

• Last Class

- Asset Allocation in International Markets:
 - Passive vs Active allocations.
 - Decompose performance of active managers into segments that measure skills in picking stocks and market weights
 - Performance metrics, incorporating risk-return trade-off.
 - Optimal Portfolio Construction: Maximizing RVOL

• *Country* Risk (CR): Risk attached to a borrower/investment by virtue of its **location** in a particular country.

• CR is a **broad risk** concept. It includes economic risk, financial risk, political risk, etc.

• We think of CR as a weighted average of risk factors.

• Last Class

• Methods to measure CR. We emphasize Quantitative Method: Get data, analyze data (through a computer model or experts), produce measure.

• Usually reported as a **letter**. It determines a government **risk free rate** – i.e. borrowing costs. Thus, it also affects **discount rates** for projects.

• Big Con: Lack of predictive power.

• Main implication: MNCs need to account for country risk when evaluating the NPV of international projects.

• This Class – Several & Diverse Topics Country Report (& Analysis)

Country Risk (Continuation)

• Incorporation of CR into a firm's valuation of a project/investment.

• Some country ("Political") Risk can be hedged by buying insurance.

Topics in International Corporate Finance

- **DFI**: A controlling ownership in a business enterprise in one country by an entity based in another country. Q: Why DFI instead of exports?

- Multinational Capital Budgeting. Follow standard NPV process, incorporating taxes (local and foreign) and exchange rates. Use discount rates specific to the (systematic) risk of the country.

- Capital Structure & Cost of capital

International Stock Markets: Info Problems & Valuation

• Investment banks and consulting firms produce "*Country Reports*," trying to summarize all the relevant information that an investor/firm needs to make an investment decision in a given country.

• **Country reports** are **brief** and they give an investor an **overall idea** of the business, political, and economic climate.

• This is the **Class Project**: Write a professional country report.

• Country Report: Due on April 6

<u>Goal</u>: Learn about investment environment in a country. <u>Target of Report</u>: A busy U.S. investor.

<u>Usual style</u>:

- (1) Very brief historical & current political details of chosen country.
- (2) Description of economic, financial environment, & investment opportunities (usually, competitive sectors).
- (3) Based on analysis, a couple of recommendations.

A. Necessary Information

- GDP or GNP growth.
- Monetary policy: Evaluation of inflationary prospects and interest rates.
- Wages & employment conditions: Productivity and Health of economy.
- Social and political situation: Goal is to evaluate political/country risk.
- Fiscal situation and taxes: Implications government budget situation.
- Sector analysis: Competitiveness of sectors in world/region.

• Country Report

B. Figures or Graphs

1. Macroeconomic Indicators (4 years of history + forecasts):

• GDP growth (GDP forecast is a must)

- Inflation & Government interest rates (yields)
- Trade Account (imports, exports and current account balance)
- Exchange rate against the USD
- Unemployment
- 2. Market Indicators (4 years of history + forecasts, if available):
- Stock Market Index (level, returns, P/E, if available)
- Government Bond yields (short-term and long-term)

3. Stocks (4 years of history for individual stocks + analysts' forecasts, if available): 10 largest stocks (price, PE or EPS, if available)

• Country Report

C. Text

Report should include:

- Current events
- Macroeconomics (economic growth, monetary policy, government deficit, labor markets, etc.)
- Sectorial analysis
- Country risk
- Taxes
- Exchanges rates
- Equilibrium P/E (fair valuation)

D. Practical Issues

- The text cannot have more than **five pages**.
- Do not include irrelevant information as appendices.
- There are over 3,000 ADRs in the U.S.
- Need to include fair P/E Valuation
- Provide and justify two stock recommendations.

• Country Report

E. Some Grading Issues

Maximum Grade: 5 points.

• Incomplete discussion will be penalized. (Up to 2 points off.)

• Incomplete information -info suggested above-- up to 2 points off.

• Irrelevant information will be penalized. (1/2 point off).

• Current data is a must. If your latest data is from 2017, you lost 1 point.

• If current news is important (covid-19 or a recent devaluation), you should include it in your report. (Up to 1 point off.)

• If no equilibrium P/E calculated included, you'll lose 1/2 point.

• Long papers are penalized (1/2 point off, though if the paper is long because of irrelevant info, you'll be penalized only once.)

- Recommendations should come out logically from your country analysis.
- Copying a professionally written report is considered cheating.

• Country Risk : Implications

• Country/Political risk affects the expected cash flows of an investment. MNCs need to account for this type of political risk when evaluating international projects.

• In general, companies try to **adjust** the **expected cash flows** by decreasing them by an amount that reflects the probability of a loss due to country/political risk.

• It is complicated how to calculate the probability distribution associated with country/political risk.

Example: S	Example : Suppose HAL, a U.S. MNC, is considering a project in Hong					
Kong with a	an initial investn	nent of USD 1 (0 million and a	duration of 4		
years with th	ne following exp	pected cash flow	ws (in USD), ind	cluding		
liquidation/	sale at the end of	of Year 4:				
	Year 1	Year 2	Year 3	Year 4		
Free CF	1.114M	1.486M	1.811M	13.524M		
The MNC u	ises the usual 15	% discount rat	e for this type o	of project. Then,		
NPV (in M) = $-10 + \left\{ \frac{1.114}{(1+.15)} + \frac{1.486}{(1+.15)^2} + \frac{1.811}{(1+.15)^3} + \frac{13.524}{(1+.15)^4} \right\}$ = USD 1.0155 M > 0 \Rightarrow Yes, HAL undertakes project.						
But, we have is a P _i proba after exprop	But, we have ignored country/political risk. Suppose the MNC thinks there is a P_i probability of expropriation every year. Assume, for simplicity, that after expropriation the CFs = 0 –that is, there is no recovery.					

In practice, it is difficult to compute the P_i's in the previous Example.

Sometimes, it is easier to calculate *break-even probabilities* and, then, compare them with other the probabilities used in other projects or with the experience of a company or expert.

In the previous example, the break-even probabilities, \mathbf{p}_{BE} , can be derived from solving the following equation:

NPV (in M) = -10 + {
$$\frac{1.114}{(1+.15)}$$
 * $(1 - p_{BE})$ + $\frac{1.486}{(1+.15)^2}$ * $(1 - p_{BE})^2$ +
+ $\frac{1.811}{(1+.15)^3}$ * $(1 - p_{BE})^3$ + $\frac{13.524}{(1+.15)^4}$ * $(1 - p_{BE})^4$ }

Example: Using trial and error (or Excel or R), HAL determines $p_{BE} = 0.027964$

<u>MNC's rule</u>: If $p_{BE} < .03 \Rightarrow$ The U.S. MNC undertakes the project. ¶

• Country Risk : Insurance

• NPV calculations are easier if there is insurance: MNC just **adjust** the expected cash flows by the **cost of insurance** and proceed as usual.

- There is an active market for Country Risk Insurance.
- Sovereign Risk can be insured by the private market or CDS (swaps).

- Political Risk can be insured by international organizations (**World Bank**), governments and private insurance companies (**AIG, Zurich**, etc.)

- Political risk is available for different events:
- Political violence: Revolution, civil unrest, terrorism, war, etc.
- Expropriation or confiscation of assets.
- Repudiation of contracts.
- Cancellation of credit or guarantees.
- Business interruptions.
- Currency inconvertibility, blockage of funds.

• Country Risk: Insurance

• Political risk insurance policies tend to be standardized, but can be adapted for specific situations. For larger investments or complex situations, tailor-made policies are common, with a syndicate of several insurers providing coverage.

• The **private market** is usually used for complex investments that require a great deal of customization.

• The **U.S. government**, through the *Overseas Private Investment Corporation* (**OPIC**) has been providing political risk insurance to U.S. international investors since 1971.

• The World Bank also offers political risk insurance through its *Multilateral Investment Guarantee Agency* (MIGA), which was established in 1988.

• Country Risk: Insurance

Example: Suppose HAL gets fully insured against political risk. It insured the full amount for each year. The premium is **1.5%** annual. That is,

NPV (in M) =
$$-10 + \left\{ \frac{1.114 * .985}{(1 + .15)} + \frac{1.486 * .985}{(1 + .15)^2} + \frac{1.811 * .985}{(1 + .15)^3} + \frac{13.524 * .985}{(1 + .15)^4} \right\} = \text{USD } 0.8502 > 0$$

 \Rightarrow Yes! HAL undertakes project. ¶

• The example is very simple. In practice, MNCs cannot get insurance for 100% of cash flows, usually they can get covered from 50% to 90%.

• Country Risk: Insurance

In practice, MNCs cannot get insurance for 100% of cash flows, usually they can get covered from 50% to 90%.

Example (continuation): Now, HAL gets insurance against political risk for 70% of the CFs. The premium is 1.5% annual and P = 5%. That is,

NPV (USD M) =
$$-10 + \left\{ \frac{1.114 * .985}{(1 + .15)} + \frac{1.486 * .985}{(1 + .15)^2} + \frac{1.811 * .985}{(1 + .15)^3} + \frac{13.524 * .985}{(1 + .15)^4} \right\} * .70 + \left\{ \frac{1.114}{(1 + .15)} * .95 + \frac{1.486}{(1 + .15)^2} * (.95)^2 + \frac{1.811}{(1 + .15)^3} * (.95)^3 + \frac{13.524}{(1 + .15)^4} * (.95)^4 \right\} * .30$$

= USD 0.37122 > 0 \Rightarrow YES! ¶

<u>Remark</u>: In many situations, once expropriation happens, the company files a claim and the company gets a **one-time payment**.

• Country Risk: Insurance

In many situations, once expropriation happens, the company files a claim and the company gets a **one-time payment**.

I. DFI

<u>Definition</u>: A *Direct Foreign Investment (*DFI) is a controlling ownership in a business enterprise in one country by an entity based in another country. Also called FDI.

- Controlling ownership: 10%+ of voting stock (World Bank/OECD).

- DFI is different from portfolio investing abroad.

- DFIs: Greenfield investments (building a new operational facility), mergers & acquisitions, a joint venture, etc.

- Instruments: Equity, Reinvestment of earnings, Debt.

• According to OECD, global DFI in 2022 was **USD 1.01 trillion**. In **2020** (pandemic year), DFI was down **34%**.

- US biggest recipient of DFI, followed by China, Brazil, Australia, Canada.

- High income countries receive almost half DFI flows.

• Factors behind DFI:

According to the annual DFI survey of A.T. Kearney, the main drivers are *regulatory transparency/lack of corruption, taxes,* and *labor costs.*

• DFI: Why?

- A domestic firm can sell a product abroad by:
 - Producing at home and exporting production.
 - Producing abroad (& do a DFI) and selling abroad.
- Q: Why DFI instead of exports?

A: Usual reasons:

- Access to cheap inputs (labor, energy, etc.)
- Avoid tariffs, quotas & reduce transportation costs
- Local management
- Take advantage of government subsidies
- Access to new technology
- Access to local expertise (including: contacts, red tape, etc.)
- Real option (investment today to make investments elsewhere later).
- Reduce economic exposure
- Diversification

• Diversification through DFI

MNCs have **many DFI projects**. MNCs select the project that improves their **risk-reward profile**.

• Popular risk-adjusted performance measures (RAPM):

Reward to variability (Sharpe ratio): Reward to volatility (Treynor ratio): Risk-adjusted ROC (BT):

Jensen's alpha measure:

 $RVAR_i = E[(r_i - r_f)]/\sigma_i.$ $RVOL_i = E[(r_i - r_f)]/\beta_i.$ $RAROC_i = r_i/Capital-at-risk.$ Estimated constant (α_i) on a CAPM-like linear regression

• We focus on RVAR & RVOL to evaluate projects.

Note: RVAR & RVOL can produce different rankings.

Diversification through DFI: RVAR and RVOL
Compute E[r] & Var[r] for a portfolio, compose by X & Y, as: E[r_{p=x+y}] = ω_x * E[r_x] + (1 - ω_x) * E[r_y] Var[r_{p=x+y}] = σ²_{x+y} = ω²_x * σ²_x + ω²_y * σ²_y + 2 ω_x ω_y ρ_{x,y} σ_x σ_y RVAR_p = (r_p - r_f)/ σ_p
Compute β of the X+Y portfolio: β_{p=x+y} = ω_x * β_x + (1 - ω_x) * β_y RVOL_p = (r_p - r_f)/ β_p.
Note: If project is added, MCN becomes X+Y Y = Project MNC is considering X = Existing portfolio of MNC -i.e., the "rest of the MNC."

Diversification through DFI: RVAR and RVOL
RVAR_i = E[(r_i - r_f)]/σ_i = Sharpe Ratio (SR)
RVOL_i = E[(r_i - r_f)]/β_i = Treynor Ratio (TR)
Q: RVAR or RVOL?
RVAR (SR) uses total risk (σ); appropriate for *undiversified* portfolios.
When asset *i* is a small part of a diversified portfolio; σ is inappropriate.
RVOL (TR) emphasizes *systematic risk*, appropriate measure of risk, according to the CAPM, when a portfolio is diversified.

Example: A US company considers two DFIs: Colombia & Brazil.								
The firm has the following data, assuming $r_f = 3\%$:								
	$E[r_i] SD[r_i] = \sigma_i \beta_i \rho_{US,i} Weight$							
US firm (EP)	US firm (EP) 13% 12% .90							
Colombia	mbia 18% 25% .60 0.40 .30							
Brazil	razil 23% 30% .30 0.05 .35							
$ \begin{split} \omega_{Col} &= .30, \qquad \qquad \Rightarrow (1 - \omega_{Col}) = \omega_{EP} = .70 \\ \omega_{Brazil} &= .35, \qquad \qquad \Rightarrow (1 - \omega_{Brazil}) = \omega_{EP} = .65 \end{split} $								
Q: Which project is better? Calculate a RAPM for each project: - SR = $E[(r_i - r_f)]/\sigma_i$ - TR = $E[(r_i - r_f)]/\beta_i$								
For the US company:								
$SR_{EP} = (.1303)/.12 = .833$								
$TR_{EP} = (.1303)/.90 = .111$								

Example (continuation): • Colombia – Calculation of SR and TR $E[r_{EP+Col} - r_f] = \omega_{EP} * E[r_{EP} - r_f] + \omega_{Col} * E[r_{Col} - r_f]$ = .70 * .10 + .30 * .15 = 0.115 $\sigma_{EP+Col}^2 = \omega_{EP}^2 * \sigma_{EP}^2 + \omega_{Col}^2 * \sigma_{Col}^2 + 2 * \omega_{EP} * \omega_{Col} * \rho_{EP,Col} * \sigma_{EP} *$ $\sigma_{Col} = (.70)^2 * (.12)^2 + (.30)^2 * (.25)^2 + 2^*.70^*.30^*0.40^*.12^*.25$ = 0.017721 $\sigma_{EP+Col} = (\sigma_{EP+Col}^2)^{1/2} = (0.017721)^{1/2} = 0.1331$ $\beta_{EP+Col} = \omega_{EP} * \beta_{EP} + \omega_{Col}^* \beta_{Col} = .70 * .90 + .30 * .60 = 0.81$ $\bullet SR_{EP+Col} = E[r_{EP+Col} - r_f] / \sigma_{EP+Col} = 0.115/0.1331 = 0.8640$ $\bullet TR_{EP+Col} = E[r_{EP+Col} - r_f] / \beta_{EP+Col} = 0.115/0.81 = 0.14198$ Example (continuation):
Colombia – Interpretation of Ratios:
SR_{EP+Col} = E[*r_{EP+Col} - r_f*] / σ_{EP+Col} = 0.115/0.1331 = 0.8640
Interpretation of SR: An additional unit of total risk (1%) increases returns by .864%.
TR_{EP+Col} = E[*r_{EP+Col} - r_f*] / β_{EP+Col} = 0.115/0.81 = 0.14198
Interpretation of TR: An additional unit of systematic risk increases returns by .142%.

Example (continuation): • Brazil $E[r_{EP+Brazil} - r_{f}] = 0.135$ $\sigma_{EP+Brazil} = 0.1339$ $\beta_{EP+Brazil} = 0.69$ $SR_{EP+Brazil} = 0.135/0.1339 = 1.0082 > SR_{EP+Col} = 0.8640$ $TR_{EP+Brazil} = 0.135/0.69 = 0.19565 > TR_{EP+Col} = 0.14198$ $\Rightarrow Under both measures, Brazilian project is superior.$ • Existing portfolio of the company (to compare to Brazilian project): $SR_{EP} = (.13 - .03)/.12 = .833 < SR_{EP+Brazil} = 1.0082$ $TR_{EP} = (.13 - .03)/.90 = .111 < TR_{EP+Brazil} = 0.19565$ $\Rightarrow Using both measures, diversify internationally!$ Q: Why? Because it improves the risk-reward profile for the company.

• Data Needed for Multina	ational Capital Budgeting:
- Taxes.	
MNCs pay taxes twice:	- Local level
	- Parent level.
Different rules and tax treat paying taxes for the same inc	ies are in place to avoid double taxation –i.e., come twice.
- CF Uncertainty.	
CFs are difficult to estimat submitted by subsidiary. The	e. A point estimate (a single number) is usually en, Parent "adjusts" for CFs uncertainty.
Usual adjustment: Discounti	ng at rate <i>k:</i> CF's uncertainty ↑, higher <i>k</i> ↑.

2.A International Taxation

• Taxes on Investments

- 1. Capital gains,
- 2. Income (dividends, etc.),
- 3. Transactions.

• Key question for international investors:

Q: Do they tax foreigners? If so, what are the withholding taxes?

• Two Tax principles

- Residence: Residents taxed on their worldwide income.
- Source: Only income earned inside the country is taxed.

When entire income is earned in the country of residence, both principles agree. Otherwise, principles do not agree.

Example:

Situation: A U.S. consultant works 3 months a year in Greece. **Residence principle**: She pays taxes on her Greek income in the U.S. **Source principle**: She pays taxes on her Greek income in Greece.

 \Rightarrow Greek income can be taxed twice. ¶

• Foreign investments may be taxed in two locations:

- 1. the investor's country,
- 2. the investment's country

Convention: Make sure that taxes are paid in at least one country.

 \Rightarrow This is why withholding taxes are levied on dividend payments.

• Tax Neutrality

Tax neutrality: No tax penalties associated with international business. Two approaches:

- (1) Capital import neutrality
- (2) Capital export neutrality.

(1) Capital Import Neutrality

- No penalty/advantage attached to foreign-owned capital
- Foreign and domestic capital compete on equal basis.
- \Rightarrow Local taxes exempt foreign-source income from local taxes.
- ⇒ For U.S. MNC: Exclusion of foreign branch profits from U.S. taxable income (*Exclusion method*).

(2) Capital Export Neutrality

- No tax incentive for firms to export capital to a low tax country.
- Same overall tax whether capital remains in the country or not.
- ⇒ Local authorities "gross up" the after-tax income with all foreign taxes; then, apply home-country tax rules to that income, with credit for foreign taxes paid.
- ⇒ For U.S. MNC: Inclusion of "*pre-tax*" foreign branch profits in U.S. taxable income. A tax credit is given for foreign paid taxes (*Credit method*).

Example: Bertoni Bank, a U.S. bank, has a branch in Hong Kong.								
Hong Kong branch income: USD 100.								
U.S. tax rate: 35%								
Hong Kong tax rate:	17%							
	Double Taxation	Exclusion Method	Credit Method					
Hong Kong								
Branch profit	100	100	100					
(17% tax) (i)	<u>17</u>	<u>17</u>	<u>17</u>					
Net profit	83	83	83					
• U.S.								
Net Hong Kong profit	83	83	83					
Gross up	<u>0</u>	<u>0</u>	<u>17</u>					
Taxable income	83	0	100					
(35% tax)	29.05	0	35					
Tax credit	<u>0</u>	<u>0</u>	<u>(17)</u>					
Net Tax due (ii)	29.05	0	18					
Total taxes (i)+(ii)	46.05	17	35					

• Agency Problem: Subsidiary vs Parent

In general, CFs are **difficult** to estimate. **Point estimates** (a single estimated number) is usually submitted by the subsidiary. The Parent will attempt to adjust for CFs uncertainty.

Usually, this is done through the discount rate, *k*. But, many other methods can be used.

Typical problem for an MNC: Agency Problem - Subsidiary vs. Parent.

- Subsidiary wants to undertake more projects.
- Parent only cares about Profitability.

 \Rightarrow Subsidiary can misstate Revenues, VC, and SV.

• Agency Problem **Example**: Project in Hong Kong (Data provided in HKD) T = 4 years CF₀= **HKD 70M** (=**USD 10M**) Revenue: Year 1 (Price per unit (HKD), Quantity)) - 20; 1.00M = 20M Year 2 (25; 0.95M) = 23.75MYear 3 (30; 0.90M) = 27MYear 4 (35; 0.85M) = 29.75M - VC = HKD 5/unit Cost -FC = HKD 3MDepreciation = 10% of initial outlay (HKD 7M/year) $S_t = 7 \text{ HKD/USD}$ (use RW to forecast future S_t 's) Taxes: - Income: HK 17%, US 35% (Gross-up, Credit for foreign taxes) - Withholding tax (in Hong Kong) = 10%Note: U.S. collects taxes based on worldwide income.

Example (continuation):						
$SV_4 = HKD 2$	5 M					
<i>k</i> = 15%						
1. Subsidiary	's NPV (in HK	D including loca	al taxes)			
	T=1	2	3	4		
Revenues	20M	23.75M	27M	29.75M		
Cost	5M	4.75M	4.5M	4.25M		
	3M	3M	3M	3M		
Profit	12M	16M	19.5M	22.5M		
Dep.	<u>7M</u>	<u>7M</u>	<u>7M</u>	<u>7M</u>		
EBT	5 M	9M	12.5M	15.5M		
Taxes	<u>.85M</u>	<u>1.53M</u>	<u>2.125M</u>	<u>2.635M</u>		
EAT	4.15M	7.47M	10.375M	12.865M		
Free CF +SV	11.15M	14.47M	17.375M	44.865M		

Example: (continuation)						
	T=1	2	3	4		
Free CF +SV	11.15M	14.47M	17.375M	44.865M		
NPV (in HKD) = $-70M + 11.15M/1.15 + 14.47M/1.15^{2} + + 17.375M/1.15^{3} + 44.865M/1.15^{4} = - HKD 12.2869M < 0$						
<u>Note</u> : If SV_4 is changed to HKD 80M , then NPV = 19.16M > 0! \Rightarrow Subsidiary would submit the project.						
• Subsidiary never submits a project with NPV<0 . SV is important!						

2. MNC's NPV (in USD, including all taxes)						
	Year 1	Year 2	Year 3	Year 4		
CFs to be remitted (HKD)	11.15M	14.47M	17.375M	19.865M+ 25M		
$S_t = 7 HKD/USD$						
CFs in USD	1.59M	2.067M	2.48M	2.84M+3.57M		
Withholding	<u>(.159M</u>)	<u>(.2067M)</u>	(<u>.248M</u>)	(<u>.284M</u>)		
CFs remitted	1.431M	1.86M	2.3M	2.56M + 3.57M		
(US Tax)	(.6M)	(.8M)	(.975M)	(1.125M)		
Tax Credit	.281M	.425M	.552M	.376M		
Net Tax	<u>(.319M)</u>	<u>(.425M)</u>	<u>(.423M)</u>	<u>(.749M)</u>		
EAT	1.114 M	1.486M	1.811M	2.09M+3.57M		
NPV = - USD 10M + 6.5195M = - USD 3.48M < 0. ⇒ No!						

<u>Note</u>: Subsidiary will **never** submit a project like this! Subsidiary will inflate some numbers, for example, SV_T .

If $SV_T = HKD 80M$, then

NPV (USD M) = $-10 + \{1.114/1.15 + 1.486/1.15^2 + 1.811/1.15^3 + (2.095 + 80/7)/1.15^4\} = USD 1.01181 M > 0 \Rightarrow Yes. ¶$

• Real Options View Original HK (with SV₄ = HKD 25M) project has NPV<0. Usual view: MNC rejects project.

But, MNCs may undertake NPV<0 projects if there are **future benefits** associated with the initial investment. For example, an expansion, development of contacts, power to influence future political events, etc.

An MNC may view the DFI as an option –a *real option*. The initial investment plays the role of a premium paid:

 $p = \text{NPV}_{\text{Initial Investment}} < 0$

The MNC sets some targets for initial investments (revenue, market share, etc.) that play role of a *strike price*, *X*:

If Realized Target > $X \Rightarrow$ Expand (exercise *real option*).

Real Options View
Overall, MNC undertakes project if
E[NPV] = NPV_{Initial Investment} + Option Value of Expansion

Think of a real option as a two-phase project:

First phase: Test the Market
If test is successful: Expand

In many applications, the initial investment also gives a company the option to delay further investments. These options have value.
Financial options are not complicated to value, inputs (P_t, X, σ) are easy to get. In general, these inputs are not very precise value for real options.
⇒ Real options tend to be difficult to value. Simulations are used.

Example: Malouf Coffee considers expansion to Mexico with two stores: S & B.
♦ Expansion is done simultaneously (S&B together)

Upfront investment is 230.
Probability of failure (F) = 70% *k* = .15:
CFs for S: 60 (if F) & 140 (if not F)
CFs for B: 120 (if F) & 280 (if not F).

E[NPV] = -230 + [(.70) * (60+120) + (.30) * (140+280)]/1.15 = -10.87 < 0

⇒ No!

Example (continuation):
If we evaluate 2-phase investment:
⇒ E[NPV] = -100 + (.70) * 60/1.15 + (.30) * {(140-70)/1.15 + (120) * .50 + (280) * .50]/1.15²} = 0.1512 > 0 ⇒ YES!
Higher valuation when real option (flexibility) is introduced.
Technical Note: Discount rate in 2nd-phase should be lower! ¶
Technical Issues: Not easy to determine P₁ & P₂, and future CFs.
Value of the Real Option: Firm learns from 1st-phase & adapts (expand, delay, or close the project). Limiting downside.
Many MNCs went to China in the early 1990s with NPV<0 projects. Years later, some expanded, some closed projects and left market.

Adjusting Project Risk
MNCs have many ways methods to adjust for CF uncertainty.
Adjusting discount rate, k
In general, CF's uncertainty is incorporated through the discount rate, k:
Higher uncertainty, k↑.
k also incorporates economic & political uncertainty in local country.
But k is a point estimate, an *average risk*. An average risk may cost an MNC:
It may wrongly reject projects that have a below average risk.
An MNC may use a range for k, say {k_{LB}, k_{UB}}.

Using a range $\{k_{LB}, k_{UB}\}$ creates a range for $\{NPV(k_{LB}), NPV(k_{UB})\}$.

Example: Based on $\{k_{LB}, k_{UB}\}$ for the HK project, MNC builds an NPV range

Range for $k : \{k_{LB} = .135, k_{UB} = .165\}$ (with **SV**₄ = **HKD 80M**, NPV > 0)

 \Rightarrow Range for NPV: {**USD 0.535M**; **USD 1.519M**}.

Note: Range is always positive. Good for a project.

Sensitivity Analysis/Simulation									
Example: Co	mpute E[NPV] & S	D[NPV] for Hk	K project						
We create diff	Ferent scenarios for (CFs (as a % of s	ubmitted CFs)						
	% of CFs	Probability	NPV (11 M)						
	0.60	0.01	-0.77918						
	0.64	0.025	-0.60009						
	0.68	0.05	-0.42099						
	0.72	0.075	-0.24189						
	0.76	0.09	-0.06279						
	0.80	0.10	0.116313						
	0.84	0.125	0.295412						
	0.88	0.15	0.474512						
	0.92	0.15	0.653611						
	0.96	0.125	0.832711						
	1	0.10	1.01181						
	E[NPV]		0.35541						
	SD[NPV]		0.64477						
	Prob[NPV<0]	0.25							

Sensitivity Analysis/Simulation - Decisions
Parent can base a decision on some risk-reward rule.
For example, a firm may look at the SR (using E[NPV] and SD[NPV]), a range, establishing some ad-hoc tolerable level for the probability of negative NPV, etc.

• Decisions

<u>Rule</u>: Among projects with E[NPV] > 0, Parent compares the SRs (or CIs) for different projects. Then, select project with higher SR (or the CI with the smallest negative part).

Sensitivity Analysis/Simulation							
ensitivity Analysis of the impa	act of SV or	n NPV					
fferent scenarios based on origin	nal SV. For e	example:					
		-					
% of SVs (in HKD)	Probability	NPV (in M)					
0.60 (=HKD 48)	0.05	-1.60192					
0.64 (=HKD 51.2)	0.065	-1.34055					
0.68 (=HKD 54.4)	0.085	-1.07917					
0.72 (=HKD 57.6)	0.1	-0.8178					
0.76 (=HKD 60.8)	0.125	-0.55643					
0.80 (=HKD 64)	0.15	-0.29505					
0.84 (=HKD 67.2)	0.125	-0.03368					
0.88 (=HKD 70.4)	0.1	0.227692					
0.92 (=HKD 73.6)	0.085	0.489064					
0.96 (=HKD 76.8)	0.065	0.750437					
1.00 (=HKD 80)	0.05	1.01181					
E[NPV]		-0.29505					
SD[NPV]		0.866876					
Prob[NPV<0]	0.70						

• Sensitivity Analysis/Simulation

• Breakeven Analysis: Calculate SV^{BE} , such that $NPV(SV^{BE}) = 0$.

$$\Rightarrow SV^{BE} = \{ IO - \sum_{t} \frac{CF_t}{(1+k)^t} \} * (1 + k)^T$$

The higher SV^{BE}, the more dependent project is on an uncertain SV: \Rightarrow To make the NPV > 0, we need SV_T > SV^{BE}. (Not good!)

Q: Is the SV_{T} reasonable? $\mathrm{SV}^{\mathrm{BE}}$ helps to answer this question.

Example: Calculate SV^{BE} for HK project. SV^{BE} = $-10 + \{\frac{1.114}{(1+.15)} + \frac{1.486}{(1+.15)^2} + \frac{1.811}{(1+.15)^3} + \frac{2.09}{(1+.15)^4}\} * (1 + .15)^4 =$ = USD 9.65891 (or HKD 67.61236M) Check NPV (in USD M) is zero when SV = USD 9.65891: NPV = $-10 + \{\frac{1.114}{(1+.15)} + \frac{1.486}{(1+.15)^2} + \frac{1.811}{(1+.15)^3} + \frac{2.09 + 67.61236/7}{(1+.15)^4}\} = 0.$ A parent company compares the SV^{BE} with the reported SV value: SV^{BE} = HKD 67.61236M < SV₄ = HKD 80M. (Too big!) ¶ <u>Note</u>: If SV^{BE} < 0 \Rightarrow Good for project. Profitability does not depend on SV.

Judgment call
In practice, there is a lot of subjective judgment.
Experience (MNC's own and consultants) also are incorporated.
Example: Ad-hoc decision
Based on past experience, Parent requires:

E[NPV] > 0
Prob[NPV < 0] < 30%.

In HK example, Prob[NPV < 0] = 25% ⇒ Accept!

Note: This ad-hoc rule double counts risk, since NPV is calculated using risk-adjusted discount rates! ¶

II.3 Capital Structure and Cost of Capital

• Cost of Capital Cost of capital (*k_c*) = Discount rate for CFs.

Q: How do MNCs set discount rates for projects in foreign countries?

• Recall, Country Risk affects discount rates & NPVs:

- Because of CR, different countries have different risk-free rates (k_f) .

- High CR, lower NPVs for projects.

• k_c depends on the debt (D) & equity (E) mix of a firms & nature (diversified firm/diversified ownership) of firm.

• Brief Review: Capital Structure

• Firms raise new capital by:

- Issuing new equity (E) -firms give away ownership; pay dividends

- Issuing debt (D) -firms borrow; pay interest.

Firms can use retained earnings, also E. (According to the *pecking order theory*, retained earnings are the first source of funds for firms.)

• Trade-off Theory of Capital Structure

- D has its (tax) advantages (reduces taxes), but also disadvantages (cost: bankruptcy).

- Firms use the E & D mix that minimizes cost of capital.

There is a U-shape relation between cost of capital & D relative to value of firm (V=E+D).

Measuring the cost of capital
k_e
k_e: Cost of equity of a project. The *required* (expected) return on equity.
A model is needed. There are many models. We can use the CAPM or the popular Fama-French versions with 3 (or 4, or 6) factors.
Let's use the CAPM to value the cost of equity:

k_e = E[r] = r_f + β E[r_m - r_f]

r_f (= k_f): Risk-free rate (a government rate).
r_m (= k_m): Expected return on a market portfolio (long-run return on a well-diversified market index).
β: Systematic Risk of the project/firm = Cov(k_e,r_m)/Var(r_m) (a coefficient estimated by a regression).
E[r_m - r_f]: Estimated risk premium (ERP).

• *k_e*: World or Domestic CAPM? Many versions of the CAPM: $k_{e,W} = E[\mathbf{r}] = r_{f,W} + \beta_{W} E[r_m - r_f]_{W}$ - World CAPM: - Domestic CAPM: $k_{e,D} = E[\mathbf{r}] = r_{f,D} + \beta_D E[\mathbf{r}_m - \mathbf{r}_f]_D$ **Example**: GE wants to calculate k_e for an investment in Brazil. GE decides to use **Domestic CAPM**. Data: $r_{f,D} = 7.40\%$ (Government Risk-free rate in Brazil) $E[r_{MD}] = 12\%$ (Return of the BOVESPA Index in past 10 years) $\Rightarrow E[r_m - r_f]_D = .12 - 7.40\% = .0460$ (Similar projects in Brazil) $\beta_{D,GE-Brazil} = 1.1$ $k_e = r_{f,D} + \beta_{\rm D} \operatorname{E}[r_m - r_f]_{\rm D} = 7.40\% + 1.1 * .0460 = 0.1246 (12.46\%).$ *k_e*: World or Domestic CAPM?
World CAPM: *k_{e,W}* = E[r] = *r_{f,W}* + β_W E[*r_m* - *r_f*]_W
Domestic CAPM: *k_{e,D}* = E[r] = *r_{f,D}* + β_D E[*r_m* - *r_f*]_D
Q: Which one should be used?
A: In theory, it depends on the view that a company has regarding capital markets or expected compensation to shareholders.
If capital markets are:
Integrated (or shareholders worldwide diversified) ⇒ World E[*r_m* - *r_f*]_W driven by world factors (world benchmark used)
Segmented (or shareholders hold domestic portfolios) ⇒ Domestic E[*r_m* - *r_f*]_D driven by domestic factors (domestic benchmark used)
Remark: Beta differs in both specifications.

k_e: World or Domestic CAPM?
Differences can be significant:

5.55% absolute difference in EM
3.58% absolute difference in Developed Markets (DM).
-β_w & β_D also show significant absolute differences: 0.44 for EM & 0.21 for DM.

Evidence for integrated capital markets is weak. We think of capital markets as partially integrated. Then:

Partially Integrated CAPM: *k_{e,D}* = ω_D *k_{e,D*}* + (1 - ω_D) *k_{e,W}* where, *k_{e,D*}*: FC-adjusted domestic cost of capital *k_{e,D}* (both *k_e* in same currency)
ω_D: Weight of Domestic Market in world capital markets.

In general, we find that **World CAPM** produces **low expected returns**. Fama-French factor models tend to produce higher (more realistic) expected returns. Many **ad-hoc adjustments** are used. For example, estimate World CAPM and add a CR premium (sovereign yield spread). **Example:** Cost of capital Adjustment for project in Brazil $E[r_m - r_f]_{US} = 0.0382$ $\beta_W = 0.8$ $CR_{Brazil} = 2.80\%$ (= YTM of Brazilian bonds – YTM of US bonds) $r_{f,US} = 4.50\%$ $k_e = [0.0450 + 0.8 * 0.0382] + .0280 = 10.36\%$ (in USD).

Details behind WACC:
WACC: k_c = D/D+E * k_d * (1 - t) + E/D+E * k_e
Dividends are not tax deductible. Advantage of using debt!
Time-consistency between k_e & k_d. Same maturity should be used for k_e & k_d.
In practice, many EM governments bonds should not be considered risk-free. Then, government bond rate includes a default spread, which, should be subtracted to get r_f.
β is estimated by the slope of a regression against a market index. Many estimation issues: Choice of index, noisy data, adjustment by leverage, mean reversion, etc.

• <u>Issues</u>:

Q: Real or Nominal?

If CFs are **nominal** (usual situation), k_c should be also in nominal terms.

Q: Which r_f to use? Local or Foreign? The r_f that reflects the **risk of the cash flows**.

Q: Which maturity for r_f to use? The maturity that reflects the **duration of the cash flows**.

Q: Which β to use? The β of the company or the β of the project? The β should reflect the **systematic risk of the project**.

Q: How do we calculate $E[r_{m,t}]$?

We need to determine a market portfolio (S&P? MSCI World?) and a method (and sample period) to compute the expectation.

• Calculating $E[r_{m,t}]$

There are three different ways to compute $E[r_{m,t}]$:

1) Surveys. Usually an average of ERPs provided by individual investors, institutional investors, managers and, even, academics.

2) Historical data. Expectations are computed using past data. This is the most popular approach. For example, compute $E[r_{m,t}]$ with \overline{X} . If we use this approach, it pays to use as much data as possible –more data, lower S.E. We think of $E[r_{m,t}]$ as a *long-run* average of market returns.

3) Forward-looking data. An (implied) ERP is derived from market prices, for example, market indexes, options & futures on market indexes, etc. Of course, we also need a model (a formula) that extracts the ERP from market prices.

• Once we compute $E[r_{m,t}]$ and chose a corresponding r_f , we are ready to determine the ERP. But, we make decisions along the way.

Example: GE wants to do an investment in Brazil. Data: Equity investment = $\mathbf{E} = \mathbf{BRL} \ \mathbf{100M}$ Debt issue = $\mathbf{D} = \mathbf{BRL} \ \mathbf{150M}$ Value of Brazil investment = $\mathbf{D} + \mathbf{E} = \mathbf{BRL} \ \mathbf{250M}$ Brazilian Tax Rate = t = 35% $r_{f,Brazil} = 7.40\%$ $\mathbf{E}[r_m - r_f]_{\mathbf{D}} = .0460$ $\beta_{\mathbf{D},\mathbf{GE}-\mathbf{Brazil}} = 1.1$ (Similar projects in Brazil) Cost of project = $k_c = ?$ • Cost of debt (k_d) GE can borrow in Brazil at 60 bps over Brazilian Treasuries (r_f) $k_d = r_f + \text{spread} = .0740 + .0060 = .08 (8\%)$ Example (continuation): • Cost of debt (k_d) $k_d = r_f + \text{spread} = .0740 + .0060 = .08 (8\%)$ • Cost of equity (k_e) GE decides to use Domestic CAPM $k_e = r_{f,Brazil} + \beta_D \mathbf{E}[r_m - r_f]_D = .0740 + 1.1 * .0460 = 0.1246 (12.46\%)$ • Cost of Capital -WACC- (k_c) $k_c = \frac{D}{D+E} * k_d * (1 - t) + \frac{E}{D+E} * k_e$ $k_c = (.60) * .08 * (.65) + (.40) * 0.1246 = .08104$ (8.104%) Note: This is the discount rate that GE should use to discount CFs in Brazil. That is, GE requires an 8.104% rate of return on the investment in Brazil. ¶

Remark: When $k_c \uparrow \Rightarrow$ NPV of projects \downarrow .Anything that affects k_c , also affects the profitability (NPV) of a project.Application: Argentina defaults.Argentina's CR $\uparrow \Rightarrow r_{f,Arg} \uparrow \& k_{c,Arg} \uparrow$. \Rightarrow Some projects in Argentina become NPV<0 projects.</td> \Rightarrow MNCs suddenly abandon Argentine projects.

<u>ERP</u> ,	$\mathbf{E}[r_m - r_f]$: From	n D	uarte	and Rosa	a (2015),
Table VII:]	FRP models				
		Mean	Std. dev.	PC coefficients $\widehat{w}^{(m)}$	Exposure to PC
Based on	Long-run mean	9.3	1.3	0.78	-0.065
historical mean	Mean of previous five years	5.7	5.8	0.42	-0.160
	Gordon (1926): E/P minus nominal 10yr yield	-0.1	2.1	-0.01	0.001
	Shiller (2005): 1/CAPE minus nominal 10yr yield	-0.4	1.8	-0.10	0.011
	Gordon (1962): E/P minus real 10yr yield	3.5	2.1	0.69	-0.077
DDM	Gordon (1962): Expected E/P minus real 10yr yield	5.3	1.7	-0.78	0.208
	Gordon (1962): Expected E/P minus nominal 10yr yield	0.4	2.3	-0.79	0.077
	Panigirtzoglou and Loeys (2005): Two-stage DDM	-1.0	2.3	0.07	-0.011
	Damodaran (2012): Six-stage DDM	3.4	1.3	-0.26	0.032
	Damodaran (2012): Six-stage free cash flow DDM	4.0	1.1	-0.62	0.053
	Fama and French (1992)	12.6	0.7	0.80	-0.040
Cross-	Carhart (1997): Fama-French and momentum	13.1	0.8	0.81	-0.042
sectional regressions	Duarte (2013): Fama-French, momentum and inflation	13.1	0.8	0.82	-0.044
	Adrian, Crump and Moench (2014)	6.5	6.9	-0.05	0.114
	Fama and French (1988): D/P	2.4	4.0	-0.27	0.069
Time-	Best predictor in Goyal and Welch (2008)	14.5	5.2	-0.07	0.023
series	Best predictor in Campbell and Thompson (2008)	3.1	9.8	-0.12	0.081
regressions -	Best predictor in Fama French (2002)	11.9	6.8	-0.72	0.321
	Baker and Wurgler (2007) sentiment measure	3.0	4.7	-0.32	0.184
Surveys	Graham and Harvey (2012) survey of CFOs	3.6	1.8	0.72	0.264
	All models	5.7	3.2	0.78	-0.065

Estimating $E[r_m - r_f]$: The international evidence (wide range too!)								
Table X.4								
MSCI Index USD Equity Returns and ERP: (1970-2017)								
Market	Equity	Standard	ERP					
	Return	Deviation						
U.S.	8.19	15.04	0.0345					
Canada	8.22	19.35	0.0349					
France	9.02	22.17	0.0427					
Germany	9.37	21.67	0.0462					
Italy	5.08	25.38	0.0079					
Switzerland	10.44	17.83	0.0567					
U.K.	7.77	21.44	0.0302					
Japan	9.94	20.74	0.0520					
Hong Kong	16.80	33.72	0.1206					
Singapore	12.26	27.79	0.0752					
Australia	7.68	23.79	0.0293					
World	7.70	14.58	0.0295					
EAFE	8.00	16.78	0.0326					

Estimating $\mathbf{E}[r_m - r_f]$: The international evidence (wide range too!)								
Table X.4								
MSCI Index USD Equity Returns and ERP: (1970 - 2021)								
Market (<i>T</i> =620)	Equity	Standard	ERP					
	Return	Deviation						
U.S.	8.31	15.01	0.0382					
Canada	7.95	19.21	0.0346					
France	8.80	21.95	0.0431					
Germany	8.80	21.48	0.0431					
Italy	5.37	25.25	0.0088					
Switzerland	10.34	17.64	0.0585					
U.K.	7.37	21.20	0.0288					
Japan	9.56	20.46	0.0506					
Hong Kong	16.06	33.23	0.1156					
Singapore	11.71	27.48	0.0722					
Australia	7.35	23.42	0.0273					
World	7.66	14.54	0.0317					
EAFE	7.69	16.64	0.0306					

Estimating $\mathbf{E}[r_m - r_f]$: The international evidence (wide range too!)			
Table X.5			
MSCI Index USD Equity Returns and ERP: (1987* - 2021)			
	D	0. 1 1	
Market (1)	Equity	Standard	ERP
	Return	Deviation	
Argentina (404)	24.21	51.49	0.1972
Brazil (404)	22.23	47.67	0.1774
Mexico (404)	17.67	29.26	0.1318
Poland (344)	15.88	43.24	0.1139
Russia (320)	21.09	47.54	0.1660
India (344)	12.10	28.35	0.0760
China (344)	4.90	31.94	0.0041
Korea (404)	11.75	34.08	0.0726
Thailand (404)	11.58	32.24	0.0606
Egypt (320)	11.61	31.69	0.0862
South Africa (344)	9.47	26.31	0.0498
World (620)	7.66	14.54	0.0317
EM Asia	8.85	23.13	0.0436

Estimating $\mathbf{E}[r_m - r_f]$: Precision of estimates We use the SE as a measure of precision of an estimate. For the sample mean, \overline{X} , we have: S.E. $(\overline{X}) = \frac{s}{\sqrt{T}}$ where *s* is the SD. Using the previous data, we calculate the S.E.(\overline{X}) for several markets: U.S.: 15.01/sqrt(620/12) = 2.0882%21.48/sqrt(620/12) = 2.9883%Germany: Hong Kong: 33.23/sqrt(620/12) = 4.6230% $\Leftarrow \text{Effect of } T$ **47.67**/sqrt(404/12) = 8.2157 % Brazil: Russia: 47.54/sqrt(320/12) = 9.2061%28.35/sqrt(344/12) = 5.2950%India: 31.94/sqrt(344/12) = 5.9654%China: 82 \Rightarrow Big difference in precision between Developed and EM.

Estimating E[r_m - r_f]:
Short history & quality of data are problematic for EM.
For these markets, say Country J, it is easier to adjust the ERP from a developed market, say, the U.S., to estimate the ERP_J.
Several ad-hoc adjustments: *Relative Equity Market Approach*:
U.S. risk premium is modified by volatility of the Country J's equity market, σ_J, relative to volatility of U.S equity market, σ_{US}: E[r_m - r_f]_J = E[r_m - r_f]_{US} * σ_J/ σ_{US}
(Potential problem: σ_J is also an indicator of liquidity!)
Remark: The estimated E[r_m - r_f]_J is a USD rate.

Estimating $\mathbf{E}[\mathbf{r}_m - \mathbf{r}_f]$: • Country Bond Approach: The bond spread is added to the U.S. market risk premium: $\mathbf{E}[\mathbf{r}_m - \mathbf{r}_f]_J = \mathbf{E}[\mathbf{r}_m - \mathbf{r}_f]_{US} + CR_J$ (bond spread) • Mixed Approach: Since we expect equity spreads to be higher than debt spread, we adjust the CR upward using volatilities as a measure of risk: $\mathbf{E}[\mathbf{r}_m - \mathbf{r}_f]_J = \mathbf{E}[\mathbf{r}_m - \mathbf{r}_f]_{US} + CR_J * \sigma_J / \sigma_{J,bond}.$ Note: We may have very different numbers from these three approaches.

<u>Remark</u>: We produced **USD rates**. For the **local currency** rate, **IFE** (+PPP) can be used.

Estimating $E[r_m - r_f]$: • Judgement calls/adjustments may be needed to pick $E[r_m - r_f]_J$. • Following the idea of CR from bond markets, a *country equity risk premium* (*CER*) can be easily derived for Country J: $CER_J = E[r_m - r_f]_J - E[r_m - r_f]_{US}$. • We construct a market risk premium for Country J based on USD rates. To change to a local currency premium, we can use IFE combined with relative PPP to estimate $E[s_i]$. Using the linearized version of both formulas, we get: $E[r_m - r_f]_J$ (in local currency) $\approx E[r_m - r_f]_J + (I_J - I_{US})$.

Example: GE adjusts $E[r_m - r_f]_{J=Brazil}$, using U.S. as a benchmark. Data: $E[r_m - r_f]_{US} = 0.0382$ $r_{f,US} = 4.50\%$ $\sigma_{US} = 15.01\%$ $\sigma_{Brazil} = 37.3\%$ (based on past 15 years) $\sigma_{Brazil,bond} = 23.1\%$ (based on past 15 years) $CR_{Brazil} = 2.80\%$ • *Relative Equity Market Approach*: $E[r_m - r_f]_{Brazil} = 0.0382 * .373/.1501 = 0.093741$ $\Rightarrow k_{e,Brazil} = r_f + \beta E[r_m - r_f]_{Brazil} = .0450 + 1.1 * 0.093741 = 0.1481.$ • *Mixed Approach*: $E[r_m - r_f]_{Brazil} = 0.0382 + .028 * .373/.231 = 0.08341$ $\Rightarrow k_{e,Brazil} = r_f + \beta E[r_m - r_f]_{Brazil} = .0450 + 1.1 * 0.08341 = 0.1368.$ • Relative Equity Market Approach: $E[r_m - r_f]_{Brazil} = 0.0382 * .373/.1501 = 0.093741$ Example (continuation): Suppose GE decides to use the Relative Equity Market Approach. Now, GE wants to translate the cost of capital in USD to BRL, using linearized PPP. Data for average inflation rates: $E[I_{Brazil}] = 8\%$ $E[I_{US}] = 3\%$ • Relative Equity Market Approach: $E[r_m - r_f]_{Brazil} = 0.0382 * .373/.1501 = 0.093741$ $E[r_m - r_f]_{Brazil} (in BRL) \approx 0.093741 + (0.08 - 0.03) = 0.1437. \P$

• Target Debt-Equity Ratio in Practice

Suppose GE's target debt-equity ratio is 70% – 30%.

It is unlikely that GE will raise funds with 70-30 debt-equity split for every project. For example, for Brazilian project, GE used a 60–40 split.

The target $(D/V)^*$ reflects an *average*; it is not a hard target for each project. That is, for other projects GE will use D/E to compensate and be close to the $(D/V)^*$.

Intuition: Factors that make CFs more stable reduce the k_c .

- 1) Size of Firm (larger firms get better rates)
- 2) Access to international markets (better chances of finding lower rates)
- 3) *Diversification* (more diversification, lower rates)
- 4) *Fixed costs* (the higher the proportion of fixed costs, the higher the β)
- 5) *Type of firm* (cyclical companies have higher β s)
- 6) FX exposure (more FX exposure, worse rates)
- 7) Exposure to CR (more exposure to CR, worse rates).

Example: Cost of Capital (Nov 2014): General Electric (GE): Huge, internationally diversified company Disney (DIS): Large, moderate degree of international diversification The GAP (GPS): Medium cap, low international diversification. US Treasuries (r_f): 1.63% (5-year T-bill rate, from Bloomberg) (30 years: 1984-2014, from Yahoo) S&P 500 return ($E[r_m]$): 8.43% tax rate (t): 27.9% (effective US tax rate, per World Bank) $k_{c} = \frac{D}{D+F} * k_{d} * (1-t) + \frac{E}{D+F} * k_{e}$ Recall: Ε D Rating Spread **β** k_d **k**_e **WACC** 135B 313B AA-GE 27 1.24 1.90 10.07 3.99 DIS 45.5B 16.1B A+ 30 0.96 1.93 8.16 6.39

1.65

3.31

12.86 **9.53**

1.4B

BBB- 168

GPS

3B