

© R. Susmel, 2024 (for private use, not to be posted/shared online).

Review - Purchasing Power Parity (PPP)

• Notation and definitions:

The exchange rate is a price: The relative price of two currencies.

Example: On October 30, 2024, the price of a euro (EUR) in terms of USD was USD 1.09 per EUR \Rightarrow EUR 1 = USD 1.09

<u>Notation</u>: S_t = Exchange rate = 1.09 USD/EUR.

We use the "direct notation" for S_t :

 S_t = Units of domestic currency per unit of foreign currency.

The percentage change at time t of S_t is $e_{f,t}$. As usual, we will define $e_{f,t}$ with the log change of S_t .

Review - Purchasing Power Parity (PPP)

• **PPP** is based on the **law of one price** (LOOP): Baskets of goods, once denominated in the same currency, should have the same price. If they are not, then traders can profit with pseudo-arbitrage strategies.

Absolute version of PPP.

The FX rate between two currencies is simply the ratio of the two countries' general price levels:

 S_t^{PPP} = Domestic Price level / Foreign Price level = P_d/P_f

Relative PPP

The rate of change in the prices of products should be similar when measured in a common currency (as long as trade frictions are unchanged):

$$e_{f,t} \approx e_{f,t}^{PPP} \approx I_d - I_f$$

PPP: Equilibrium Exchange Rate

<u>PPP Notes :</u>

- PPP gives an *equilibrium* exchange rate. Equilibrium will be reached when there is no trade in the basket (because of mispricing). That is, when the PPP holds for the same basket.
- PPP is telling what S_t should be (in equilibrium). It is not telling what S_t is in the market today.

Testing PPP:

Absolute version: Easily Rejected. The assumptions behind Relative PPP are seen as questionable, especially, no trade frictions.

Relative version: This is what the first part of the project does.

- Visual tests (check scatter plot of $e_{f,t}$ vs $(I_d - I_f)$ & plot R_t over time)

- Statistical tests

PPP: Relative Version • If Relative PPP holds, we should see a 45° line (PPP Line) when we plot $e_{f,t} \otimes I_d - I_f$. Recall Relative PPP: $e_{f,t}^{PPP} \approx I_d - I_f$ $I_d - I_f$ $I_d - I_f$ $e_{f,t}$ (DC/FC)

PPP: Relative Version

• We define the Real exchange rate, R_t :

$$R_t = \frac{S_t * P_f}{P_d}$$

If $R_t = 1$, foreign goods, once translated to domestic currency, have the same price as domestic goods. If $R_t > 1$ ($R_t < 1$), foreign goods, once translated to DC, are more (less) expensive than domestic goods.

• Under relative PPP, R_t should be constant. (Under Absolute PPP, $R_t = 1$).

We usually associate R_t with under/over-valuation:

- If R_t is over the mean, we consider the foreign currency overvalued (under Absolute PPP, if $R_t > 1$).

- If R_t is under the mean, we consider the domestic currency overvalued (under Absolute PPP, if $R_t < 1$).

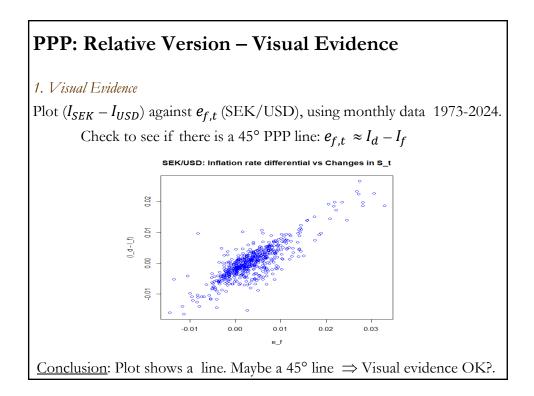
PPP: Relative Version – Visual Evidence

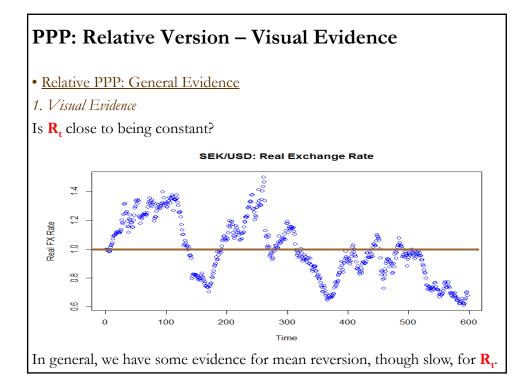
• Data: Monthly Swedish & U.S. data (1/1973 - 7/2024): CPI and S_t

FMX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv", head=TRUE, sep=",") x_date <- FMX_da\$Date us_CPI <- FMX_da\$US_CPI swed_CPI <- FMX_da\$SWED_CPI S_sek <- FMX_da\$SEK_USD T <- length(us_CPI)

us_I <- log(us_CPI[-1]/us_CPI[-T]) swed_I <- log(swed_CPI[-1]/swed_CPI[-T]) e_sek <- log(S_sek[-1]/S_sek[-T]) inf_d <- swed_I - us_I

plot(e_sek, inf_d, col="blue", ylab ="(I_d - I_f)", xlab ="e_f") title("SEK/USD: Inflation rate differential vs Changes in S_t")





PPP: Relative Version – Statistical Evidence

2. Statistical Evidence
We use a regression. Recall that, on average, e_{f,t} ≈ e^{PPP}_{f,t} ≈ I_d - I_f e_{f,t} = (S_{t+T} - S_t)/S_t = α + β (I_d - I_f)_t + ε_t,
The null hypothesis is: H₀ (Relative PPP true): α=0 and β=1 H₁ (Relative PPP not true): α≠0 and/or β≠1
Tests:

t-test (individual tests: H₀: α=0 and H₀: β=1)
Wald-test (joint test: H₀ (Relative PPP true): α=0 and β=1)

Adequacy of Model: But before testing PPP, we check the adequacy of model: outliers, multicollinearity, normality of residuals, heteroscedasticity, autocorrelation, & structural change.

PPP: Relative Version – Regression

Example: SEK/USD fit_ppp <- lm(e_sek ~ inf_d)

PPP-based regression

Coefficients:

> summary(fit_ppp)

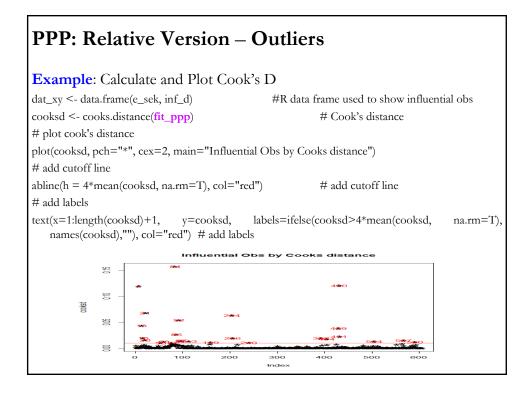
 Estimate
 Std. Error t value Pr(>|t|)

 (Intercept)
 0.0032676
 0.0001351
 24.19
 <2e-16 ***</td>

 inf_d
 0.8960097
 0.0245413
 36.51
 <2e-16 ***</td>

Residual standard error: 0.003321 on 604 degrees of freedom Multiple R-squared: 0.6882, Adjusted R-squared: 0.6877 F-statistic: 1333 on 1 and 604 DF, p-value: < 2.2e-16

<u>Conclusion</u>: High R², F-stat and t-stats. A good sign for the Relative PPP model.



PPP: Relative Version – Outliers

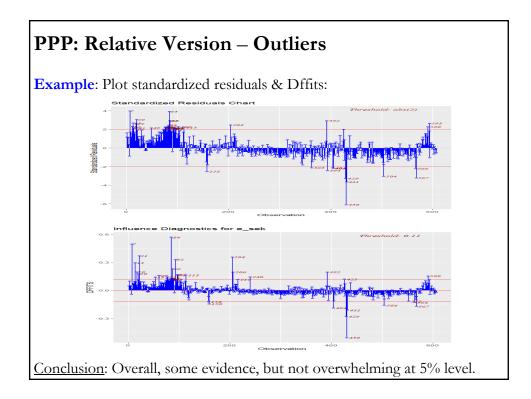
Example: Calculate Rule of Thumbs library(olsrr) x_resid <- residuals(fit_ppp) x_stand_resid <- x_resid/sd(x_resid) > sum(x_stand_resid > 2) [1] 30 x_lev <- ols_leverage(fit_ppp) > sum(x_lev > (2*k+2)/T) [1] 25 > sum(cooksd > 4/T)

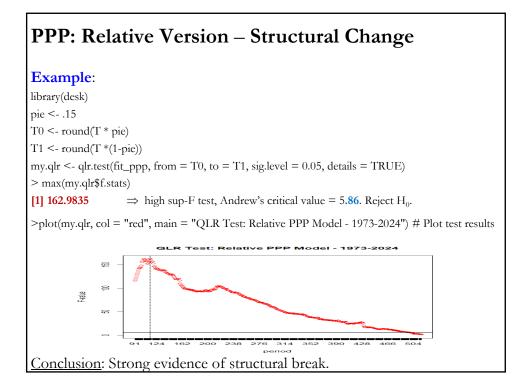
[1] 37

plots
ols_plot_resid_stand(fit_ppp)
ols_plot_dffits(fit_ppp)

need to install package olsrr
extract residuals from lm (mod)
standardized residuals
Rule of thumb count (5% is OK)
⇒ very low number 17/596 = 0.04942339
leverage residuals
Rule of thumb count (5% is OK)
⇒ low number 26/596 = 0.0118616
Rule of thumb count (5% is OK)
⇒ in the margin: 33/596 = 0.06095552

Plot standardized residuals# Plot Difference in fitted values

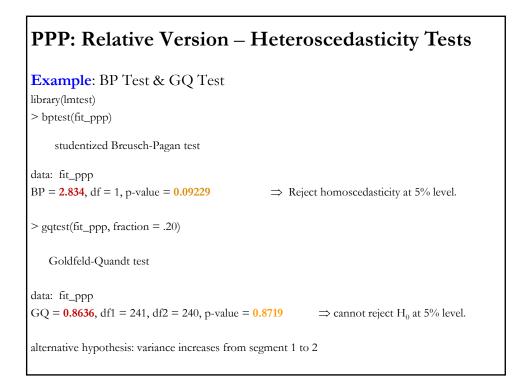




PPP: Relative Version – Normality of Residuals Example: I will use the *jarque.bera.test* from the *tseries* package library(tseries) # Do not forget to install package tseries $e_s <-$ fit_ppp\$residuals jarque.bera.test(e_s) Jarque Bera Test data: e_s X-squared = **304.98**, df = 2, p-value < 2.2e-16 \Rightarrow reject normality at 5% level. <u>Conclusion</u>: Residuals are not normal. Tests should be done using asymptotic distributions or, if possible, bootstraps.

PPP: Relative Version – Heteroscedasticity Tests Example: LB test for squared residuals > Box.test(e_s2, lag=4, type="Ljung-Box") Box-Ljung test data: e_s2 X-squared = 11.476, df = 4, p-value = 0.02171 ⇒ reject homoscedasticity at 5% level. > Box.test(e_s2, lag=12, type="Ljung-Box") Box-Ljung test data: e_s2 X-squared = 15.417, df = 12, p-value = 0.2194 ⇒ cannot reject homoscedasticity at 5% level. Conclusion: There is some evidence of structural change in the variance (GQ test) and time-varying heteroscedasticity (LB test with 4 lags).

PPP: Relative Version – Heteroscedasticity Tests **Example**:. White Test e_s2 <- e_s^2 # Step 2 - squared residuals $inf_d2 \le inf_d^2$ fit_W <- lm (e_s2 ~ inf_d + inf_d2) # Step 2 – Auxiliary regression b_W <- fit_W\$coefficients $m_df \le length(b_W) - 1$ # degrees of freedom Re_2 <- summary(fit_W)\$r.squared # Step 2 – Keep R^2 from Auxiliary reg $LM_W_{test} \le Re_2 * T$ # Step 3 – Compute LM Test: R^2 * T LM_W_test 16.01068 $p_val <-1 - pchisq(LM_W_test, df = m_df)$ # p-value of LM_test p_val [1] 0.0003336764 \Rightarrow reject homoscedasticity at 5% level.



PPP: Relative Version – Autocorrelation Tests Example: LM BG test for residuals with 4 and 12 lags > bgtest(fit_ppp, order=4) Breusch-Godfrey test for serial correlation of order up to 4 data: fit_ppp LM test = 273.75, df = 4, p-value < 2.2e-16 ⇒ cannot reject no autocorrelation at 5% level. > bgtest(fit_ppp, order=12) Breusch-Godfrey test for serial correlation of order up to 12 data: fit_ppp LM test = 298.2, df = 12, p-value = 2.2e-16 ⇒ cannot reject no autocorrelation at 5% level. <u>Conclusion</u>: There is stogn evidence for autocorrelation using 4 and 12 lags.

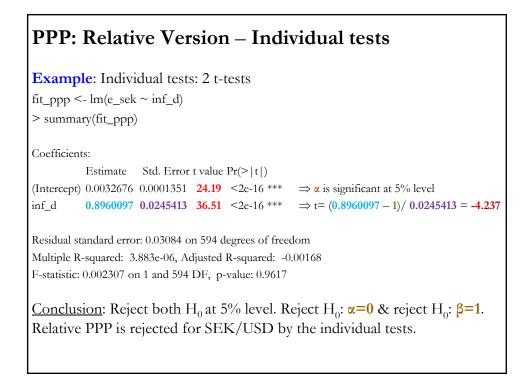
PPP: Relative Version – DW Tests

Example: DW test for first-order --AR(1)– autocorrelation > dwtest(fit_ppp)

Durbin-Watson test

data: fit_ppp DW = 0.70747, p-value = 2.2e-16 \Rightarrow reject no autocorrelation at 5% level alternative hypothesis: true autocorrelation is greater than 0

Conclusion: There is evidence for AR(1) autocorrelation.



PPP: Relative Version – Joint Tests

PPP: Relative Version – Joint Tests

Example:

<u>Conclusion from individual tests</u>: Cannot reject H_0 : $\alpha = 0$; but reject H_0 : $\beta = 1$ at 5% level.

<u>Conclusion from joint tests</u>: Reject H_0 : $\alpha = 0 \& \beta = 1$ at 5% level.

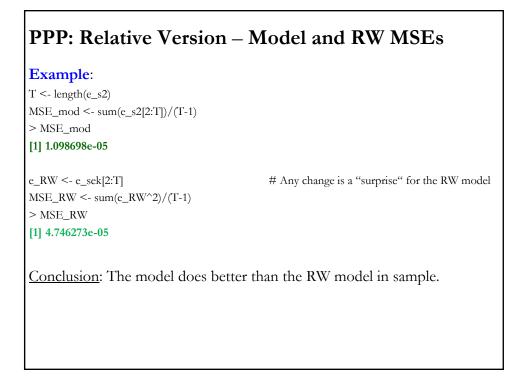
From both tests, we reject Relative PPP for the SEK/USD exchange rate. This is the usual result, especially in the short-run. In the long-run, there is a debate about its validity. Researchers find that currencies with high inflation rate differentials tend to depreciate.

PPP: Relative Version – Individual Tests: NW SE

```
Example:
```

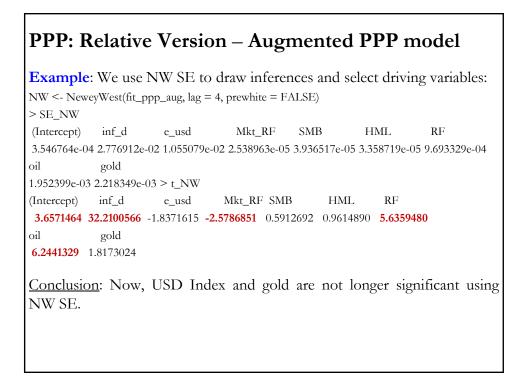
library(sandwich) NW <- NeweyWest(fit_ppp, lag = 12, prewhite = FALSE) SE_NW <- diag(sqrt(abs(NW))) t_NW <- b_sek/SE_NW > SE_NW (Intercept) inf_d 0.001412006 0.242248013 > t_NW (Intercept) inf_d 9.369341 26.553783

<u>Conclusion from individual tests</u>: No change in our results. Using SE that correct for autocorrelation and heteroscedasticy, we reject H_0 : $\alpha = 0$ and reject H_0 : $\beta = 1$ at 5% level.



PPP: Relative Version – Augmented PPP model

Example: We augment the PPP Model with the FF factors, RF, and log changes in USD Index, crude oil prices and gold prices. fit_ppp_aug <- lm(e_sek ~ inf_d + e_usd + Mkt_RF + SMB + HML + RF + oil + gold) > summary(fit_ppp_aug) Estimate Std. Error t value Pr(>|t|)(Intercept) 1.297e-03 1.731e-04 7.491 2.46e-13 *** inf_d 8.944e-01 1.975e-02 45.298 < 2e-16 *** e_usd -1.938e-02 8.640e-03 -2.244 0.02523 * Mkt_RF -6.547e-05 2.473e-05 -2.647 0.00833 ** SMB 2.328e-05 3.668e-05 0.635 0.52592 HML 3.229e-05 3.539e-05 0.912 0.36190 RF 5.463e-03 3.795e-04 14.394 < 2e-16 *** oil 1.219e-02 1.189e-03 10.253 < 2e-16 *** 4.031e-03 1.898e-03 2.125 0.03403 * gold ---Residual standard error: 0.002623 on 597 degrees of freedom Multiple R-squared: 0.8078, Adjusted R-squared: 0.8052 F-statistic: 313.6 on 8 and 597 DF, p-value: < 2.2e-16



PPP: Relative Version – Specific Model

Example: We estimate the reduced augmented (specific) model fit_ppp_red <- lm(e_sek ~ inf_d + Mkt_RF + RF + oil) > summary(fit_ppp_red) Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 1.334e-03 1.733e-04 7.699 5.66e-14 *** inf_d 8.908e-01 1.970e-02 45.232 < 2e-16 *** Mkt_RF -5.937e-05 2.332e-05 -2.546 0.0111 * RF 5.313e-03 3.766e-04 14.108 < 2e-16 *** 1.327e-02 1.147e-03 **11.569** < 2e-16 *** oil ___ Residual standard error: 0.002638 on 601 degrees of freedom Multiple R-squared: 0.8042, Adjusted R-squared: 0.8029 F-statistic: 617 on 4 and 601 DF, p-value: < 2.2e-16 ⇒ MSE = 46.89701e-06 < MSE(RW) Note: Only the Market factor is negatively related to e_sek.

Relative PPP: Specific Model - Estimation Period Example: Estimation period estimation (1973:Feb - 2019:Dec) y <- e_sek xx <- cbind(inf_d, Mkt_RF, RF, oil) T0 <- 1 T1 <- 552 # End of Estimation Period (Dec 2019) T2 <- T1+1 # Start of Validation Period (Jan 2020) y1 <- y[T0:T1] x1 <- xx[T0:T1,] fit_ppp_est <- $lm(y1 \sim x1)$ # Estimation Period Regression b_est <- fit_ppp_est\$coefficients # Extract OLS coefficients from regression summary(fit_ppp_est)

Relative PPP: Specific Model - Estimation Period

Example: Estimation period estimation (1973:Feb - 2019:Dec) > summary(fit_ppp_est)

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

((Intercept) 9.264e-04 1.820e-04 5.092 4.89e-07 ***

x1inf_d 8.862e-01 2.023e-02 43.814 < 2e-16 ***

x1Mkt_RF -4.813e-05 2.407e-05 -2.000 0.046 *

x1RF 5.980e-03 3.804e-04 15.719 < 2e-16 ***

x1oil 1.373e-02 1.272e-03 10.793 < 2e-16 ***

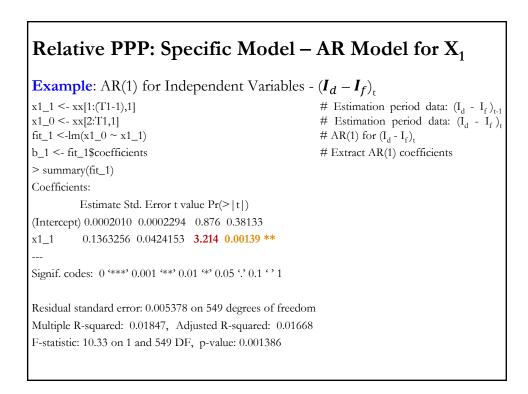
---

Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1

Residual standard error: 0.002545 on 547 degrees of freedom

Multiple R-squared: 0.8148, Adjusted R-squared: 0.8135

F-statistic: 601.7 on 4 and 547 DF, p-value: < 2.2e-16
```



Relative PPP: Specific Model – AR Model for X₂

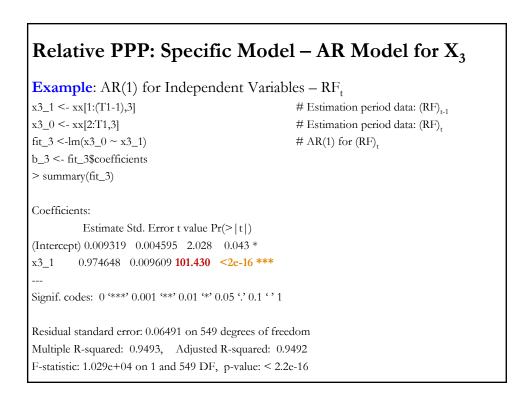
Example: AR(1) for Independent Variables - Mkt_RF_t

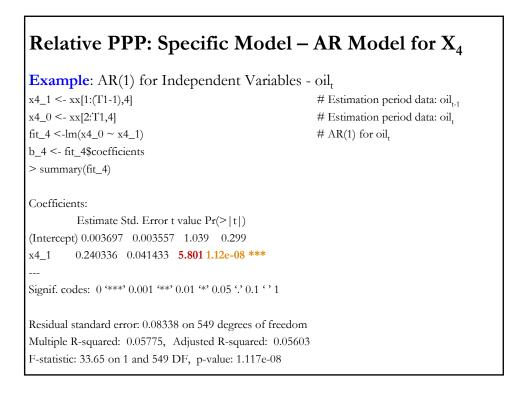
x2_1 <- xx[1:(T1-1),2] x2_0 <- xx[2:T1,2] fit_2 <- lm(x2_0 ~ x2_1) b_2 <- fit_2\$coefficients > summary(fit_2) # Estimation period data: Mkt_RF_{t-1}
Estimation period data: Mkt_RF_t
AR(1) for Mkt_RF_t

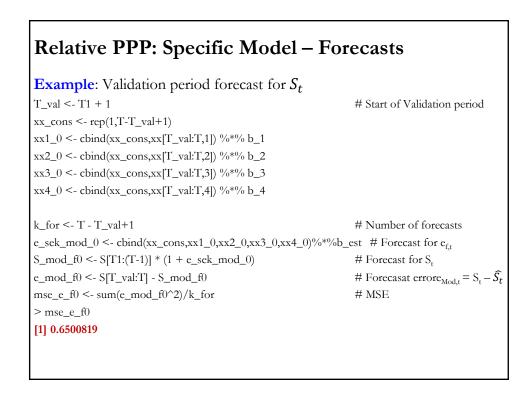
Coefficients:

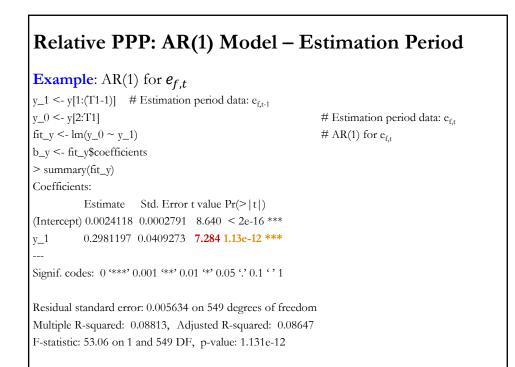
Estimate Std. Error t value Pr(>|t|) (Intercept) 0.52978 0.19429 2.727 0.0066 ** x2_1 0.05756 0.04267 1.349 0.1779 ---Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 `.' 0.1 `.' 1

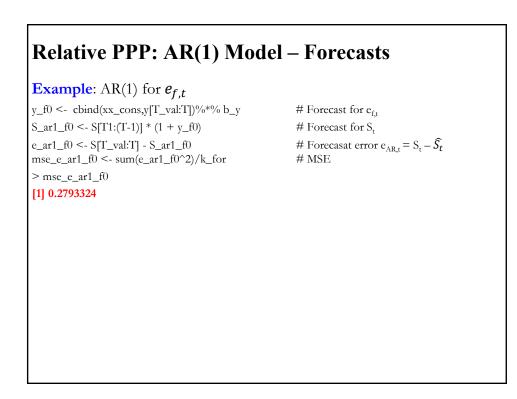
Residual standard error: 4.529 on 549 degrees of freedom Multiple R-squared: 0.003304, Adjusted R-squared: 0.001488 F-statistic: 1.82 on 1 and 549 DF, p-value: 0.1779











Relative PPP: Random Walk Model – Forecasts

Example: Random Walk Model for $e_{f,t}$ e_rw_f0 <- S[T_val:T] - S[T1:(T-1)] mse_e_rw_f0 <- sum(e_rw_f0^2)/k_for

Error for RW model $e_{RW,t} = S_t - S_{t-1}$

> mse_e_rw_f0 [1] 0.7792084

Relative PPP: MGN/HLN Tests

Example: Testing accuracy of forecasts. 1) Mod vs RW $z_mgn \le e_rw_f0 + e_mod_f0$ $x_mgn \le e_rw_f0 - e_mod_f0$ fit_mgn <- $lm(z_mgn \sim x_mgn)$ > summary(fit_mgn) Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 0.9134 0.3709 2.463 0.0171 * x_mgn -1.0089 1.3920 **-0.725** 0.4718 \Rightarrow not significant: similar MSEs! Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1 Residual standard error: 1.541 on 52 degrees of freedom Multiple R-squared: 0.01, Adjusted R-squared: -0.009038 F-statistic: 0.5253 on 1 and 52 DF, p-value: 0.4718

