Midterm I: SOLUTIONS

1)

i) $\mathrm{F}_{\mathrm{t}, 180}^{\mathrm{IRP}}=\mathrm{S}_{\mathrm{t}}\left[\left(1+\mathrm{i}_{\mathrm{d}} * 180 / 360\right) /\left(1+\mathrm{i}_{\mathrm{f}} * 90 / 360\right)\right]=19.33 \mathrm{MXN} / \mathrm{CHF}[(1+.1053 / 4) /(1-.0087 / 4)]$ $=19.8821 \mathrm{MXN} / \mathrm{CHF}$
ii) Quote by Lozano Bank: $\mathbf{F}_{\mathbf{t}, 90}=\mathbf{2 0 . 3 0} \mathbf{M X N} / \mathbf{C H F}>\mathrm{F}_{\mathrm{t}, \mathbf{9 0}}^{\mathrm{IRP}}=\mathbf{1 9 . 8 8 2 1} \Rightarrow$ Yes!
iii) Covered arbitrage strategy (Key: Lozano Bank undervalues the MXN forward):

1. Borrow MXN 1 at $\mathrm{i}_{\mathrm{MXN}}=10.53 \%$ for 90 days. (repay in 90 days MXN 1.026325)
2. Convert MXN 1 to CHF at $\mathrm{S}_{\mathrm{t}}=19.33$ MXN/CHF (get CHF 0.0517)
3. Deposit CHF 0.0517 at $\mathrm{i}_{\mathrm{CHF}}=0.87 \%$ for 90 days.
4. Sell the CHF forward at $\mathrm{F}_{\mathrm{t}, 90}=\mathbf{2 0 . 3 0}$ MXN/CHF

$$
\text { Profits }=\text { CHF } 0.0517^{*}(1+.0087 / 4) * \mathbf{2 0 . 3 0} \mathbf{M X N} / \mathrm{CHF}-\mathrm{MXN} 1.026325 .=\text { MXN } 0.0255
$$

(or 2.63% per MXN borrowed)
iv) $p=(20.30-19.33) / 19.33 * 360 / 90=-0.2007>\mathrm{i}_{\mathrm{MXN}}-\mathrm{i}_{\mathrm{CHF}}=.1053+.0087=0.0966$
\Rightarrow capital flies to CHF

2) Solution for Exam A

A. 3-mo changes in \% (last 20 years):

Exam A

S_{t}	0.9316
$\mathrm{~F}_{\text {Dec 30,Mar 30 }}$	$\mathbf{0 . 9 1 8 9}$
average	$\mathbf{- 0 . 0 0 4 5 4}$
SD	$\mathbf{0 . 0 4 0 5 4}$
min	$\mathbf{- 0 . 1 1 1 9 1}$
max	$\mathbf{0 . 1 6 3 9 7}$

Note: Mexican volatility is huge (due to the behavior during the 1980s debt crisis). Some numbers will make no sense !
(i) Transaction Exposure (TE): USD 50M * 0.9316 CHF/USD = CHF 46.58M
(ii) Best/Worst Case TE Range: [CHF 41.367M; CHF 54.218M]
(iii) Normal-based 95% C.I. for TE:
[CHF $46.58 \mathrm{M} *(1+(-0.00454-1.96 * 0.04054))$; CHF $46.58 \mathrm{M} *(1+(-0.00454+1.96 * 0.04054))$ = [CHF 42.668M; CHF 50.070M]
(vi) We need 12 month $\operatorname{Var}(99 \%)$, given that we have 3-mo data, we adjust data by 4.
$\operatorname{VaR}(99 \%)=\mathbf{C H F} 46.58 \mathbf{M}$ * (1+ ((-0.00454*4-2.33*0.04054*sqrt(4))]

$$
=\text { CHF 38.332M }
$$

$\operatorname{VaR}(99 \%)-$ mean $=$ CHF 38.332M $-\mathrm{CHF} 46.58 \mathrm{M}=\mathrm{CHF}-8.248 \mathrm{M}$
B. $\left.\mathrm{F}_{\mathrm{t}, 3-\mathrm{mo}}^{\mathrm{IRP}}=\mathrm{S}_{\mathrm{t}}\left[\left(1+\mathrm{i}_{\mathrm{d}} * 90 / 360\right) /\left(1+\mathrm{i}_{\mathrm{f}} * 90 / 360\right)\right]=0.9316 \mathrm{CHF} / \mathrm{USD}[1-.0087 / 4) /(1+.0425 / 4)\right]$ $=0.9198 \mathrm{CHF} / \mathrm{USD}$

Amount to be received $=\mathbf{U S D} 50 \mathrm{M} * \mathbf{0 . 9 1 9 8} \mathbf{C H F} / \mathbf{U S D}=\mathbf{C H F} 45.944 \mathrm{M}$
C. Buy the $0.9210 \mathrm{CHF} / \mathrm{USD}$ put \Rightarrow Total premium: $\mathrm{CHF} 0.01842 * 50 \mathrm{M}=\mathrm{CHF} \mathbf{0 . 9 2 1 \mathrm { M }}$ Adding the opportunity cost: CHF 0.921M * ($1-.0075 * 90 / 360$) $=\mathrm{CHF} 0.9192731$

If $\mathrm{S}_{\text {Mar } 30}<0.9210 \mathrm{CHF} / \mathrm{USD} \Rightarrow$ Net Amt $=$ USD 50M $* 0.9210 \mathrm{CHF} / \mathrm{USD}$

- CHF 0.9192731= CHF 45.13073 M

If $\mathrm{S}_{\text {Mar } 30}>0.9210 \mathrm{CHF} / \mathbf{U S D} \Rightarrow$ Net Amount $=$ USD 50M $* \mathrm{~S}_{\text {Mar } 30}-\mathrm{CHF} 0.9192731$
D. Check notes.
E. $\underline{\mathrm{F}}_{\text {Feb } 28, \mathrm{Mar} 30}=0.96 \mathrm{CHF} / \mathbf{U S D} *(1+.009 * 30 / 360) /(1+.045 * 30 / 360)=0.9571 \mathrm{CHF} / \mathrm{USD}$

Total value of Forward position $(\mathrm{HP})=50 \mathrm{M} *(-0.03817)=\mathrm{CHF}-1.91 \mathrm{M}$
\Rightarrow Total Amount to be received $=$ USD 50M * 0.96 CHF/USD -CHF 1.91 M

$$
=\mathrm{CHF} 46.09 \mathrm{M}
$$

3) Check lecture notes for graphs and diagrams.
(A) Higher interest rates: i iusd \uparrow

Now, U.S. T-bills more attractive than Thai T-bills.
Both supply and demand curves move. $\Rightarrow\left(\mathrm{i}_{\text {THB }}-\mathrm{i}_{\mathrm{iSD}}\right) \downarrow \Rightarrow \mathrm{S}_{\mathrm{t}}(\mathrm{THB} / \mathrm{USD}) \uparrow$ (THB depreciates)
(B) Higher inflation rates: $\left(\mathrm{I}_{\text {THB }}-\mathrm{I}_{\mathrm{USD}}\right) \uparrow$
U.S. goods more attractive than Thai goods.

Both supply and demand curves move. $\Rightarrow \mathrm{S}_{\mathrm{t}}$ (THB/USD) \uparrow (THB depreciates)
(C) We follow from (A). CBT sells USD (\& receives THB).

FX Mkt effect: $\mathrm{S}_{\mathrm{t}}(\mathrm{THB} / \mathrm{USD}) \downarrow$ (USD depreciates against THB).
Thai Money Mkt effect: Interest rates in Thailand increase.
(D) CBT sells USD (which were invested in USD T-bills, yielding 5\%) and receives THB (which they likely invest in Thai T-bills yielding 1.75%). Likely a small to medium effect.

4) Exam A - Regression

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.124921

R Square	0.015605
Adjusted R	
Square	0.008072
Standard Error	0.025407
Observations	396

ANOVA			
	df	SS	MS
Regression	3	0.004011	0.001337
Residual	392	0.253044	0.000646
Total	395	0.257055	
	Standard		
	Coefficients	Error	t Stat
Constant	$8.51 \mathrm{E}-05$	0.001552	0.054808
$\left(\mathrm{I}_{\text {DC }}-\mathrm{I}_{\mathrm{US}}\right)_{\mathrm{t}}$	0.879727	0.36015	2.442665
$\left(\mathrm{i}_{\text {DC }}-\mathrm{i}_{\text {US }}\right)_{\mathrm{t}}$	-0.02361	0.081074	-0.29123
$\left(m_{D C}-m_{U S}\right)_{t}$	0.004829	0.009151	0.527629

(ii) Higher interest differential, appreciates $D C\left(s_{t} \uparrow\right) \Rightarrow$ Not consistent with IFE (should be positive).
(iii)
t-stat(alpha) $=8.51 \mathrm{E}-05 / 0.001552=0.054808<=$ cannot reject alpha $=0$
t-stat(beta) $=[0.879727-1] / 0.36015=-0.3340(|t-s t a t|<1.96)<=$ cannot reject beta $=1$
\Rightarrow We cannot reject PPP.
(iv) $\mathrm{MSE}=0.00025$
(v) $\mathrm{MSE}=0.00021$
(vii) Lowest forecast is the RW \Rightarrow Q1 2023 Forecast: $\mathbf{0 . 9 3 1 6} \mathbf{C H F} /$ USD

BONUS

Exam A-ABB EE

Regression ABB returns against 3-FF factors and changes in FX rates.
Dates: 2001-2022
The coefficient of s is not signficant $(|t=\mathbf{- 1 . 0 6 2 3}|<1.96)=>$ No EE!

	Standard			
	Coefficients	Error	t Stat	P-value
Intercept	0.018524	0.013967	1.326251	0.185939
Mkt-RF	-1.20185	2.238583	-0.53688	0.591816
HML	0.705653	0.944337	0.747248	0.4556
SMB	-0.05138	0.050633	-1.01482	0.31115

