HEDGING FX RISK

Measuring and Managing FX Exposure

(for private use, not to be posted/shared online)

[^0]- This Class
- Exposure (Risk)
- At the firm level, currency risk is called exposure.
- Three areas
(1) Transaction exposure: Risk of transactions denominated in FC with a payment date or maturity.
(2) Economic exposure: Degree to which a firm's expected cash flows are affected by unexpected changes in S_{t}.
(3) Translation exposure: Accounting-based changes in a firm's consolidated statements that result from a change in S_{t}. Translation rules create accounting gains/losses due to changes in S_{t}.

We say a firm is "exposed" or has exposure if it faces currency risk.

- This Class

Example: Exposure.
A. Transaction exposure.

Swiss Cruises, a Swiss firm, sells cruise packages priced in USD to a broker. Payment in 30 days.
B. Economic exposure.

Swiss Cruises has 50% of its revenue denominated in USD and only 20% of its cost denominated in USD. A depreciation of the USD will affect future CHF cash flows.
C. Translation exposure.

Swiss Cruises obtains a USD loan from a U.S. bank. This liability has to be translated into CHF following Swiss accounting rules. ब

- This Class

Q: How can FX changes affect the firm?

- Transaction Exposure
- Short-term CFs: Existing contract obligations.
- Economic Exposure
- Future CFs: Erosion of competitive position.
- Translation Exposure
- Revaluation of balance sheet (Book Value vs Market Value).
- This Class
- Measuring TE:
- $\mathrm{TE}_{\mathrm{j}, \mathrm{t}}=$ Value of a fixed future transaction in $\mathrm{FC}_{\mathrm{j}} * \mathrm{~S}_{\mathrm{t}}$
- Netting TE (portfolio approach) $=\mathrm{NTE}=\sum_{J=1}^{J} T E_{j, t}$

Remark: The risk in TE is driven by S_{t}
$\Rightarrow \Delta \mathrm{TE}=\mathrm{TE}_{\mathrm{t}+\mathrm{T}}-\mathrm{TE}_{\mathrm{t}}=$ Value of a fixed future transaction in $\mathrm{FC} * \Delta \mathrm{~S}$

- Range for TE:
(1) Ad-hoc rule (say, $\pm 10 \%$)
(2) Sensitivity Analysis (Simulating exchange rates).
(3) Assuming a statistical distribution for exchange rates.
- VaR: Worst case scenario in a given time interval within a (one-sided) CI.
- Lower-end of Receivables.
- Highest-end of Payables.
- This Class
- Measuring EE:
- Change in CF due to an unexpected change in S_{t}.

$$
\left.=\frac{\Delta C F_{t}}{\Delta S_{t}} \quad \text { (differential or derivative, } \Delta S_{t} \text { is small }\right)
$$

$-\Delta C F_{t}$ can be approximated by change in Stock Prices.

Remark: If a company is publicly traded, $\Delta C F_{t}$ can be approximated by change in Stock Prices ΔP_{t}. A regression can be used.

Measuring Transaction Exposure

- Transaction exposure (TE) is easy to identify and measure.
- Identification: Transactions denominated in FC with a fixed future date
- Measure: Translate identified FC transactions to DC using S_{t}.
$T E_{j, t}=$ Value of a fixed future transaction in $\mathrm{FC}_{\mathrm{j}} * \mathrm{~S}_{\mathrm{t}}$
Example: Swiss Cruises.
Sold cruise packages for USD 2.5 million. Payment: 30 days.
Bought fuel oil for USD 1.5 million. Payment: 30 days.
$\mathrm{S}_{\mathrm{t}}=1.45 \mathrm{CHF} / \mathrm{USD}$.
Thus, the net transaction exposure in USD 30 days is:
Net $T E_{j=U S D}=($ USD $2.5 \mathrm{M}-$ USD 1.5 M$) * 1.45 \mathrm{CHF} / \mathrm{USD}$

$$
=\mathbf{U S D} 1 \mathbf{M} * 1.45 \mathrm{CHF} / \mathrm{USD}=\mathrm{CHF} 1.45 \mathrm{M} . \boldsymbol{q}
$$

- Netting

An MNC has many transactions, in different currencies, with fixed futures dates. Since TE is denominated in DC, all exposures are easy to consolidate in one single number: Net TE (NTE).

$$
\mathrm{NTE}=\operatorname{Net} T E_{t}=\sum_{J=1}^{J} T E_{j, t} \quad j=\mathrm{EUR}, \mathrm{GBP}, \mathrm{JPY}, \mathrm{BRL}, \mathrm{MXN}, \ldots
$$

- NTE is reported by fixed date: up to 90 days, more than 90 -days, etc.

Note: Since currencies are correlated, firms take into account correlations to calculate how changes in S_{t} affect Net TE \Rightarrow Portfolio Approach.

Example: A U.S. MNC: \quad Subsidiary A with $C F($ in EUR $)>0$
Subsidiary B with CF(in GBP) <0
Since $\rho_{\text {GBP,EUR }}$ is very high and positive, NTE may be very low. $\mathbb{\|}$
\Rightarrow Hedging decisions are usually made based on exposure of the portfolio.

- Netting - Correlations

Example: Swiss Cruises.
Net Inflows (in USD): USD 1 million. Due: 30 days.
Loan repayment: CAD 1.50 million. Due: 30 days.
$\mathrm{S}_{\mathrm{t}}=1.47 \mathrm{CAD} / \mathrm{USD}$.
$\rho_{\text {CAD,USD }}=.843$ (monthly from 1971 to 2017)
Swiss Cruises considers NTE to be close to zero. \mathbb{I}

Note 1: Correlations vary a lot across currencies. In general, regional currencies are highly correlated.
From 2000-2017,
$\rho_{\text {GBP,NOK }}=0.58$
$\rho_{\mathrm{GBP}, \mathrm{JPY}}=0.04$
Note 2: Correlations also vary over time.

- Netting - Correlations

Rolling Correlation (2-yr) GBP \& NOK (against USD)

- Netting - Correlations

On average, currencies from developed countries tend to move together... But, not all and not always.

- Q: How does TE affect a firm in the future?

Firms are interested in how TE will change in the future, say, in T days when transaction will be settled.

- Firms do not know S_{t+T}, they need to forecast $S_{t+T} \quad \Rightarrow \mathrm{E}_{\mathrm{t}}\left[S_{t+T}\right]$
- Once we forecast $\mathrm{E}_{\mathrm{t}}\left[S_{t+T}\right]$, we can forecast $\mathrm{E}_{\mathrm{t}}\left[\mathrm{TE}_{\mathrm{t}+\mathrm{T}}\right]$:
$\mathrm{E}_{\mathrm{t}}\left[\mathrm{TE}_{\mathrm{t}+\mathrm{T}}\right]=$ Value of a fixed future transaction in FC $* \mathrm{E}_{\mathrm{t}}\left[S_{t+T}\right]$
- $\mathrm{E}_{\mathrm{t}}\left[S_{t+T}\right]$ has an associated standard error, which can be used to create a range (or interval) for $S_{t+T} \& T E$.
- Risk management perspective:

How much DC can the firm spend on account of a FC inflow in T days? How much DC will be needed to cover a FC outflow in T days?.

Range Estimates of TE

- S_{t} is very difficult to forecast. Thus, a range estimate for NTE provides a useful number for risk managers.

The smaller the range, the lower the sensitivity of NTE.

- Three popular methods for estimating a range for NTE:
(1) Ad-hoc rule (say, $\pm 10 \%$)
(2) Sensitivity Analysis (or simulating exchange rates)
(3) Assuming a statistical distribution for exchange rates.

- Ad-hoc Rule

Many firms use an ad-hoc ("arbitrary") rule to get a range: $\pm \mathbf{X} \%$ (for example, a 10\% rule)

Simple and easy to understand: Get TE and add/subtract $\pm \mathrm{X} \%$.

Example: 10\% Rule.
SC has a Net TE = CHF 1.45M due in 30 days
\Rightarrow if S_{t} changes by $\pm 10 \%$, NTE changes by \pm CHF $\mathbf{1 4 5 , 0 0 0 . ~}$.

Note: This example gives a range for NTE:
NTE \in [CHF 1.305M; CHF 1.595M]

Risk Management Interpretation: A risk manager will only care about the lower bound. If SC is counting on the USD $\mathbf{1 M}$ inflow to pay CHF expenses, these expenses should not exceed CHF 1.305M. ब|

- Sensitivity Analysis

Goal: Measure the sensitivity of TE to different exchange rates.
Example: Sensitivity of TE to extreme forecasts of S_{t}.
Sensitivity of TE to randomly simulate thousands of S_{t}.
Data: 20 years of monthly CHF/USD \% changes (ED)

Mean (μ)	-0.00152	$\mu_{\mathrm{m}}=\mathbf{- 0 . 1 5 2} \%$
Standard Error	0.00202	
Median	-0.00363	
Mode	\#N/A	
Stand Deviation (σ)	0.03184	$\sigma_{\mathrm{m}}=\mathbf{3 . 1 8 4} \%$
Sample Variance $\left(\sigma^{2}\right)$	0.00101	
Kurtosis	0.46327	
Skewness	0.42987	
Range	0.27710	
Minimum	$\mathbf{- 0 . 1 1 6 1 8}$	
Maximum	$\mathbf{0 . 1 5 0 9 2}$	
Sum	0.0576765	
Count	248	

- Sensitivity Analysis - Extremes (Worst Case \& Best Case)

Example: Extremes for Swiss Cruises Net TE (CHF/USD)
ED of S_{t} monthly changes over the past 20 years (1994-2014).
Extremes: $\mathbf{1 5 . 0 9 \%}$ (on October 2011) and $\mathbf{- 1 1 . 6 2 \%}$ (on Jan 2009).

SC's net receivables in FC: USD 1M.
(A) Best case scenario: largest appreciation of USD: 0.1509

NTE: USD 1M * 1.45 CHF/USD * ($1+0.1509$) = CHF 1,668,805.
(B) Worst case scenario: largest depreciation of USD: -0.1162

NTE: USD $1 \mathbf{M} * 1.45 \mathrm{CHF} / \mathrm{USD} *(1+(-0.1162))=\mathbf{C H F} 1,281,510$.
That is,

NTE \in [CHF 1,281,510; CHF 1,668,805]

Note: If Swiss Cruises is counting on the USD 1M to cover CHF expenses, the expenses to cover should not exceed CHF 1,281,510. I

- Sensitivity Analysis - Simulation

Managers may consider the previous range, based on extremes, too conservative:

NTE \in [CHF 1,281,510; CHF 1,668,805].
\Rightarrow Probability of worst case scenario is low: Only once in 240 months!
Under more likely scenarios, a firm may be able to cover more expenses.

A more realistic range can be constructed through sampling from the ED.

Example: Simulation for SC's Net TE (CHF/USD) over one month.
(i) Randomly pick 1,000 monthly $\mathrm{s}_{\mathrm{t}+30}$'s from the ED.
(ii) Calculate $\mathrm{S}_{\mathrm{t}+30}$ for each $\mathrm{s}_{\mathrm{t}+30}$ selected in (i).
(Recall: $\mathrm{S}_{\mathrm{t}+30}=1.45 \mathrm{CHF} / \mathrm{USD} *\left(1+\mathrm{s}_{\mathrm{t}+30}\right)$)
(iii) Calculate TE for each $\mathrm{S}_{\mathrm{t}+30}$. (Recall: $\left.\mathbf{T E}=\mathbf{U S D} 1 \mathbf{M} * \mathrm{~S}_{\mathrm{t}+30}\right)$
(iv) Plot the 1,000 TE's in a histogram. (Simulated TE distribution.)

Example (continuation): In excel, using Vlookup function
(i) Randomly draw $\mathrm{s}_{\mathrm{t}}=\mathrm{s}_{\mathrm{sim}, 1}$ from ED: Observation 19: $\mathrm{s}_{\mathrm{t}+30}=0.0034$.
(ii) Calculate $\mathrm{S}_{\text {sim }, 1}: \mathrm{S}_{\mathrm{t}+30}=1.45 \mathrm{CHF} / \mathrm{USD} *(1+.0034)=1.4549$
(iii) Calculate $\mathrm{TE}_{\text {sim, } 1}: \mathbf{T E}=\mathbf{U S D} 1 \mathbf{M} * \mathrm{~S}_{\mathrm{t}+30}=1,454,937.57$
(iv) Repeat (i)-(iii) 1,000 times. Plot histogram. Construct a ($1-\alpha$) $\%$ C.I.

Lookup cell	S_{t}	Random Draw	Draw s_sim		
		with Randbetween	with Vlookup	S_sim	TE(sim)
1					
2	0.0025	19	0.0034	1.4549	1,454,937.57
3	-0.0027	147	-0.0104	1.4349	1,434,895.83
4	0.0001	99	0.0125	1.4682	1,468,189.96
5	-0.0443	203	-0.0584	1.3653	1,365,272.92
6	-0.0017	82	-0.0727	1.3446	1,344,597.25
7	-0.0031	4	0.0001	1.4502	1,450,168.79
8	-0.0227	67	-0.0226	1.4172	1,417,218.22
9	-0.0099	136	0.0095	1.4638	1,463,838.02
10	0.0098	232	0.0191	1.4777	1,477,749.46

Based on this simulated distribution, we can estimate a 95% range (leaving 2.5% observations to the left and 2.5% observations to the right)

$$
\Rightarrow \text { NTE } \in[\text { CHF } 1.3661 \mathrm{M} ; \mathrm{CHF} 1.5443 \mathrm{M}]
$$

Practical Application: If SC expects to cover expenses with this USD inflow, the maximum amount in CHF to cover, using this 95% CI, should be CHF 1,366,100. $\|$

- Aside: How many draws in the simulations?

Usually, we draw until the CIs do not change a lot.

Example: 1,000 and 10,000 draws
For the SC example, we drew $\mathbf{1 , 0 0 0}$ scenarios to get a 95% C.I.:

$$
\Rightarrow \text { NTE } \in[\mathrm{CHF} 1.3661 \mathrm{M} ; \mathrm{CHF} 1.5443 \mathrm{M}]
$$

Now, we draw 10,000 scenarios and determined the following 95\% C.I.:
\Rightarrow NTE \in [CHF 1.3670 M ; CHF 1.5446 M]

- Not a significant change in the range: 1,000 simulations seem enough.
- Assuming a Distribution

CIs based on an assumed distribution provide a range for TE.

For example, a firm assumes that $s_{t} \sim N\left(\mu, \sigma^{2}\right) . \quad$ (" \sim " $=$ follows)

$$
\Rightarrow \text { construct a }(1-\alpha) \% \mathrm{CI}: \quad\left[\mu \pm \mathrm{z}_{\alpha / 2} \sigma\right]
$$

Usual α 's: $\quad \alpha=.05 \quad \Rightarrow z_{.025}=1.96(\approx 2)$
$\alpha=.02 \quad \Rightarrow \mathrm{z}_{.01}=2.33$

- Assuming a Distribution - Normal for s_{t}

Example: CI range based on a Normal distribution.
Swiss Cruises believes that CHF/USD monthly changes follow a normal distribution. SC estimates:
$\mu=$ Monthly mean $=-0.00152 \approx-0.15 \%$
$\sigma^{2}=$ Monthly variance $=0.001014 \quad(\Rightarrow \sigma=0.03184$, or $3.18 \%)$
$s_{t} \sim N\left(-0.00152,0.03184^{2}\right) \quad s_{t}=$ CHF/USD monthly changes.
SC builds a 95% CI for CHF/USD monthly changes:

$$
[-0.00152 \pm 1.96 * 0.03184]=[-0.06393 ; 0.06089] .
$$

Based on this range for s_{t}, we derive bounds for the net TE:
(A) Upper bound

NTE: USD 1M * 1.45 CHF/USD * $(1+0.06089)=\mathbf{C H F} 1,538,291$.
(B) Lower bound

NTE: USD 1M * 1.45 CHF/USD * $(1+(-0.06393))=\mathbf{C H F} 1,357,302$.

$\mathbf{9 5 \%}$ CI range based on a Normal Distribution and VaR(97.5\%)

$\operatorname{VaR}(97.5 \%)$: Minimum revenue within a 97.5% C.I.

$$
\Rightarrow \text { NTE } \in[\text { CHF } 1.357 \mathrm{M} ; \text { CHF } 1.538 \mathrm{M}]
$$

- The lower bound, for a receivable, represents the worst case scenario within the confidence interval.

There is a Value-at-Risk (VaR) interpretation:
VaR: Maximum expected loss in a given time interval within a (one-sided) CI.

In our case, we can express the "expected loss" relative to today's value:
VaR-mean $=$ VaR - NTE
Example (continuation): The minimum revenue to be received by SC in the next 30 days, within a $97.5 \% \mathrm{CI}\left(\Rightarrow z_{.025}=1.96\right)$:
$\operatorname{VaR}(97.5 \%)=$ CHF 1.45M $[1+(-0.00152-1.96 * 0.03184)]$
$=$ CHF 1,357,302.
\Rightarrow VaR-mean $(.975)=$ CHF $1.3573 \mathrm{M}-$ CHF $1.45 \mathrm{M}=$ CHF -0.0927M

Example (continuation): \Rightarrow NTE \in [CHF 1.357 M; CHF 1.538 M]
$\operatorname{VaR}(97.5 \%)=$ CHF 1,357,302
If SC expects to cover expenses with this USD inflow, the maximum amount in CHF to cover, within a 97.5% CI, should be CHF 1,357,302.

VaR-mean $(97.5 \%)=$ CHF -0.0927M
Relative to today's valuation (or expected valuation, according to RWM), the maximum expected loss with a 97.5% "chance" is CHF -0.0927M. ब

Note: We could have used a different significance level to calculate the VaR, for example $99 \%\left(\Rightarrow z_{.01}=2.33\right)$. Then,
$\operatorname{VaR}(99 \%)=$ CHF 1.45M [1 + ($-0.00152-2.33 * 0.03184)]$
$=$ CHF 1.34023. (A more conservative bound.)
\Rightarrow VaR-mean $(.99)=$ CHF 1.34023M - CHF $1.45 \mathrm{M}=$ CHF -0.1098M

- Summary NTE for Swiss Cruises:
- NTE $=$ CHF 1.45M
- NTE Range:
\diamond Ad-hoc:
NTE \in [CHF 1.305M; CHF 1.595 M$]$.
\diamond Sensitivity Analysis:
- Extremes: NTE \in [CHF 1.281 M; CHF 1,6688 M]
- Simulation: NTE \in [CHF 1.3661 M; CHF 1.5443 M]

Statistical Distribution (normal):
NTE \in [CHF 1.357 M; CHF 1.538 M]

- Approximating Returns

In general, we use aritbmetic returns: $\mathrm{s}_{\mathrm{t}}=\mathrm{S}_{\mathrm{t}} / \mathrm{S}_{\mathrm{t}-1}-1$. To change the frequency, compounding is needed.

But, if we use \log aritbmic returns -i.e., $\mathrm{s}_{\mathrm{t}}=\log \left(\mathrm{S}_{\mathrm{t}}\right)-\log \left(\mathrm{S}_{\mathrm{t}-1}\right)-$, changing the frequency of mean returns (μ) and return variances $\left(\sigma^{2}\right)$ is simpler.

Let $\mu_{\mathrm{b}} \& \sigma_{\mathrm{b}}^{2}$ be measured in a given base frequency, say, b. Then, $\mu_{\mathrm{f}}=\mu_{\mathrm{b}} * T$,
$\sigma_{f}^{2}=\sigma_{b}^{2} * T \quad \Rightarrow \sigma_{\mathrm{f}}=\sigma_{\mathrm{b}} * \operatorname{sqrt}(T)$
$T=\#$ periods of base frequency b in new frequency, f.

- Approximating Returns - From monthly to daily \& annual

Example: Using monthly data, compute daily and annual mean \& SD.
From previous Table (base frequency: b = monthly, arithmetic computed): $\mu_{\mathrm{m}}=-0.00152$
$\sigma_{\mathrm{m}}=0.03184$
(1) Daily (i.e., $f=\mathrm{d}=$ daily \& $T=1 / 30$)
$\mu_{\mathrm{d}}=(-0.00152) *(1 / 30)=.0000507 \quad(0.006 \%)$
$\sigma_{d}=(0.03184) *(1 / 30)^{1 / 2}=.00602 \quad(0.60 \%)$
(2) Annual (i.e., $f=\mathrm{a}=$ annual \& $T=12$)
$\mu_{\mathrm{a}}=(-0.00152) *(12)=-0.01824$
$\sigma_{a}=(0.03184) *(12)^{1 / 2}=0.110297$
Check: The annual compounded arithmetic return:

$$
(1-0.00152)^{12}-1=-0.01809 .
$$

When arithmetic returns are low, these approximations work well. ©

- Approximating Returns - From monthly VaR to annualized VaR Example: Using the annualized approximation, we can also approximate an annualized $\operatorname{VaR}(97.5 \%$) for Swiss Cruises:
$\begin{aligned} \operatorname{VaR}(97.5 \%) & =\text { USD } 1 \mathbf{M} * 1.45 \mathrm{CHF} / \text { USD } *[1+(-.01824-1.96 * 0.1103)] \\ & =\text { CHF 1,101,374. }\end{aligned}$

Note II: Using logarithmic returns rules, we can approximate USD/CHF monthly changes by changing the sign of the CHF/USD, while the variance remains the same.

Then,

- Annualized USD/CHF mean percentage change $\approx 1.82 \%$,
- Annualized USD/CHF volatility $\approx 11.03 \%$

- Sensitivity Analysis - Portfolio Approach				
A simulation: Draw different scenarios, pay attention to correlations!				
Example: IBM has the following CFs in the next 90 days				
	Outflows	Inflows	S_{t}	Net Inflows
GBP	100,000	25,000	1.60 USD/GBP	$(75,000)$
EUR	80,000	200,000	1.05 USD/EUR	120,000
NTI	$\begin{aligned} & =\text { EUR } 12 \\ & =\text { USD } 6,0 \end{aligned}$	1.05 US his is our b	$\begin{aligned} & \mathrm{UR}+(\mathrm{GBP} 75 \mathrm{~K}) \\ & \text { he case) } \end{aligned}$	$60 \mathrm{USD} / \mathrm{GBP}$

Situation 1: Assume $\rho_{\text {GBP,EUR }}=1$. (EUR and GBP correlation is high.) Scenario (i): EUR appreciates by 10% against the USD
Since $\rho_{\text {GBP,EUR }}=1, \quad S_{t}=1.05$ USD $/ E U R *(1+.10)=1.155$ USD $/ E U R$ $\mathrm{S}_{\mathrm{t}}=1.60 \mathrm{USD} / \mathrm{GBP} *(1+.10)=1.76 \mathrm{USD} / \mathrm{GBP}$

NTE = EUR 120K * 1.155 USD/EUR + (GBP 75K) * 1.76 USD / GBP
$=$ USD 6,600. $(+10 \%$ change $=$ USD -600$)$

- Sensitivity Analysis - Portfolio Approach

Example (continuation): with $\rho_{\mathrm{GBP}, \mathrm{EUR}}=1$.
Scenario (ii): EUR depreciates by 10% against the USD
Since $\rho_{\text {GBP,EUR }}=1, \quad S_{t}=1.05$ USD $/ E U R *(1-.10)=0.945$ USD $/$ EUR $S_{t}=1.60 \mathrm{USD} / \mathrm{GBP} *(1-.10)=1.44 \mathrm{USD} / \mathrm{GBP}$

NTE $=$ EUR $120 \mathrm{~K} * 0.945$ USD $/ E U R+(G B P 75 K) * 1.44$ USD $/$ GBP
$=$ USD 5,400. (-10% change $=$ USD -600)
Now, we can specify a range for NTE

$$
\Rightarrow \text { NTE } \in[\text { USD 5,400; USD 6,600] }
$$

Note: The NTE change is exactly the same as the change in S_{t}. Then, if $\mathrm{NTE}_{0} \approx 0 \quad \Rightarrow \mathrm{~s}_{\mathrm{t}}$ has very small effect on NTE.

That is, if a firm has matching inflows and outflows in highly positively correlated currencies, then changes in S_{t} do not affect NTE. From a risk management perspective, this is very good.

- Sensitivity Analysis - Portfolio Approach

Example (continuation):
Situation 2: Suppose the $\rho_{\text {GBP,EUR }}=-1$ (NOT a realistic assumption!)
Scenario (i): EUR appreciates by 10% against the USD
Since $\rho_{\text {GBP,EUR }}=-1, S_{t}=1.05$ USD $/ E U R *(1+.10)=1.155$ USD $/ E U R$

$$
S_{t}=1.60 \mathrm{USD} / \mathrm{GBP} *(1-.10)=1.44 \mathrm{USD} / \mathrm{GBP}
$$

NTE $=$ EUR 120K $* 1.155$ USD/EUR $+($ GBP 75K) * 1.44 USD $/ \mathrm{GBP}$
$=$ USD 30,600. $\quad(410 \%$ change $=$ USD 24,600$)$
Scenario (ii): EUR depreciates by 10% against the USD
Since $\rho_{\text {GBP,EUR }}=-1, S_{t}=1.05$ USD $/ E U R *(1-.10)=0.945$ USD $/ E U R$
$S_{t}=1.60 \mathrm{USD} / \mathrm{GBP} *(1+.10)=1.76 \mathrm{USD} / \mathrm{GBP}$
NTE $=$ EUR 120K $* 0.945$ USD/EUR $+($ GBP 75K) $* 1.76$ USD / GBP $=($ USD 18,600 $) . \quad(-410 \%$ change $=$ USD $-24,600)$

Now, we can specify a range for NTE
\Rightarrow NTE $\in[(U S D 18,600)$; USD 30,600]

- Sensitivity Analysis - Portfolio Approach
 Example (continuation):

Note: The NTE has ballooned. A 10\% change in S_{t} a dramatic increase in the NTE range.
\Rightarrow Having non-matching exposures in different currencies with negative correlation is very dangerous.

Remarks:

- IBM can assume a correlation (estimated from the data). Then, draw many scenarios from a bivariate normal distribution to generate a simulated distribution for the NTE.
- Alternatively, IBM can just draw joint pairs from the ED. From this ED, IBM will get a range -and a VaR- for the NTE. ๆ|

Managing TE

- A Comparison of External Hedging Tools

Transaction exposure: Risk from the settlement of transactions in FC.

Example: Imports, exports, acquisition of foreign assets.

- Tools: Futures/forwards (FH)

Options (OH)
Money market (MMH)

- Q: Which hedging tool is better?

- New tool: MMH

Money market hedge: Based on a replication of IRPT arbitrage.

Let's take the case of receivables denominated in FC :

1) Borrow FC
2) Convert to DC
3) Deposit DC in domestic bank
4) Transfer FC receivable to cover loan (+ interest) from (1).

Under IRPT, step 4) involves buying FC forward, to repay loan in (1)
\Rightarrow This step is not needed, instead, we just transfer the FC receivable.

Q: Why MMH instead of FH?

- Under perfect market conditions $\quad \Rightarrow \mathrm{MMH}=\mathrm{FH}$
- Under less than perfect conditions $\quad \Rightarrow \mathrm{MMH} \neq \mathrm{FH}$
- New tool: MMH

Now, let's take the case of payables denominated in FC:

1) Borrow DC
2) Convert to FC
3) Deposit FC in domestic bank
4) Transfer FC deposit (+ interest) to cover payable in FC.

Under IRPT, step 4) involves selling FC/buying DC forward, to repay loan in (1)
\Rightarrow This step is not needed, instead, we just transfer the FC deposit.

Q: Why MMH instead of FH?

- Under perfect markets $\quad \Rightarrow \mathrm{MMH}=\mathrm{FH}$
- Under less than perfect markets $\Rightarrow \mathrm{MMH} \neq \mathrm{FH}$

- Comparison of Hedging Strategies

Example: Iris Oil Inc. has a large FC exposure in the form of a CAD cash flow from its Canadian operations. Iris decides to transfer CAD 300M to its USD account in 90 days.

FX risk to Iris: CAD may depreciate against the USD.

Data:
$\mathrm{S}_{\mathrm{t}}=0.8451 \mathrm{USD} / \mathrm{CAD}$
$\mathrm{F}_{\mathrm{t}, 90 \text {-day }}=0.8493 \mathrm{USD} / \mathrm{CAD}$
$i_{\text {USD }}=3.92 \%$
$\mathrm{i}_{\mathrm{CAD}}=2.03 \%$

$\underline{\mathrm{X}}$	$\underline{\text { Calls }}$	
Puts		
$.82 \mathrm{USD} / \mathrm{CAD}$	---	0.21
$.84 \mathrm{USD} / \mathrm{CAD}$	1.58	0.68
$.88 \mathrm{USD} / \mathrm{CAD}$	0.23	---

Example (continuation):

$\underline{\text { Date }}$	$\underline{\text { Spot market }}$	$\underline{\text { Forward market }}$	$\underline{\text { Money market }}$
t	$\mathrm{~S}_{\mathrm{t}}=.8451 \mathrm{USD} / \mathrm{CAD}$	$\mathrm{F}_{\mathrm{t}, 90 \text {-day }}=.8493 \mathrm{USD} / \mathrm{CAD}$	$\mathrm{i}_{\mathrm{USD}}=3.92 \%$
			$\mathrm{i}_{\mathrm{CAD}}=2.03 \%$

$t+90$ Receive CAD 300M and transfer into USD.
$\mathrm{NTE}=\mathrm{CAD} 300 \mathrm{M} * .8451 \mathrm{USD} / \mathrm{CAD}=\mathrm{USD} 253.53 \mathrm{M}$

- Hedging Strategies:

1. Do Nothing

Do not hedge and exchange the CAD 300 M at S_{t+90}.
2. Forward Market

At t, sell the CAD 300M forward and at time $t+90$ guarantee:
CAD 300M * . 8493 USD /CAD $=$ USD 254,790,000

Example (continuation):

3. Money Market

At t , Iris Oil takes the following three steps, simultaneously:

1) Borrow from Canadian bank at 2.03% for 90 days :

CAD 300M $/[1+.0203 *(90 / 360)]=$ CAD 298,485,188.
2) Convert to USD at S_{t} :

CAD 298,485,188 * 0.8451 USD/CAD = USD 252,249,832
3) Deposit in US bank at 3.92% for 90 days to guarantee at time $\mathrm{t}+90$:

USD $252,249,832 *[1+.0392 *(90 / 360)]=$ USD 254,721,880.

Note: Both the FH and the MMH guarantee certainty at time $\mathrm{t}+90$
FH delivers to Iris Oil: USD 254,790,000 MMH delivers to Iris Oil: USD 254,721,880
\Rightarrow Iris Oil selects the FH. \quad (MMH is a dominated strategy.)

Example (continuation):

4. Option Market

At t, buy a put. Available 90 -day options:

$\underline{\mathrm{X}}$	$\underline{\text { Calls }}$	$\underline{\text { Puts }}$
.82 USD/CAD	---	0.21
.84 USD $/ \mathrm{CAD}$	1.58	0.68
.88 USD $/ \mathrm{CAD}$	0.23	----

Buy the 84 USD/CAD put \Rightarrow Total premium cost of USD 2.04M.

Position	Initial CF	Cash flows at $\mathbf{t + 9 0}$	
		$\mathrm{S}_{\mathrm{t}+90}<.84 \mathrm{USD} / \mathrm{CAD}$	$\mathrm{S}_{\mathrm{t}+90}>.84 \mathrm{USD} / \mathrm{CAD}$
Option (HP)	USD 2.04M	$\left(.84-\mathrm{S}_{\mathrm{t}+90}\right) *$ CAD 300M	0
Underlying (UP)	0	$\mathrm{~S}_{\mathrm{t}+90} *$ CAD 300M	$\mathrm{S}_{\mathrm{t}+90} *$ CAD 300M
Total CF	USD 2.04M	USD 252 M	$\mathrm{S}_{\mathrm{t}+90}$ CAD 300M

Net CF at $t+90$:
USD 249,960,000 for $S_{t+90}<.84$ USD/CAD
or $\quad \mathrm{S}_{\mathrm{t}+90} * \mathbf{C A D} 300 \mathrm{M}-\mathrm{USD} 2.04 \mathrm{M}$ for $S_{t+90}>.84 \mathrm{USD} / \mathrm{CAD}$

Example (continuation): Companies do not like paying premiums.

5. Collar

At time t, buy a put and sell a call.
Buy .84 put at USD 0.0068
Sell . 88 call at USD 0.0023 . \Rightarrow Initial cost $=$ USD 0.0045 per collar
\Rightarrow Total cost: USD 1.35M

Position	Initial CF	Cash flows at t+90		
		$\mathrm{S}_{\mathrm{t}+90}<.84$	$.84<\mathrm{S}_{\mathrm{t}+90}<.88$	$\mathrm{~S}_{\mathrm{t}+90}>.88$
Put	USD 2.04M	$\left(.84-\mathrm{S}_{\mathrm{t}+90} *\right.$ CAD 300M	0	0
Call	-USD 0.69M	0	0	$\left(.88-\mathrm{S}_{\mathrm{t}+90} *\right.$ CAD 300M
UP	$\mathbf{0}$	$\mathrm{S}_{\mathrm{t}+90} *$ CAD 300M	$\mathrm{S}_{\mathrm{t}+90} *$ CAD 300M	$\mathrm{S}_{\mathrm{t}+90} *$ CAD 300M
Total CF	USD 1.35 M	USD 252 M	$\mathrm{S}_{\mathrm{t}+90}$ CAD 300M	USD 264 M

Net CF at $t+90$:
USD 250.65 M for $S_{t+90}<.84 \mathrm{USD} / \mathrm{CAD}$
or $\quad \mathrm{S}_{\mathrm{t}+90} \mathrm{CAD} 300 \mathrm{M}-\mathrm{USD} 1.35 \mathrm{M}$ for $.84 \mathrm{USD} / \mathrm{CAD}<S_{t+90}<.88 \mathrm{USD} / \mathrm{CAD}$
or USD 262.65 M for $S_{t+90}>.88 \mathrm{USD} / \mathrm{CAD}$
Note: This collar reduces the upside: establishes a floor and a cap.

Example (continuation):

6. Alternative: Zero cost insurance:

At time t, buy puts and sell calls with overall (or \approx) matching premium.
Buy . 84 put
Sell 3.88 calls. \Rightarrow Initial cost ≈ 0 (actually, a small profit. We'll ignore it).

Position	Cash flows at $\mathbf{t}+\mathbf{9 0}$		
	$\mathrm{S}_{\mathrm{t}+90}<.84$	$.84<\mathrm{S}_{\mathrm{t}+90}<.88$	$\mathrm{~S}_{\mathrm{t}+90}>.88$
Put	$\left(.84-\mathrm{S}_{\mathrm{t}+90}\right) *$ CAD 300M	0	0
3 Calls	0	0	$3 *\left(.88-\mathrm{S}_{\mathrm{t}+90}\right) *$ CAD 300M
UP	$\mathrm{S}_{\mathrm{t}+90} *$ CAD 300M	$\mathrm{S}_{\mathrm{t}+90} *$ CAD 300M	$\mathrm{S}_{\mathrm{t}+90} *$ CAD 300M
Total CF	USD 252 M	$\mathrm{S}_{\mathrm{t}+90}$ CAD 300M	USD $792 \mathrm{M}-2 * \mathrm{~S}_{\mathrm{t}+90}$ CAD 300M

Net CF at $t+90$:
USD 252M for all $S_{t+90}<.84$ USD/CAD
or $\mathrm{S}_{\mathrm{t}+90} \mathrm{CAD} 300 \mathrm{M}$ for $.84 \mathrm{USD} / \mathrm{CAD}<S_{t+90}<.88 \mathrm{USD} / \mathrm{CAD}$
or USD $792 \mathrm{M}-2 \mathrm{~S}_{\mathrm{t}+90}$ CAD 300M for all $S_{t+90}>.88 \mathrm{USD} / \mathrm{CAD}$

Example (continuation):
Let's plot all strategies:

USD Amount
Received in
t+90
USD 264M
USD 262.65M

USD 254.79M
USD 252M
USD 250.65M
USD 249.96M

- Optimal Hedging Strategies?

Q: Which strategy is better? We need to say something about $\mathrm{S}_{\mathrm{t}+90}$. For example, we can assume a distribution (normal) or use the ED to say something about future changes in S_{t}.

Example: Suppose we have a receivable in SGD in 30 days. We can use the distribution for monthly USD/SGD changes from the past 30 years. Then, we get the distribution for S_{t+30} (USD/SGD).

Example (continuation): Distribution of monthly USD/SGD changes from past 30 years. Raw data \& relative frequency for S_{t+30} (USD/SGD).

$\mathrm{s}_{\mathrm{t}}(\mathrm{SGD} / \mathrm{USD})$	Frequency	Rel frequency	$\mathrm{S}_{\mathrm{t}}=1 / .65^{*}\left(1+\mathrm{s}_{\mathrm{t}}\right)$	
-0.0494 or less	2	0.0058	1.462	0.6838
-0.0431	2	0.0058	1.472	0.6793
-0.0369	1	0.0029	1.482	0.6749
-0.0306	3	0.0087	1.491	0.6705
-0.0243	6	0.0174	1.501	0.6662
-0.0181	20	0.0580	1.511	0.6620
-0.0118	36	0.1043	1.520	0.6578
-0.0056	49	0.1420	1.530	0.6536
0.0007	86	0.2493	1.540	0.6495
0.0070	52	0.1507	1.549	0.6455
0.0132	41	0.1188	1.559	0.6415
0.0195	29	0.0841	1.568	0.6376
0.0258	5	0.0145	1.578	0.6337
0.0320	7	0.0203	1.588	0.6298
0.0383	5	0.0145	1.597	0.6260
0.0446	0	0.0000	1.607	0.6223
0.0508 or +	3	0.0058	1.617	0.6186

- Examples assuming an explicit distribution for $\mathrm{S}_{\mathrm{t}+\mathrm{T}}$

Example - Receivables: Evaluate (1) FH, (2) MMH, (3) OH \& (4) NH. Cud Corp will receive SGD 500,000 in 30 days. (SGD Receivable.)
Data:

- $S_{t}=.6500-.6507$ USD/SGD.
- $\mathrm{F}_{\mathrm{t}, 30}=.6510-.6519$ USD/SGD.
- 30-day interest rates: $\mathrm{i}_{\text {SGD }}: 2.65 \%-2.75 \%$ \& $\mathrm{i}_{\mathrm{USD}}: 3.20 \%-3.25 \%$
- A 30-day put option on SGD: $\mathbf{X}=.65$ USD/SGD and $\mathrm{P}_{\mathrm{t}}=$ USD. 01 .
- Forecasted S_{t+30} :

Possible Outcomes	Probability
USD .63	18%
USD .64	24%
USD .65	34%
USD .66	21%
USD .68	3%

(1) FH: Sell SGD 30 days forward

USD received in 30 days $=$ Receivables in SGD $* \mathrm{~F}_{\mathrm{t}, 30}$
$=$ SGD 500,000 * . 651 USD/SGD = USD 325,500.
(2) MMH:

- Borrow SGD at 2.75\% for 30 days,
- Convert to USD at . 65 USD /SGD,
- Deposit USD at 3.2% for 30 days,

Repay SGD loan in 30 days with SGD 500,000 receivable
Amount to borrow = SGD 500,000/(1 + . 0275 * 30/360) $=$
= SGD 498,856.79

Convert to USD (Amount to deposit in U.S. bank) $=$
$=$ SGD 498,856.79 * . 65 USD /SGD = USD 324,256.91

Amount received in 30 days from U.S. bank deposit $=$
$=\operatorname{USD} 324,256.91 *(1+.032 * 30 / 360)=$ USD 325,121.60
$\begin{array}{ll}\text { (3) } \mathrm{OH} \text { : Purchase put option. } & \mathrm{X}=.65 \mathrm{USD} / \mathrm{CHF} \\ & \mathrm{P}_{\mathrm{t}}=\text { premium }=\mathrm{USD} .01\end{array}$

Possible $\mathbf{S}_{\mathbf{t}+30}$	Premium per SGD + Op Cost	Exercise?	Net USD Received for SGD 0.5M	Prob
.63 USD/SGD	USD .010027	Yes	USD 319,986.5	18%
.64 USD/SGD	USD .010027	Yes	USD 319,986.5	24%
.65 USD/SGD	USD .010027	No	USD 319,986.5	34%
.66 USD/SGD	USD .010027	No	USD 324,986.5	21%
.68 USD/SGD	USD .010027	No	USD 334,986.5	3%

Note: In the Total Amount Received (in USD) we have subtracted the opportunity cost involved in the upfront payment of a premium:

USD . $01 * .032 * 30 / 360=$ USD $.000027 \quad($ Total $=$ USD 13.50)
\Rightarrow Total Premium Cost: USD 5,013.50
$\mathrm{E}[$ Amount Received in USD] $=319,986.5 * .76+324,986.50 * .21+$ $+334,986.50 * .03=$ USD $321,486.5$
(4) No Hedge (NH): Sell SGD 500,000 in the spot market in 30 days.

Possible S $_{\mathbf{t}+30}$	USD Received for SGD 0.5M	Probability
$.63 \mathrm{USD} / \mathrm{SGD}$	USD 0.315M	18%
$.64 \mathrm{USD} /$ SGD	USD 0.320 M	24%
$.65 \mathrm{USD} / \mathrm{SGD}$	USD 0.325 M	34%
$.66 \mathrm{USD} / \mathrm{SGD}$	USD 0.330 M	21%
$.68 \mathrm{USD} / \mathrm{SGD}$	USD 0.340 M	3%

Note: When we compare (1) to (4), it's not clear which one is better. Preferences will matter. We can calculate and expected value:
$\mathrm{E}[$ Amount Received in USD] $=315 \mathrm{~K} * .18+320 \mathrm{~K} * .24+325 \mathrm{~K} * .34+$ $+330 \mathrm{~K} * .21+335 \mathrm{~K} * .03=\mathrm{USD} 323,500$

Conclusion: Cud Corporation is likely to choose the FH. But, risk preferences matter. $\|$

Example - Payables: Evaluate (1) FH, (2) MMH, (3) OH, (4) No Hedge Situation: Cud Corp needs CHF 100,000 in 180 days. (CHF Payable.)
Data:

- $\mathrm{S}_{\mathrm{t}}=.675-.680$ USD/CHF.
- $\mathrm{F}_{\mathrm{t}, 180}=.695-.700$ USD/CHF.
- 180-day interest rates are as follows:
$\mathrm{i}_{\text {СНF }}: 9 \%-10 \%$;
$\mathrm{i}_{\text {USD }}: 13 \%-14.0 \%$
- A 180-day call option on CHF: $\mathbf{X}=.70 \mathrm{USD} / \mathrm{CHF}$ and $\mathrm{P}_{\mathrm{t}}=\mathrm{USD} .02$.
- Cud forecasted S_{t+180} :

Possible Outcomes
USD . 67
USD . 70
USD .75 20
(1) FH: Purchase CHF 180 days forward

USD needed in 180 days $=$ Payables in CHF x $\mathrm{F}_{\mathrm{t}, 180}$
$=$ CHF 100,000 *. 70 USD $/$ CHF $=$ USD 70,000.
(2) MMH:

- Borrow USD at 14% for 180 days,
- Convert to CHF at . 680 USD / CHF ,
- Invest CHF at 9\% for 180 days,
- Repay USD loan in 180 days \& transfer CHF deposit to cover payable

Amount in CHF to be invested $=$ CHF 100,000/(1 + . 09 * 180/360) $=\mathrm{CHF} 95,693.78$

Amount in USD needed to convert into CHF for deposit $=$ $=$ CHF 95,693.78 * . 680 USD /CHF = USD 65,071.77

Interest and principal owed on USD loan after 180 days $=$ $=$ USD 65,071.77 * $(1+.14 * 180 / 360)=$ USD 69,626.79

(3) OH: Purchase call option.
$\mathrm{X}=.70$ USD/CHF $\mathrm{C}_{\mathrm{t}}=$ premium $=$ USD .02.
Possible $\mathbf{S}_{\mathrm{t}+180}$ Premium per CHF + Op Cost Exercise? Net Paid for CHF $\mathbf{0 . 1 M}$ Prob .67 USD/SGD USD .0213 No USD 69,130 30% .70 USD/SGD USD .0213 No USD 72,130 50% .75 USD/SGD USD .0213 Yes USD 72,130 20%

Note: In the Total USD Cost we have included the opportunity cost involved in the upfront payment of a premium = USD 130.

E [Amount to Pay in USD] = USD 71,230

- Preferences matter. A risk taker may like the 30% chance of doing better with the OH than with the MMH.
(4) Remain Unhedged: Purchase CHF 100,000 in 180 days.

Possible $\mathbf{S}_{\mathbf{t}+180}$	Net Paid for CHF 0.1M	Probability
.67 USD/SGD	USD 67,000	30%
.70 USD/SGD	USD 70,000	50%
.75 USD/SGD	USD 75,000	20%

Preferences matter: Again, a risk taker may like the 30% chance of doing better with the NH than with the MMH. (Actually, there is also an additional 50% chance of being very close to the MMH.)
$E[$ Amount to Pay in USD $]=$ USD 70,100
Conclusion: Cud Corporation is likely to choose the MMH. ब

Internal Methods

- These are hedging methods that do not involve financial instruments.
- Risk Shifting

Q: Can firms completely avoid FX exposure?
A: Yes! By pricing all foreign transactions in domestic currency.

Example: Bossio Co., a U.S. firm, sells naturally colored cotton. Asuni, a Japanese company, buys Bossio's cotton. Bossio Co. prices all exports in USD. 1
\Rightarrow Currency risk is not eliminated. The foreign company bears it.

- Problem with risk-shifting: Reduces firm flexibility.
- Currency Risk Sharing

Two parties agree -with a customized hedge contract- to share the FX risk in a transaction.

Example: Asuni buys cotton for USD 1 million from Bossio Co.
Risk Sharing agreement:

- If $S_{t} \in[100 \mathrm{JPY} / \mathrm{USD} ; 140 \mathrm{JPY} / \mathrm{USD}] \Rightarrow$ Transaction unchanged. (Asuni pays USD 1 M to Bossio Co.)
- If $S_{t}<100 \mathrm{JPY} / \mathrm{USD}$ or $S_{t}>140 \mathrm{JPY} / \mathrm{USD} \Rightarrow$ parties share risk equally

Suppose that when Asuni has to pay Bossio Co., $\mathrm{S}_{\mathrm{t}}=180 \mathrm{JPY} / \mathrm{USD}$.
Then, settlement $S_{t}=160 \mathrm{JPY} / \mathrm{USD}$ (= 180-40/2).
Asuni's final cost $=$ JPY 160 million $=$ USD 888,889 < USD 1M.
Note: Range where the transaction is unchanged is called neutral zone. $\mathbb{}$

- Leading and Lagging (L\&L)

Firms can reduce FX exposure by accelerating or decelerating the timing of payments that must be made in different currencies:
\Rightarrow Leading or Lagging the movement of funds.
L\&L is done between the parent company and its subsidiaries or between two subsidiaries.

Example: Parent company: HAL (U.S. company).
Subsidiaries: Mexico, Brazil, and Hong Kong. HAL Hong Kong's exposure is too large.
HAL orders HAL Mexico and HAL Brazil to accelerate (lead) payments to HAL Hong Kong. $\mathbb{\top}$

- L\&L changes assets/liabilities in one firm, with reverse effect on the other firm.
$\Rightarrow \mathrm{L} \& \mathrm{~L}$ changes balance sheet positions.
Might be a good tool for achieving a hedged balance sheet position.
- Funds Adjustments

Key to hedging:
Match inflows \& outflows denominated in the FC.

Chinese subsidiary in U.S. Italian subsidiary in U.S.
with $\mathrm{CF}>0$ in USD
Increase USD purchases
Decrease CNY purchases
Decrease USD sales
Increase CNY sales
Increase USD borrowing
Reduce CNY borrowing
Example: Japanese and German carmakers have built plants in the U.S.

Economic Exposure

Economic exposure (EE): Risk associated with a change in the NPV of a firm's expected cash flows, due to an unexpected change in S_{t}.

Note: S_{t} is very difficult to forecast. Actual change in S_{t} can be considered "unexpected."

- General definition: It can be applied to any firm (domestic, MNC, exporting, importing, purely domestic, etc.).
- The degree of EE depends on:
- Type \& structure of the firm
- Industry structure in which the firm operates.
- In general:

Importing \& exporting firms face higher EE than purely domestic firms

- Monopolistic firms face lower EE than firms that operate in competitive markets.

Example: A U.S. firm face almost no competition in domestic market. Then, it can transfer to prices almost any increase of its costs due to changes in S_{t}. Thus, this firm faces no/low EE. $\boldsymbol{\|}$

- The degree of EE for a firm is an empirical question.
- Economic exposure is difficult to measure.
- We can use accounting data (EAT changes) or financial/ economic data (returns) to measure EE. Economists like economic-based measures.

Measuring Economic Exposure

A Measure Based on Accounting Data

We use cash flows to estimate FX exposure. For example, we simulate a firm's CFs (EBT, Operating Income, etc.) under several FX scenarios.

Example: IBM HK provides the following info:
Sales and cost of goods are dependent on S_{t} :

$$
S_{t}=7 \mathrm{HKD} / \mathrm{USD} \quad S_{t}=7.70 \mathrm{HKD} / \mathrm{USD}
$$

Sales (in HKD)	300 M	400 M
Cost of goods (in HKD)	$\underline{150 \mathrm{M}}$	$\underline{200 \mathrm{M}}$
Gross profits (in HKD)	150 M	200 M
Interest expense (in HKD)	$\underline{20 \mathrm{M}}$	$\underline{20 \mathrm{M}}$
EBT (in HKD)	$\mathbf{1 3 0 \mathrm { M }}$	$\mathbf{1 8 0 \mathrm { M }}$

Example (continuation):

A 10% depreciation of the HKD increases HKD CFs from HKD 130M (=USD 18.57 M) to HKD 180M (=USD 23.38M): A 25.92% change in CFs measured in USD.

Q: Is EE significant?
A: We can calculate the elasticity of CF to changes in S_{t} :

$$
\text { CF elasticity }=\frac{\% \text { change in EBT }}{\% \text { change in } S_{t}}=\frac{.2592}{.10}=2.59
$$

Interpretation: We say, a 1% depreciation of the HKD produces a change of 2.59% in EBT. Quite significant. But the change in exposure is USD 4.81 M . This amount may not be significant for IBM (Judgment call needed.)

IBM HK behaves like a net exporter: Weaker DC, Higher CFs. \mathbb{I}

Note: Firms will simulate many scenarios \& produce an expected value.

We can use historical accounting cash flows to calculate economic exposure.

Example: Kellogg's cash flow elasticity in 2020-2019.
From 2019 to 2020 (end-of-year to end-of-year), K's operating income increased 2.6%. The USD depreciated against basket of major currencies by 3.58%. Then,

$$
\text { CF elasticity }=\frac{.026}{.0358}=0.73
$$

Interpretation: We say, a 1% depreciation of the USD produces a positive change of 0.73% in operating income. K's behaves like a net exporter. \mathbb{I}

A Regression based Measure and a Test

CF elasticity gives us a measure, but it is not a test of EE. A judgment call is needed.

It is easy to test regression coefficients (t-tests or F-tests).

- Simple steps:
(1) Get data: $C F_{t} \& S_{t}$ (available from the firm's past)
(2) Estimate regression:

$$
\Delta C F_{t}=\alpha+\beta \Delta S_{t}+\varepsilon_{t}
$$

$\Rightarrow \beta$: Sensitivity of $\Delta C F_{t}$ to ΔS_{t}.
\Rightarrow The higher β, the greater the impact of ΔS_{t} on $C F_{t}$.
(3) Test for $\mathrm{EE} \quad \Rightarrow \mathrm{H}_{0}$ (no EE): $\beta=0$

$$
\mathrm{H}_{1}(\mathrm{EE}): \beta \neq 0
$$

(4) Evaluation of this regression: t-statistic of β and R^{2}.

Rule: $\left|t_{\beta}=\beta / \operatorname{SE}(B)\right|>1.96 \Rightarrow \beta$ is significant at the 5% level.

A Regression based Measure and a Test

In general, regression is done in terms of $\%$ changes:

$$
c f_{t}=\alpha+\beta s_{t}+\xi_{t}
$$

$c f_{t}: \%$ change in CF from $\mathrm{t}-1$ to t .

Interpretation of β : A 1% change in S_{t} changes the $C F_{t}$ by $\beta \%$.

- Expected Signs

We estimate the regression from a Domestic (say, U.S.) firm's point of view: CF measured in DC (say, USD \& S_{t} is USD/FC). Then, from the regression, we can derive the Expected sign (β):

Type of company	Expected sign for β
U.S. Importer	Negative
U.S. Exporter	Positive
Purely Domestic	Depends on industry

- Other variables also affect CFs: Investments, acquisitions, growth of the economy, etc.

We "control" for the other variables that affect CFs with a multivariate regression, say with k other variables:

$$
c f_{t}=\alpha+\beta s_{t}+\delta_{1} \mathrm{X}_{1, \mathrm{t}}+\delta_{2} \mathrm{X}_{2, \mathrm{t}}+\ldots+\delta_{\mathrm{k}} \mathrm{X}_{k, \mathrm{t}}+\varepsilon_{t},
$$

where $\mathrm{X}_{\mathrm{k}, \mathrm{t}}$ represent one of the $k^{\text {th }}$ other variables that affects CFs.

Note: Sometimes the impact of $\Delta \mathrm{S}_{\mathrm{t}}$ is not felt immediately.
\Rightarrow contracts and short-run costs matter.

Example: For an exporting U.S. company a sudden appreciation of the USD increases CF in the short term. Solution: use a modified regression:

$$
c f_{t}=\alpha+\beta_{0} s_{t}+\beta_{1} s_{t-1}+\beta_{2} s_{t-2}+\ldots+\beta_{\mathrm{q}} s_{t-q}+\delta_{1} \mathrm{X}_{1, \mathrm{t}}+\ldots+\varepsilon_{t} .
$$

Sum of β 's: Total sensitivity of $c f_{t}$ to $s_{t}\left(=\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}+\ldots\right)$

A Measure Based on Financial Data

Accounting data can be manipulated. Moreover, international comparisons are difficult. Instead, use financial data: Stock prices!

We can easily measure how returns and $\Delta \mathrm{S}_{\mathrm{t}}$ move together: correlation.

Example: Kellogg's and IBM's EE.
Using monthly stock returns for Kellogg's $\left(r_{K, t}\right)$ and monthly changes in S_{t} (USD/EUR) from 33 years (1988:Jan - 2022:Jan), we estimate $\boldsymbol{\rho}_{\mathrm{K}, \mathrm{s}}$ (correlation between $\left.r_{K, t} \& s_{t}\right)=\mathbf{0 . 1 5 0}$. It looks small.

We do the same exercise for IBM, measuring the correlation between $r_{I B M, t} \& s_{t}$, obtaining $\boldsymbol{\rho}_{\text {IBM }, \mathrm{s}}=0.089$, small and, likely, close to zero.

But, if we use USD/TWC, based on the major currencies, things change a bit: $\boldsymbol{\rho}_{\mathrm{K}, \mathrm{s}}=0.1263$ (similar to USD/EUR) \& $\boldsymbol{\rho}_{\mathrm{IBM}, \mathrm{s}}=0.1795$ (different). $\boldsymbol{\|}$

An Easy Measure of EE Based on Financial Data

- Better measure: A regression-based measure that can be used as a test.

Steps:

1) Regress, r_{t}, returns against (unexpected) $\Delta \mathrm{S}_{\mathrm{t}}$.

$$
r_{t}=\alpha+\beta s_{t}+\varepsilon_{t}
$$

2) Check statistical significance of regression coefficient for s_{t} :
H_{0} (No EE): $\beta=0$.
$H_{1}(E E): \beta \neq 0$.
$\Rightarrow A$ simple t-test can be used to test H_{0}.

Interpretation: A 1% change in S_{t} changes the Value of the firm by $\beta \%$.

Example: Kellogg's EE.
Using 1988-2022 data (see previous example), we run the regression:

$$
r_{K, t}=\alpha+\beta s_{t}(\mathrm{USD} / \mathrm{TWC})+\varepsilon_{t}
$$

$\mathrm{R}^{2}=0.01596$
Standard Error $=5.56447$
Observations $=409$

	Coefficients	Standard Error	t-stat	P-value
Intercept (α)	0.38592	0.27515	1.4026	0.1615
$\boldsymbol{s}_{t}(\beta)$	0.43775	0.17041	2.5688	0.0106
Analysis:	Reject $\mathrm{H}_{0},\left\|\mathrm{t}_{\beta}=2.57\right\|>1.96$ (significantly $\left.\neq 0\right) \quad \Rightarrow$ EE!			

$\boldsymbol{\beta}>0, \mathrm{~K}$ behaves likes an exporter.
Interpretation of $\boldsymbol{\beta}$: A 1% increase in exchange rates, increases K's returns by 0.44%.

Note: R^{2} is very low! $\mathbb{}$

Example: IBM's EE.
Now, using the IBM data (1988-2022), we run the regression:

$$
r_{I B M, t}=\alpha+\beta s_{t}(\mathrm{USD} / \mathrm{TWC})+\varepsilon_{t}
$$

$\mathrm{R}^{2}=0.03221$
Standard Error $=7.4465$
Observations $=409$

	Coefficients	Standard Error	t-stat	P-value
Intercept (α)	0.38896	0.36821	1.0563	0.2914
$s_{t}(\beta)$	0.83941	0.22805	3.6809	0.0003
Analysis:	Reject $\mathrm{H}_{0},\left\|\mathrm{t}_{\beta}=3.68\right\|>1.96$ (significantly $\left.\neq 0\right)$	$\Rightarrow \mathrm{EE}$!		

$$
\boldsymbol{\beta}>0, \text { DIS behaves likes an exporter. }
$$

Interpretation of $\boldsymbol{\beta}$: A 1% increase in exchange rates, increases DIS's returns by 0.84%.

Again, the R^{2} is low! ${ }^{\text {■ }}$

- Returns are not only influenced s_{t}. In investments, it is common to use the 3 factors from the Fama-French models to model stocks returns:
- Market $\left(\left[r_{M}-r_{f}\right]\right)$
- SMB (size)
- HML (value).

In Kellogg's case:

$$
r_{K, t}=\alpha+\gamma_{1}\left(\mathrm{r}_{\mathrm{M}}-\mathrm{r}_{\mathrm{f}}\right)_{\mathrm{t}}+\gamma_{2} \mathrm{SMB}_{\mathrm{t}}+\gamma_{3} \mathrm{HML}_{\mathrm{t}}+\varepsilon_{t}
$$

A momentum can be added to accommodate Carhart's (1997) model.

Note: In general, we find $\gamma_{1} \& \gamma_{3}$ significant. R^{2} is not very high.

- Now, we test if Kellogg's faces EE, conditioning on the other drivers of K's returns. That is, we do a t-test on β on the following regression:

$$
r_{K, t}=\alpha+\gamma_{1}\left(\mathrm{r}_{\mathrm{Mar}}-\mathrm{r}_{\mathrm{f}}\right)_{\mathrm{t}}+\gamma_{2} \mathrm{SMB}_{\mathrm{t}}+\gamma_{3} \mathrm{HML}_{\mathrm{t}}+\beta \boldsymbol{s}_{\boldsymbol{t}}+\varepsilon_{t}
$$

Example (continuation): Kellogg's EE (with 3 FF factors):

	Coefficients	Std Error	\mathbf{t}-stat
Intercept	0.0798	0.2691	0.2967
Market $\left(\mathbf{R}_{\mathbf{m}}-\mathbf{R}_{\mathrm{f}}\right)$	0.3893	0.0647	6.0204
Size $(\mathbf{S M B})$	-0.1144	0.0898	-1.2738
B-M $(\mathbf{H M L})$	0.1546	0.0851	1.8157
$\boldsymbol{s}_{\boldsymbol{t}}(\boldsymbol{\beta})$	$\mathbf{0 . 2 6 0 1}$	0.1664	1.5633

$\mathrm{R}^{2}=0.0995$ (a higher value driven mainly by the market factor).
Now, t -stat $=1.56(p$-value $=.119)$. We say:
"After controlling for other factors that affect Kellogg's excess returns, we do not find evidence of EE at the 5\% significance level."
$\Rightarrow \underline{\text { Usual interpretation: }}$ No EE for K .
We also see a lower sensitivity, $\beta: 0.2601$. I

Example (continuation): IBM's EE (with 3 FF factors):

	Coefficients	Std Error	t-stat
Intercept	-0.2894	0.3180	-0.9102
$\boldsymbol{S}_{\boldsymbol{t}}(\boldsymbol{\beta})$	0.3963	0.1966	2.0157
Market $\left(\mathbf{R}_{\mathbf{m}}-\mathbf{R}_{\mathbf{f}}\right)$	0.9506	0.0764	$\mathbf{1 2 . 4 3 6 3}$
Size (SMB)	-0.2557	0.1062	$\mathbf{- 2 . 4 0 8 5}$
B-M (HML)	-0.1154	0.1006	-1.1471

$\mathrm{R}^{2}=0.3092$.

The t-stat $=2.01(p$-value $=.045)$.
\Rightarrow Usual interpretation: IBM faces EE.

Again, we see a big reduction in lower sensitivity, $\beta: 0.3963 .9$

EE: Evidence

The above regression (for K) has been done for firms around the world.

Results from work by Ivanova (2014):

- Mean $\beta=0.57$ (a 1% USD depreciation increases returns by 0.57%).
- But, only $\mathbf{4 0 \%}$ of the EE are statistically significant at the 5% level.
- For large firms (MNCs), EE is small -average $\beta=0.063-\&$ not significant at the 5% level.
- $\mathbf{5 2 \%}$ of the EEs come from U.S. firms that have no international transactions (a higher S_{t} "protects" these domestic firms).

Summary:

- On average, large companies (MNCs, Fortune 500) face no EE.
- EE is a problem of small and medium, undiversified firms.

EE: Evidence

- Check Ivanova's results for big firms, using the S\&P 100.

We regress SP100 returns from past 38 years (1984:Apr - 2022:Jan) against s_{t} (USD/TWC) \& the 3 FF factors:
$\mathrm{R}^{2}=0.9664$
Standard Error $=0.8136$
Observations $=454$

	Coefficients	Std Error	t-stat	P-value
Intercept	-0.0247	0.0389	-0.6357	0.5253
$\boldsymbol{s}_{\boldsymbol{t}}$	-0.0225	0.0231	-0.9756	0.3298
Market $-\mathbf{r}_{\mathbf{f}}$	0.9988	0.0090	110.5233	$>.00001$
SMB	-0.2459	0.0133	-18.4659	$>.00001$
HML	0.0068	0.0126	0.5381	0.5907

Since $\left|t_{\beta}=-0.98\right|<1.96 \Rightarrow$ No evidence of EE for big U.S. firms.

CASE 2 - Hedging TE (Payable)

- Two parts - Group assignment (DW's hedging problem)
- Class assignment
- Group assignment

DW ordered Japanese parts valued at JPY 200M.
Payment: Delivery usually takes two months. Payment is due within 30 days of delivery (tentative delivery payment date April 17).

PART I

Today: December 6, DW evaluates risk \& hedging strategies.

- Risk evaluation: Construct Ranges, VaR
- Hedging strategies: Options, \& Forwards.

- Group assignment (continuation)

PART II

Today: May 6. Parts arrived on April 11. Payment is due in five days (May 11). Evaluate cost of different hedging strategies.

- Class assignment

Get JPY/USD FX rate data from my homepage (database2.xlsx).
\diamond Evaluate Risk, with 10 years of data (adjust monthly frequency to 5-mo):

- Construct a VaR (97.5\%) assuming a Normal distribution
- Worst/Best Case Scenarios
- Construct a VaR (97.5\%) using a simulation
\diamond On December 6, 2012, you do a 6-mo futures hedge. DW buys the JPY Dec futures contract. Value this contract on May 6, 2013.
\diamond On December 6, 2012, you do a 6-mo MM hedge. Calculate the cost on May 6, 2013. (Need to discount CFs back to May 6, 2013.)

[^0]: - Last Class
 - Hedging Market-based Tools:
 - Futures/Forward: Completely eliminates uncertainty
 - UP: short in the foreign currency.

 HP: long in currency futures.
 \bullet UP: long in the foreign currency.
 HP: short in currency futures.

 - Options: Reduces uncertainty. How much? It depends on X.
 - UP: short in the foreign currency.

 HP: long in currency calls.

 - UP: long in the foreign currency.

 HP: long in currency puts.

