters and t is the error term. The intercept  represents an expected 
return uncorrelated with changes in the futures price. The term Ft represents the fact that random 
change in the futures price will be reflected in the spot price according to the slope coefficient, . 
The error term, t, reflects basis risk, which arises from the fact that certain changes in St are 
uncorrelated with Ft. Now, let us go back to equation (VI.4) and substitute in equation (VI.8), that 
is, 
 
 h,T / ns = ( +  FT + T) + h FT =  + (+h) FT + T.   (VI.9) 
 
Equation (VI.9) shows that by setting h = - the profit on the hedge portfolio can be made 
independent of movements in spot and futures prices. For example, if =0.5, a one dollar change in 
the futures price is matched by USD .50 change in the spot price. In this case, h*= -0.5. 
 
A hedge is fully effective only if spot and futures price changes are perfectly correlated. That is, in 
order to have a perfect hedge we need the error term, t, to be always equal to zero. The degree of 
efficiency of a hedge is measured by R-squared of the regression (VI.8). Recall that in this case, the 
R2 measures how much of the variability of the spot price change is explained by futures price 
change. Suppose t is always zero, then Ft explains 100% of the variance of St. Hence, the hedge 
is fully effective. 
 
Example VI.14: OLS estimation of h. 
Reconsider Example VI.8. We estimate equation (VI.8) using monthly data for USD/GBP spot and futures 
price changes. We use four years of monthly data for a total of 48 observations. The futures price changes 
are for the nearby futures contract. The regression results are: 
  
 St = .001 + .92 Ft,one-month,  R2 = .95. 



 
The high R2 points out the efficiency of the hedge. Changes in futures USD/GBP prices are highly correlated 
with changes in USD/GBP spot prices.   
 
The hedge ratio is -.92. That is, the number of contracts sold is given by 
 
nf/size of the contract = h ns/size of the contract = -.92 x 1,000,000/62,500 = -14.7  - 15 contracts . 
 
Note: A different interpretation of the R2: hedging reduces the variance of the cash flows by an estimated 95 
percent. ¶ 
 
 

 Hedge Ratios and Stationarity 
The OLS estimate of the hedge ratio is based on past data. The hedge we construct, however, is for 
a future period, that is,  estimates are ex-post, but hedging decisions are ex-ante. Every time we 
use OLS estimation of hedge ratios we are assuming a stationary relation between F and S. 
Loosely speaking, under this assumption, the future should be similar to the past. We should be 
comfortable with this assumption before estimating equation (VI.8).  
 
 
2.B.4 A different approach: ARCH Models at Work 
 
One limitation of the OLS approach to estimate hedge ratios is that it assumes stationarity of the 
variance of future price change and the covariance between spot and future price change. The 
assumption of homoscedasticity, that is, a constant covariance matrix, is a common assumption in 
time-series. As discussed in chapter V, however, exchange rates and other financial assets are 
heteroscedastic. That is, variances and covariances of financial assets are time-varying. That is, the 
covariance matrix changes with time. This finding has implications for hedging since the optimal 
hedge ratio is a ratio of a covariance relative to a variance. Therefore, it is possible to improve the 
estimation of the hedge ratio by incorporating a model for time-varying variances, such as the 
GARCH model. 
 
Example VI.15: Estimation of hedge ratios using GARCH models. 
Cannigia Co. wants to hedge GBP 1 million using a forward contract for 6 months. Cannigia Co. uses the 
following autoregressive model to forecast exchange rates: 
 
St = St - St-1 = aS + bSSt-1 + St, 
Ft = Ft - Ft-1 = aF + bFFt-1 + Ft. 
 
The covariance matrix of this bivariate system is given by a 2x2 matrix, t. The matrix t is the time-varying 
covariance matrix of St and Ft. The diagonal elements of t, 2

S,t and 2
F,t, represent the variance of St 

and the variance of Ft, respectively. The off-diagonal elements, SF,t, represent the covariance between St 
and Ft. 
 
Each element in the covariance matrix is parameterized as follows: 
 
2

S,t = S0 + S1 2
S,t-1 + ßS1 2

S,t-1 
2

F,t = F0 + F1 2
F,t-1 + ßF1 2

F,t-1 



 = SF,t /{2
F,t 2

S,t}1/2. 
 
Note that the correlation coefficient, , is constant. That is,  does not depend on time t. This version of the 
multivariate GARCH model is called constant correlations GARCH model. 
 
You work for Cannigia. You estimate the above system and you get the following estimates: 
aS=.004; bS=.32; aF=.006; bF=.15; 
S0=.22; S1=.25; ßS1=.83; F0=.32; F1=.09; ßF1=.87; =.56. 
 
You are given the following data: spot rates (St), 30-day forward rates (Ft,one-month) for April, May, June, July, 
August, and September, and initial estimates for both variances in June.  
 
SA=1.59; SM=1.61; SJ=1.65; SJ=1.69; SA=1.72; SS=1.73;  
FA=1.60; FM=1.61; FJ=1.64; FJ=1.65; FA=1.70; FS=1.73;  
2

S,June=.14; 2
F,June=.11. 

 
With these estimates, we have the following equations: 
 
St = .004 + .32 St-1 + St, 
Ft = .006 + .15 Ft-1 + Ft. 
 
2

S,t = .22 + .25 2
S,t-1 + .83 2

S,t-1 
2

F,t = .32 + .09 2
F,t-1 + .87 2

F,t-1 
SF,t = .56 {2

F,t 2
S,t}1/2. 

 
At the end of August, you constructed your hedge ratio (hSep=SF,Sep/2

F,Sep). Now, at the end of September, 
you are required to construct your hedge ratio for October, that is, you want hOct. 
 
Steps to calculate the hedge ratio for July, hJuly: 
(1) Calculate errors: Actual realization - Expected (Forecasted) value 
St = St - St

F = St - (.004 + .32 St-1)   
Ft = Ft - Ft

F = Ft - (.006 + .15 Ft-1)   
 
SJune = SJune - SJune

F = .04 - (.004 + .32 x .02) = .04 - .104 = .0296 
FJune = FJune - FJune

F = .03 - (.006 + .15 x .01) = .03 - .0075 = .0225 
 
(2) Construct forecast variance for July (using June's information). 
2

S,t = .22 + .25 2
S,t-1 + .83 2

S,t-1 
2

F,t = .32 + .09 2
F,t-1 + .87 2

F,t-1 
 
 
2

S,July = .22 + .25 2
S,June + .83 2

S,June = .22 + .25 (.0296)2 + .83 (.14) = .3364 
2

F,July = .32 + .09 2
F,June + .87 2

F,June = .32 + .09 (.0225)2 + .87 (.11) = .4157 
 
 
(3) Calculate forecast for covariance and hedge ratio 
SF,t = .56 {2

F,t 2
S,t}1/2. 

ht = - SF,t/2
F,t 

 



SF,July = .56 {2
F,July 2

S,July}1/2 = .56 {.3364 x .4157}1/2 = .2094 
hJuly = - SF,July/2

F,July = -.2094/.4157 = -.5037 
 
Your estimated hedge ratio for July is hJuly= -0.5037. That is, the number of contracts you advise Cannigia to 
be short in July is [-.5037x(1,000,000/62,500)]= -8.06 (short 8 contracts).  
 
To calculate the hedge ratio for the other months recursively repeat the steps 1 to 3. You should get: 
 
 St

F S,t 2
S,t Ft

F F,t 2
F,t SF,t ht 

June .0104 .0296 .1400 .0075 .0225 .1100 .0695 -.6318 
July .0168 .0232 .3364 .0105 -.0005 .4157 .2094 -.5037 
August .0168 .0132 .4994 .0075 .0425 .6817 .3267 -.4793 
September .0136 -.0036 .6345 .0135 .0165 .9132 .4263 -.4668 
October ... ... .7467 ... ... 1.1145 .5109 -.4584 
 
Your estimated hedge ratio for October is hOct=-.4668. That is, the number of contracts you advise Cannigia 
to be short in October is [-.4584x(1,000,000/62,500)]=-7.33 (short 7 contracts).  
 
Since in September the number of contracts shorted by Cannigia was also 7 (actually, 7.47), at the end of 
September, you advise Cannigia to keep all contracts open. ¶ 
 
 
2.C Choice of Futures Contracts 
 
In the forward market a party can tailor the amount, date, and the currency to a given exposed 
position, this is not always possible in the futures market. There are three problems associated with 
hedging in futures markets: 
 
(1) The contract size is fixed and is unlikely to match the cash position to be hedged. 
(2) The expiration dates of futures contracts rarely match those for the currency receivables or 
payables that the contract is meant to hedge. 
(3) The choice of underlying assets in the futures market is limited, and the currency one wishes to 
hedge may not have a futures contract. 
 
There is very little a hedger can do with respect to (1) in the futures market. Note that in the forward 
market, in general, contract size is not a problem. With respect to (2) and (3) hedgers can construct 
imperfect hedges. An imperfect hedge is called a delta-hedge when the maturities do not match, 
and is called cross-hedge when the currencies do not match. 
 
 
2.C.1 Delta-hedging 
 
Suppose a hedger has decided to establish a GBP futures position to hedge a foreign currency cash 
position. Now, the hedger has to decide on which contract month to use. It might seem logical that 
the when the expiration of the underlying position corresponds to a delivery month, the contract with 
that delivery month is selected. Many times, however, a contract with a later delivery month is 
chosen. This is because futures prices are in some instances very volatile during the delivery month. 
Other times, hedgers want to minimize basis risk. As we have seen in Table VI.5, near month 



currency futures contracts track the behavior of the spot exchange rates better and, therefore, they 
have the higher correlation with spot rates. Thus, near month currency futures are preferable since 
they minimize the basis variation. 
 
In many situations, basis risk is not the only factor to consider. Liquidity considerations are 
important. Sometimes, liquidity and basis risk should be treated as trade-off. For short-term currency 
positions, there is no trade-off: short-term futures contracts minimize basis variation and also have 
greater trading volume (are more liquid) than long-term contracts. For medium and long-term 
currency position, however, there is often a trade-off. For example, suppose a hedger needs to 
establish a position in a contract whose expiration cycle is a year or more in the future. Since the 
futures price and the spot price converge at delivery, basis risk can be minimized or eliminated by 
matching spot and futures long-term obligations. Liquidity, however, in this situation is a major 
consideration. It is common to find that the size of the position you want to establish is too big for 
the level of open interest now held in your preferred expiration month. It is common to find, for long-
term futures, wide bid-ask spreads, which can make the cost of a hedge very expensive. A solution 
to this illiquidity problem is to establish a position in the nearest contract month. Once the delivery 
cycle is near, all outstanding futures contracts are closed and, then, rolled forward to the next 
expiration month. Rolling forward, however, often exposes the hedger to basis risk. In addition, 
transaction costs are greater when futures positions are closed and re-established. 
 
In summary, medium- and long-term hedgers can select from three basic contract terms: 
 
(1) Short-term contracts, which must be rolled over at maturity. 
(2) Contracts with a matching maturity. 
(3) Longer-term contracts with a maturity extending beyond the hedging period. 
 
Graph VI.2 depicts three such hedging strategies for an expected hedge period of six months. 

 
GRAPH VI.2 

 Three Hedging Strategies for an Expected Hedge Period of  T months 
 
                (1) Longer-term  
 
 
         (2) Exact term 
 
 
         (3) Short-term (Rollover ) 
 
            
    
 
  t=0   (1/2)T   Maturity = T 
 
If there is uncertainty regarding the date of a cash obligation, a hedger will not be able to match 
maturities. In this case, a hedger usually prefers a rolling forward approach to hedge a cash 



position with near month contracts. Even though a more distant contract might reduce transaction 
costs, the minimization of basis risk tends to be the main consideration. 
 
Longer hedges can be built using currency swaps, which can be negotiated with long horizons. 
Frequently, corporations use currency swaps to manage the currency exposure of their assets and 
liabilities. Portfolio managers, on the other hand, usually take a shorter horizon. In Chapter XIV we 
will study currency swaps. 
 
 
2.C.1.i Delta-hedging-Rollover 
 
Rollover occurs when a trader closes out a position in an expiring contract (“the front month”) and 
simultaneously reestablishes the same position in a future month. This procedure (“a roll”) extends 
the expiration of a position. 
 
A roll is usually carried out shortly before expiration of the initial contract. The gain or loss on the 
original contract will be settled by taking the difference between the price on the day the roll is 
executed and the previous day’s mark-to-market. 
 
Example VI.16: An FX trader is long two GBP Dec futures trading at USD 1.5530 on December 11 
(Friday). The Dec futures expires on the 3rd Wednesday of December, say December 16. This trader 
closes the long position on December 11 and, simultaneously enters into a March futures at the 
current market rate, USD 1.5620.  
 
Suppose on December 10, the Dec futures was mark-to-market at USD 1.5525. That is, there is a 
gain for the long side of USD .0005 per GBP in the long position. Then, on December 11, the long 
side receives USD 62.50 (=.0005*62500*2) when the Dec futures position is closed. 
Simultaneously, the FX trader opens a new long position, with two GBP March futures at USD 
1.5620. ¶ 
 
 
2.C.2 Cross-Hedging 
 
When a hedger has a cash position on a foreign currency on which a futures contract is traded, it is 
almost always preferable to hedge with that contract, since futures and spot prices of the same 
currency have the highest correlation. Futures and forward currency contracts, however, are only 
actively traded for the major currencies. International portfolios are often invested in assets in 
Hungary, India, Thailand, Peru, and other countries where futures and forward contracts are either 
not traded or very illiquid in the domestic currency. In these situations, hedgers try to establish futures 
positions using closely linked and highly correlated currencies. For example, a U.S. investor could 
use EUR futures to hedge a currency risk on Hungarian stocks, since the Hungarian forint (HUF) 
and the EUR are strongly correlated. 
 
Investment managers, with cash positions in many foreign currencies, sometimes worry about the 
depreciation of only one or two currencies in their portfolio and, therefore, hedge currency risk 



selectively. Other times they worry about the depreciation of the domestic currency relative to all 
foreign currencies and, then, hedge all currency risk in their portfolios.  
 
Example VI.17: The strong USD appreciation from February 2012 to March 2020 (close to 40%) was 
realized against all currencies. This domestic currency appreciation induced a negative currency contribution 
on all foreign portfolios. ¶  
 
A complete foreign currency hedge can be achieved by hedging the investment in each foreign 
currency. But this is difficult -and could be very expensive- for many currencies. In a portfolio with 
assets in many currencies, the residual risk of each currency gets partly diversified away. 
Optimization techniques can be used to construct a hedge with futures contracts in only a few 
currencies (JPY, EUR, and GBP). Once a decision has been taken to (cross) hedge with only a few 
currencies, the manager has to decide the number of contracts needed to hedge her foreign currency 
exposure. A manager can use OLS estimates of hedge ratios. 
 
Example VI.18: Ruggieri SA, a U.S. firm, has to pay HUF 10 million in 90 days. Since there are no futures 
contracts on the HUF, Ruggieri SA decides to buy two other contracts on currencies that are highly correlated 
to the HUF: the EUR and the GBP. In order to calculate the appropriate hedge ratios, Ruggieri SA regresses 
USD/HUF changes against a constant, USD/EUR 3-mo. futures changes, and USD/GBP 3-mo. futures 
changes. This regression produces the following output: 
 
SUSD/HUF =  0.39  +  0.84 FUSD/EUR  + 0.76 FUSD/GBP,   R2 = 0.81. 
  (0.59)  (10.61)  (6.33) 
 
The high t-statistic (in parentheses) and the high R2 confirm that the EUR and GBP futures prices are 
correlated with the HUF spot rate. The exchange rates are .0043 EUR/HUF and 270 HUF/GBP (1/270=.0037 
GBP/HUF.  
 
Then, the number of contracts bought by Ruggieri SA is given by: 
 
EUR: (-10,000,000 * .0043/125,000) * (-0.84) = 2.89  3 contracts. 
GBP: (-10,000,000 * .0037/62,500) * (-0.76) = 3.28  3 contracts. ¶ 
 
The stability of the estimated hedge ratios is of crucial importance in establishing effective hedge 
strategies especially when cross-hedging is involved. Empirical studies indicate that hedges using 
futures contracts in the same currency as the asset to be hedged are very effective but that the 
optimal hedge ratios in cross-hedges that involve different currencies are quite unstable over time. 
 
 
III. Looking Ahead: Currency Options 
 
We have gone over one basic hedging tool: currency futures. Currency futures set a price for 
forward delivery of a currency. If hold until they mature, currency futures completely eliminate the 
uncertainty associated with having assets and liabilities denominated in foreign currency. The next 
chapter introduces currency options as a hedging tool. Options are more flexible contracts, which 
can place a cap or a floor on the future value of an asset and liability denominated in foreign 
currency. Therefore, options reduce currency risk, but do not completely eliminate it. 



 
 
 
Interesting readings 
 
Parts of Chapter VI were based on the following books: 
 
International Financial Markets, by J. Orlin Grabbe, published by McGraw-Hill. 
 
International Financial Markets and The Firm, by Piet Sercu and Raman Uppal, published by 
South Western. 
 
International Investments, by Bruno Solnik, published by Addison Wesley. 
 



Exercises: 
 
1.- You are long GBP 312,500 and you go short a number of forward contracts to offset your long 
position. The exchange rate is 1.55 USD/GBP. The futures price is 1.61 USD/GBP. One month 
later the spot price is 1.59 USD/GBP and the futures price is 1.62 USD/GBP. Was the hedge 
perfect? If not, calculate the net profit of the hedge portfolio. 
 
2.- On January 19, Ms. Sternin, a U.S. investor, wants to hedge a short Bund (German government 
bond) position valued at EUR 2 million. Ms. Sternin uses a hedge ratio equal to 1 (h=1). She decides 
to use futures with delivery in September for 1.17 USD/EUR; the spot exchange rate is 1.20 
USD/EUR. 
 
i.- Assume that on April 17 the futures and spot exchange rates drop to 1.155 USD/EUR and 
1.160 USD/EUR, respectively. Calculate the short hedger's profits/losses. Is h=1 a perfect hedge? 
ii.- Now, assume that on April 17 the futures and spot exchange rates drop to 1.155 USD/EUR 
and 1.153 USD/EUR, respectively. Calculate the short hedger's profits/losses. Is h=1 a perfect 
hedge? 
iii.- Explain the different results obtained under (i) and (ii).  
 
3.- Ms. O'Neil, a U.S. investor has to pay CZK 40,000,000 in 180 days (CZK = Czech coruna). She 
decides to hedge her position using EUR and GBP futures contracts. The exchange rates are .95 
USD/EUR, 1.45 USD/GBP, and 42 CZK/USD. She runs an OLS regression and obtains the 
following estimates: 
 
SUSD/CZK  =   .087+  .94 FUSD/EUR   + 0.81 FUSD/GBP,   R2 = 0.77. 
  (0.20) (3.13)    (5.43) 
 
a.- How many EUR and GBP contracts should Ms. O'Neil buy to obtain an optimal hedge? 
 
b.- Suppose three months later, Ms. O'Neil re-estimates the above equation. The exchange rates 
are .90 USD/EUR, 1.41 USD/GBP, and 49 CZK/USD. Her new estimates are: 
 
SUSD/CZK =  .109 +  .97 FUSD/EUR   + 0.90 FUSD/GBP,   R2 = 0.83. 
  (0.78) (4.78)    (5.92) 
 
Based on the new estimates, how many contracts should Ms. O'Neil buy or sell? 
 
4.- A U.S. investor holds a portfolio of Japanese stocks worth JPY 200 million. The spot exchange 
rate is JPY/USD=100 and the three-month forward exchange rate is JPY/USD=105. Our investor 
fears that the Japanese will depreciate in the next month, but wants to keep the Japanese stocks. 
What position can the investor take based on three-month forward exchange rate contracts? List all 
the factors that will make the hedge imperfect. 
 
5.- A Cypriot investor holds a portfolio of Japanese stocks similar to that of our U.S. investor. The 
current three-month Cypriot Pound (CYP) forward exchange rate is CYP/USD=.5. What position 
should the Cypriot investor take to hedge the JPY/CYP exchange risk? 



 
6.- A U.S. investor is attracted by the high yield on GBP bonds but is worried about a GBP 
depreciation. The current market rates are as follows: 
 
      U.S.  U.K. 
Bond yield (%)    7  8 
Three-month interest rate (%)   6  10 
St = 1.70 USD/GBP   
 
A bond dealer has repeatedly suggested that the investor invest in hedged foreign bonds. This 
strategy can be described as the purchase of foreign currency bonds (here, GBP bonds) with 
simultaneous hedging in the short-term forward of futures currency markets. The currency hedge is 
rolled over when the forward or futures contract expires. 
(a) What is the current three-month forward exchange rate (USD/GBP)? 
(b) Assuming a GBP 2 million investment in British bonds, how would you determine the exact 
ratio necessary to minimize the currency influence? 
(c) When will this strategy be successful (compared to a direct investment in U.S. bonds)? 
 
7.- Futures and forward currency contracts are not easily available for most currencies. Many 
currencies, however, are closely correlated. A U.S. investor has a portfolio of Hungarian stocks that 
she wishes to hedge against currency risks. No futures contracts are traded on the Hungarian forint 
(HUF), so she decides to use euro (EUR) futures contracts traded in Chicago. Here are the data: 
 
Value of the portfolio     HUF 100 million. 
Spot exchange rates     HUF/USD = 210.60 
       USD/EUR = 1.10. 
Futures price (contract of EUR 125,000)  USD/EUR = 1.21. 
 
How many EUR contracts should our U.S. investor trade? 
 
8.- Suppose you want to hedge a long position on Swiss Francs (CHF) for one year. The annual 
CHF interest rate is 6% and the annual U.S. interest rate is 7.2%.  How many contracts do you 
need to hedge CHF 7 million? Is the CHF a premium currency? 


