### **HEDGING FX RISK**

Measuring and Managing FX Exposure

(for private use, not to be posted/shared online)

### • Last Class

### • Hedging Market-based Tools:

- ◆ Futures/Forward: Completely eliminates uncertainty
  - UP: *short* in the foreign currency.
    - HP: *long* in currency futures.
  - UP: *long* in the foreign currency. HP: *short* in currency futures.
- ♦ **Options**: Reduces uncertainty. How much? It depends on **X**.
  - UP: *short* in the foreign currency.
    - HP: long in currency calls.
  - UP: *long* in the foreign currency.
    - HP: long in currency puts.

### • This Class

### • Exposure (Risk)

- At the firm level, currency risk is called *exposure*.

### Three areas

(1) *Transaction exposure*: Risk of transactions denominated in FC with a payment date or maturity.

(2) *Economic exposure*: Degree to which a firm's expected cash flows are affected by unexpected changes in  $S_t$ .

(3) *Translation exposure*: Accounting-based changes in a firm's consolidated statements that result from a change in  $S_t$ . Translation rules create accounting gains/losses due to changes in  $S_t$ .

We say a firm is "exposed" or has exposure if it faces currency risk.

### • This Class

**Example**: Exposure.

A. Transaction exposure.

Swiss Cruises, a Swiss firm, sells cruise packages priced in USD to a broker. Payment in 30 days.

### B. Economic exposure.

Swiss Cruises has 50% of its revenue denominated in USD and only 20% of its cost denominated in USD. A depreciation of the USD will affect future CHF cash flows.

### C. Translation exposure.

Swiss Cruises obtains a USD loan from a U.S. bank. This liability has to be translated into CHF following Swiss accounting rules. ¶

### This Class

Q: How can FX changes affect the firm?

- Transaction Exposure

- Short-term CFs: Existing contract obligations.

- Economic Exposure

- Future CFs: Erosion of competitive position.

- Translation Exposure

- Revaluation of balance sheet (Book Value vs Market Value).

## This Class Measuring TE: TE<sub>j,t</sub> = Value of a fixed future transaction in FC<sub>j</sub> \* S<sub>t</sub> Netting TE (portfolio approach) = NTE = Σ<sup>J</sup><sub>J=1</sub> TE<sub>j,t</sub> Remark: The risk in TE is driven by S<sub>t</sub> ΔTE = TE<sub>t+T</sub> – TE<sub>t</sub> = Value of a fixed future transaction in FC \* ΔS Range for TE: (1) Ad-hoc rule (say, ±10%) (2) Sensitivity Analysis (Simulating exchange rates). (3) Assuming a statistical distribution for exchange rates. VaR: Worst case scenario in a given time interval within a (one-sided) CI. Lower-end of Receivables. Highest-end of Payables.

• This Class

• Measuring EE:

- Change in CF due to an *unexpected* change in S<sub>t</sub>.

$$= \frac{\Delta CF_t}{\Delta S_t}$$
 (differential or derivative,  $\Delta S_t$  is small)

-  $\Delta CF_t$  can be approximated by change in Stock Prices.

<u>Remark</u>: If a company is publicly traded,  $\Delta CF_t$  can be approximated by change in Stock Prices  $\Delta P_t$ . A regression can be used.

### Measuring Transaction Exposure

• Transaction exposure (TE) is easy to identify and measure.

- Identification: Transactions denominated in FC with a fixed future date
- Measure: Translate identified FC transactions to DC using  $S_t$ .

 $TE_{j,t}$  = Value of a fixed future transaction in FC<sub>i</sub> \* S<sub>t</sub>

**Example**: Swiss Cruises.

Sold cruise packages for USD 2.5 million. Payment: 30 days.

Bought fuel oil for USD 1.5 million. Payment: 30 days.

 $S_t = 1.45 \text{ CHF}/\text{USD}.$ 

Thus, the net transaction exposure in USD 30 days is:

Net  $TE_{j=USD}$  = (USD 2.5M – USD 1.5M) \* 1.45 CHF/USD

= **USD 1M \* 1.45 CHF/USD** = CHF 1.45M. ¶

### Netting

An MNC has many transactions, in different currencies, with fixed futures dates. Since TE is denominated in DC, all exposures are easy to consolidate in one single number: Net TE (NTE).

NTE = Net 
$$TE_t = \sum_{j=1}^{J} TE_{j,t}$$
  $j$  = EUR, GBP, JPY, BRL, MXN,...

• NTE is reported by fixed date: up to 90 days, more than 90-days, etc.

<u>Note</u>: Since currencies are correlated, firms take into account **correlations** to calculate how changes in  $S_t$  affect Net TE  $\Rightarrow$  **Portfolio Approach**.

| Exa | mple: A | U.S. N | MNC:  | Su | ıbsidia | ary A with | n CF(in | EUR) | > 0 |
|-----|---------|--------|-------|----|---------|------------|---------|------|-----|
|     |         |        |       | Su | ıbsidia | ary B with | n CF(in | GBP) | < 0 |
| c.  | -       |        | 1 . 1 | 1  | • , •   | NTTT       | 1       | 1    | ſ   |

Since  $\rho_{GBP,EUR}$  is very high and positive, NTE may be very low.  $\P$ 

 $\Rightarrow$  Hedging decisions are usually made based on exposure of the **portfolio**.

• Netting - Correlations Example: Swiss Cruises. Net Inflows (in USD): USD 1 million. Due: 30 days. Loan repayment: CAD 1.50 million. Due: 30 days.  $S_t = 1.47 \text{ CAD/USD}$ .  $\rho_{CAD,USD} = .843$  (monthly from 1971 to 2017) Swiss Cruises considers NTE to be close to zero. ¶ <u>Note 1</u>: Correlations vary a lot across currencies. In general, regional currencies are highly correlated. From 2000-2017,  $\rho_{GBP,NOK} = 0.58$   $\rho_{GBP,JPY} = 0.04$ <u>Note 2</u>: Correlations also vary over time.





• Q: How does TE affect a firm in the future?

Firms are interested in how TE will change in the future, say, in T days when transaction will be settled.

- Firms do not know  $S_{t+T}$ , they need to forecast  $S_{t+T} \implies E_t[S_{t+T}]$ 

- Once we forecast  $E_t[S_{t+T}]$ , we can forecast  $E_t[TE_{t+T}]$ :

 $E_t[TE_{t+T}] = Value of a fixed future transaction in FC * E_t[S_{t+T}]$ 

-  $E_t[S_{t+T}]$  has an associated standard error, which can be used to create a range (or interval) for  $S_{t+T}$  & TE.

- Risk management perspective:

How much DC can the firm spend on account of a FC inflow in T days? How much DC will be needed to cover a FC outflow in T days?

### **Range Estimates of TE**

•  $S_t$  is very difficult to forecast. Thus, a range estimate for NTE provides a useful number for risk managers.

The smaller the range, the lower the sensitivity of NTE.

• Three popular methods for estimating a range for NTE:

(1) Ad-hoc rule (say,  $\pm 10\%$ )

(2) Sensitivity Analysis (or simulating exchange rates)

(3) Assuming a statistical distribution for exchange rates.

### • Ad-hoc Rule

Many firms use an *ad-hoc* ("arbitrary") rule to get a range:  $\pm X\%$  (for example, a 10% rule)

Simple and easy to understand: Get TE and add/subtract  $\pm X\%$ .

### Example: 10% Rule.

SC has a Net TE = CHF 1.45M due in 30 days  $\Rightarrow$  if S, changes by  $\pm 10\%$ , NTE changes by  $\pm$  CHF 145,000. ¶

Note: This example gives a range for NTE: NTE ∈ [CHF 1.305M; CHF 1.595M]

<u>Risk Management Interpretation</u>: A risk manager will only care about the lower bound. If SC is counting on the **USD 1M** inflow to pay CHF expenses, these expenses should not exceed **CHF 1.305M**. ¶

| • Sensitivity        | y Analysis                     |                |                            |
|----------------------|--------------------------------|----------------|----------------------------|
| <u>Goal</u> : Measur | re the sensitivity of TE       | E to different | t exchange rates.          |
| Example: Se          | ensitivity of TE to extr       | eme forecas    | ts of S <sub>t</sub> .     |
| Se                   | ensitivity of TE to rand       | domly simul    | ate thousands of $S_t$ .   |
| Data: 20 year        | s of monthly CHF/U             | SD % chang     | es (ED)                    |
|                      | Moon (u)                       | 0.00152        | u = -0 152%                |
|                      | Standard Error                 | 0.00132        | $\mu_{\rm m} = -0.13270$   |
|                      | Median                         | -0.00363       |                            |
|                      | Mode                           | #N/A           |                            |
|                      | Stand Deviation (o)            | 0.03184        | $\sigma_{\rm m} = 3.184\%$ |
|                      | Sample Variance ( $\sigma^2$ ) | 0.00101        |                            |
|                      | Kurtosis                       | 0.46327        |                            |
|                      | Skewness                       | 0.42987        |                            |
|                      | Range                          | 0.27710        |                            |
|                      | Minimum                        | -0.11618       |                            |
|                      | Maximum                        | 0.15092        |                            |
|                      | Sum                            | 0.0576765      |                            |
|                      | Count                          | 248            |                            |

• Sensitivity Analysis – Extremes (Worst Case & Best Case)

**Example**: Extremes for Swiss Cruises Net TE (CHF/USD) ED of S<sub>t</sub> monthly changes over the past 20 years (1994-2014). Extremes: **15.09%** (on October 2011) and **-11.62%** (on Jan 2009).

SC's net receivables in FC: USD 1M.

(A) *Best case scenario*: largest appreciation of USD: **0.1509** NTE: **USD 1M \* 1.45 CHF/USD \*** (1 + **0.1509**) = **CHF 1,668,805**.

(B) *Worst case scenario*: largest depreciation of USD: -0.1162 NTE: USD 1M \* 1.45 CHF/USD \* (1 + (-0.1162)) = CHF 1,281,510.

That is,

NTE ∈ [CHF 1,281,510; CHF 1,668,805]

<u>Note</u>: If Swiss Cruises is counting on the USD 1M to cover CHF expenses, the expenses to cover should not exceed **CHF 1,281,510**. ¶

Sensitivity Analysis – Simulation
Managers may consider the previous range, based on extremes, too conservative:
NTE ∈ [CHF 1,281,510; CHF 1,668,805].
⇒ Probability of worst case scenario is low: Only once in 240 months!
Under more likely scenarios, a firm may be able to cover more expenses.
A more realistic range can be constructed through sampling from the ED.
Example: Simulation for SC's Net TE (CHF/USD) over one month.
(i) Randomly pick 1,000 monthly s<sub>t+30</sub>'s from the ED.
(ii) Calculate S<sub>t+30</sub> for each s<sub>t+30</sub> selected in (i).
(Recall: S<sub>t+30</sub> = 1.45 CHF/USD \* (1 + s<sub>t+30</sub>))
(iii) Calculate TE for each S<sub>t+30</sub>. (Recall: TE = USD 1M \* S<sub>t+30</sub>)
(iv) Plot the 1,000 TE's in a histogram. (Simulated TE distribution.)

Example (continuation): In excel, using Vlookup function

(i) Randomly draw  $s_t = s_{sim,1}$  from ED: Observation 19:  $s_{t+30} = 0.0034$ .

(ii) Calculate  $S_{sim,1}$ :  $S_{t+30} = 1.45 \text{ CHF/USD} * (1 + .0034) = 1.4549$ 

(iii) Calculate  $TE_{sim,1}$ :  $TE = USD 1M * S_{t+30} = 1,454,937.57$ 

(iv) Repeat (i)-(iii) 1,000 times. Plot histogram. Construct a  $(1-\alpha)$ % C.I.

|                |                | Random Draw      | Draw s_sim   |        |              |
|----------------|----------------|------------------|--------------|--------|--------------|
| Lookup<br>cell | s <sub>t</sub> | with Randbetween | with Vlookup | S_sim  | TE(sim)      |
| 1              |                |                  |              |        |              |
| 2              | 0.0025         | 19               | 0.0034       | 1.4549 | 1,454,937.57 |
| 3              | -0.0027        | 147              | -0.0104      | 1.4349 | 1,434,895.83 |
| 4              | 0.0001         | 99               | 0.0125       | 1.4682 | 1,468,189.96 |
| 5              | -0.0443        | 203              | -0.0584      | 1.3653 | 1,365,272.92 |
| 6              | -0.0017        | 82               | -0.0727      | 1.3446 | 1,344,597.25 |
| 7              | -0.0031        | 4                | 0.0001       | 1.4502 | 1,450,168.79 |
| 8              | -0.0227        | 67               | -0.0226      | 1.4172 | 1,417,218.22 |
| 9              | -0.0099        | 136              | 0.0095       | 1.4638 | 1,463,838.02 |
| 10             | 0.0098         | 232              | 0.0191       | 1.4777 | 1,477,749.46 |
|                |                |                  |              |        |              |







Assuming a Distribution – Normal for s<sub>t</sub> Example: CI range based on a Normal distribution. Swiss Cruises believes that CHF/USD monthly changes follow a normal distribution. SC estimates: μ = Monthly mean = -0.00152 ≈ -0.15% σ<sup>2</sup> = Monthly variance = 0.001014 (⇒ σ = 0.03184, or 3.18%) s<sub>t</sub> ~ N(-0.00152, 0.03184<sup>2</sup>) s<sub>t</sub> = CHF/USD monthly changes. SC builds a 95% CI for CHF/USD monthly changes: [-0.00152 ± 1.96 \* 0.03184] = [-0.06393; 0.06089]. Based on this range for s<sub>t</sub>, we derive bounds for the net TE: (A) Upper bound NTE: USD 1M \* 1.45 CHF/USD \* (1 + 0.06089) = CHF 1,538,291.
(B) Lower bound NTE: USD 1M \* 1.45 CHF/USD \* (1 + (-0.06393)) = CHF 1,357,302.







**Example (continuation):**  $\Rightarrow$  NTE  $\in$  [CHF 1.357 M; CHF 1.538 M] VaR(97.5%) = CHF 1,357,302 If SC expects to cover expenses with this USD inflow, the maximum amount in CHF to cover, within a 97.5% CI, should be CHF 1,357,302. VaR-mean (97.5%) = CHF -0.0927M Relative to today's valuation (or *expected valuation*, according to RWM), the maximum *expected loss* with a 97.5% "chance" is CHF -0.0927M. ¶ Note: We could have used a different significance level to calculate the VaR, for example 99% ( $\Rightarrow z_{.01} = 2.33$ ). Then, VaR(99%) = CHF 1.45M [1 + (-0.00152 - 2.33 \* 0.03184)] = CHF 1.34023. (A more *conservative* bound.)  $\Rightarrow$  VaR-mean (.99) = CHF 1.34023M - CHF 1.45M = CHF -0.1098M

| • Summary NTE for Swiss Cruises:                                                |                                                                                                 |  |  |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| - NTE = CHF 1.45M                                                               | ſ                                                                                               |  |  |  |  |
| • NTE Range:                                                                    | NTE ∈ [ <b>CHF 1.305M</b> ; <b>CHF 1.595 M</b> ].                                               |  |  |  |  |
| <ul> <li>Sensitivity Analysi</li> <li>Extremes:</li> <li>Simulation:</li> </ul> | s:<br>NTE ∈ [ <b>CHF 1.281 M; CHF 1,6688 M</b> ]<br>NTE ∈ [ <b>CHF 1.3661 M; CHF 1.5443 M</b> ] |  |  |  |  |
| ♦ Statistical Distribut                                                         | tion (normal):<br>NTE ∈ [CHF 1.357 M; CHF 1.538 M]                                              |  |  |  |  |

### Approximating Returns

In general, we use *arithmetic returns*:  $s_t = S_t/S_{t-1} - 1$ . To change the frequency, compounding is needed.

But, if we use *logarithmic returns* –i.e.,  $s_t = \log(S_t) - \log(S_{t-1})$ –, changing the frequency of mean returns ( $\mu$ ) and return variances ( $\sigma^2$ ) is simpler.

Let  $\mu_b \& \sigma_b^2$  be measured in a given base frequency, say, *b*. Then,  $\mu_f = \mu_b * T$ ,  $\sigma_f^2 = \sigma_b^2 * T \implies \sigma_f = \sigma_b * \operatorname{sqrt}(T)$ 

T = # periods of base frequency *b* in new frequency, *f*.

 Approximating Returns – From monthly to daily & annual **Example**: Using monthly data, compute daily and annual mean & SD. From previous Table (base frequency: b = monthly, arithmetic computed):  $\mu_{\rm m}$ = -0.00152  $\sigma_{\rm m} = 0.03184$ (1) Daily (i.e., f = d = daily & T = 1/30)  $\mu_d = (-0.00152) * (1/30) = .0000507$ (0.006%) $\sigma_{\rm d} = (0.03184) * (1/30)^{1/2} = .00602$ (0.60%)(2) Annual (i.e., f = a = annual & T = 12)  $\mu_a = (-0.00152) * (12) = -0.01824$ (-1.82%)  $\sigma_a = (0.03184) * (12)^{1/2} = 0.110297$ (11.03%)Check: The annual compounded arithmetic return:  $(1 - 0.00152)^{12} - 1 = -0.01809.$ When arithmetic returns are low, these approximations work well.

◆ Approximating Returns – From monthly VaR to annualized VaR Example: Using the annualized approximation, we can also approximate an annualized VaR(97.5%) for Swiss Cruises:

VaR(97.5%) = USD 1M \* 1.45 CHF/USD \* [1 + (-.01824 - 1.96\*0.1103)]= CHF 1,101,374. ¶

<u>Note II</u>: Using logarithmic returns rules, we can approximate USD/CHF monthly changes by changing the sign of the CHF/USD, while the variance remains the same.

Then,

Annualized USD/CHF mean percentage change ≈ 1.82%,
Annualized USD/CHF volatility ≈ 11.03%

• Sensitivity Analysis – Portfolio Approach A simulation: Draw different scenarios, pay attention to correlations! **Example:** IBM has the following CFs in the next 90 days **Outflows** Inflows **Net Inflows** S, 1.60 USD/GBP GBP 100,000 25,000 (75,000) EUR 80,000 200,000 1.05 USD/EUR120,000  $NTE_0 = EUR \ 120K * 1.05 \ USD/EUR + (GBP \ 75K) * 1.60 \ USD/GBP$ = **USD 6,000** (this is our baseline case) Situation 1: Assume  $\rho_{GBP,EUR} = 1$ . (EUR and GBP correlation is high.) Scenario (i): EUR appreciates by 10% against the USD Since  $\rho_{GBP,EUR} = 1$ ,  $S_t = 1.05 \text{ USD}/\text{EUR} * (1 + .10) = 1.155 \text{ USD}/\text{EUR}$  $S_{t} = 1.60 \text{ USD/GBP} * (1 + .10) = 1.76 \text{ USD/GBP}$ 

NTE = EUR 120K \* 1.155 USD/EUR + (GBP 75K) \* 1.76 USD/GBP = USD 6,600. (+10% change = USD -600) • Sensitivity Analysis – Portfolio Approach Example (continuation): with  $\rho_{GBP,EUR} = 1$ . Since  $\rho_{GBP,EUR} = 1$ ,  $S_t = 1.05 \text{ USD}/\text{EUR} * (1 - .10) = 0.945 \text{ USD}/\text{EUR}$   $S_t = 1.60 \text{ USD}/\text{GBP} * (1 - .10) = 1.44 \text{ USD}/\text{GBP}$ NTE = EUR 120K \* 0.945 USD/EUR + (GBP 75K) \* 1.44 USD/GBP = USD 5,400. (-10% change = USD -600) Now, we can specify a range for NTE  $\Rightarrow$  NTE  $\in$  [USD 5,400; USD 6,600] Note: The NTE change is exactly the same as the change in S<sub>t</sub>. Then, if NTE<sub>0</sub>  $\approx$  0  $\Rightarrow$  s<sub>t</sub> has very small effect on NTE. That is, if a firm has matching inflows and outflows in highly positively correlated currencies, then changes in S<sub>t</sub> do not affect NTE. From a risk management perspective, this is very good.

• Sensitivity Analysis – Portfolio Approach **Example (continuation):** Situation 2: Suppose the  $\rho_{GBPEUR} = -1$  (NOT a realistic assumption!) Scenario (i): EUR appreciates by 10% against the USD Since  $\rho_{\text{GBPEUR}} = -1$ ,  $S_t = 1.05 \text{ USD}/\text{EUR} * (1 + .10) = 1.155 \text{ USD}/\text{EUR}$  $S_t = 1.60 \text{ USD/GBP} * (1 - .10) = 1.44 \text{ USD/GBP}$ NTE = EUR 120K \* 1.155 USD/EUR + (GBP 75K) \* 1.44 USD/GBP = USD 30,600. (410% change = USD 24,600)<u>Scenario (ii)</u>: EUR depreciates by 10% against the USD Since  $\rho_{GBP,EUR} = -1$ ,  $S_t = 1.05 \text{ USD}/\text{EUR} * (1 - .10) = 0.945 \text{ USD}/\text{EUR}$  $S_t = 1.60 \text{ USD/GBP} * (1 + .10) = 1.76 \text{ USD/GBP}$ NTE = EUR 120K \* 0.945 USD/EUR + (GBP 75K) \* 1.76 USD/GBP = (USD 18,600). (-410% change = USD - 24,600)Now, we can specify a range for NTE ⇒ NTE ∈ [(USD 18,600); USD 30,600]

### • Sensitivity Analysis – Portfolio Approach Example (continuation):

<u>Note</u>: The NTE has ballooned. A **10% change** in  $S_t$  a dramatic increase in the NTE range.

 $\Rightarrow$  Having non-matching exposures in different currencies with negative correlation is very dangerous.

### Remarks:

- IBM can assume a correlation (estimated from the data). Then, draw many scenarios from a *bivariate normal distribution* to generate a simulated distribution for the NTE.

- Alternatively, IBM can just draw joint pairs from the ED. From this ED, IBM will get a range –and a VaR– for the NTE.  $\P$ 

### Managing TE

### • A Comparison of External Hedging Tools

Transaction exposure: Risk from the settlement of transactions in FC.

**Example**: Imports, exports, acquisition of foreign assets.

- Tools: Futures/forwards (FH) Options (OH) Money market (MMH)
- Q: Which hedging tool is better?

| of IRPT arbitrage.                                                                  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                     |  |  |  |  |  |
| n FC:                                                                               |  |  |  |  |  |
|                                                                                     |  |  |  |  |  |
|                                                                                     |  |  |  |  |  |
|                                                                                     |  |  |  |  |  |
| nterest) from (1).                                                                  |  |  |  |  |  |
|                                                                                     |  |  |  |  |  |
| ard, to repay loan in (1)                                                           |  |  |  |  |  |
| $\Rightarrow$ This step is not needed, instead, we just transfer the FC receivable. |  |  |  |  |  |
|                                                                                     |  |  |  |  |  |
| O: Why MMH instead of FH?                                                           |  |  |  |  |  |
| - Under perfect market conditions $\Rightarrow$ MMH = FH                            |  |  |  |  |  |
| ⇒ MMH ≠ FH                                                                          |  |  |  |  |  |
|                                                                                     |  |  |  |  |  |
|                                                                                     |  |  |  |  |  |

| • <u>New tool: MMH</u>                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Now, let's take the case of <i>payables</i> denominated in FC:                                                                                                                    |
| 1) Borrow DC                                                                                                                                                                      |
| 2) Convert to FC                                                                                                                                                                  |
| 3) Deposit FC in domestic bank                                                                                                                                                    |
| 4) Transfer FC deposit (+ interest) to cover payable in FC.                                                                                                                       |
| <ul> <li>Under IRPT, step 4) involves selling FC/buying DC forward, to repay loan in (1)</li> <li>⇒ This step is not needed, instead, we just transfer the FC deposit.</li> </ul> |
| Q: Why MMH instead of FH?                                                                                                                                                         |
| - Under perfect markets $\Rightarrow$ MMH = FH                                                                                                                                    |
| - Under less than perfect markets $\implies$ MMH $\neq$ FH                                                                                                                        |
|                                                                                                                                                                                   |

• Comparison of Hedging Strategies Example: Iris Oil Inc. has a large FC exposure in the form of a CAD cash flow from its Canadian operations. Iris decides to transfer CAD 300M to its USD account in 90 days. <u>FX risk to Iris</u>: CAD may depreciate against the USD. <u>Data</u>:  $S_t = 0.8451 \text{ USD/CAD}$   $F_{t,90-day} = 0.8493 \text{ USD/CAD}$   $i_{USD} = 3.92\%$   $i_{CAD} = 2.03\%$ X Calls Puts

| $\underline{\Lambda}$ | Cans | ruis |
|-----------------------|------|------|
| .82 USD/CAD           |      | 0.21 |
| .84 USD/CAD           | 1.58 | 0.68 |
| .88 USD/CAD           | 0.23 |      |
|                       |      |      |

Example (continuation):Forward marketMoney markett $S_t = .8451 USD/CAD$  $F_{t,90-day} = .8493 USD/CAD$  $i_{USD} = 3.92\%$ t + 90Receive CAD 300M and transfer into USD. $i_{CAD} = 2.03\%$ NTE = CAD 300M \* .8451 USD/CAD = USD 253.53M• Hedging Strategies:1. Do NothingDo not hedge and exchange the CAD 300M at  $S_{t+90}$ .2. Forward MarketAt t, sell the CAD 300M forward and at time t + 90 guarantee:CAD 300M \* .8493 USD/CAD = USD 254,790,000



| Example (continuation):                                                   |                                                  |                                                                                                                                             |                                                                                                                                                   |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 4. Option Mar                                                             | ·ket                                             |                                                                                                                                             |                                                                                                                                                   |  |  |  |  |
| At <i>t</i> , buy a <b>put</b> . Available 90-day options:                |                                                  |                                                                                                                                             |                                                                                                                                                   |  |  |  |  |
| X                                                                         |                                                  | <u>Calls</u>                                                                                                                                | <u>Puts</u>                                                                                                                                       |  |  |  |  |
| .82 USD/CAD                                                               |                                                  |                                                                                                                                             | 0.21                                                                                                                                              |  |  |  |  |
| .84 USD/CAD                                                               |                                                  | 1.58                                                                                                                                        | 0.68                                                                                                                                              |  |  |  |  |
| .88 USD/CAD                                                               |                                                  | 0.23                                                                                                                                        |                                                                                                                                                   |  |  |  |  |
| Buy the <b>.84 US</b>                                                     | D/CAD pu                                         | $t \Rightarrow$ Total premium cost                                                                                                          | of <b>USD 2.04M</b> .                                                                                                                             |  |  |  |  |
| Position                                                                  | Initial CF                                       | Cash flows at t+90                                                                                                                          |                                                                                                                                                   |  |  |  |  |
| 1 USILIOII                                                                | initial Of                                       | Guon no w                                                                                                                                   |                                                                                                                                                   |  |  |  |  |
| 1 USHION                                                                  |                                                  | $S_{t+90} < .84 \text{ USD/CAD}$                                                                                                            | S <sub>t+90</sub> >.84 USD/CAD                                                                                                                    |  |  |  |  |
| Option (HP)                                                               | USD 2.04M                                        | $S_{t+90} < .84 \text{ USD/CAD}$<br>(.84 - S <sub>t+90</sub> ) * CAD 300M                                                                   | <b>S</b> <sub>t+90</sub> >.84 USD/CAD<br>0                                                                                                        |  |  |  |  |
| Option (HP)<br>Underlying (UP)                                            | USD 2.04M                                        | $S_{t+90} < .84 \text{ USD/CAD}$<br>(.84 - $S_{t+90}$ ) * CAD 300M<br>$S_{t+90}$ * CAD 300M                                                 | $\frac{S_{t+90} >.84 \text{ USD/CAD}}{0}$                                                                                                         |  |  |  |  |
| Option (HP)<br>Underlying (UP)<br>Total CF                                | USD 2.04M<br>0<br>USD 2.04M                      | $S_{t+90} < .84 \text{ USD/CAD}$ $(.84 - S_{t+90}) * CAD 300M$ $S_{t+90} * CAD 300M$ USD 252M                                               | $\frac{S_{t+90} > .84 \text{ USD/CAD}}{0}$ $\frac{S_{t+90} * \text{CAD 300M}}{S_{t+90} \text{ CAD 300M}}$                                         |  |  |  |  |
| Option (HP)Underlying (UP)Total CFNet CF at $t + 9$                       | USD 2.04M<br>0<br>USD 2.04M<br>90 :              | $S_{t+90} < .84 \text{ USD/CAD}$ (.84 - S <sub>t+90</sub> ) * CAD 300M<br>S <sub>t+90</sub> * CAD 300M<br>USD 252M                          | $\frac{S_{t+90} > .84 \text{ USD/CAD}}{0}$ $S_{t+90} * \text{CAD 300M}$ $S_{t+90} \text{ CAD 300M}$                                               |  |  |  |  |
| Option (HP)<br>Underlying (UP)<br>Total CF<br>Net CF at $t + 9$<br>USD 24 | USD 2.04M<br>0<br>USD 2.04M<br>90 :<br>9,960,000 | $S_{t+90} < .84 \text{ USD/CAD}$ (.84 - S <sub>t+90</sub> ) * CAD 300M<br>S <sub>t+90</sub> * CAD 300M<br>USD 252M<br>for S <sub>t+90</sub> | $\frac{S_{t+90} > .84 \text{ USD/CAD}}{0}$ $\frac{S_{t+90} * \text{CAD } 300\text{M}}{S_{t+90} \text{ CAD } 300\text{M}}$ $< .84 \text{ USD/CAD}$ |  |  |  |  |



| Exampl              | Example (continuation): Companies do not like paying premiums. |                                                                                        |                               |                             |  |  |  |
|---------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------|-----------------------------|--|--|--|
| 5. Colla            | ľ                                                              |                                                                                        |                               |                             |  |  |  |
| At time <b>t</b>    | t, <i>buy</i> a <b>put</b> a                                   | nd <i>sell</i> a <b>call</b> .                                                         |                               |                             |  |  |  |
| Buy <b>.84</b> p    | out at <b>USD 0</b>                                            | .0068                                                                                  |                               |                             |  |  |  |
| Sell .88 c          | all at <mark>USD 0</mark> .                                    | $0023. \qquad \Rightarrow \text{Initial}$                                              | $\cos t = USD 0.004$          | 5 per collar                |  |  |  |
|                     |                                                                | $\Rightarrow$ Total c                                                                  | ost: <b>USD 1.35M</b>         | *                           |  |  |  |
| Position            | Position Initial CF Cash flows at t+90                         |                                                                                        |                               |                             |  |  |  |
|                     |                                                                | $S_{t+90} < .84$                                                                       | $.84 < S_{t+90} < .88$        | $S_{t+90} > .88$            |  |  |  |
| Put                 | USD 2.04M                                                      | $(.84 - S_{t+90}) * CAD 300M$                                                          | 0                             | 0                           |  |  |  |
| Call                | -USD 0.69M                                                     | 0 0 (.88 –S <sub>t+90</sub> ) * CAD 300M                                               |                               |                             |  |  |  |
| UP                  | 0                                                              | S <sub>t+90</sub> * CAD 300M S <sub>t+90</sub> * CAD 300M S <sub>t+90</sub> * CAD 300M |                               |                             |  |  |  |
| Total CF            | USD 1.35M                                                      | <b>1.35M</b> USD 252M S <sub>t+90</sub> CAD 300M USD 264M                              |                               |                             |  |  |  |
| Net CF a            | t <b>t + 90</b> :                                              |                                                                                        |                               |                             |  |  |  |
| USI                 | USD 250.65M for $S_{t+90} < .84$ USD/CAD                       |                                                                                        |                               |                             |  |  |  |
| or S <sub>t+9</sub> | 0 CAD 300M -                                                   | - USD 1.35M for .8                                                                     | $4 \text{ USD/CAD} < S_{t+}$  | <sub>90</sub> < .88 USD/CAD |  |  |  |
| or USI              | D 262.65M                                                      | for $S_t$                                                                              | $_{+90} > .88 \text{ USD/CA}$ | D                           |  |  |  |
| <u>Note</u> : Th    | is collar reduce                                               | s the upside: establishe                                                               | s a floor and a cap.          |                             |  |  |  |

| Example                                                  | Example (continuation):                                                                                                                                                                                                                                                                                                             |                            |                                       |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|--|--|--|--|
| 6. Altern                                                | 6. Alternative: Zero cost insurance:                                                                                                                                                                                                                                                                                                |                            |                                       |  |  |  |  |
| At time <i>t</i> ,                                       | At time <i>t</i> , <i>buy</i> puts and <i>sell</i> calls with overall (or $\approx$ ) matching premium.                                                                                                                                                                                                                             |                            |                                       |  |  |  |  |
| Buy <b>.84 p</b>                                         | Buy .84 put                                                                                                                                                                                                                                                                                                                         |                            |                                       |  |  |  |  |
| Sell 3 .88                                               | Sell 3.88 calls. $\Rightarrow$ Initial cost $\approx 0$ (actually, a small profit. We'll ignore it).                                                                                                                                                                                                                                |                            |                                       |  |  |  |  |
| Position                                                 | Position Cash flows at t+90                                                                                                                                                                                                                                                                                                         |                            |                                       |  |  |  |  |
|                                                          | S <sub>t+90</sub> < .84                                                                                                                                                                                                                                                                                                             | $.84 < S_{t+90} < .88$     | S <sub>t+90</sub> > .88               |  |  |  |  |
| Put                                                      | $(.84 - S_{t+90}) * CAD 300M$                                                                                                                                                                                                                                                                                                       | 0                          | 0                                     |  |  |  |  |
| 3 Calls                                                  | 0                                                                                                                                                                                                                                                                                                                                   | 0                          | $3 * (.88 - S_{t+90}) * CAD 300M$     |  |  |  |  |
| UP                                                       | S <sub>t+90</sub> * <b>CAD 300M</b>                                                                                                                                                                                                                                                                                                 | $S_{t+90} * CAD 300M$      | S <sub>t+90</sub> * <b>CAD 300M</b>   |  |  |  |  |
| Total CF                                                 | USD 252M                                                                                                                                                                                                                                                                                                                            | S <sub>t+90</sub> CAD 300M | USD 792M–2*S <sub>t+90</sub> CAD 300M |  |  |  |  |
| Net CF at<br>USD 2<br>or S <sub>t+90</sub> C<br>or USD 7 | Total CF       USD 252M $S_{t+90}$ CAD 300M       USD 792M-2*S_{t+90} CAD 300M         Net CF at $t + 90$ :       USD 252M       for all $S_{t+90} < .84$ USD/CAD         or $S_{t+90}$ CAD 300M       for .84 USD/CAD < $S_{t+90} < .88$ USD/CAD         or USD 792 M - 2 S_{t+90} CAD 300M       for all $S_{t+90} > .88$ USD/CAD |                            |                                       |  |  |  |  |



### • Optimal Hedging Strategies?

Q: Which strategy is better? We need to say something about  $S_{t+90}$ . For example, we can assume a distribution (normal) or use the ED to say something about future changes in  $S_t$ .

**Example**: Suppose we have a **receivable in SGD** in 30 days. We can use the **distribution** for monthly USD/SGD changes from the past 30 years. Then, we get the distribution for  $S_{t+30}$  (USD/SGD).



| Example (continuation): Distribution of monthly USD/SGD changes             |           |               |            |               |  |  |
|-----------------------------------------------------------------------------|-----------|---------------|------------|---------------|--|--|
| from past 30 years. Raw data & relative frequency for $S_{t+30}$ (USD/SGD). |           |               |            |               |  |  |
| s <sub>t</sub> (SGD/USD)                                                    | Frequency | Rel frequency | $S_t = 1/$ | $.65*(1+s_t)$ |  |  |
| -0.0494 or less                                                             | 2         | 0.0058        | 1.462      | 0.6838        |  |  |
| -0.0431                                                                     | 2         | 0.0058        | 1.472      | 0.6793        |  |  |
| -0.0369                                                                     | 1         | 0.0029        | 1.482      | 0.6749        |  |  |
| -0.0306                                                                     | 3         | 0.0087        | 1.491      | 0.6705        |  |  |
| -0.0243                                                                     | 6         | 0.0174        | 1.501      | 0.6662        |  |  |
| -0.0181                                                                     | 20        | 0.0580        | 1.511      | 0.6620        |  |  |
| -0.0118                                                                     | 36        | 0.1043        | 1.520      | 0.6578        |  |  |
| -0.0056                                                                     | 49        | 0.1420        | 1.530      | 0.6536        |  |  |
| 0.0007                                                                      | 86        | 0.2493        | 1.540      | 0.6495        |  |  |
| 0.0070                                                                      | 52        | 0.1507        | 1.549      | 0.6455        |  |  |
| 0.0132                                                                      | 41        | 0.1188        | 1.559      | 0.6415        |  |  |
| 0.0195                                                                      | 29        | 0.0841        | 1.568      | 0.6376        |  |  |
| 0.0258                                                                      | 5         | 0.0145        | 1.578      | 0.6337        |  |  |
| 0.0320                                                                      | 7         | 0.0203        | 1.588      | 0.6298        |  |  |
| 0.0383                                                                      | 5         | 0.0145        | 1.597      | 0.6260        |  |  |
| 0.0446                                                                      | 0         | 0.0000        | 1.607      | 0.6223        |  |  |
| 0.0508 or +                                                                 | 3         | 0.0058        | 1.617      | 0.6186        |  |  |

• Examples assuming an explicit distribution for S<sub>t+T</sub> **Example – Receivables:** Evaluate (1) FH, (2) MMH, (3) OH & (4) NH. Cud Corp will receive **SGD 500,000** in 30 days. (SGD Receivable.) Data: •  $S_t = .6500 - .6507 \text{ USD/SGD}.$ • F<sub>t.30</sub> = .6510 - .6519 USD/SGD. • 30-day interest rates: i<sub>SGD</sub>: 2.65% - 2.75% & i<sub>USD</sub>: 3.20% - 3.25% • A 30-day put option on SGD: X = .65 USD/SGD and  $P_t = \text{USD.01}$ . • Forecasted *S*<sub>*t*+30</sub>: **Possible Outcomes Probability** 18% USD .63 USD .64 24% 34% USD .65 USD .66 21% 3% USD .68

(1) FH: Sell SGD 30 days forward
USD received in 30 days = Receivables in SGD \* F<sub>t,30</sub> = SGD 500,000 \* .651 USD/SGD = USD 325,500.
(2) MMH:
Borrow SGD at 2.75% for 30 days,
Convert to USD at .65 USD/SGD,
Deposit USD at 3.2% for 30 days,
Repay SGD loan in 30 days with SGD 500,000 receivable
Amount to borrow = SGD 500,000/(1 + .0275 \* 30/360) = = SGD 498,856.79
Convert to USD (Amount to deposit in U.S. bank) = = SGD 498,856.79 \* .65 USD/SGD = USD 324,256.91
Amount received in 30 days from U.S. bank deposit = = USD 324,256.91 \* (1 + .032 \* 30/360) = USD 325,121.60

| (3) OH: Purcha                                                                 | se put option.                                                                                                   | $\mathbf{X} = .6$ $\mathbf{P}_{t} = \mathbf{pr}$                    | 5 USD/CHF<br>remium = USD .01                                                                    |                            |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|
| Possible<br>S <sub>t+30</sub>                                                  | Premium per<br>SGD + Op Cost                                                                                     | Exercise?                                                           | Net USD Received<br>for SGD 0.5M                                                                 | Prob                       |
| .63 USD/SGD                                                                    | USD .010027                                                                                                      | Yes                                                                 | USD 319,986.5                                                                                    | 18%                        |
| .64 USD/SGD                                                                    | USD .010027                                                                                                      | Yes                                                                 | USD 319,986.5                                                                                    | 24%                        |
| .65 USD/SGD                                                                    | USD .010027                                                                                                      | No                                                                  | USD 319,986.5                                                                                    | 34%                        |
| .66 USD/SGD                                                                    | USD .010027                                                                                                      | No                                                                  | USD 324,986.5                                                                                    | 21%                        |
| .68 USD/SGD                                                                    | USD .010027                                                                                                      | No                                                                  | USD 334,986.5                                                                                    | 3%                         |
| <u>Note</u> : In the T<br>opportunity cost in<br><b>USD .0</b><br>E[Amount Rec | Fotal Amount Rec<br>volved in the upfr<br>1 * .032 * 30/360<br>$\Rightarrow$ Total Premium<br>reived in USD] = 3 | ceived (in U<br>ont paymen<br>= USD .000<br>Cost: USD<br>19,986.5 * | JSD) we have subtra<br>t of a premium:<br>0027 (Total = USI<br>5,013.50<br>76 + 324,986.50 * .21 | ucted the<br>D 13.50)<br>+ |

| Possible S <sub>t+30</sub> | USD Received for SGD 0.5M | Probability |
|----------------------------|---------------------------|-------------|
| .63 USD/SGD                | USD 0.315M                | 18%         |
| .64 USD/SGD                | USD 0.320M                | 24%         |
| .65 USD/SGD                | USD 0.325M                | 34%         |
| .66 USD/SGD                | USD 0.330M                | 21%         |
| .68 USD/SGD                | USD 0.340M                | 3%          |

<u>Note</u>: When we compare (1) to (4), it's not clear which one is better. Preferences will matter. We can calculate and expected value:

E[Amount Received in USD] = 315K \* .18 + 320K \* .24 + 325K \* .34+ + 330K \* .21 + 335K \* . 03 = **USD 323,500** 

<u>Conclusion</u>: Cud Corporation is likely to choose the FH. But, risk preferences matter.  $\P$ 

**Example – Payables:** Evaluate (1) FH, (2) MMH, (3) OH, (4) No Hedge Situation: Cud Corp needs CHF 100,000 in 180 days. (CHF Payable.) Data: •  $S_r = .675 - .680$  USD/CHF. •  $F_{t,180} = .695 - .700 \text{ USD/CHF}.$ • 180-day interest rates are as follows: i<sub>CHF</sub>: **9% - 10%;** i<sub>USD</sub>: **13% - 14.0%** • A 180-day call option on CHF:  $\mathbf{X} = .70 \text{ USD/CHF}$  and  $P_t = \text{USD.02}$ . • Cud forecasted  $S_{t+180}$ : **Possible Outcomes** Probability USD .67 30% **USD**.70 50% 20% USD .75

(1) FH: Purchase CHF 180 days forward
USD needed in 180 days = Payables in CHF x F<sub>t,180</sub> = CHF 100,000 \* .70 USD/CHF = USD 70,000.
(2) MMH:
Borrow USD at 14% for 180 days,
Convert to CHF at .680 USD/CHF ,
Invest CHF at 9% for 180 days,
Repay USD loan in 180 days & transfer CHF deposit to cover payable
Amount in CHF to be invested = CHF 100,000/(1 + .09 \* 180/360) = CHF 95,693.78
Amount in USD needed to convert into CHF for deposit = = CHF 95,693.78 \* .680 USD/CHF = USD 65,071.77
Interest and principal owed on USD loan after 180 days = = USD 65,071.77 \* (1 + .14 \* 180/360) = USD 69,626.79

| (. | 3) OH: Purcha                  | ase call option.             | $\mathbf{X} = .70 \mathbf{U}$ $C_{t} = premini$ | SD/CHF<br>sum = USD .02. |      |
|----|--------------------------------|------------------------------|-------------------------------------------------|--------------------------|------|
|    | Possible<br>S <sub>t+180</sub> | Premium per<br>CHF + Op Cost | Exercise?                                       | Net Paid for CHF<br>0.1M | Prob |
|    | .67 USD/SGD                    | USD .0213                    | No                                              | USD 69,130               | 30%  |
|    | .70 USD/SGD                    | USD .0213                    | No                                              | USD 72,130               | 50%  |
|    | .75 USD/SGD                    | USD .0213                    | Yes                                             | USD 72,130               | 20%  |

<u>Note</u>: In the Total USD Cost we have included the opportunity cost involved in the upfront payment of a premium = USD 130.

E[Amount to Pay in USD] = USD 71,230

• *Preferences matter*: A risk taker may like the 30% chance of doing better with the OH than with the MMH.

| (4) Remain Unhedged: Purchase CHF 100,000 in 180 days. |                       |             |  |  |
|--------------------------------------------------------|-----------------------|-------------|--|--|
| Possible S <sub>t+180</sub>                            | Net Paid for CHF 0.1M | Probability |  |  |
| .67 USD/SGD                                            | USD 67,000            | 30%         |  |  |
| .70 USD/SGD                                            | USD 70,000            | 50%         |  |  |
| .75 USD/SGD                                            | USD 75,000            | 20%         |  |  |

*Preferences matter*. Again, a risk taker may like the **30% chance** of doing better with the NH than with the MMH. (Actually, there is also an additional 50% chance of being very close to the MMH.)

E[Amount to Pay in USD] = USD 70,100

Conclusion: Cud Corporation is likely to choose the MMH. ¶

### **Internal Methods**

• These are hedging methods that do not involve financial instruments.

### • Risk Shifting

Q: Can firms completely avoid FX exposure?

A: Yes! By **pricing** all foreign transactions in **domestic currency**.

**Example**: Bossio Co., a U.S. firm, sells naturally colored cotton. Asuni, a Japanese company, buys Bossio's cotton. Bossio Co. prices all exports in USD. ¶

 $\Rightarrow$  Currency risk is not eliminated. The foreign company bears it.

• Problem with risk-shifting: Reduces firm flexibility.

### • Currency Risk Sharing

Two parties agree -with a customized hedge contract- to **share** the **FX risk** in a transaction.

**Example:** Asuni buys cotton for **USD 1 million** from Bossio Co.

Risk Sharing agreement:

• If  $S_t \in [100 \text{ JPY/USD}; 140 \text{ JPY/USD}] \implies$  Transaction unchanged. (Asuni pays USD 1 M to Bossio Co.)

• If  $S_t < 100 \text{ JPY/USD}$  or  $S_t > 140 \text{ JPY/USD} \Rightarrow$  parties share risk equally

Suppose that when Asuni has to pay Bossio Co.,  $S_t = 180 \text{ JPY/USD}$ . Then, settlement  $S_t = 160 \text{ JPY/USD} (= 180 - 40/2)$ .

Asuni's final cost = JPY 160 million = USD 888,889 < USD 1M.

Note: Range where the transaction is unchanged is called *neutral zone*.

Leading and Lagging (L&L)
 Firms can reduce FX exposure by accelerating or decelerating the timing of payments that must be made in different currencies:
 ⇒ Leading or Lagging the movement of funds.

L&L is done between the parent company and its subsidiaries or between two subsidiaries.

**Example**: Parent company: HAL (U.S. company). Subsidiaries: Mexico, Brazil, and Hong Kong. HAL Hong Kong's exposure is too large. HAL orders HAL Mexico and HAL Brazil to accelerate (*lead*) payments to HAL Hong Kong. ¶

• L&L changes assets/liabilities in one firm, with reverse effect on the other firm.

 $\Rightarrow$  L&L changes balance sheet positions. Might be a good tool for achieving a hedged balance sheet position.

• Funds Adjustments Key to hedging: Match inflows & outflows denominated in the FC.

Chinese subsidiary in U.S. with **CF>0** in USD

Increase USD purchases

Decrease CNY purchases

Decrease USD sales

Increase CNY sales

Increase USD borrowing

Reduce CNY borrowing

Italian subsidiary in U.S. with **CF <0** in USD

Decrease USD purchases Increase EUR purchases

Increase USD sales

Decrease EUR sales

Reduce USD borrowing

Increase EUR borrowing

**Example**: Japanese and German carmakers have built plants in the U.S.

### **Economic Exposure**

*Economic exposure* (EE): Risk associated with a change in the NPV of a firm's expected cash flows, due to an *unexpected* change in  $S_t$ .

<u>Note</u>:  $S_t$  is very difficult to forecast. Actual change in  $S_t$  can be considered "unexpected."

• General definition: It can be applied to any firm (domestic, MNC, exporting, importing, purely domestic, etc.).

- The degree of EE depends on:
  - Type & structure of the firm
  - Industry structure in which the firm operates.

### • In general:

Importing & exporting firms face higher EE than purely domestic firms
 Monopolistic firms face lower EE than firms that operate in competitive markets.

**Example**: A U.S. firm face almost no competition in domestic market. Then, it can transfer to prices almost any increase of its costs due to changes in  $S_t$ . Thus, this firm faces no/low EE. ¶

• The degree of EE for a firm is an empirical question.

• Economic exposure is difficult to measure.

• We can use *accounting data* (EAT changes) or *financial/economic data* (returns) to measure EE. Economists like economic-based measures.

### Measuring Economic Exposure

### A Measure Based on Accounting Data

We use cash flows to estimate FX exposure. For example, we simulate a firm's **CFs** (EBT, Operating Income, etc.) **under several FX scenarios**.

**Example**: IBM HK provides the following info:

Sales and cost of goods are dependent on  $S_t$ :

| $S_t =$                   | 7 HKD/USD   | $S_t$ = 7.70 HKD/USD |  |
|---------------------------|-------------|----------------------|--|
| Sales (in HKD)            | 300M        | 400M                 |  |
| Cost of goods (in HKD)    | <u>150M</u> | <u>200M</u>          |  |
| Gross profits (in HKD)    | 150M        | 200M                 |  |
| Interest expense (in HKD) | <u>20M</u>  | <u>20M</u>           |  |
| EBT (in HKD)              | 130M        | <b>180M</b>          |  |
|                           |             |                      |  |

Example (continuation): A 10% depreciation of the HKD increases HKD CFs from HKD 130M (=USD 18.57M) to HKD 180M (=USD 23.38M): A 25.92% change in CFs measured in USD.

### Q: Is EE significant?

A: We can calculate the elasticity of CF to changes in  $S_t$ :

**CF elasticity** = 
$$\frac{\% \text{ change in EBT}}{\% \text{ change in } s_t} = \frac{.2592}{.10} = 2.59$$

<u>Interpretation</u>: We say, a 1% depreciation of the HKD produces a change of **2.59%** in EBT. Quite significant. But the change in exposure is **USD 4.81M**. This amount may not be significant for IBM (*Judgment call* needed.)

IBM HK behaves like a net exporter: Weaker DC, Higher CFs. ¶

Note: Firms will simulate many scenarios & produce an expected value.

We can use historical accounting cash flows to calculate economic exposure.

Example: Kellogg's cash flow elasticity in 2020-2019.

From 2019 to 2020 (end-of-year to end-of-year), K's operating income increased **2.6%**. The USD depreciated against basket of major currencies by **3.58%**. Then,

**CF** elasticity  $= \frac{.026}{.0358} = 0.73$ 

Interpretation: We say, a 1% depreciation of the USD produces a positive change of **0.73%** in operating income. K's behaves like a **net exporter**. ¶

### A Regression based Measure and a Test CF elasticity gives us a measure, but it is not a test of EE. A judgment call is needed. It is easy to **test** regression coefficients (t-tests or F-tests). • Simple steps: (1) Get data: $CF_t & S_t$ (available from the firm's past) (2) Estimate regression: $\Delta CF_t = \alpha + \beta \Delta S_t + \varepsilon_t,$ $\Rightarrow \beta$ : Sensitivity of $\Delta CF_t$ to $\Delta S_t$ . $\Rightarrow$ The higher $\beta$ , the greater the impact of $\Delta S_t$ on $CF_t$ . (3) Test for EE $\Rightarrow H_0$ (no EE): $\beta = 0$ $H_1$ (EE): $\beta \neq 0$ (4) Evaluation of this regression: t-statistic of $\beta$ and $\mathbb{R}^2$ . <u>Rule</u>: $|t_{\beta} = \beta/SE(\beta)| > 1.96 \Rightarrow \beta$ is significant at the 5% level.

A Regression based Measure and a Test

In general, regression is done in terms of % changes:

 $cf_t = \alpha + \beta s_t + \xi_t$ 

 $cf_t$ : % change in CF from t-1 to t.

Interpretation of  $\beta$ : A 1% change in  $S_t$  changes the  $CF_t$  by  $\beta$ %.

### • Expected Signs

We estimate the regression from a Domestic (say, U.S.) firm's point of view: CF measured in DC (say, USD &  $S_t$  is USD/FC). Then, from the regression, we can derive the Expected sign ( $\beta$ ):

| Type of company | Expected sign for $\beta$ |
|-----------------|---------------------------|
| U.S. Importer   | Negative                  |
| U.S. Exporter   | Positive                  |
| Purely Domestic | Depends on industry       |

• Other variables also affect CFs: Investments, acquisitions, growth of the economy, etc.

We "*control*" for the other variables that affect CFs with a multivariate regression, say with k other variables:

 $cf_t = \alpha + \beta \, s_t + \delta_1 \, X_{1,t} + \delta_2 \, X_{2,t} + \dots + \, \delta_k \, X_{k,t} + \varepsilon_t,$ where  $X_{k,t}$  represent one of the  $k^{t/t}$  other variables that affects CFs.

<u>Note</u>: Sometimes the impact of  $\Delta S_t$  is not felt immediately.

 $\Rightarrow$  contracts and short-run costs matter.

**Example**: For an exporting U.S. company a sudden appreciation of the USD increases CF in the short term. Solution: use a modified regression:

 $cf_t = \alpha + \beta_0 \, \mathbf{s_t} + \beta_1 \, \mathbf{s_{t-1}} + \beta_2 \, \mathbf{s_{t-2}} + \dots + \beta_q \, \mathbf{s_{t-q}} + \delta_1 \, \mathbf{X}_{1,t} + \dots + \varepsilon_t.$ 

Sum of **B**'s: Total sensitivity of  $cf_t$  to  $s_t$  (=  $\beta_0 + \beta_1 + \beta_2 + \beta_3 + ...$ )

### A Measure Based on Financial Data

Accounting data can be manipulated. Moreover, international comparisons are difficult. Instead, use financial data: Stock prices!

We can easily measure how returns and  $\Delta S_t$  move together: *correlation*.

**Example:** Kellogg's and IBM's EE.

Using monthly stock returns for Kellogg's ( $r_{K,t}$ ) and monthly changes in  $S_t$  (USD/EUR) from **33 years** (**1988:Jan** – **2022:Jan**), we estimate  $\rho_{K,s}$  (correlation between  $r_{K,t} \& s_t$ ) = **0.150**. It looks small.

We do the same exercise for IBM, measuring the correlation between  $r_{IBM,t} \& s_t$ , obtaining  $\rho_{IBM,s} = 0.089$ , small and, likely, close to zero.

But, if we use USD/TWC, based on the major currencies, things change a bit:  $\rho_{K,s} = 0.1263$  (similar to USD/EUR) &  $\rho_{IBM,s} = 0.1795$  (different).

# An Easy Measure of EE Based on Financial Data Better measure: A regression-based measure that can be used as a test. Steps: Regress, *r<sub>t</sub>*, returns against (unexpected) ΔS<sub>t</sub>. *r<sub>t</sub>* = α + β *s<sub>t</sub>* + ε<sub>t</sub> 2) Check statistical significance of regression coefficient for s<sub>t</sub>: H<sub>0</sub> (No EE): β = 0. H<sub>1</sub> (EE): β ≠ 0. ⇒ A simple t-test can be used to test H<sub>0</sub>. Interpretation: A 1% change in S<sub>t</sub> changes the Value of the firm by β%.

| Example: Kellogg's EE.                                                                                                                               |                                                |                |                      |         |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|----------------------|---------|--|--|--|
| Using <b>1988-2022</b> data (see previous example), we run the regression:                                                                           |                                                |                |                      |         |  |  |  |
| $r_{K,t} = \alpha + \beta s_t (\text{USD/TWC}) + \varepsilon_t$                                                                                      |                                                |                |                      |         |  |  |  |
| $R^2 = 0.01596$                                                                                                                                      |                                                |                |                      |         |  |  |  |
| Standard Error = 5                                                                                                                                   | 5.56447                                        |                |                      |         |  |  |  |
| Observations $= 40$                                                                                                                                  | 19                                             |                |                      |         |  |  |  |
|                                                                                                                                                      | Coefficients                                   | Standard Error | t-stat               | P-value |  |  |  |
| Intercept (α)                                                                                                                                        | ept ( $\alpha$ ) 0.38592 0.27515 1.4026 0.1615 |                |                      |         |  |  |  |
| <b>S</b> <sub>t</sub> (β)                                                                                                                            | 0.43775                                        | 0.17041        | <b>2.5688</b> 0.0106 |         |  |  |  |
| <u>Analysis</u> : Reject $H_0$ , $ t_\beta = 2.57  > 1.96$ (significantly $\neq 0$ ) $\Rightarrow$ EE!<br>$\beta > 0$ , K behaves likes an exporter. |                                                |                |                      |         |  |  |  |
| Interpretation of <b>β</b> : A 1% increase in exchange rates, increases K's returns by <b>0.44%</b> .                                                |                                                |                |                      |         |  |  |  |
| Note: R <sup>2</sup> is very l                                                                                                                       | .ow! ¶                                         |                |                      |         |  |  |  |

**Example**: IBM's EE. Now, using the IBM data (1988-2022), we run the regression:  $r_{IBM,t} = \alpha + \beta s_t (\text{USD/TWC}) + \varepsilon_t$  $R^2 = 0.03221$ Standard Error = 7.4465Observations = 409 Standard Error P-value Coefficients t-stat Intercept (α) 0.38896 0.2914 0.36821 1.0563 0.83941 **s**<sub>t</sub> (β) 0.22805 3.6809 0.0003 <u>Analysis</u>: Reject  $H_0$ ,  $|t_\beta = 3.68| > 1.96$  (significantly  $\neq 0$ )  $\Rightarrow$  EE!  $\beta > 0$ , DIS behaves likes an exporter. Interpretation of **b**: A 1% increase in exchange rates, increases DIS's returns by **0.84%**. Again, the R<sup>2</sup> is low! ¶

• Returns are not only influenced s<sub>t</sub>. In investments, it is common to use the 3 factors from the **Fama-French models** to model stocks returns:

- Market  $([r_M - r_f])$ 

- SMB (size)

- HML (value).

In Kellogg's case:

$$r_{K,t} = \alpha + \gamma_1 \left( \mathbf{r}_{\mathrm{M}} - \mathbf{r}_{\mathrm{f}} \right)_{\mathrm{t}} + \gamma_2 \operatorname{SMB}_{\mathrm{t}} + \gamma_3 \operatorname{HML}_{\mathrm{t}} + \varepsilon_t$$

A momentum can be added to accommodate Carhart's (1997) model.

<u>Note</u>: In general, we find  $\gamma_1 & \gamma_3$  significant. R<sup>2</sup> is not very high.

• Now, we test if Kellogg's faces EE, *conditioning* on the other drivers of K's returns. That is, we do a t-test on  $\beta$  on the following regression:

 $r_{K,t} = \alpha + \gamma_1 \left( \mathbf{r}_{Mar} - \mathbf{r}_f \right)_t + \gamma_2 SMB_t + \gamma_3 HML_t + \beta S_t + \varepsilon_t$ 

| ample (continuatio                        | on): Kellogg's EE | E (with 3 FF fac | tors):  |
|-------------------------------------------|-------------------|------------------|---------|
|                                           | Coefficients      | Std Error        | t-stat  |
| Intercept                                 | 0.0798            | 0.2691           | 0.2967  |
| Market (R <sub>m</sub> – R <sub>f</sub> ) | 0.3893            | 0.0647           | 6.0204  |
| Size (SMB)                                | -0.1144           | 0.0898           | -1.2738 |
| B-M (HML)                                 | 0.1546            | 0.0851           | 1.8157  |
| <i>s</i> <sub>t</sub> (β)                 | 0.2601            | 0.1664           | 1.5633  |

 $R^2 = 0.0995$  (a higher value driven mainly by the market factor).

Now, t-stat = 1.56 (*p*-value = .119). We say:

"After controlling for other factors that affect Kellogg's excess returns, we do not find evidence of EE at the 5% significance level."

 $\Rightarrow$  <u>Usual interpretation</u>: No EE for K.

We also see a lower sensitivity,  $\beta$ : **0.2601**.

|                                                                                                                                |                                           | Coefficients | Std Error | t-stat  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|-----------|---------|--|--|
|                                                                                                                                | Intercept                                 | -0.2894      | 0.3180    | -0.9102 |  |  |
|                                                                                                                                | <i>s</i> <sub>t</sub> (β)                 | 0.3963       | 0.1966    | 2.0157  |  |  |
|                                                                                                                                | Market (R <sub>m</sub> – R <sub>f</sub> ) | 0.9506       | 0.0764    | 12.4363 |  |  |
|                                                                                                                                | Size (SMB)                                | -0.2557      | 0.1062    | -2.4085 |  |  |
|                                                                                                                                | B-M (HML)                                 | -0.1154      | 0.1006    | -1.1471 |  |  |
| $R^{2} = 0.3092.$<br>The t-stat = 2.01 ( <i>p</i> -value = .045).<br>$\Rightarrow$ <u>Usual interpretation</u> : IBM faces EE. |                                           |              |           |         |  |  |
| Again, we see a big reduction in lower sensitivity, $\beta$ : <b>0.3963</b> .                                                  |                                           |              |           |         |  |  |

### EE: Evidence

The above regression (for K) has been done for firms around the world.

Results from work by Ivanova (2014):

- Mean  $\beta = 0.57$  (a 1% USD depreciation increases returns by 0.57%).
- But, only 40% of the EE are statistically significant at the 5% level.
- For large firms (MNCs), EE is small –average  $\beta = 0.063$  & not significant at the 5% level.
- 52% of the EEs come from U.S. firms that have <u>no international</u> <u>transactions</u> (a higher  $S_t$  "protects" these domestic firms).

<u>Summary</u>:

- On average, large companies (MNCs, Fortune 500) face no EE.
- EE is a problem of small and medium, undiversified firms.

### EE: Evidence

Check Ivanova's results for big firms, using the S&P 100.
We regress SP100 returns from past 38 years (1984:Apr – 2022:Jan) against s<sub>t</sub> (USD/TWC) & the 3 FF factors:

 $R^2 = 0.9664$ Standard Error = 0.8136 Observations = 454

|                                                                                  | Coefficients | Std Error | t-stat   | P-value |  |
|----------------------------------------------------------------------------------|--------------|-----------|----------|---------|--|
| Intercept                                                                        | -0.0247      | 0.0389    | -0.6357  | 0.5253  |  |
| s <sub>t</sub>                                                                   | -0.0225      | 0.0231    | -0.9756  | 0.3298  |  |
| Market - r <sub>f</sub>                                                          | 0.9988       | 0.0090    | 110.5233 | >.00001 |  |
| SMB                                                                              | -0.2459      | 0.0133    | -18.4659 | >.00001 |  |
| HML                                                                              | 0.0068       | 0.0126    | 0.5381   | 0.5907  |  |
| ince $ t_{\beta} = -0.98  < 1.96 \implies$ No evidence of EE for big U.S. firms. |              |           |          |         |  |

### CASE 2 – Hedging TE (Payable) Two parts – Group assignment (DW's hedging problem) – Class assignment Group assignment Group assignment DW ordered Japanese parts valued at JPY 200M. Payment: Delivery usually takes two months. Payment is due within 30 days of delivery (*tentative* delivery payment date April 17). PART I Today: December 6, DW evaluates risk & hedging strategies. Risk evaluation: Construct Ranges, VaR Hedging strategies: Options, & Forwards.

### • Group assignment (continuation) PART II

Today: **May 6**. Parts arrived on April 11. Payment is due in five days (**May 11**). Evaluate cost of different hedging strategies.

### Class assignment

Get JPY/USD FX rate data from my homepage (database2.xlsx).

• Evaluate Risk, with 10 years of data (adjust monthly frequency to 5-mo):

- Construct a VaR (97.5%) assuming a Normal distribution

- Worst/Best Case Scenarios

- Construct a VaR (97.5%) using a simulation

• On **December 6, 2012**, you do a 6-mo futures hedge. DW buys the JPY Dec futures contract. Value this contract on **May 6, 2013**.

• On **December 6, 2012**, you do a 6-mo MM hedge. Calculate the cost on **May 6, 2013**. (Need to discount CFs back to May 6, 2013.)