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EMH & the RW 

Bonus Material

© R. Susmel, 2022 (for private use, not to be posted/shared online).

Efficient Markets Hypothesis (EMH)

• Q: Can past information be used to build profitable trading rules in 
financial markets? In particular, can past return realizations tell us 
anything about expected future returns? Very old questions.

• The efficient markets hypothesis (EMH) is a first attempt to address the 
predictability issue.

•  Earliest known version:
“When shares become publicly known in an open market, the value 
which they acquire there may be regarded as the judgement of  the 
best intelligence concerning them.”
- George Gibson, The Stock Exchanges of  London, Paris and New York, G. 
P. Putnman & Sons, New York, 1889.

• In 1900, Louis Bachelier, a French PhD student at the time, was the 
first to propose the “Random Walk Model” for security prices. 
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•  Samuelson (1965)

“In an informationally efficient market, price changes must be 
unforecastable.”

• Fama (1970)

“A market in which prices always fully reflect available information is 
‘efficient’.”

If  we have new information (a new earnings announcement) prices will 
adjust immediately (or very fast). Prices (significantly) jump with 
relevant information. But, they have to jump a proper amount, not too 
much (over-reaction) or not too little (under-reaction).

Efficient Markets Hypothesis (EMH)

Eugene Fama (USA, 1939)

• Grossman and Stiglitz (1980) 

“There must be sufficient profit opportunities --i.e. inefficiencies, 
frictions-- to compensate investors for the cost of  trading and 
information-gathering. ”

Then, under a frictionless world, it is impossible to have efficient prices 
(& EM). Only when all information gathering & trading costs are zero 
we can expect prices to fully reflect all available information. 

Conundrum: But, if  prices reflect fully and instantly all available 
information, who is going to gather information?

Efficient Markets Hypothesis (EMH)
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•  Malkiel (1992)

“The market is said to be efficient with respect to some information 
set… implies that it is impossible to make economic profits by trading on 
the basis of  [the information in that set].”

The first sentence of  Malkiel’s definition expands Fama’s definition and 
suggests a test for efficiency useful in a laboratory. 

The second sentence suggests a way to judge efficiency that can be used 
in empirical work. This is what is usually done in the finance literature.

Example: If  Fund managers outperform the market consistently, then 
prices are not efficient with respect to their information set.

Many examples of  “inefficiencies” with respect to some information sets.

Efficient Markets Hypothesis (EMH)

• The behavioral finance field has found that investors often show 
predictable and financially ruinous behavior (“irrational”?). Different 
causes: overreaction, overconfidence, loss aversion, herding, 
psychological accounting, miscalibration of  probabilities, regret, etc. 

Examples: Momentum strategies (buying past winners and selling past 
losers, under-reaction?) and Contrarian strategies (buying past losers 
and selling past winners, over-reaction?) achieve abnormal returns.

• Lo (2004) 

“… much of  what behavioralists cite as counterexamples to economic 
rationality […] are, in fact, consistent with an evolutionary model of  
individuals adapting to a changing environment.”

There is a time dimension. It takes time to adapt to new circumstances.

Efficient Markets Hypothesis (EMH)
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• Efficiency can only be defined with reference to a specific type of  
information. Fama (1970) defined three classes of  information sets:

(a) Historical sequence of  prices. This set gives Weak form EMH.

(b) Public records of  companies and public forecasts regarding the 
future performance and possible actions. Sets (a) & (b) create the 
Semi-strong form EMH.

(c) Private or inside information. Sets (a), (b) & (c) deliver the 
Strong form EMH.

• Violations:

- Technical traders devising profitable strategies (weak EMH) 

- Reading a newspaper and devising a profitable trading strategy (semi-
strong EMH)

- Corporate insiders making profitable trades (strong EMH)

EMH: Versions

• Q:  Can markets really be strong-form efficient? Very unlikely, plenty 
of  examples of  successful trading with private information: Jeffrey 
Skilling (Enron), Ivan Boesky/Michael Milken (junk bonds), Eugene 
Plotkin and David Pajcin (from Goldman Sachs, trading on M&A 
inside information), James McDermott Jr (Keefe, Bruytee & Woods, 
passed M&A tips to his mistress), Raj Rajaratnam (Galleon Group). 

• Perfectly rational factors may account for violations of  EMH:

- Microstructure issues and trading costs.

- Rewarding investors for bearing certain dynamic risks.

- Time-varying expected returns due to changing conditions can 
generate predictability.

EMH: Versions
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• We are talking about economic profits, adjusting for risk and costs. 
Thus, a model for risk adjustment is needed. Results will be conditional 
on the underlying asset pricing model.

• Fama (1991) remarks that tests of  efficiency are joint tests of  efficiency 
and some asset pricing model, or benchmark.

Example: Many benchmarks assume constant “normal” returns.  This 
is easier to implement, but may not be correct. Thus, rejections of  
efficiency could be due to rejections of  the benchmark.

• Most tests suggest that if  the security return (beyond the mean) 
cannot be forecasted, then market efficiency is not rejected.

Example: A wrong asset pricing model may reject efficiency.  It would 
be easy to find (demeaned) returns to be forecastable if  we use the 
wrong mean.

EMH: Joint Tests

• The conditional expectation of  the stochastic process 𝑋௧ାଵ, 
conditioned on information set 𝐼௧, can be written as:

E[𝑋௧ାଵ|𝐼௧] = Et[𝑋௧ାଵ]

• Information set, 𝐼௧: It describes what we know at time 𝑡. The usual 
assumption is that we do not forget anything. Over time, the 
information set increases: 𝐼௧ is contained in 𝐼௧ାଵ; 𝐼௧ାଵ is contained in 
𝐼௧ାଶ, etc.  That is, we have a sequence 𝐼଴ ⊆ 𝐼ଵ ⊆ 𝐼ଶ … ⊆ 𝐼௧ . In 
stochastic processes this sequence is called a “filtration,” with notation 
{ℱt}.

Technical note: We say a stochastic process {𝑋௧} is adapted to a filtration 
{ℱt} if  𝑋௧ is measurable ℱt for all 𝑡.

Measurable? The event of  interest is in ℱt.

EMH: Expectations and Information Set
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• Efficient market: A market where prices are random with respect to 
an information set (“filtration”), 𝐼௧.

• Let the price of  a security at time 𝑡 be given by the expectation of  
some “fundamental value,” V*, conditional on 𝐼௧:

𝑃௧ = E[V*|𝐼௧] = Et[V*]

• The same equation holds one period ahead so that:

𝑃௧ାଵ = E[V*|𝐼௧ାଵ] = Et+1[V*]

• The expectation of  the price change over the next period is:

Et[Pt+1 - 𝑃௧] = Et[Et+1[V*] - Et[V*]] = 0

since 𝐼௧ is contained in 𝐼௧ାଵ  Et[Et+1[V*]] = Et[V*] (by Law of  IE).

Remark: Under efficiency, financial asset prices are unpredictable.

EMH: Random Prices

Martingale: A stochastic process 𝑃௧ is a martingale if:

E[𝑃௧ାଵ|t] = 𝑃௧ (or Et[𝑃௧ାଵ] = 𝑃௧)

where the information set is t (what we know at time t, includes 𝑃௧).

Submartingale: If  E[𝑃௧ାଵ|t]  𝑃௧. -𝑃௧: Lower bound for Et[𝑃௧ାଵ]

Supermartingale: If  E[𝑃௧ାଵ|t]  𝑃௧. -𝑃௧: Upper bound for Et[𝑃௧ାଵ] 

Fair game model: A stochastic process 𝑟௧ is a fair game if:

E[𝑟௧ାଵ| t] = 0

 if  𝑃௧ is a martingale or pure random walk, (𝑃௧ାଵ – 𝑃௧) is a fair game.

Note: Only referring to expected values! 

EMH: Martingale & Fair Games – Definitions
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• The Martingale process can be setup as a special case of  an AR(1) 
process: 

𝑝௧ = 𝜇 + ϕ 𝑝௧ିଵ + ௧
with ϕ = 1, μ = 0, & Et[௧ାଵ] = 0. A non-stationary process.

Technical detail: Martingale condition is neither a necessary nor a 
sufficient condition for rational expectations models of  asset prices (LeRoy 
(1973), Lucas (1978)). 

According to Lucas (1978), in markets where all investors have rational 
expectations, prices do fully reflect all available information and marginal-
utility weighted prices follow martingales.

• But, we consider the martingale as an important starting point.

EMH: Martingale & Fair Games – Definitions

Definition: Random Walk (RW) 

A stochastic process 𝑝௧ is a RW if:

𝑝௧ = 𝜇 + 𝑝௧ିଵ + ௧ -where 𝑝௧= ln(Pt)

 𝑟௧ = 𝜇 + ௧ = Δ 𝑝௧

Assumptions about ௧: Uncorrelated with past information, with 
constant mean (=0) & variance (2). That is,

t  D (0, 2),  

with Et[௧ାଵ] = 0, Et[2
t+1] = 2

If  𝜇 ് 0, the process is called a RW with a drift.

• A RW with no drift is a martingale with structure for the error term, 
t, uncorrelated, zero mean and constant variance.

The Random Walk Hypothesis
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• We start testing the EMH by assuming log returns, 𝑟௧, follow a RW 
with a drift. We called this “Random Walk Model”:

 𝑟௧ = Δ 𝑝௧ ൌ μ + ௧ = Δ 𝑝௧
where t  D (0, 2).

• Different specifications for t produce different testable hypothesis 
for the EMH-RW Model:

- RW1: ௧ is independent and identically distributed (i.i.d.) ~ D(0, σ2). Not 
realistic. (Old tests: Cowles and Jones (1937)).

- RW2: ௧ is independent (allows for heteroskedasticity). Test using filter 
rules, technical analysis. (Alexander (1961, 1964), Fama (1965)).

- RW3: ௧ is uncorrelated (allows for dependence in higher moments). 
Test using autocorrelations, variance ratios, long horizon regressions.

The Random Walk Hypothesis

• Assume 𝑟௧ is covariance stationary and ergodic. Then

𝛾௞= cov(𝑟௧, 𝑟௧ି௞) - Auto-covariance between times 𝑡 & 𝑡 െ 𝑘 
𝜌௞= 𝛾௞/ 𝛾଴. - Var[𝑟௧] = 𝛾଴

are not time dependent. We estimate both statistics with 𝛾ො௞ and 𝜌ො௞.

• Under RW1 Hypothesis (and some assumptions)

𝑇 𝜌ො௞
 ௔ 

N(0, 1)

 SE[𝜌ො௞] = 1/ 𝑇 

Technical Note: The sample correlation coefficients, 𝜌ො௞, are negatively 
biased in finite samples. See Fuller (1976). 

• To check autocorrelations up to order 𝑘, we use the ACF for 𝑟௧. 
Confidence Intervals can be easily approximated by േ 2/ 𝑇 .

The RW Hypothesis: Autocorrelations & ACF
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Example: ACF with 𝑘 = 24 lags for the monthly Equal- and Value-
weighted (EW & VW, respectively) CRSP index returns from 1926:Jan –
2022:March (T = 1,155):
EMH_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_m.csv",head=TRUE,sep=",")

lr_vw <- EMH_da$vwretd # Value weighted CRSP returns (including distributions)

lr_ew <- EMH_da$ewretd # Equal weighted CRSP returns (including distributions)

T <- length(lr_vw)

SE_rho <- 1/sqrt(T) # Asymptotic SE for rho’s: |rho| > 2 * SE => significant

> SE_rho

[1] 0.02942449 # |rho| > 2 * SE => significant

acf_y <- acf(lr_vw)
> acf_y
Autocorrelations of  series ‘lr_vw’, by lag

0 1 2 3 4 5 6 7 8  9    10    11 12
1.000 -0.011  0.044 -0.183  0.140 -0.001  0.002 -0.010  0.121 -0.024 -0.003 -0.045 -0.002

13     14  15 16 17 18 19 20 21 22 23 24 
0.045  0.009 -0.004  0.007  0.010  0.015 -0.010 -0.004 -0.005  0.051 -0.009 -0.015

The RW Hypothesis: ACF – Monthly Data

Example (continuation):

Conclusion: There are a few significant autocorrelations (3rd, 4th, and 
8th), all smaller than 0.2 in absolute value. 

The RW Hypothesis: ACF – Monthly Data
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Example (continuation):

acf_y <- acf(lr_ew)
> acf_y
Autocorrelations of  series ‘lr_ew’, by lag

0 1 2 3 4 5 6 7 8  9    10    11 12
1.000  0.101 -0.023 -0.094  0.014  0.056 -0.038  0.018  0.041  0.056  0.014 -0.020 -0.001

13     14  15 16 17 18 19 20 21 22 23 24 
-0.044 -0.082  0.004 -0.035  0.074 0.030 -0.028 -0.087 -0.088 -0.007 -0.012  0.019

Conclusion: Again, a few significant autocorrelations, but small in size. 

The RW Hypothesis: ACF – Monthly Data

Example: ACF with 𝑘 = 24 lags for the daily Equal- and Value-
weighted (EW & VW, respectively) CRSP index returns from 1926:Jan 1 
– 2022:March 30 (T = 23,359):
EMH_d_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_d.csv",head=TRUE,sep=",")

lr_vw_d <- EMH_d_da$vwretd # VW CRSP returns (including distributions)

lr_ew_d <- EMH_d_da$ewretd # EW CRSP returns (including distributions)

T <- length(lr_ew_d)
SE_rho <- 1/sqrt(T) # Asymptotic SE for rho’s: |rho| > 2 * SE => significant

> SE_rho

[1] 0.006279628 # |rho| > 2 * SE => significant

acf_y <- acf(lr_vw_d)
> acf_y
Autocorrelations of  series ‘lr_vw_d’, by lag

0 1 2 3 4 5 6 7 8  9    10    11 12
1.000  0.053 -0.027  0.001 0.018  0.007 -0.027 -0.003  0.002  0.019 0.014 0.010  0.023

13     14  15 16 17 18 19 20 21 22 23 24 
-0.001 -0.001 -0.017  0.024  -0.010 -0.011  0.013  0.014 -0.008 -0.003  0.011  0.006

The RW Hypothesis: ACF – Daily Data
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Example (continuation):

Conclusion: There are many significant autocorrelations, with the 
exception of  the first one, all very small. 

The RW Hypothesis: ACF – Monthly Data

Example (continuation):

acf_y <- acf(lr_ew)
> acf_y
Autocorrelations of  series ‘lr_ew’, by lag

0 1 2 3 4 5 6 7 8  9    10    11 12
1.000  0.198 0.016  0.046  0.061  0.049  0.000  0.018  0.023  0.042  0.034  0.033  0.040

13     14  15 16 17 18 19 20 21 22 23 24 
0.015  0.014  0.004  0.021 0.007  0.008  0.033  0.025  0.003  0.009  0.023 0.007

Conclusion: Lots of  significant autocorrelations, but, in general, small. 

The RW Hypothesis: ACF – Daily Data
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• We already know two tests to check for zero autocorrelation in a time 
series: Box-Pierce Q and Ljung-Box tests. We usually rely on the Ljung-
Box (1978), LB, test, since it has better small sample properties.

-The Q & LB statistics test a joint hypothesis that the first 𝑝
autocorrelations are zero:  H0 p = 0 

Under RW1 and using the asymptotic distribution of  𝜌ො௞:

Q = T  ∑ ො௞ଶ
௣
௞ୀଵ

ௗ
→ χ௣

ଶ .

LB = T * (T – 2) * ∑
෡ೖమ
்ି ௞

௣
௞ୀଵ  

  ௗ  
χ௣
ଶ .

The RW Hypothesis: Autocorrelation Joint Tests

• Q & LB tests are widely use, but they have two main limitations: 

(1) The test was developed under the independence (RW1) assumption. 

If  𝑦௧ shows dependence, such as heteroscedasticity, the asymptotic 
variance of  𝑇 𝝆ෝ is no longer I, but a non-diagonal matrix.

There are several proposals to “robustify” both Q & LB tests, see 
Diebold (1986), Robinson (1991), Lobato et al. (2001). The 
“robustified” Portmanteau statistic uses 𝜌෤௞ instead of  𝜌௞:

𝜌෤௞ = 
ఊෝೖ
தೖ  = 

∑ ሺ௬೟ ି ௬തሻሺ௬೟షೖ ି  ௬തሻ೅
೟సೖశభ

∑ ሺ௬೟ ି ௬തሻమ ሺ௬೟షೖ ି ௬തሻమ೅
೟సೖశభ

Thus, for Q we have:

Q* = T  ∑ 𝜌෤௞
ଶ௣

௞ୀଵ

ௗ
→ χ௣

ଶ . 24

The RW Hypothesis: Autocorrelation Joint Tests
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(2) The selection of  the number of  autocorrelations 𝑝 is arbitrary.

The traditional approach is to try different 𝑝 values, say 3, 6 & 12. 
Another popular approach is to let the data “select” 𝑝, for example, 
using AIC or BIC, an approach sometimes referred as “automatic 
selection.” 

Escanciano and Lobato (2009) propose combining BIC’s and AIC’s 
penalties to select 𝑝 in Q* (BIC for small 𝑘 and AIC for bigger 𝑘.

• It is common to reach different conclusion from Q and Q*. 

25

The RW Hypothesis: Autocorrelation Joint Tests

Example: Q and LB tests with 𝒑 = 3 & 12 lags for the monthly EW 
& VW CRSP index returns from 1926:Jan – 2022:March (T = 1155):

• Q  test for monthly VW
> Box.test(lr_vw, lag = 4, type="Box-Pierce")

Box-Pierce test

data:  lr_vw

X-squared = 22.812, df = 4, p-value = 0.000138

> Box.test(lr_vw, lag = 12, type="Box-Pierce")

Box-Pierce test

data:  lr_vw

X-squared = 34.696, df = 12, p-value = 0.0005234

Testing for Autocorrelation: Monthly Evidence

26
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Example (continuation):

• LB  tests for monthly VW
> Box.test(lr_vw, lag = 4, type="Ljung-Box")

Box-Ljung test

data:  lr_vw

X-squared = 22.891, df = 4, p-value = 0.0001332

> Box.test(lr_vw, lag = 12, type="Ljung-Box")

Box-Ljung test

data:  lr_vw

X-squared = 34.87, df = 12, p-value =  0.0004912

27

Testing for Autocorrelation: Monthly Evidence

Example (continuation): Q* tests with automatic lag selection. In 
R, the package vrtest has the Auto.Q function that computes this test. 
As always, you need to install vrtest first. 

• Q*  test for monthly VW 
> Auto.Q(lr_vw, 12)

$Stat

[1] 3.059582

$Pvalue

[1] 0.08026232

Conclusion: Once we take into consideration potential 
heteroscedasticity in 𝑦௧, there is weak evidence for autocorrelation in  
monthly Value-weighted CRSP index returns.

28

Testing for Autocorrelation: Monthly Evidence
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Example (continuation):

• Q  test for monthly EW 
> Box.test(lr_ew, lag = 4, type="Box-Pierce")

Box-Pierce test

data:  lr_ew

X-squared = 61.607, df = 4, p-value = 1.333e-12

> Box.test(lr_ew, lag = 12, type="Box-Pierce")

X-squared = 83.328, df = 12, p-value = 9.531e-13

• LB  tests for monthly EW

> Box.test(lr_ew, lag = 4, type="Ljung-Box")

X-squared = 61.793, df = 4, p-value = .218e-12

> Box.test(lr_ew, lag = 12, type="Ljung-Box")

X-squared = 83.719, df = 12, p-value =  8.02e-13 29

Testing for Autocorrelation: Monthly Evidence

Example (continuation): Q* tests with automatic lag selection. 

• Q*  test for monthly EW 
library(vrtest)

> Auto.Q(lr_ew, 12)

$Stat

[1] 6.487553

$Pvalue

[1] 0.01086324

Conclusion: Strong evidence for autocorrelation in monthly EW 
CRSP returns (the evidence was weaker, once we take into 
consideration potential heteroscedasticity in 𝑦௧, for monthly VW 
CRSP returns). That is, we reject the RW hypothesis for monthly EW 
CRSP returns.

30

Testing for Autocorrelation: Monthly Evidence
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Example: Q and LB tests with 𝒑 = 5 & 20 lags for the daily Equal-
and Value-weighted (EW & VW, respectively) CRSP index returns 
from 1926: Jan 1 – 2022 :March 30 (T = 25,359):

EMH_d_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_d.csv", 
head=TRUE,sep=",")

lr_vw_d <- EMH_d_da$vwretd # Value weighted CRSP returns (with distributions)

lr_ew_d <- EMH_d_da$ewretd # Equal weighted CRSP returns (with distributions)

T <- length(lr_ew_d)

• Q  tests for daily VW
> Box.test(lr_vw_d, lag = 5, type="Box-Pierce")

data:  lr_vw_d

X-squared = 100.64, df = 5, p-value = 2.2e-16

> Box.test(lr_vw_d, lag = 20, type="Box-Pierce")

data:  lr_vw_d

X-squared = 184.68, df = 20, p-value < 2.2e-16

Testing for Autocorrelation: Daily Evidence

31

Example (continuation):

• Q*  test for daily VW (continuation)
> Auto.Q(y, 20) # Q* test automatic selection of  p

$Stat

[1] 11.73454

$Pvalue

[1] 0.0006135076

• Q  tests for daily EW
> Box.test(lr_ew_d, lag = 5, type="Box-Pierce")

data:  lr_ew_d

X-squared = 1213.3, df = 5, p-value = 2.2e-16

> Box.test(lr_ew_d, lag = 20, type="Ljung-Box")

data:  lr_ew_d

X-squared = 1445.4, df = 20, p-value = 2.2e-16
32

Testing for Autocorrelation: Daily Evidence
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Example (continuation):

• Q*  test for daily EW (continuation)
> Auto.Q(y, 40) # Q* test automatic selection of  p

$Stat

[1] 235.7106

$Pvalue

[1] 0

Conclusion: Strong evidence for autocorrelation in daily VW & EW 
CRSP returns. That is, we reject the uncorrelated returns hypothesis 
as implied by the RW hypothesis for daily VW & EW CRSP returns.

33

Testing for Autocorrelation: Daily Evidence

• Intuition: For all 3 RW hypotheses, the variance of  RW increments is 
linear in the time interval. If  the interval is twice as long, the variance 
must be twice as big. That is, the variance of  monthly data should be 4 
times bigger than the variance of  weekly data. (Recall the log 
approximation rules for i.i.d. returns.)

• If  𝑟௧ is a covariance stationary process (constant first two moment, 
and covariance independent of  time), then for the variance ratio of  2-
period versus 1-period returns, VR(2):

VR(2) = 
Var[௥೟ሺ2ሻ]
2∗Var[௥೟ሿ

= 
Var[௥೟+௥೟శభ]

2∗Var[௥೟ሿ
= 

= 
Var[௥೟ሿ + Var[௥೟శభ] + 2 Cov[௥೟,௥೟శభ]

2∗Var[௥೟ሿ
= 

2 σ2 
+ 2 ఊభ

2σ2 = 1 + 𝜌ଵ

where 𝑟௧ሺ2ሻ = 𝑟௧ + 𝑟௧ାଵ

The RW Hypothesis: Variance Ratio (VR) Tests
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• VR(2) = 
Vaሾ௥೟ሺ2ሻሿ
2∗Varሾ௥೟ሿ

= 1 + 𝜌ଵ.

• Three cases:

𝜌ଵ = 0  VR(2) = 1 (True under RW1, random walk)

𝜌ଵ > 0  VR(2) > 1 (mean aversion)

𝜌ଵ < 0  VR(2) < 1 (mean reversion)

• The intuition generalizes to longer horizons:

VR(q) = 
Var[௥೟ሺqሻሿ
q ∗Varሾ௥೟ሿ

= 1 + 2 * ∑ ሺ1 െ ௞

௤
௤ିଵ
௞ୀଵ ሻ 𝜌௞.

The VR(q) is a particular linear combination of  the 1st (q - 1) 
autocorrelation coefficients (with linearly declining weights).

The RW Hypothesis: VR Tests

• Under RW1, we have H0: VR(q) = 1.
H1: VR(q) ≠ 1.

Technical Note: Under RW2 and RW3, VR(q) = 1 provided

1/T ∑ Var[𝑟௧]்
௧ୀ଴ → σതଶ > 0

we need this assumption, since some “fat-tailed” distributions do not 
have a well-defined second moment.

• To do any testing we need the sampling distribution of  the VRs 
(estimated variance ratios) under H0: VR(q) = 1. We use the statistic:

்௤

ଶ∗ሺ௤ିଵሻ
ሺVR෢ ሺqሻ – 1ሻ

 ௔ 
N(0, 1)

This is Cochrane’s (1988) VR test. The test rejects H0 –i.e., the RWH –
if  the above statistic is greater in absolute value than 1.96. 

The RW Hypothesis: VR Tests – Distribution
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• For the special case of  q = 2, we use 

𝑇 (VR෢ (2) – 1) 
 ௔ 

N(0, 1)

• Var[𝑟௧ሺqሻሿ is computed using the MLE formulation, that is, dividing 
by 𝑇, not by (𝑇 െ 1) (or 𝑇 minus degrees of  freedom). 

Example: We have monthly data from Jan 1973. Then, we compute

Varሾ𝑟௧ሿ = 
∑ ሺ௥೟ ି 𝒓തሻమ೅
೟సభ

்

Varሾ𝑟௧ሺ2ሻሿ = 
∑ ሺ௥೟ ଶ ିଶ∗ 𝒓തሻమ೅
೟సభ

்
.

Note: Since the tests are asymptotic tests, in this case, relying on the 
Normal distribution, dividing by 𝑇 or by (𝑇 െ 𝑘) does not make any 
difference. 

The RW Hypothesis: VR Tests – Computations

• Var[𝑟௧ሺqሻሿ is computed using non-overlapping returns.

Example: We compute non-overlapping bi-monthly returns, using 
monthly data from Jan 1973. 

(1) monthly returns: 𝑟௧ is computed as usual. For the first return: 
𝑟௧ୀ௃௔௡ ଻ଷ = ln ሺ𝑃௧ୀ௃௔௡ ଷଵ,଻ଷሻ െ ln ሺ𝑃௧ୀ௃௔௡ ଵ,଻ଷሻ

(2) bi-monthly returns. The first three 𝑟௧ሺ2ሻ are computed as:
𝑟௧ୀி௘௕ ଻ଷሺ2ሻ = 𝑟௧ୀி௘௕ ଻ଷ ൅ 𝑟௧ୀ௃௔௡ ଻ଷ

𝑟௧ୀ஺௣௥ ଻ଷሺ2ሻ = r௧ୀ஺௣௥ ଻ଷ ൅ 𝑟௧ୀெ௔௥ ଻ଷ

𝑟௧ୀ௃௨௡௘ ଻ଷሺ2ሻ = r௧ୀ௃௨௡௘ ଻ଷ ൅ 𝑟௧ୀெ௔௬ ଻ଷ

Note: We have “clean data,” with no introduced serial correlation. But, 
we lose observations. If  we have 1,000 monthly returns, using non-
overlapping bi-monthly returns we end up with only 500 observations. 

The RW Hypothesis: VR Tests – Computations
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Example: We check the RW Hypothesis, under RW3, for the monthly 
CRSP EW and VW Index returns. In R, the package vrtest has functions 
to compute the above mentioned VR tests. 

• VR tests for monthly VW
library(vrtest)
kvec <- c(2,3,12) #Vector with different q
y <- lr_vw
> vr_1 <- VR.minus.1(y, kvec) # Stat should be close to 0 if  RW
> vr_1
$VR.auto # VR with Automatic (“optimal) q selection
[1] 0.1954746

$Holding.Periods
[1]  2  3 12

$VR.kvec (VR – 1) stat for each q=kvec[i] 
[1] 0.1007011 0.1187365 0.1212423

> sqrt(T*kvec)/sqrt(2*(kvec-1))*vr_1$VR.kvec # VR test for each q=kvec[i] ~ N(0,1) 
[1] 3.422358 3.494666 3.043158

The RWH: VR Test Monthly Evidence (VW)

Example (continuation):

• VR tests for monthly EW
> y <- lr_ew
> vr_1 <- VR.minus.1(y, kvec) # Stat should be close to 0 if  RW
> vr_1
$VR.auto # VR with Automatic (“optimal) q selection
[1] 0.1954746

$Holding.Periods
[1]  2  3 12

$VR.kvec (VR – 1) stat for each q=kvec[i] 
[1] 0.2043236 0.2789327 0.2180176

> sqrt(T*kvec)/sqrt(2*(kvec-1))*vr_1$VR.kvec # VR test for each q=kvec[i] ~ N(0,1) 
[1] 6.943998 8.209583 5.472199

Conclusion: Using the VR test (with q = 2, 3, 12), we reject the RW 
Hypothesis  tests are greater in absolute value than 1.96. 

The RWH: VR Test Monthly Evidence (EW)
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• Several issues has been raised regarding the VR’s tests. The main
issues are:

(1) Choice of  q. In the previous examples, we have arbitrarily selected 
q. Similar to the situation with the Q and LB tests, there are suggestions 
to automatically (or “optimally,” according to some loss function) select 
q. Choi (1999) is one example of  this approach,  (the vrtest R package 
uses this approach in the Auto.VR test).

(2) Poor asymptotic approximation. In simulations, it is found that 
the asymptotic Normal distribution is a poor approximation to the 
small-sample distribution of  the VR statistic. The usual solution is to 
use a bootstrap (Kim’s (2009) bootstrap gives the p-value of  the 
automatic VR test in the Auto.VR function).

The RWH: VR Tests – Issues

Example: We use VR tests with automatic selection and a bootstrap to 
check the RW Hypothesis for the monthly CRSP EW and VW Index 
returns. Again, we use AutoBoot.test function in R package vrtest. 
• Automatic VR tests for monthly VW
y <- lr_vw
> AutoBoot.test(y, nboot=1000, wild="Normal", prob=c(0.025,0.975)) # Choi (1999)
$test.stat (Automatic variance ratio test statistic as in Choi (1999))
[1] 2.509324

$VRsum (1+ weighted sum of  autocorrelation up to the optimal order)
[1] 1.195475

$pval
[1] 0.064

$CI.stat
2.5%     97.5% 

-2.836631  2.612363

$CI.VRsum
2.5%     97.5% 

0.8323731 1.1927214

The RWH: VR Test Monthly Evidence (VW)
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Example (continuation):. 
• Automatic VR tests for monthly EW
y <- lr_ew
> AutoBoot.test(y, nboot=1000, wild="Normal", prob=c(0.025,0.975)) # Choi (1999)
$test.stat (Automatic variance ratio test statistic as in Choi (1999))
[1] 4.173898
$VRsum (1+ weighted sum of  autocorrelation up to the optimal order)
[1] 1.382554
$pval
[1] 0.021

$CI.stat
2.5%     97.5% 

-3.262026  3.359002

$CI.VRsum
2.5%     97.5% 

0.7687769 1.2610106

Conclusion: Using the Automatic VR test and a bootstrap, we have 
strong evidence against the RW Hypothesis for EW, but weak for VW. 

The RWH: VR Test Monthly Evidence (EW)

• Lo & MacKinlay (LM, 1988, 1989) propose modifications to the test: 

- Allow for overlapping returns, and, thus, using more observations.  
But, overlapping returns will be autocorrelated, even if  underlying 
process is not. We need to adjust for this feature.

- Use unbiased estimators of  variances –i.e., divide by (T - df).

𝑀ଵ 𝑞 ൌ
ଷ∗்∗௤

ଶ∗ ଶ௤ିଵ ∗ሺ௤ିଵሻ
ሺ𝑉𝑅ሺqሻ – 1ሻ

 ௔ 
N(0, 1),

where 𝑉𝑅ሺqሻ is the VR statistic computed using overlapping returns.

- Allow for possible heteroscedasticity of  returns (more realistic)

𝑀ଶ 𝑞 ൌ
ሺ௏ோሺqሻ – 1ሻ

மሺ௤ሻ
 
 ௔ 

N(0, 1),

where 

ϕሺ𝑞ሻ =  ∑ ሾଶሺ௤ି௝ሻ
௤

ሿଶ௤
௝ୀଵ ∗ ሼ

∑ ሺ௥೟ ି 𝒓തሻమሺ௥೟షೕ ି 𝒓തሻమ೅
೟సೕశభ

ሾ∑ ሺ௥೟ ି 𝒓തሻమ೅
೟సభ ሿమ

}.

The RWH: VR Tests – LM’s Modifications 
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Example: We check the RW Hypothesis, under RW3, for the monthly 
CRSP EW and VW Index returns using the LM’s tests: M1 and M2. 
Again, we use the R package vrtest.
• Automatic VR tests for monthly VW

library(vrtest)
kvec <- c(2,3,12) #Vector with different q
y <- lr_vw
> Lo.Mac(y, kvec) # LM’s tests M1 & M2 ~ asymptotic N(0,1)
$Stats

M1        M2
k=2  3.422358 1.7485059
k=3  2.706957 1.4241521
k=12 1.099060 0.6373211

Conclusion: We reject H0 (RW Model) using M1 for q = 2, 3; but, once 
we allow for heteroscedasticity (M2 tests), we cannot reject H0. 

The RWH: LM Tests Monthly Evidence 

Example (continuation):
• Automatic VR tests for monthly EW

y <- lr_ew
> Lo.Mac(y, kvec) # LM’s tests M1 & M2 ~ asymptotic N(0,1)
$Stats

M1        M2
k=2  6.943998 2.5480302
k=3  6.359116 2.5009114
k=12 1.976326 0.9975538

Conclusion: Strong rejection of  RW using M1, especially for q = 2, 3; 
but, using M2 test with q = 12 , we cannot reject the RW Hypothesis.

Consistent with previous result, stronger evidence for EW returns than 
for VW returns. 

The RWH: LM Tests Monthly Evidence 
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• Several issues has been raised regarding the LM’s tests:

(1) Poor asymptotic approximation. The asymptotic standard normal 
distribution provides a poor approximation to the small-sample 
distribution of  the VR statistic. LM’s tests tend to be biased and right-
skewed, in finite samples.

• Proposed solutions: 
- Alternative asymptotic distributions, as in Richardson and Stock 
(1989) or Chen and Deo (2006). 

- Bootstrapping, as in Kim (2006) or Malliaropulos and Priestley 
(1999). 

The RWH: VR & LM Tests – Issues (
   ௔ 

N(0,1))

(2) Joint tests. The LM’s tests are individual tests, where H0 is tested 
for a specific value of q. But, under H0, VR(q) = 1, for all q. LM’s tests 
ignore the joint nature of  testing for the RW Hypothesis.

• Proposed solutions: 
- RS statistic, a Wald Test, as proposed by Richardson and Smith (1993):

RS(q) = T (VR − ι )′ Φ-1 T (VR −ι )  
 ௗ 

χq
ଶ .

where VR is the (q×1) vector of  q sample variance ratios, ι is the (q×1) 
unit vector, and Φ is the covariance matrix of  VR.

- QP statistic, a Wald Test based on a “power transformed” VR statistic,
as proposed by Chen and Deo (2006). QP asymptotically follows a χq

ଶ

distribution. This test is a one-sided test (H1: VR(q) < 1 for all q.)

The RWH: VR & LM Tests – Issues (Joint Tests)
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• Proposed solutions (continuation): 

- CD statistic, a join test, as proposed by Chow and Denning (1993): 
CD = 𝑇 max

ଵஸ௜ஸ௠
|𝑀ଶ 𝑞௜ |

which follows a complex distribution, the studentized maximum 
modulus [SMM] distribution with m and T degrees of  freedom (m is the 
number of  k values). This SMM distribution is tabulated in Hahn and 
Hendrickson (1971) and Stoline and Ury (1979). 

In general, we use the simulated critical values obtained by simulations 
as done by Chow and Denning themselves or a bootstrap as in Kim 
(2006).

The RWH: VR & LM Tests – Issues (Joint Tests)

Example: We check the monthly LM test results using a bootstrap 
instead of  the asymptotic distribution. We use the Boot.test function in 
the R package vrtest, which provides two bootstrapped p-values: one for 
the LM statistic and the other one for the CD statistic. 

• VR tests for monthly VW
> y <- lr_vw
> Lo.Mac(y, kvec) # LM’s tests M1 & M2 
$Stats

M1        M2
k=2  3.422358 1.7485059
k=3  2.706957 1.4241521
k=12 1.099060 0.6373211

> Boot.test(y, kvec, nboot=1000, wild="Normal", prob=c(0.025,0.975)) #Kim’s Bootstrap
$Holding.Period
[1]  2  3 12

$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.067 0.157 0.503

The RWH: VR & LM Tests – Monthly Evidence
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Example (continuation):
> Lo.Mac(y, kvec) # LM’s tests M1 & M2 
$Stats

M1        M2
k=2  3.422358 1.7485059
k=3  2.706957 1.4241521
k=12 1.099060 0.6373211

> Boot.test(y, kvec, nboot=1000, wild="Normal", prob=c(0.025,0.975)) #Kim’s Bootstrap
$Holding.Period
[1]  2  3 12

$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.067 0.157 0.503

$CD.pval (Bootstrap p-value for the Chow-Denning test)
[1] 0.153

$CI (C.I. for Lo-Mackinlay M2 tests from Bootstrap distribution)
2.5%    97.5%

k=2  -1.825961 1.827630
k=3  -1.847447 1.855263
k=12 -1.712367 2.152280

The RWH: VR & LM Tests – Monthly Evidence

Example (continuation):
> Wald(y, kvec) # RS Wald test
$Holding.Period
[1]  2  3 12

$Wald.stat
[1] 12.42735

$Critical.Values_10_5_1_percent
[1]  6.251389  7.814728 11.344867

> Chen.Deo(y, kvec) # QP Wald test
$Holding.Period
[1]  2  3 12

$VRsum
[1] 0.07335402

$QPn
[1,] 3.154226

$ChiSQ.Quantiles_1_2_5_10_20_percent
[1] 11.344867  9.837409  7.814728  6.251389  4.641628

The RWH: VR & LM Tests – Monthly Evidence
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Example (continuation):
• VR tests for monthly EW
> y <- lr_ew
> Lo.Mac(y, kvec) # LM’s tests M1 & M2 
$Stats

M1        M2
k=2  6.943998 2.5480302
k=3  6.359116 2.5009114
k=12 1.976326 0.9975538

> Boot.test(y, kvec, nboot=1000, wild="Normal", prob=c(0.025,0.975)) #Kim’s Bootstrap
$Holding.Period
[1] 5 20 60

$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.001 0.004 0.279

$CD.pval (Bootstrap p-value for the Chow-Denning test)
[1] 0.017

The RWH: VR & LM Tests – Monthly Evidence

Example (continuation):
$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.001 0.004 0.279

$CD.pval (Bootstrap p-value for the Chow-Denning test)
[1] 0.017

$CI (C.I. for Lo-Mackinlay M2 tests from Bootstrap distribution)
2.5%    97.5%

k=2  -1.754012 1.708415
k=3 -1.710910 1.816157
k=12 1.563058 2.092434

> Wald(y, kvec) # RS Wald test
$Holding.Period
[1]  2  3 12

$Wald.stat
[1] 52.68679

$Critical.Values_10_5_1_percent
[1]  6.251389  7.814728 11.344867

The RW Hypothesis: VR Test Monthly Evidence
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Example (continuation):
> Chen.Deo(y, kvec) # QP Wald test
$Holding.Period
[1]  2 3 12

$VRsum
[1] 0.1442001

$QPn
[1,] 6.524497

$ChiSQ.Quantiles_1_2_5_10_20_percent
[1] 11.344867  9.837409  7.814728  6.251389  4.641628

Conclusion: Consistent with previous result, solid evidence (only the 
Wald test rejects H0) for the RW for VW returns, but weak evidence for 
EW returns. 

The RW Hypothesis: VR Test Monthly Evidence

Example: We check the RW Hypothesis, under RW3, for the daily 
CRSP EW and VW Index returns. 

• VR tests for daily VW
kvec <- c(5, 20, 60) #Vector with different q
y <- lr_vw
vr_1 <- VR.minus.1(y, kvec) # Stat should be close to 0 if  RW
> vr_1
$VR.auto (value of  VR-1 with automatic selection of  holding vectors)
[1] 0.08049192

$Holding.Periods
[1]  5  20 60

$VR.kvec (the values of  VR-1 for the chosen holding periods)
[1] 0.06015875  0.11155693  0.16958754

> sqrt(T*kvec)/sqrt(2*(kvec-1))*vr_1$VR.kvec  # VR test for each q=kvec[i] (~ N(0,1) dist)
[1] 1.616329 2.750494 4.109789

The RW Hypothesis: VR Test Daily Evidence
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Example (continuation): 

> AutoBoot.test(y, nboot=300, wild="Normal", prob=c(0.025,0.975)) # Choi (1999)
$test.stat
[1] 4.354851

$VRsum
[1] 1.080492

$pval
[1] 0.02333333

$CI.stat
2.5%     97.5% 

-3.423189  4.067023 

$CI.VRsum
2.5%     97.5% 

0.9483973 1.0656480 

The RW Hypothesis: VR Test Daily Evidence

Example (continuation):
> Lo.Mac(y, kvec) # LM’s tests M1 & M2 
$Stats

M1        M2
k=5  4.372645 1.757401
k=20 3.574490 1.573525
k=60 3.057608 1.536068

> Boot.test(y, kvec, nboot=1000, wild="Normal", prob=c(0.025,0.975)) #Kim’s Bootstrap
$Holding.Period
[1]  2  3 12

$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.06333333 0.08000000 0.07333333

$CD.pval (Bootstrap p-value for the Chow-Denning test)
[1] 0.11333

$CI (C.I. for Lo-Mackinlay M2 tests from Bootstrap distribution)
2.5%    97.5%

k=5  -1.602225 2.333427
k=20 -1.594718 1.935643
k=60 -1.748524 1.782090

The RW Hypothesis: VR Test Daily Evidence
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Example (continuation):
> Wald(y, kvec) # RS Wald test
$Holding.Period
[1]  5 20 60

$Wald.stat
[1] 21.19834

$Critical.Values_10_5_1_percent
[1]  6.251389  7.814728 11.344867

> Chen.Deo(y, kvec) # QP Wald test

$VRsum
[1] 0.05863072

$QPn
[,1]

[1,] 3.639522

$ChiSQ.Quantiles_1_2_5_10_20_percent
[1] 11.344867  9.837409  7.814728  6.251389  4.641628

The RW Hypothesis: VR Test Daily Evidence

• Tests results are based on CRSP value-weighted (VW) and equal 
weighted (EW) indices from 1925 & individual securities from 1962.

• Daily, weekly and monthly returns from VW and EW indices show 
significant (positive) autocorrelation. 

• VR(q) > 1 statistics reject RW3 for EW index but not VW index. 
Market capitalization or size may be playing a role. Rejection of  RW 
stronger for smaller firms. Their returns more serially correlated.

• For individual securities, VR(q) < 1, suggesting small and negative 
correlations (and not significant). 

• VR tests in other countries and financial markets. Tests also tend to 
reject the RWH, with stronger rejections for smaller markets and less 
liquid markets.  

The RW Hypothesis: Overall Evidence
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• The rejection of  the RWH does not necessarily imply a violation of  
the EMH. 

• Main implication: Theoretical pricing models should be able to explain 
the pattern of  serial correlation. 

• Side Question: How can portfolios show VR(q) > 1 when individual 
securities show VR(q) < 1?

The RW Hypothesis: Implications


