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Post-Midterm 1
Regression Review 

Brooks (4th edition): Chapters 3, 4 & 5

• Classical linear regression model (CLM) - Assumptions:

(A1) DGP: 𝒚 = X  +  is correctly specified (& linear!). 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X) = k, where T ≥ k.

Objective function: S(𝒙; ) = ∑ 𝜀𝑖
2𝑇

𝑖 1 = ′ = (𝒚 – X)′ (𝒚 – X)
 b = (X′X)-1 X′ 𝒚 (𝑘x1) vector

• b is an estimate of the marginal effect (first derivative) on (A1).

Review: CLM & OLS
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Review: Properties of OLS b

• b = (X′X)-1X′ 𝒚  b is a (linear) function of the data.

• Under the typical assumptions, we can establish properties for b.

1) E[b|X] =  –b is unbiased. (b is a kx1 matrix)

2) Var[b|X] = σ2 (X′X)-1 (a 𝑘x𝑘 matrix)

3) Gauss-Markov Theorem: b is BLUE (Best Linear Unbiased 
Estimator). No other linear & unbiased estimator has a lower variance.

4) If (A5) |X ~ i.i.d. N(0, σ2IT)  b|X ~ i.i.d. N(, σ2 (X’ X)-1)
bk|X ~ N(𝑘, v )
SD[b𝑘|X]=√{[σ2(X’X)-1]kk}

Note: We use the distribution of b|X to derive the distribution of 
tests (t, F, and Wald) to draw inferences.

5) If (A5) is not assumed, we still can obtain a (limiting) distribution 
for b. Under additional assumptions –mainly, the matrix X′X does not 
explode as T becomes large–, as T→ ∞, 

(i)  b →  (b is consistent)

(ii) b → N(, σ2 (X’ X)-1) (b is asymptotically normal)

• Properties (1)-(4) are called finite (or small) sample properties.

• Properties (5.i) and (5.ii) are called asymptotic properties, they only 
hold when T is large (actually, as T tends to ∞). We use (5.ii) to draw 
inferences.

Note: If not sure about the applicability of the asymptotic distribution, 
use bootstrap to draw inferences. 

Review: Properties of OLS b
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• OLS estimates  with b. Now, we define fitted values as: 

𝒚 = X b

Now we define the estimated error, e (also called residuals):

𝒆 = 𝒚 – 𝒚

It can be shown that e is uncorrelated with X  𝒆  X

• Using 𝒆, we define a measure of unexplained variation:

Residual Sum of Squares (RSS) = 𝒆 𝒆 = ∑ 𝑒

• We use RSS to calculate 𝑠 , the unbiased estimator of σ2:

𝑠 = RSS/ /(T – 𝑘) = ∑ 𝑒 /(T – 𝑘)] 𝒆 𝒆/(𝑇 𝑘)

• Then, the estimator of  Var[b|X] = 𝑠 (X′X)-1

Review: Fitted Values, Residuals & s2

fit_ge <- lm(ge_x ~ Mkt_RF + SMB + HML)

y_ge <- fit_ge$fitted # Extract fitted values from lm

plot(y_ge, type = "l", col = "blue", # Plot GE fitted value returns

main = « GE Returns: Fitted Values", ylab = "Returns", xlab = "Time")

Review: Fitted Values, Residuals & s2
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fit_ge <- lm(ge_x ~ Mkt_RF + SMB + HML)

e_ge <- fit_ge$residuals # Extract residuals from lm

plot(e_ge, type = "l", col = "blue", # Plot GE residual returns

main = « GE Returns: Residuals", ylab = "Returns", xlab = "Time")

Review: Fitted Values, Residuals & s2

• We use RSS to measure how much the model explains the variation 
of y. We define variation of y as TSS: 

TSS = ∑ 𝑦 𝑦

• Decomposition of total variation (assume X1 = ί –a constant.)

TSS = SSR + RSS (SSR: Regression Sum of Squares)

• R-squared (R2)
R2 = SSR/TSS = Regression variation/Total variation 
R2 = 1 – RSS/ TSS

With a constant in the model, R2 lies between 0 and 1. It measures 
how much of total variation of y is explained by the regression (SSR). 

Review: Goodness of Fit – R2 & Adjusted R2
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• Main problem with R2: R2 never falls when regressors (say z) are 
added to the regression. This occurs because RSS decreases with 
more information.

Solution: Incorporate a penalty for number of parameters in R2. This 
is what Adjusted-R2 does:

𝑅2 = 1
(T – 1)
(T – ) (1 – R2) = 1  s2

TSS/(T – 1)

 maximizing 𝑅2  <=> minimizing [RSS/(T – 𝑘)] = s2

We can use 𝑅2 to compare models. There are other popular goodness 
of fit measures with penalties for number of parameters: AIC & BIC.

Review: Goodness of Fit – R2 & Adjusted R2

• We are interested in testing a hypothesis about one parameter in our 
linear model: y = X + 

1. Set H0 and H1 (about only one parameter): H0: 𝑘 = 
H1: 𝑘≠ 

2. Appropriate T(X): t-statistic:

𝑡  
 – 

,
 ~ 𝑡 .

3. Compute 𝑡 , t,̂ using b𝑘 ,  , s, and (X’X)-1. Get p-value(t)̂.

4. Rule: Set an α level. If p-value(t)̂ < α  Reject H0: 𝑘 = 
Alternatively, if |t|̂> tT-k,α/2  Reject H0: 𝑘 = 

Review: Testing Only One Parameter  
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• Special case: H0: 𝑘 = 0

H1: 𝑘≠ 0.

Then,

𝑡  =  
,

 ~  𝑡

This special case of t𝑘 is called the t-value or t-ratio (also refer as the “t-
stats”). 

• Usually, α = 5%, then if | t ̂𝑘 
|> 1.96 ≈ 2, we say the coefficient bk is 

“significant.”

Review: Testing Only One Parameter  

Example: We test the CAPM for GE. Recall that the CAPM states: 

E[𝑟 , – 𝑟 ] =  E[(𝑟 , – 𝑟 )].

According to the CAPM, equilibrium excess returns are only 
determined by excess market returns –i.e., the CAPM is a one factor 
model. There is no constant or extra factors besides the market.

A linear data generating process (DGP) consistent with the CAPM is: 
(𝑟 , – 𝑟 ) = α +   (𝑟 , – 𝑟 ) +  ,𝑡,  𝑡 = 1, …,T

Thus, we test the CAPM by testing H0 (CAPM holds): αGE = 0 

H1 (CAPM rejected): αGE ≠ 0.

SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",") 

x_ge <- SFX_da$GE # Extract IBM price data 

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)

x_RF <- SFX_da$RF # Extract risk free rate (in %)

OLS Estimation – Testing the CAPM
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Example (continuation): 
T <- length(x_ge) # Sample size

lr_ge <- log(x_ge[-1]/x_ge[-T]) #  Log returns for IBM (lost one observation)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

RF <- x_RF[-1]/100

ge_x <- lr_ge – RF # Define excess returns for IBM

fit_ge_capm <- lm(ge_x ~ Mkt_RF) # OLS estimation with lm package in R

> summary(fit_ge_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.007338   0.002275  -3.225  0.00133 **  |t0| > 1.96  Reject (one-factor) CAPM.

xMkt_RF 1.129255   0.049291  22.910  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Q: Is the intercept (αGE) equal to 0 (H0: αGE = 0)? Use the t-value: 

t ̂ = 𝑏 /Est. SE[𝑏 ] = -3.225  |t0̂| > 1.96  Reject H0

OLS Estimation – Testing the CAPM

Example (continuation): 

 |�̂�α| > 1.96  Reject H0 (CAPM) at 5% level

Conclusion: The CAPM is rejected for IBM at the 5% level. 

Note: You can also reject H0 by looking at the p-value of intercept. 

Interpretation: Given that the intercept is significant (& negative). GE 
underperformed relative to what the CAPM expected:

- GE excess returns: mean(ge_x) = -0.0009589826

- GE excess returns (CAPM) = 1.129255 * mean(Mkt_RF) 

= 1.129255 * 0.0056489 = 0.006378998 

- Ex-post difference: -0.000959 - 0.006379 = -0.007338 (≈ αGE) 

OLS Estimation – Testing the CAPM
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• The CAPM is routinely rejected. A popular alternative is the 
empirically derived 3-Factor Fama-French Model (1993) with:

a) Size factor (SMB) measured as returns of small (size portfolio) 
minus returns of big (size portfolio)

b) Value factor or book-to-market factor (HML), measured as returns 
of high (B/M portfolio) minus returns of low (B/M portfolio). 

• Then, a linear DGP generating this model is:

(𝑟 , – 𝑟 ) = 0 + 1 (𝑟 , – 𝑟 ) + 2 𝑆𝑀𝐵 + 3  𝐻𝑀𝐿 +  .

• Under this model, the main drivers of expected returns are 
sensitivity to the market, sensitivity to size, and sensitivity to value 
stocks, as measured by the book-to-market ratio.

OLS Estimation – The 3-Factor F-F Model

• The 3-factor FF model produces expected excess returns:
E[𝑟 , – 𝑟 ] = β1 E[𝑟 , – 𝑟 ] + β2 E[SMBt] + β3 E[HMLt].

A significant constant would be evidence against this model: 
something is missing in the model.

• In 2014, Fama and French added two additional factors to their 3-
factor model: RMW & CMA.
- RMW measures the return of the portfolio of most profitable firms 
(“robust”) minus the portfolio least profitable (“weak”).
- CMA measures the return of a portfolio of firms that invest 
conservatively minus a portfolio of firms that invest aggressively.

• Again, the 5-factor FF model produces expected excess returns:
E[ri,t - rf] = β1 E[rm,t - rf] + β2 E[SMBt] + β3 E[HMLt] + β4 E[RMWt] + β5 E[CMAt]

OLS Estimation – The 3-Factor F-F Model
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Example: For the 3-Factor Fama-French Model for GE returns we 
want to test if the 3 F-F factors are significant. The model:

(𝑟 , – 𝑟 ) = β0 + β1 (𝑟 , – 𝑟 ) + 2 𝑆𝑀𝐵 + 3  𝐻𝑀𝐿 +  .

Before testing H0: 1 = 1, we check the adequacy of the model: 

- Check R2 and interpret it

- Goodness of Fit test and interpret it

- Signs of coefficients and interpret them.

Then, we test

H0: 1 = 1 

H1: 1 ≠ 1. 

Review: Is GE’s Beta equal to 1?

Example (continuation): using lm function in R
fit_ge_ff3 <- lm(ge_x ~ Mkt_RF + SMB + HML) # Regress ge_x against 3 F-F factors

> summary(fit_ge_ff3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.008239   0.002219 -3.712 0.000226 ***  |t0|> 1.96  Reject 3-factor FF model?

Mkt_RF 1.236430 0.050783  24.348 < 2e-16 ***  |t1|> 1.96  Mkt_RF significant

SMB      -0.318929 0.075303 -4.235 2.67e-05 ***  |t2|> 1.96  Mkt_RF significant

HML    0.358122 0.075389   4.750 2.58e-06 ***  |t3|> 1.96  Mkt_RF significant

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05219 on 565 degrees of freedom

Multiple R-squared: 0.5143, Adjusted R-squared:  0.5117 

F-statistic: 199.4 on 3 and 565 DF,  p-value: < 2.2e-16

Interpretation of 1:  A 1% increase in Mkt_RF increases GE excess 
returns by 1.24%.

Review: Is GE’s Beta equal to 1?
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Example (continuation): using lm function in R

Interpretation of R2:  The 3 F-F factors explain 51% of the variability 
of GE returns.

Interpretation of F-test (Goodness of Fit Test): 

F-statistic: 199.4 on 3 and 565 DF,  p-value: < 2.2e-16

 Very low p-value. That is, strong rejection of  H0: (No joint 
significance of 3 F-F factors).

The t-stats point out that the 3 F-F factors are significant drivers of 
GE excess returns.

Interpretation of constant (αGE): The significant constant signals that 
something is missing from the model. It constant, αGE, is also 
negative: GE underperformed relative to the 3-factor F-F model.

Review: Is GE’s Beta equal to 1?

Example (continuation):

• Q: Is GE’s market beta (1) equal to 1? That is,

H0: 1 = 1 vs.  

H1: 1 ≠ 1 

 tk̂ = (bk – k
0)/Est. SE(bk) 

t1̂ = (1.28643 – 1)/0.050783 = 4.655733

Decision Rule:

|t1̂ = 4.6557| > 1.96  Reject H0: 1 = 1 at 5% level.

Conclusion: GE systematic market risk is greater than the market.

Note: t̂1 can be calculated using summary(fit_ge)$coef, which gets the whole lm matrix.
> t_b_1 <- (summary(fit_ge_ff3)$coef[2,1] - 1)/summary(fit_ge)$coef[2,2]

> t_b_1

[1] 4.655733

Review: Is GE’s Beta equal to 1?
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Example (continuation):

• 95% CI for GE’s market beta (k): 

[bk – tT-k,α/2 * Estimated SE(bk),  bk + tT-k,α/2 * Estimated SE(bk)] 

 [1.28643 – 1.96 * 0.050783 , 1.28643 + 1.96 * 0.050783 ] =

1 ∈ [1.186895, 1.385965] with 95% confidence

Clearly, 1 = 1 is outside the range   GE is riskier than the market.

Review: Is GE’s Beta equal to 1?

Review: General Linear Hypothesis – H0: R = q

• Suppose we are interested in testing J joint hypotheses.

Example:  We want to test that in the 3 FF factor model that the 
SMB and HML factors have the same coefficients, SMB = HML = 0.

We can write linear restrictions as H0: R – q = 0,

where R is a Jxk matrix and q a Jx1 vector.

In the above example (J=2), we write:

0 0 1 0
0 0 0 1

∗






=
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• Q: Is Rb – q close to 0? Two different approaches to this questions. 

Approach (1). Wald test.

We base the answer on the discrepancy vector:  

m = Rb – q. 

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

to test if m is different from 0.

W* = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

- If (A5) is assumed: F = W*/J ~ FJ,T-k

- If (A5) is not assumed, results are only asymptotic: J * F → χJ
2

Review: General Linear Hypothesis – H0: R = q

23

Example: In the 3 FF factor model for GE (T=571), we test:

H0: Mkt = 1, SMB = -0.1 and HML = 0.3.

H1: Mkt 1 and/or SMB -0.1 and/or HML 0.3.    J = 3

library(car)

linearHypothesis(fit_ge_ff3, c("Mkt_RF = 1","SMB = -0.1", "HML= 0.3"), test="F") # exact test

Hypothesis:

Mkt_RF = 1

SMB = - 0.1

HML = 0.3

Model 1: restricted model

Model 2: ge_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq F    Pr(>F)    

1    568 1.6067                                  

2    565 1.5389  3  0.067761 8.2927 2.094e-05 ***

Review: Wald Test Statistic for H0: R – q = 0 
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• Q: Is Rb – q close to 0? 

Approach (2). F test. 

We base the answer on a model loss of fit when restrictions are 
imposed: RSS must increase and R2 must go down. 

We construct an F test to check if the unrestricted RSS (𝑅𝑆𝑆 ) is 
different from the restricted RSS (𝑅𝑆𝑆 ).

F = 
/

/
~ FJ,T-K.

Review: General Linear Hypothesis – H0: R = q

25

Example: We want to test if the additional FF factors (SMB, HML) 
are significant for GE (T=570). 

Unrestricted Model: 

(U) (𝑟 , – 𝑟 ) = β0 + β1 (𝑟 , – 𝑟 ) + 2 𝑆𝑀𝐵 + 3  𝐻𝑀𝐿 + 

Hypothesis: H0: 2 = 3 = 0

H1: 2≠ 0 and/or 3 ≠ 0

Then, the Restricted Model:

(R) (𝑟 , – 𝑟 ) = β0 + β1 (𝑟 , – 𝑟 ) + 

Test: F = 
/

/
~ 𝐹 , , J = 𝑘   𝑘 = 4 - 2 = 2

Review: F Test – Are SMB and HML Priced?
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Example (continuation):
fit_ge_ff3 <- lm(ge_x ~ Mkt_RF + SMB + HML) # U Model 

e_ge3 <- fit_ge_ff3$residuals # Unrestricted residuals (eU)

RSS_u <- sum(e_ge3^2) # Unrestricted RSS (RSSU)

b_ge3 <- fit_ge_ff3$coefficients

k_u <- length(b_ge3) # kU

fit_ge_r <- lm(ge_x ~ Mkt_RF) # R Model 

e_ge_r <- fit_ge_r$residuals # Restricted residuals (eR)

RSS_r <- sum(e_ge_r^2) # Restricted RSS (RSSR)

b_ge_r <- fit_ge_r$coefficients

k_r <- length(b_ge_r) # kR

J <- k_u – k_r # J = df of numerator 

F_test <- ((RSS_r – RSS_u)/J)/(RSS_u/(T – k_u))

> F_test

[1] 19.5149

Review: F Test – Are SMB and HML Priced?

Example (continuation):
> F_test

[1] 19.5149> qf(.95, df1=J, df2=(T-k)) # F2,566,.05 value (≈ 3)

[1] 3.011672  Reject H0.

> p_val <- 1 - pf(F_test, df1=J, df2=(T-k)) # p-value of F_test

> p_val

[1] 0.005913161  p-value is very small (0)  Reject H0.

Conclusion: Yes, the low p-value rejects H0. That is,  SMB and HML 
are priced factors for GE.

Review: F Test – Are SMB and HML Priced?


