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Post-Midterm 1
Regression Review 

Brooks (4th edition): Chapters 3, 4 & 5

© R. Susmel, 2023 (for private use, not to be posted/shared online).

• Classical linear regression model (CLM) - Assumptions:

(A1) DGP: 𝒚 = X  +  is correctly specified (& linear!). 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X) = k, where T ≥ k.

Objective function: S(𝒙; ) = ∑ 𝜀௜
ଶ்

௜ୀଵ = ′ = (𝒚 – X)′ (𝒚 – X)
 b = (X′X)-1 X′ 𝒚 (𝑘x1) vector

• b is an estimate of the marginal effect (first derivative) on (A1).

Review: CLM & OLS
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Review: Properties of OLS b

• b = (X′X)-1X′ 𝒚  b is a (linear) function of the data.

• Under the typical assumptions, we can establish properties for b.

1) E[b|X] =  –b is unbiased. (b is a kx1 matrix)

2) Var[b|X] = σ2 (X′X)-1 (a 𝑘x𝑘 matrix)

3) Gauss-Markov Theorem: b is BLUE (Best Linear Unbiased 
Estimator). No other linear & unbiased estimator has a lower variance.

4) If (A5) |X ~ i.i.d. N(0, σ2IT)  b|X ~ i.i.d. N(, σ2 (X’ X)-1)
b௞|X ~ N(𝑘, v௞

ଶ)
SD[b𝑘|X]=√{[σ2(X’X)-1]kk}

Note: We use the distribution of b|X to derive the distribution of 
tests (t, F, and Wald) to draw inferences.

5) If (A5) is not assumed, we still can obtain a (limiting) distribution 
for b. Under additional assumptions –mainly, the matrix X′X does not 
explode as T becomes large–, as T→ ∞, 

(i)  b
௣
→  (b is consistent)

(ii) b
௔
→ N(, σ2 (X’ X)-1) (b is asymptotically normal)

• Properties (1)-(4) are called finite (or small) sample properties.

• Properties (5.i) and (5.ii) are called asymptotic properties, they only 
hold when T is large (actually, as T → ∞). We use (5.ii) to draw 
inferences.

Note: If not sure about the applicability of the asymptotic distribution, 
use bootstrap to draw inferences. 

Review: Properties of OLS b
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• OLS estimates  with b. Now, we define fitted values as: 

𝒚ෝ = 𝑿 b

Now we define the estimated error, 𝒆 (also called residuals):

𝒆 = 𝒚 – 𝒚ෝ

It can be shown that 𝒆 is uncorrelated with 𝑿: 𝑿ᇱ𝒆 = 0   𝒆  𝑿

• Using 𝒆, we define a measure of unexplained variation:

Residual Sum of Squares (RSS) = 𝒆ᇱ𝒆 = ∑ 𝑒௜ଶ௜

• We use RSS to calculate 𝑠ଶ, the unbiased estimator of σ2:

𝑠ଶ = RSS/ /(T – 𝑘) = ∑ 𝑒௜ଶ௜ /(T – 𝑘)] ൌ 𝒆ᇱ𝒆/(𝑇 െ 𝑘)

• Then, the estimator of  Var[b|𝑿] = 𝑠ଶ (𝑿′𝑿)-1

Review: Fitted Values, Residuals & s2

• We use RSS to measure how much the model explains the variation 
of 𝑦. We define variation of 𝑦 as TSS: 

TSS = ∑ ሺ𝑦௜௜ െ 𝑦തሻଶ

• Decomposition of total variation (assume X1 = ί –a constant.)

TSS = SSR + RSS (SSR: Regression Sum of Squares)

• R-squared (R2)
R2 = SSR/TSS = Regression variation/Total variation 
R2 = 1 – RSS/ TSS

With a constant in the model, R2 lies between 0 and 1. It measures 
how much of total variation of 𝑦 is explained by the regression (SSR). 

Review: Goodness of Fit – R2 & Adjusted R2
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• Main problem with R2: R2 never falls when regressors (say z) are 
added to the regression. This occurs because RSS decreases with 
more information.

Solution: Incorporate a penalty for number of parameters in R2. This 
is what Adjusted-R2 does:

𝑅2 = 1 െ  ௦మ 

TSS/(T – 1) ሺ𝑠ଶ = RSS/(T – 𝑘ሻሻ

There is a trade-off in 𝑠ଶ: higher 𝑘 decreases numerator, RSS, but, it 
also decreases denominator, ሺ𝑇 െ 𝑘ሻ.

 maximizing 𝑅2  <=> minimizing [RSS/(T – 𝑘)] = 𝑠ଶ 

We can use 𝑅2 to compare models. There are other popular goodness 
of fit measures with penalties for number of parameters: AIC & BIC.

Review: Goodness of Fit – R2 & Adjusted R2

• We are interested in testing a hypothesis about one parameter in our 
linear model: 𝒚 = X + 

1. Set H0 and H1 (about only one parameter): H0: 𝑘 = ௞
଴

H1: 𝑘≠ ௞
଴

2. Appropriate T(X): t-statistic:

𝑡௞ ൌ 
௕ೖ – ೖబ
௦್,ೖ

  ~ 𝑡்ି௞.

3. Compute 𝑡௞ , t,̂ using 𝑏௞, ௞
଴ , s, and (𝑿′𝑿)-1. Get p-value(t)̂.

4. Rule: Set an α level. If p-value(t)̂ < α  Reject H0: 𝑘 = ௞
଴

Alternatively, if |t|̂> 𝑡்ି௞,ଵି஑/ଶ  Reject H0: 𝑘 = ௞
଴

Review: Testing Only One Parameter  
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• Special case: H0: 𝑘 = 0

H1: 𝑘≠ 0.

Then,

𝑡௞  =  
௕ೖ
௦್,ೖ

 ~  𝑡்ି௞

This special case of 𝑡௞ is called the t-value or t-ratio (also “t-stats”). 

• Usually, α = 5%, when 𝑇 െ 𝑘 > 30, then 𝑡்ି௞,ଵି஑/ଶ = 1.96

Rule for α = 5%: if | t ̂𝑘 
|> 1.96 ≈ 2, test is “significant” ( 𝑘≠ 0).

Note: t-distribution is symmetric. Then,

|𝑡்ି௞,஑/ଶ| = 𝑡்ି௞,ଵି஑/ଶ

Review: Testing Only One Parameter  

Example: We test the CAPM for GE. Recall that the CAPM states: 

E[𝑟௜ୀீா,௧ – 𝑟௙] = ௜ୀீா E[(𝑟௠,௧ – 𝑟௙)].

According to the CAPM, equilibrium excess returns are only 
determined by excess market returns –i.e., the CAPM is a one factor 
model. There is no constant or extra factors besides the market.

A linear data generating process (DGP) consistent with the CAPM is: 
(𝑟 ா,௧ – 𝑟௙) = αீா + ீா  (𝑟௠,௧ – 𝑟௙) + ீா,௧,  𝑡 = 1, …,T

Thus, we test the CAPM by testing H0 (CAPM holds): αGE = 0 

H1 (CAPM rejected): αGE ≠ 0.

SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",") 

x_ge <- SFX_da$GE # Extract IBM price data 

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)

x_RF <- SFX_da$RF # Extract risk free rate (in %)

OLS Estimation – Testing the CAPM
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Example (continuation): 
T <- length(x_ge) # Sample size

lr_ge <- log(x_ge[-1]/x_ge[-T]) #  Log returns for IBM (lost one observation)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

RF <- x_RF[-1]/100

ge_x <- lr_ge – RF # Define excess returns for IBM

fit_ge_capm <- lm(ge_x ~ Mkt_RF) # OLS estimation with lm package in R

> summary(fit_ge_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.007338   0.002275  -3.225  0.00133 **  |t0| > 1.96  Reject (one-factor) CAPM.

xMkt_RF 1.129255   0.049291  22.910  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Q: Is the intercept (αGE) equal to 0 (H0: αGE = 0)? Use the t-value: 

t ̂௞ = 𝑏௞/Est. SE[𝑏௞] = -3.225  |t0̂| > 1.96  Reject H0

OLS Estimation – Testing the CAPM

Example (continuation): 

 |𝑡̂α| > 1.96  Reject H0 (CAPM) at 5% level

Conclusion: The CAPM is rejected for IBM at the 5% level. 

Note: You can also reject H0 by looking at the p-value of intercept. 

Interpretation: Given that the intercept is significant (& negative). GE 
underperformed relative to what the CAPM expected:

- GE excess returns: mean(ge_x) = -0.0009589826

- GE excess returns (CAPM) = 1.129255 * mean(Mkt_RF) 

= 1.129255 * 0.0056489 = 0.006378998 

- Ex-post difference: -0.000959 - 0.006379 = -0.007338 (≈ αGE) 

OLS Estimation – Testing the CAPM
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• The CAPM is routinely rejected. A popular alternative is the 
empirically derived 3-Factor Fama-French Model (1993) with:

a) Size factor (SMB) measured as returns of small (size portfolio) 
minus returns of big (size portfolio)

b) Value factor or book-to-market factor (HML), measured as returns 
of high (B/M portfolio) minus returns of low (B/M portfolio). 

• Then, a linear DGP generating this model is:

(𝑟௜,௧ – 𝑟௙) = 𝛼 + 1 (𝑟௠,௧ – 𝑟௙) + 2 𝑆𝑀𝐵௧ + 3  𝐻𝑀𝐿௧ + ௧.

• Under this model, the main drivers of expected returns are 
sensitivity to the market, sensitivity to size, and sensitivity to value 
stocks, as measured by the book-to-market ratio.

OLS Estimation – The 3-Factor F-F Model

• The 3-factor FF model produces expected excess returns:
E[𝑟௜,௧ – 𝑟௙] = βଵ E[𝑟௠,௧ – 𝑟௙] + βଶ E[𝑆𝑀𝐵௧] + βଷ E[𝐻𝑀𝐿௧] 

A significant constant would be evidence against this model: 
something is missing in the model.

• In 2014, Fama & French added two more factors: RMW & CMA.
- RMW measures the return of the portfolio of most profitable firms 
(“robust”) minus the portfolio least profitable (“weak”).
- CMA measures the return of a portfolio of firms that invest 
conservatively minus a portfolio of firms that invest aggressively.

• Again, the 5-factor FF model produces expected excess returns:
E[𝑟௜,௧ – 𝑟௙] = βଵ E[𝑟௠,௧ – 𝑟௙] + βଶ E[𝑆𝑀𝐵௧] + βଷ E[𝐻𝑀𝐿௧] +

+ βସ E[𝑅𝑀𝑊௧] + βହ E[𝐶𝑀𝐴௧]

OLS Estimation – The 3-Factor F-F Model
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Example: For the 3-Factor Fama-French Model for GE returns we 
want to test if the 3 F-F factors are significant. The model:

(𝑟 ா,௧ – 𝑟௙) = 𝛼 + β1 (𝑟௠,௧ – 𝑟௙) + 2 𝑆𝑀𝐵௧ + 3  𝐻𝑀𝐿௧ + ௧.

Before testing H0: 1 = 1, we check the adequacy of the model: 

- Check R2 and interpret it

- Goodness of Fit test and interpret it

- Signs of coefficients and interpret them.

Then, we test

H0: 1 = 1 

H1: 1 ≠ 1. 

Review: Is GE’s Beta equal to 1?

Example (continuation): using lm function in R
fit_ge_ff3 <- lm(ge_x ~ Mkt_RF + SMB + HML) # Regress ge_x against 3 F-F factors

> summary(fit_ge_ff3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.008239   0.002219 -3.712 0.000226 ***  |t0|> 1.96  Reject 3-factor FF model?

Mkt_RF 1.236430 0.050783  24.348 < 2e-16 ***  |t1|> 1.96  Mkt_RF significant

SMB      -0.318929 0.075303 -4.235 2.67e-05 ***  |t2|> 1.96  Mkt_RF significant

HML    0.358122 0.075389   4.750 2.58e-06 ***  |t3|> 1.96  Mkt_RF significant

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05219 on 565 degrees of freedom

Multiple R-squared: 0.5143, Adjusted R-squared:  0.5117 

F-statistic: 199.4 on 3 and 565 DF,  p-value: < 2.2e-16

Interpretation of 1:  A 1% increase in Mkt_RF increases GE excess 
returns by 1.24%.

Review: Is GE’s Beta equal to 1?
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Example (continuation): using lm function in R

Interpretation of R2:  The 3 F-F factors explain 51% of the variability 
of GE returns.

Interpretation of F-test (Goodness of Fit Test): 

F-statistic: 199.4 on 3 and 565 DF,  p-value: < 2.2e-16

 Very low p-value. That is, strong rejection of  H0: (No joint 
significance of 3 F-F factors).

The t-stats point out that the 3 F-F factors are significant drivers of 
GE excess returns.

Interpretation of constant (αGE): The significant constant signals that 
something is missing from the model. It constant, αGE, is also 
negative: GE underperformed relative to the 3-factor F-F model.

Review: Is GE’s Beta equal to 1?

Example (continuation):

• Q: Is GE’s market beta (1) equal to 1? That is,

H0: 1 = 1 vs.  

H1: 1 ≠ 1 

 t1̂ = 
௕భ – భబ 

௦್,ೖ 
 = 

1.28643 – 1
0.050783 = 4.655733

Decision Rule:

|t1̂ = 4.6557| > 1.96  Reject H0: 1 = 1 at 5% level.

Conclusion: GE systematic market risk is greater than the market.

Note: t̂1 can be calculated using summary(fit_ge)$coef, which gets the whole lm matrix.
> t_b_1 <- (summary(fit_ge_ff3)$coef[2,1] - 1)/summary(fit_ge)$coef[2,2]

> t_b_1

[1] 4.655733

Review: Is GE’s Beta equal to 1?
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Example (continuation):

• (1 െ α/2)% CI for GE’s market beta (k): 

[𝑏௞ + 𝑡்ି௞,஑/ଶ * Est SE(𝑏௞),  𝑏௞ + 𝑡்ି௞,ଵି஑/ଶ * Est SE(𝑏௞)] 

For α = 5%:

 [1.28643 – 1.96 * 0.050783 , 1.28643 + 1.96 * 0.050783 ] =

1 ∈ [1.186895, 1.385965] with 95% confidence

Clearly, 1 = 1 is outside the range   GE is riskier than the market.

Review: Is GE’s Beta equal to 1?

Review: General Linear Hypothesis – H0: R = q

• Suppose we are interested in testing J joint hypotheses.

Example:  We want to test that in the 3 FF factor model that the 
SMB and HML factors have the same coefficients, SMB = HML = 0.

We can write linear restrictions as H0: R – q = 0,

where R is a Jx𝑘 matrix and q a Jx1 vector.

In the above example (J=2), we write:

0 0 1 0
0 0 0 1

∗

ଵ
ெ௞௧
ௌெ஻
ுெ௅

=
଴

଴
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• Q: Is Rb – q close to 0? Two different approaches to this questions. 

Approach (1). Wald test.

We base the answer on the discrepancy vector:  

m = Rb – q. 

Then, we construct a Wald statistic:

𝑊 = m (Var[m|X])-1 m 

to test if m is different from 0.

𝑊* = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

- If (A5) is assumed: F = 𝑊*/J ~ 𝐹௃,்ି௞ .

- If (A5) is not assumed, results are only asymptotic: J * F
ௗ
→ χ௃

ଶ

Review: General Linear Hypothesis – H0: R = q

21

Example: In the 3 FF factor model for GE (T=571), we test:

H0: Mkt = 1, SMB = -0.1 and HML = 0.3.

H1: Mkt് 1 and/or SMB് -0.1 and/or HML് 0.3.    J = 3

library(car)

linearHypothesis(fit_ge_ff3, c("Mkt_RF = 1","SMB = -0.1", "HML= 0.3"), test="F") # exact test

Hypothesis:

Mkt_RF = 1

SMB = - 0.1

HML = 0.3

Model 1: restricted model

Model 2: ge_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq F    Pr(>F)    

1    568 1.6067                                  

2    565 1.5389  3  0.067761 8.2927 2.094e-05 ***

Review: Wald Test Statistic for H0: R – q = 0 
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• Q: Is Rb – q close to 0? 

Approach (2). F test. 

We base the answer on a model loss of fit when restrictions are 
imposed: RSS must increase (or R2 must go down). 

Steps: 

1. Estimate Restricted Model, get 𝑅𝑆𝑆ோ
2. Estimate Unrestricted Model, get 𝑅𝑆𝑆௎

𝐹 ൌ  
ೃೄೄೃ ష ೃೄೄೆ
ሺೖೆ ష ೖೃሻ
ೃೄೄೆ
ሺ೅ష ೖೆሻ

~ 𝐹௃,்ି௞. (where 𝐽 = 𝑘௎ െ  𝑘ோ)

• The F-test constructed using a variable that can divide the data into 
2 categories to compute 𝑅𝑆𝑆ோ & 𝑅𝑆𝑆௎ is usually referred as Chow test. 

Review: General Linear Hypothesis – H0: R = q

23

Example: We want to test if the additional FF factors (SMB, HML) 
are significant for GE (T=570). 

Unrestricted Model: 

(U) (𝑟 ா,௧ – 𝑟௙) = 𝛼 + β1 (𝑟௠,௧ – 𝑟௙) + 2 𝑆𝑀𝐵௧ + 3  𝐻𝑀𝐿௧ + ௧

Hypothesis: H0: 2 = 3 = 0

H1: 2≠ 0 and/or 3 ≠ 0

Then, the Restricted Model:

(R) (𝑟 ா,௧ – 𝑟௙) = 𝛼 + β1 (𝑟௠,௧ – 𝑟௙) + ௧

Test: F = 
ሺோௌௌೃିோௌௌೆሻ/௃

ோௌௌೆ/ሺ்ି௞ೠሻ
~ 𝐹௃,்ି௞, J = ሺ𝑘௎ െ 𝑘ோሻ = 4 - 2 = 2

Review: F Test – Are SMB and HML Priced?
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Example (continuation):
fit_ge_ff3 <- lm(ge_x ~ Mkt_RF + SMB + HML) # U Model 

e_ge3 <- fit_ge_ff3$residuals # Unrestricted residuals (eU)

RSS_u <- sum(e_ge3^2) # Unrestricted RSS (RSSU)

b_ge3 <- fit_ge_ff3$coefficients

k_u <- length(b_ge3) # kU

fit_ge_r <- lm(ge_x ~ Mkt_RF) # R Model 

e_ge_r <- fit_ge_r $residuals # Restricted residuals (eR)

RSS_r <- sum(e_ge_r^2) # Restricted RSS (RSSR)

b_ge_r <- fit_ge_r$coefficients

k_r <- length(b_ge_r) # kR

J <- k_u – k_r # J = df of numerator 

F_test <- ((RSS_r – RSS_u)/J)/(RSS_u/(T – k_u))

> F_test

[1] 19.5149

Review: F Test – Are SMB and HML Priced?

Example (continuation):
> F_test

[1] 19.5149

> qf(.95, df1=J, df2=(T-k)) # F2,566,.05 value (≈ 3)

[1] 3.011672  Reject H0.

> p_val <- 1 - pf(F_test, df1=J, df2=(T-k)) # p-value of F_test

> p_val

[1] 0.005913161  p-value is very small (0)  Reject H0.

Conclusion: Yes, the low p-value rejects H0. That is,  SMB and HML 
are priced factors for GE.

Note: You can also use a Wald test, using library(lmtest)

Review: F Test – Are SMB and HML Priced?
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Example (continuation):

>library(lmtest)

> waldtest(fit_ge_ff3, fit_ge_r)

Wald test

Model 1: ge_x ~ Mkt_RF + SMB + HML 

Model 2: ge_x ~ Mkt_RF

Res.Df Df F    Pr(>F)    

1    566                        

2    568 -2 19.5149 0.005913161 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Review: F Test – Are SMB and HML Priced?


