
RS – FEc - Lecture 9-c

1© R. Susmel, 2023 – Not to be posted/shared online without written authorization

1

Lecture 9-c
Time Series: Forecasting with 

ARIMA & Exponential 
Smoothing

© R. Susmel, 2023 (for private use, not to be posted/shared online).

• How do we select 𝑝, 𝑞, and 𝑑 for an ARIMA model?

• Box-Jenkins Approach
1) Make sure data is stationary –check a time plot. If  not, differentiate.

2) Using ACF & PACF, guess small values for 𝑝 & 𝑞.
If  order choice not clear, use AIC, AIC Corrected (AICc), BIC, or 
HQC (Hannan and Quinn (1979)).

3) Estimate order 𝑝, 𝑞. (ML, MM, OLS for AR; Innovation algorithm 
for MA, Hannan-Rissanen algorithm for ARMA)

4) Run diagnostic tests on residuals (Check ACF, LB tests).
 Are they white noise?  If  not, add lags (𝑝 or 𝑞, or both).

• Value parsimony. When in doubt, keep it simple (KISS).

• Looks simple, but there are a lot of  nuances to the process.

Review: ARIMA Models – Box-Jenkins
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• With non-stationary series, we talked about trends: 
- Deterministic vs Stochastic

 we remove pattern, either by detrending (deterministic trends) or 
differencing (stochastic trends).

• Similar situation arises when we have seasonal patterns, which can 
also be deterministic or stochastic.  In general, we remove the seasonal 
pattern using seasonal dummies (deterministic seasonalities). Once 
removed we follow Box-Jenkins to select an ARIMA model.

• Then, we forecast. We find
- MA(𝑞) forecasts become mean forecasts after 𝑞 periods.
- AR(𝑝) are very correlated forecasts, using past 𝑝 forecasts.
- ARMA(𝑝, 𝑞) are a combination of  both; after 𝑞 periods, AR 
dominates.

Review: ARIMA Models – Box-Jenkins

• Stationarity in mean does not imply stationarity in variance. 
However, non-stationarity in mean implies non-stationarity in 
variance.

• If the mean function is time dependent:
1. The variance, Var(yt) is time dependent.
2. Var[yt] is unbounded as t.
3. Autocovariance functions and ACFs are also time dependent.
4. If t is large with respect to the initial value y0, then k  1.

• It is common to use variance stabilizing transformations: Find a 
function G(.) so that the transformed series G(yt) has a constant 
variance. Very popular transformation:

𝐺 𝑌 log 𝑌  

Non-Stationarity in Variance
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Example: We log transform the monthly variable Total U.S. Vehicle 
Sales data (1976: Jan – 2020: Sep):
Car_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/TOTALNSA.csv", 
head=TRUE, sep=",")
x_car <- Car_da$TOTALNSA

library(tseries)
ts_car <- ts(x_car,start=c(1976,1),frequency=12) 
plot.ts(ts_car,xlab="Time",ylab="div", main="Total U.S. Vehicle Sales")

> mean(x_car)
[1] 1260.818
> sd(x_car)
[1] 225.5706

Non-Stationarity in Variance – Log Transform

Example (continuation):
l_car <- log(ts_car)
> plot.ts(l_car,xlab="Time",ylab="div", main="Log Total U.S. Vehicle Sales")

> mean(l_car)
[1] 7.122416
> sd(l_car)
[1] 0.1889378

Note: Big reduction in volatility. Though pattern of series not significantly changed.

Non-Stationarity in Variance – Log Transform
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• Another popular transformation is the the Box-Cox transformation:

G 𝑌  

where 𝜆>0, usually between 0 and 2 (it can be estimated too). When 
𝜆=1, we have a linear 𝑦 ; when 𝜆→0, a log transformation for 𝑦 .

Example: We do a Box-Cox transformation of the monthly variable 
Total U.S. Vehicle Sales data (1976: Jan – 2020: Sep), setting 𝜆 = 0.75:
lambda <- 0.75
b_cox_car <- (ts_car^lambda - 1)/lambda
> plot.ts(b_cox_car, xlab="Time",ylab=“cars", main=" Box-Cox Total U.S. Vehicle Sales")

Non-Stationarity in Variance – Box-Cox

• Variance stabilizing transformation is only done for positive series, 
usually for nominal series (say, in USD total retail sales or units, like 
Total U.S. vehicle sales). If a series has negative values, then we need 
to add each value with a positive number so that all the values in the 
series are positive. 

• Then, we can search for any need for transformation.

• It should be performed before any other analysis, such as finding an 
ARMA(𝑝, 𝑞) model or differencing.

• Not only stabilize the variance, but we tend to find that it also 
improves the approximation of the distribution by Normal 
distribution.

Variance Stabilizing Transformation - Remarks
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• In time series, seasonal patterns (“seasonalities”) can show up in two 
forms: additive and multiplicative.
- Additive: The seasonal variation is independent of  the level.
- Multiplicative: The seasonal variation is a function of  the level. 

Note: In the multiplicative case, the amplitude of  the seasonal pattern 
is changing over time, while in the additive the amplitude is constant.

Seasonal Time Series

Examples: We simulate the two seasonal patterns, additive and 
multiplicative, with trend and no trend.
A. With trend

B. With no trend

Seasonal Time Series
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• Two types of  seasonal behavior:
- Deterministic – Usual treatment: Build a deterministic function,

𝑓 𝑡 𝑓 𝑡 𝑘 𝑠 ,   𝑘 0, 1, 2,⋯

We can include seasonal (means) dummies, for example, monthly or 
quarterly dummies. (This is the approach in Brooks’ Chapter 10).

Instead of  dummies, trigonometric functions (sum of  cosine curves) 
can be used. A linear time trend is often included in both cases.

-Stochastic – Usual treatment: SARIMA model. For example:
𝑦 𝜃  Φ  𝑦  𝜀 Θ 𝜀

or
1 Φ 𝐿  𝑦 1 Θ 𝐿  𝜀

where s the seasonal periodicity –associated with the frequency– of  𝑦 . 
For quarterly data, s = 4; monthly, s= 12; daily, s = 7, etc. 

Seasonal Time Series: Types

• The raw series along with the ACF and PACF can be used to 
discover seasonal patterns. 

Seasonal Time Series – Visual Patterns

Signs: Periodic repetitive wave pattern in ACF, repetition of  significant 
ACFs, PACFs after s periods. 
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Seasonal Time Series – Visual Patterns

Sign: Significant spikes in ACF/PACF at frequency s, in this case s= 12. 

• We use seasonal dummy variables, say monthly, in a linear model 
to capture the seasonalities. Depending on the seasonality pattern, we 
have different specifications to remove the pattern. 

• Suppose 𝑦 has monthly frequency and we suspect that in every 
December 𝑦 increases. 
– For the additive model, we can regress 𝑦 against a constant and a 
December dummy, 𝑫 : 

𝑦 μ 𝑫  𝝁 𝜀

For the multiplicative model, we can regress 𝑦 against a constant and 
a December dummy, 𝑫 , interacting with a trend, 𝑡:

𝑦 μ 𝑫  𝝁 ∗ 𝑡 𝜀

The residuals of  these regressions, 𝑒 , –i.e., 𝑒 = filtered 𝑦 , free of  
“monthly seasonal effects”– are used for further ARMA modeling.

Seasonal Time Series – Deterministic
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Example: We simulate an AR(1) series, with a multiplicative 
December seasonal behavior.

𝑦 μ 𝜙 𝑦 𝑫  𝝁 ∗ 𝑡 𝜀
T_sim <- 500 # Size of  simulation
y_sim <- matrix(0,T_sim,1) # vector to accumulate simulated data
Seas_12 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (length(y_sim)/12+1)) # Create Oct dummy
u <- rnorm(T_sim, sd=0.75) # Draw T_sim normally distributed errors
phi1 <- 0.2 # Change to create different correlation patterns
k <- 12 # Seasonal Periodicity
a <- k+1 # Time index for observations
mu <- 0.2
mu_s <- .02
while (a <= T_sim) {

y_sim[a] = mu + phi1 * y_sim[a-1] + Seas_12[a] * mu_s * a + u[a]
# y_sim simulated autocorrelated values

a <- a + 1
} 
y_seas <- y_sim[(k+1):T_sim]
plot(y_seas, type="l", main="Simulated Deterministic Seasonality")

Seasonal Time Series – Deterministic

Example (continuation): We plot simulated series, ACF, & PACF.

Seasonal Time Series – Deterministic
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Example (continuation): We detrend (“filter” the simulated series).
trend <- c(1:T_sim)
trend_sim <- trend[(k+1):T_sim]
seas_d <- Seas_12[(k+1):T_sim]
sea_trend <- seas_d*trend_sim
fit_seas <- lm(y_seas ~ seas_d + trend_sim + sea_trend)
> summary(fit_seas)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.1356538 0.0804474   1.686  0.09239 .  
seas_d 0.6929134 0.2859528   2.423 0.01575 *  
trend_sim 0.0008504 0.0002749   3.093 0.00209 ** 
sea_trend 0.0174034 0.0009766  17.821 < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8209 on 484 degrees of  freedom
Multiple R-squared:  0.7929,    Adjusted R-squared:  0.7917 
F-statistic: 617.8 on 3 and 484 DF,  p-value: < 2.2e-16

Seasonal Time Series – Deterministic

Example (continuation): We plot the detrended simulated series, 
along with the ACF and PACF.

Seasonal Time Series – Deterministic
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Example (continuation): The December seasonal pattern is gone 
from the detrended series. We run an ARIMA(1,0,0):
> fit_y_seas_ar1 <- arima(y_seas_filt, order=c(1,0,0))

Call:
arima(x = y_seas_filt, order = c(1, 0, 0))

Coefficients:
ar1  intercept

0.1785    -0.0001  Very close to phi1 = 0.20. 
s.e. 0.0446     0.0443

sigma^2 estimated as 0.6471:  log likelihood = -586.26,  aic = 1178.51

y_seas_filt_2 <- fit_y_seas_det_ar1$residuals # Extract Residuals

plot(y_seas_filt_2,type="l", main="AR(1) Residuals")
acf(y_seas_filt_2, main="ACF: AR(1) Residuals")
pacf(y_seas_filt_2, main=“PACF: AR(1) Residuals")

Seasonal Time Series – Deterministic

Example (continuation): We check the residuals of  AR(1) regression

Seasonal Time Series – Deterministic
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Example: We model log changes in real estate prices in the LA 
market, 𝑦 . First, we run a regression to remove (filter) the monthly 
effects from 𝑦 . Then, we model 𝑦 as an ARMA(p, q) process.
RE_da <- read.csv(" http://www.bauer.uh.edu/rsusmel/4397/Real_Estate_2019.csv", 
head=TRUE, sep=",")
x_la <- RE_da$LA_c
zz <- x_la
T <- length(zz)
plot(x_la, type="l", main="Changes in Log Real Estate Prices in LA")

Seasonal Time Series – Deterministic

Example (continuation): We look at the ACF & PACF for LA
> acf(x_la)
> pacf(x_la)

Seasonal Time Series – Deterministic

Note: ACF shows highly autocorrelated data, with some seasonal 
pattern (there is a periodic decreasing wave). 
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Example (continuation): We define monthly dummies

Feb1 <- rep(c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create January dummy
Mar1 <- rep(c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create March dummy
Apr1 <- rep(c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create April dummy
May1 <- rep(c(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create May dummy
Jun1 <- rep(c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create June dummy
Jul1 <- rep(c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create Jul dummy
Aug1 <- rep(c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create Aug dummy
Sep1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), (length(zz)/12+1)) # Create Sep dummy
Oct1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), (length(zz)/12+1)) # Create Oct dummy
Nov1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), (length(zz)/12+1)) # Create Oct dummy
Dec1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), (length(zz)/12+1)) # Create Oct dummy
seas1 <- cbind(Feb1, Mar1, Apr1, May1, Jun1, Jul1, Aug1, Sep1, Oct1, Nov1, Dec1)
seas <- seas1[1:T,]

x_la_fit_sea <- lm(x_la ~ seas) # Regress x_la against constant + seasonal dummies
> summary(x_la_fit_sea)

Seasonal Time Series – Deterministic

Example (continuation): We define monthly dummies
> summary(x_la_fit_sea)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.0014063 0.0020125  -0.699 0.485157    
seasFeb1 0.0006752 0.0028223   0.239 0.811079    
seasMar1 0.0049095 0.0028223   1.740 0.082838 .  
seasApr1 0.0090903 0.0028223   3.221 0.001400 ** 
seasMay1 0.0104159 0.0028223   3.691 0.000260 ***
seasJun1 0.0103464 0.0028223   3.666 0.000285 ***
seasJul1 0.0080593 0.0028223   2.856 0.004557 ** 
seasAug1 0.0062247 0.0028223  2.206 0.028080 *  
seasSep1 0.0032244 0.0028223   1.142 0.254055    
seasOct1 0.0011967 0.0028461   0.420 0.674421    
seasNov1 -0.0006218 0.0028461  -0.218 0.827181    
seasDec1 -0.0009031 0.0028461  -0.317 0.751195    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Seasonal Time Series – Deterministic

Note: Returns –i.e., home prices– are higher from April to August.
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Example (continuation): Now, we model et, the filtered LA series
x_la_filt <- x_la_fit_sea$residuals # residuals, et = filtered x_la series
fit_ar_la_filt <- auto.arima(x_la_filt) # use auto.arima to look for a good model
> fit_ar_la_filt
Series: x_la_filt
ARIMA(2,0,1) with zero mean

Coefficients:
ar1     ar2     ma1

0.0987  0.7737  0.7245
s.e. 0.0963 0.0866  0.1136

sigma^2 estimated as 1.668e-05:  log likelihood=1453.66
AIC=-2899.33   AICc=-2899.21   BIC=-2883.83

> checkresiduals(fit_ar_la_filt)

Ljung-Box test

data:  Residuals from ARIMA(2,0,1) with zero mean
Q* = 13.5, df = 7, p-value = 0.06083  Reject H0 at 5% lever. But, judgement call is OK.

Model df: 3.   Total lags used: 10

Seasonal Time Series – Deterministic

Example (continuation): We check residual plots.

Seasonal Time Series – Deterministic

Note: ACF shows some small, but significant autocorrelations, but the 
seasonal (wave) pattern is no longer there. 
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Example (continuation): Finally, we check the stationarity & the 
invertibility of  the ARIMA(2,0,1) process.

Seasonal Time Series – Deterministic

Note: All roots inside the unit circle (& real): stationarity and 
invertibility. 

• Forecasting is the primary objective of ARIMA modeling.

• Two types of forecasts.

- In sample (prediction): The expected value of the RV (in-sample), 
the “fitted values,” 𝑌 .

- Out of sample (forecasting): The value of a future RV that is not 
observed by the sample, 𝑌 ℓ.

Notation: 
- Forecast for T+ℓ made at T: 𝑌 ℓ, 𝑌 ℓ| , 𝑌 ℓ .

- T+ℓ forecast error: 𝑒 ℓ 𝑒 ℓ 𝑌 ℓ 𝑌 ℓ

- Mean squared error (MSE): 𝑀𝑆𝐸 𝑒 ℓ 𝐸 𝑌 ℓ 𝑌 ℓ]2

Review: Forecasting
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• The optimal point forecast under MSE is the (conditional) mean:

𝑌 ℓ E 𝑌 ℓ|𝐼

• Different loss functions lead to different optimal forecast. For 
example, for the MAE, the optimal point forecast is the median.

• The computation of E[𝑌 ℓ|𝐼 ] depends on the distribution of 
{𝜀 }. Then, if 

{𝜀 } ~ WN  E[𝜀 ℓ|𝐼 ] = 0.

Review: Forecasting – Basic Concepts

• Process: 
(1) Find ARIMA model
(Use ACF, PACF or Minic)

(2) Estimation
(& Evaluation in-sample)

(3) Forecast
(& Evaluation out-of-sample)

Review: Forecasting Steps for ARMA Models

𝑌 𝜙 𝑌 𝜀
⇓

𝜙 Estimate of 𝜙
⇓

𝑌 𝜙 𝑌  Prediction

⇓
Y  𝜙 𝑌 Forecast
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• We observe the time series: 𝒀 = {𝑌 , 𝑌 , …, 𝑌 }.

- We determine an ARIMA(𝑝, 𝑑, 𝑞) model.

- At time 𝑇, we want to forecast: 𝑌 , 𝑌 ,…, 𝑌 ℓ.

- The information set we have is 𝐼  = {𝑌 , 𝑌 , …, 𝑌 , 𝜀 , 𝜀 , ..., 𝜀 }.

• Use the conditional expectation of 𝑌 ℓ, given the information at 𝑇:

𝑌 ℓ 𝐸 𝑌 ℓ|𝑌 ,𝑌 , … ,𝑌

Example: We have an AR(1) model.

𝑌 μ 𝜙 𝑌 𝜀
Then, the one-step ahead forecast:

𝑌 𝐸 𝑌 |𝑌 ,𝑌 , … ,𝑌 = μ 𝜙 𝑌
since 𝐸 𝜀 |𝑌 ,𝑌 , … ,𝑌 = 0. 31

Review: Forecasting From ARMA Models

• The stationary MA(𝑞) model for 𝑌 is
𝑌 μ 𝜀 𝜃 𝜀 ⋯ 𝜃 𝜀

We produce at time 𝑇 l-step ahead forecasts using:

𝑌 μ 𝜀 𝜃 𝜀 ⋯ 𝜃 𝜀

𝑌 μ 𝜀 𝜃 𝜀 ⋯ 𝜃 𝜀

⋮

𝑌 ℓ μ 𝜀 ℓ 𝜃 𝜀 ℓ ⋯ 𝜃 𝜀 ℓ 𝑙  2

Now, we take conditional expectations:

𝑌 ℓ 𝐸 𝑌 ℓ|𝐼 = μ E 𝜀 ℓ|IT 𝜃 E 𝜀 ℓ |𝐼
                        ⋯ 𝜃 E 𝜀 ℓ |𝐼

Note: Forecasts are a linear combination of errors. 

Review: Forecasting From MA(𝒒) Models
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• Some of the errors are know at 𝑇: 𝜀1 𝜺𝟏, 𝜀2 𝜺𝟐, ..., 𝜀T 𝜺𝑻, the 
rest are unknown. Thus, 

E[𝜀 ] = 0 for 𝑗 > 1.

Example: For an MA(2) we have:

𝑌 = μ E 𝜀 |𝐼 𝜃 E 𝜀 |𝐼 𝜃 E 𝜀 |𝐼

𝑌 = μ E 𝜀 |𝐼 𝜃 E 𝜀 |𝐼 𝜃 E 𝜀 |𝐼

𝑌 = μ E 𝜀 |𝐼 𝜃 E 𝜀 |𝐼 𝜃 E 𝜀 |𝐼

At time 𝑇= 𝑡, we know 𝜀 & 𝜀 . Set E 𝜀 |𝐼 =0 for 𝑗 > 1. Then,

𝑌 = μ  𝜃 E 𝜀 |It 𝜃 E 𝜀 |I𝑡 = μ  𝜃 𝜺𝒕 𝜃 𝜺𝒕 𝟏

𝑌 = μ 𝜃 E 𝜀 |I𝑡 = μ  𝜃 𝜺𝒕
𝑌 = μ

𝑌 ℓ= μ for ℓ > 2.  MA(2) memory of 2 periods

Review: Forecasting From MA(𝒒) Models

• The example generalizes: An MA(𝑞) process has a memory of only q
periods. All forecasts beyond 𝑞 revert to the unconditional mean, μ.

Example: We fit an MA(1) to the U.S. stock returns (T=1,975):
library(tseries)
library(forecast)
fit_p_ts <- arima(lr_p, order=c(0,0,1)) # fit an MA(1) model
fcast_p <- forecast(fit_p_ts, h=4) # produce 4-step ahead forecasts 
> fit_p_ts
> fcast_p
Coefficients:

ma1  intercept
0.2888 0.0037

s.e. 0.0218     0.0012

sigma^2 estimated as 0.001522:  log likelihood = 3275.83,  aic = -6545.67
> fcast_p

Point Forecast       Lo 80      Hi 80       Lo 95      Hi 95
1796    0.012570813 -0.03742238 0.06256401 -0.06388718 0.08902881
1797    0.003689524 -0.04834634 0.05572539 -0.07589247 0.08327152
1798   0.003689524 -0.04834634 0.05572539 -0.07589247 0.08327152
1799    0.003689524 -0.04834634 0.05572539 -0.07589247 0.08327152

Review: Forecasting From MA(𝒒) Models
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• The stationary AR(𝑝) model for 𝑌 is
𝑌 μ 𝜙 𝑌 𝜙 𝑌 ⋯ 𝜙 𝑌 𝜀

We produce, at time 𝑇, ℓ-step ahead forecasts using:

𝑌 μ 𝜙 𝑌 𝜙 𝑌 ⋯ 𝜙 𝑌 𝜀

𝑌 μ 𝜙 𝑌 𝜙 𝑌 ⋯ 𝜙 𝑌  𝜀

⋮

𝑌 ℓ μ 𝜙 𝑌 ℓ 𝜙 𝑌 ℓ ⋯ 𝜙 𝑌 ℓ 𝜀 ℓ ℓ 2

Now, we take conditional expectations:

𝑌 ℓ 𝐸 𝑌 ℓ|IT = μ 𝜙 E 𝑌 ℓ |IT 𝜙 E 𝑌 ℓ |IT

                  ⋯ 𝜙 E 𝑌 ℓ |IT

Note: The forecasts 𝑌 ℓ is a linear combination of past forecast. 

Review: Forecasting From AR(𝒑) Models

Example: AR(2) model for 𝑌 ℓ is
𝑌 ℓ μ 𝜙 𝑌 ℓ 𝜙 𝑌 ℓ 𝜀 ℓ

Then, taking conditional expectations at 𝑇 = 𝑡, we get the forecasts:

𝑌 μ 𝜙 𝑌 𝜙 𝑌

𝑌 μ 𝜙 𝑌 𝜙 𝑌

𝑌 μ 𝜙 𝑌 𝜙 𝑌
⋮

𝑌 ℓ  μ 𝜙 𝑌 ℓ 𝜙 𝑌 ℓ

• AR-based forecasts are autocorrelated, they have long memory! 

Review: Forecasting From AR(𝒑) Models
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Example: We  fit an AR(4) to the changes in Oil Prices (T=346):
fit_oil_ts <- arima(lr_oil, order=c(4,0,0))
fcast_oil <- forecast(fit_oil_ts, h=12)
> fit_oil_ts

Coefficients:
ar1 ar2 ar3 ar4  intercept

0.2946  -0.1027  -0.0571  -0.0983     0.0017
s.e. 0.0521 0.0543 0.0551   0.0539 0.0051

sigma^2 estimated as 0.008812:  log likelihood = 344.57,  aic = -677.14 

> fcast_oil
Point Forecast      Lo 80    Hi 80      Lo 95     Hi 95

365  -5.425015e-02 -0.1745546 0.0660543 -0.2382399 0.1297396
366  -1.578754e-02 -0.1412048 0.1096297 -0.2075966 0.1760216
367   2.455760e-03 -0.1229760 0.1278875 -0.1893755 0.1942871
368   1.356917e-02 -0.1123501 0.1394884 -0.1790077 0.2061460
369   1.160479e-02 -0.1154462 0.1386558 -0.1827029 0.2059125
370   5.060891e-03 -0.1221954 0.1323172 -0.1895608 0.1996826
371   9.059104e-04 -0.1263511 0.1281629 -0.1937169 0.1955287

Note: You can extract the point forecasts from the forecast function using $mean. That is,
fcast_oil$mean extracts the whole  vector of forecasts.

Review: Forecasting From AR(𝒑) Models

• The stationary ARMA model for 𝑌 is
𝑌 𝜃 𝜙 𝑌 ⋯ 𝜙 𝑌 𝜀 𝜃 𝜀 ⋯ 𝜃 𝜀

• We produce at time T the forecast 𝑌 ℓ. Then,

𝑌 ℓ 𝜃 𝜙 𝑌 ℓ ⋯ 𝜙 𝑌 ℓ 𝜀 ℓ 𝜃 𝜀 ℓ ⋯ 𝜃 𝜀 ℓ

• Taking conditional expectations:
𝑌 ℓ 𝜃 𝜙 𝑌 ℓ ⋯ 𝜙 𝑌 ℓ 𝐸 𝜀 ℓ I𝑇 𝜃 E 𝜀 ℓ |I𝑇 ⋯

+ 𝜃 E 𝜀 ℓ |I𝑇

• An ARMA forecasting is a combination of past 𝑌 ℓ forecasts and 
observed past 𝜀̂ ℓ . 

Review: Forecasting From ARMA Models
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• We use the MA(∞) (Wold) – representation of a stationary ARMA 
process to get the forecast error. The Wold representation:

𝑌 ℓ 𝜇 𝜀 ℓ Ψ 𝜀 ℓ Ψ 𝜀 ℓ ⋯ Ψℓ𝜀 ⋯

The forecast error is:

𝑒 ℓ 𝑌 ℓ 𝑌 ℓ Ψ 𝜀 ℓ

ℓ

Example 2: One-step ahead forecast (ℓ = 2).

𝑌 𝜇 𝜀 Ψ 𝜀 Ψ 𝜀 Ψ 𝜀 ⋯
𝑌 𝜇 Ψ 𝜀 Ψ 𝜀 ⋯
𝑒 2 𝑌 𝑌 𝜀 Ψ 𝜀
𝑉𝑎𝑟 𝑒 2 𝜎 ∗ 1 Ψ

Note: lim
ℓ→

𝑌 ℓ 𝜇

Review: Forecasting From ARMA Models

• The forecast error is:

𝑒 ℓ Ψ 𝜀 ℓ

ℓ

Note: When the expectation of the forecast error is zero:

E[𝑒 ℓ ] = 0  we say the forecast is unbiased.

• The variance of the forecast error:

𝑉𝑎𝑟 𝑒 ℓ 𝑉𝑎𝑟 Ψ 𝜀 ℓ

ℓ

𝜎 Ψ

ℓ

Note: lim
ℓ→

𝑉𝑎𝑟 𝑒 ℓ 𝛾 ∞

Review: Forecasting From ARMA Models
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• The Wold representation depends on an infinite number of 
parameters, but, in practice, they decay rapidly. Then, as we forecast 
into the future, the forecasts are not very interesting:

lim
ℓ→

𝑌 ℓ 𝜇

We have unconditional forecasts.  

• This is why ARIMA forecasting is useful only for short-term. 

Review: Forecasting From ARMA Models

• A 100(1- )% prediction interval for 𝑌 ℓ (ℓ-steps ahead) is

𝑌 ℓ   𝑧 /  𝑉𝑎𝑟 𝑒 ℓ

or, 𝑌 ℓ   𝑧 /  𝜎 ∑ Ψℓ

Example: 95% C.I. for the 2-step-ahead forecast:

𝑌 2   1.96 𝜎 1 Ψ

• When computing prediction intervals from data, we substitute 
estimates for parameters, giving approximate prediction intervals.

Note: MSE[𝜀 ℓ] = MSE[𝑒 ℓ] = 𝜎 ∑ Ψℓ

Review: Forecasting From ARMA Models: C.I.
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• Industrial companies, with a lot of inputs and outputs, want quick 
and inexpensive forecasts. Easy to fully automate. In general, we use 
past 𝑌 to forecast future 𝑌 ‘s, usually referred as the level’s forecasts.

• Exponential Smoothing Models (ES) fulfill these requirements.

• In general, these models are limited and not optimal, especially 
compared with Box-Jenkins methods.

• Goal of these models: Suppress the short-run fluctuation by 
smoothing the series. For this purpose, a weighted average of all 
previous values works well. 

• There are many ES models. We will go over the Simple Exponential 
Smoothing (SES) & Holt-Winter’s Exponential Smoothing (HW ES). 

Forecasting From Simple Models: ES

• We “smooth” the series 𝑌 to produce a quick forecast, 𝑆 , also 
called level’s forecast. Smooth? The graph of 𝑆 is less jagged than the 
graph of the original series, 𝑌 .

• We use the observed time series at time t: 𝑌 , 𝑌 , …, 𝑌 .

• The equation for the level:   𝑆 𝛼𝑌 1 𝛼 𝑆
where 

- : The smoothing parameter, 0    1.

- 𝑌 : Value of the observation at time 𝑡.
- 𝑆 : Value of the smoothed observation at time t –i.e., the forecast.

• The equation can also be written as an updating equation:

𝑆 𝑆 𝛼 𝑌 𝑆 𝑆 𝛼 ∗ past forecast error

Simple Exponential Smoothing: SES
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• From the updating equation for 𝑆 :

𝑆 𝑆 𝛼 𝑌 𝑆
today, at time 𝑡, we compute the forecast: 

𝑆 𝑆 𝛼 𝑌 𝑆

That is, a simple updating forecast: last period forecast + adjustment.

For the next period, 𝑡 2, we have (since 𝑆 = 𝑌 )

𝑆 𝑆 𝛼 𝑌 𝑆 𝑆

Then, at time 𝑡, the ℓ-step ahead forecast is:

𝑆 ℓ 𝑆  A naive forecast! 

Note: SES forecasts are not very interesting after ℓ > 1.

SES: Forecast and Updating

Example: An industrial firm uses SES to forecast sales:
𝑆 𝑆 𝛼 ∗  𝑌 𝑆

The firm estimates 𝛼 = 0.25. The firm observes 𝑌 = 5 and, last 
period’s forecast, 𝑆 = 3. 

Then, the forecast for time 𝑡 1 is:

𝑆 3 + 0.25 * (5 – 3) = 3.50

The forecast for time 𝑡 1 (& any period after time 𝑡 1) is:

𝑆 ℓ 𝑆  3.50 for ℓ > 1. 

Later, the firm observes: 𝑌 = 4.77, 𝑌 = 3.15, & 𝑌 = 1.85. 
Then, the MSE:

MSE = * [(4.77 – 3.50)2 + (3.15 - 3.50)2 + (1.85 - 3.50)2] = 1.486. 

SES: Forecast and Updating



RS – FEc - Lecture 9-c

24© R. Susmel, 2023 – Not to be posted/shared online without written authorization

Example (continuation):

Note: If 𝛼 = 0.75, then 

𝑆 3 + 0.75 * (5 – 3) = 4.50

A bigger 𝛼 gives more weight to the more recent observation –i.e., 𝑌 .

Again, the forecast for time t+1 and any period after time t+1 is: 
𝑆 ℓ 𝑆  4.50 for ℓ > 1. 

SES: Forecast and Updating

• Q: Why Exponential? 
For the observed time series {𝑌 , 𝑌 , …, 𝑌 , 𝑌 }, using backward 
substitution, 𝑆 𝑌 1 can be expressed as a weighted sum of 
previous observations:
𝑆 𝛼𝑌 1 𝛼 𝑆 𝛼𝑌 1 𝛼 𝛼𝑌 1 𝛼 𝑆

𝛼𝑌 𝛼 1 𝛼 𝑌 1 𝛼 𝑆

⇒  𝑌 1 𝑆 𝑐 𝑌 𝑐 𝑌 𝑐 𝑌 ⋯

where 𝑐 ’s are the weights, with 
𝑐 𝛼 1 𝛼 ;  𝑖 0, 1, . . . ;  0 𝛼 1.

• We have decreasing weights, by a constant ratio for every unit increase 
in lag.

Then,
48

SES: Exponential?

𝑌 1 𝛼 1 𝛼 𝑌 𝛼 1 𝛼 𝑌 𝛼 1 𝛼 𝑌 ⋯
𝑌 1 𝛼𝑌 1 𝛼 𝑌 1  ⇒ 𝑆 𝛼𝑌 𝑆
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• 𝑐 𝛼 1 𝛼 ;              𝑖 0, 1, . . . ;  0 𝛼 1.

Decaying weights. Faster decay with greater 𝛼, associated with faster 
learning: we give more weight to more recent observations. 

• We do not know 𝛼; we need to estimate it. 49

SES: Exponential Weights

𝑐 𝛼 1 𝛼 𝛼 = 0.25 𝛼 = 0.75

𝑐 0.25 0.75

𝑐 0.25 * 0.75  = 0.1875 0.75 * 0.25 = 0.1875

𝑐 .25 * 0.752 = 0.140625 0.75 * 0.252 = 0.046875 

𝑐 .25 * 0.753 = 0.1054688 0.75 * 0.253 = 0.01171875

𝑐 .25 * 0.754 = 0.07910156 0.75 * 0.254 = 0.002929688

⋮

𝑐 .25 * 0.7512 = 0.007919088 0.75 * 0.2512 = 4.470348e-08

• Choose  between 0 and 1.

- If  = 1, it becomes a naive model; if  ≈ 1, more weights are put 
on recent values.  The model fully utilizes forecast errors.

- If  is close to 0, distant values are given weights comparable to 
recent values. Set  ≈ 0 when there are big random variations in 𝑌 . 

-  is often selected as to minimize the MSE.

• In empirical work, 0.05    0.3 are used ( ≈ 1 is used rarely).

Numerical Minimization Process: 

- Take different  values ranging between 0 and 1.

- Calculate 1-step-ahead forecast errors for each .

- Calculate MSE for each case.

Choose  which has the min MSE: 𝑒 𝑌 𝑆 ⇒ min ∑ 𝑒 ⇒ 𝛼50

SES: Selecting 
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51

Time Yt St+1 (=0.10) (YtSt)2

1 5 - -

2 7 (0.1)5 +(0.9)5 = 5 4

3 6 (0.1)7 + (0.9)5 = 5.2 0.64

4 3 (0.1)6 + (0.9)5.2 = 5.28 5.1984

5 4 (0.1)3 + (0.9)5.28 = 5.052 1.107

TOTAL 10.945

𝑀𝑆𝐸
𝑆𝑆𝐸
𝑛 1

2.74

• Calculate this for  = 0.2, 0.3,…, 0.9, 1 and compare the MSEs.
Choose  with minimum MSE.

Note: 𝑌 = 5 is set as the initial value for the recursive equation.

SES: Selecting  – MSE

𝑆 𝛼𝑌 1 𝛼 𝑆

• We have a recursive equation, we need initial values, S1 (or Y0).

• Approaches:

– Set S1 equal to Y1. Then, S2 = Y1.

– Take the average of, say first 4 or 5 observations. Use this average
as an initial value.

– Estimate S1 (similar to the estimation of 𝛼.)

52

SES: Initial Values
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53

Example 1: We want to forecast log changes in U.S. monthly 
dividends (T=1796) using SES. First, we estimate the model using the 
R function HoltWinters(), which has as a special case SES: set 
beta=FALSE, gamma=FALSE. We use estimation period T=1750.
mod1 <- HoltWinters(lr_d[1:1750], beta=FALSE, gamma=FALSE)
> mod1
Holt-Winters exponential smoothing without trend and without seasonal component.

Call:
HoltWinters(x = lr_d[1:1750], beta = FALSE, gamma = FALSE)

Smoothing parameters:
alpha: 0.289268  Estimated 
beta : FALSE
gamma: FALSE

Coefficients:
[,1]

a 0.004666795  Forecast

SES: Forecasting Examples

54

Example 1 (continuation): 

SES: Forecasting Examples
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55

Example 1 (continuation): 

SES: Forecasting Examples

56

Example 1 (continuation): Now, we do one-step ahead forecasts
T_last <- nrow(mod1$fitted) # number of  in-sample forecasts
h <- 25 # forecast horizon
ses_f  <- matrix(0,h,1) # Vector to collect forecasts
alpha <- 0.29
y <- lr_d
T <- length(lr_d)
sm <- matrix(0,T,1)
T1 <- T – h + 1 # Start of  forecasts
a <- T1 # index for while loop
sm[a-1] <- mod1$fitted[T_last] # last in-sample forecast
while (a <= T) {

sm[a] = alpha * y[a-1] +  (1-alpha) * sm[a-1]
a <- a + 1
} 

ses_f  <- sm[T1:T]
ses_f
f_error_ses <- sm[T1:T] - y[T1:T] # forecast errors
MSE_ses <- sum(f_error_ses^2)/h # MSE
plot(ses_f, type="l", main ="SES Forecasts: Changes in Dividends")

SES: Forecasting Examples
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57

Example 1 (continuation): 
> ses_f
f_error_ses <- sm[T1:T] - y[T1:T]
> plot(ses_f, type="l", main ="SES Forecasts: Changes in Dividends")

SES: Forecasting Examples

58

Example 1 (continuation): h-step-ahead forecasts
> forecast(mod1, h=25, level=.95)

Point Forecast       Lo 95      Hi 95
1751    0.004666795 -0.01739204 0.02672563
1752    0.004666795 -0.01829640 0.02762999
1753    0.004666795 -0.01916647 0.02850006
1754    0.004666795 -0.02000587 0.02933947
1755    0.004666795 -0.02081765 0.03015124
1756    0.004666795 -0.02160435 0.03093794
1757    0.004666795 -0.02236816 0.03170175
1758    0.004666795 -0.02311098 0.03244457
1759    0.004666795 -0.02383445 0.03316804
1760    0.004666795 -0.02454001 0.03387360
1761    0.004666795 -0.02522891 0.03456250
1762    0.004666795 -0.02590230 0.03523589
1763    0.004666795 -0.02656117 0.03589476
1764    0.004666795 -0.02720642 0.03654001
...

Note: Constant forecasts, but C.I. gets wider (as expected) with h.

SES: Forecasting U.S. Dividends
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59

Example 2: We want to forecast log monthly U.S. vehicles (1976-
2020, T=537) using SES. 
mod_car <- HoltWinters(l_car[1:512], beta=FALSE, gamma=FALSE)
> mod_car
Holt-Winters exponential smoothing without trend and without seasonal component.

Call:
HoltWinters(x = l_car[1:512], beta = FALSE, gamma = FALSE)

Smoothing parameters:
alpha: 0.4888382  Estimated 
beta : FALSE
gamma: FALSE

Coefficients:
[,1]

a 7.315328

SES: Forecasting Examples

60

Example 2 (continuation): Now, we do one-step ahead forecasting
ses_f_c <- sm_c[T1:T]
f_error_c_ses <- sm_c[T1:T] - y[T1:T]
> plot(ses_f_c, type="l", main ="SES Forecasts: Log Vehicle Sales")

> plot(f_error_c_ses, type="l", main ="SES Forecasts Errors: Log Vehicle Sales")

MSE_ses <- sum(f_error_c_ses^2)/h
> MSE_ses 
[1] 0.027889

SES: Forecasting Examples
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• Some computer programs automatically select the optimal  using a 
line search method or non-linear optimization techniques.

• We have a recursive equation, we need initial values for S1. 

• This model ignores trends or seasonalities. Not very realistic,
especially for manufacturing facilities, retail sector, and warehouses.

• Deterministic components, Dt, can be easily incorporated.

• The model that incorporates both a trend and seasonal features is
called Holt-Winter’s ES.

61

SES: Remarks

• In the model for 𝑌 , in addition to the level (𝑆 ), we introduce trend
(𝑇 ) & seasonality (𝐼 ) factors. Since we produce smooth forecasts 
for 𝑇 & 𝐼 , this method is also called triple exponential smoothing. 

• The ℎ-step ahead forecast is a combination of the smooth forecasts 
of 𝑆  (Level), 𝑇 (Trend) & 𝐼 (Seasonal). 

• Both, 𝑇 & 𝐼 , can be included as additively or multiplicatively factors. 
In this class, we consider an additive trend and the seasonal factor as 
additive or multiplicative. We produce h-step ahead forecasts:

- For the additive model: 𝑌 ℎ  𝑆 ℎ 𝑇 𝐼

- For the multiplicative model: 𝑌 ℎ 𝑆 ℎ 𝑇 ∗ 𝐼

Note: Seasonal factor is multiplied in the ℎ-step ahead forecast.
62

Holt-Winters (HW) Exponential Smoothing
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1.  No trend and additive 
seasonal variability.

2. Additive seasonal variability with 
an additive trend.

3. Multiplicative seasonal variability 
with an additive trend.

4. Multiplicative seasonal variability 
with a multiplicative trend.

Holt-Winters (HW) ES: Trend & Seasonality

Note: We will use Model 2 (Additive) and Model 3 (Multiplicative).

• Additive model (additive trend & additive seasonality) forecast:

𝑌 ℎ  𝑆 ℎ 𝑇 𝐼
where s is the number of periods in seasonal cycles (=4 for quarters).

• Components:

- The level, 𝑆 : A weighted average of “seasonal adjusted” 𝑌 (=𝑌
𝐼 ), and the non-seasonal forecast 𝑆  𝑇 :

𝑆 𝛼 𝑌 𝐼 1 𝛼 𝑆 𝑇

- The trend, 𝑇 : A weighted average of 𝑇 and the change in 𝑆 . 

𝑇 𝛽 𝑆 𝑆 1 𝛽 𝑇

- The seasonality, 𝐼 : A weighted average of seasonal index of s last 
year,  𝐼 , and the current seasonal index 𝑌 𝑆 𝑇 : 

𝐼 𝛾 𝑌 𝑆 𝑇 1 𝛾 𝐼 64

Holt-Winters (HW) ES: Additive



RS – FEc - Lecture 9-c

33© R. Susmel, 2023 – Not to be posted/shared online without written authorization

• Then, the model for the ℎ-step ahead forecast

𝑌 ℎ  𝑆 ℎ 𝑇 𝐼

has three equations:

Level: 𝑆 𝛼 𝑌 𝐼 1 𝛼 𝑆 𝑇

Trend: 𝑇 β 𝑆 𝑆   1 β  𝑇

Seasonal: 𝐼 𝛾 𝑌 𝑆 𝑇 1 𝛾 𝐼

• We have only three smoothing parameters:

 = level coefficient

β = trend coefficient

 = seasonality coefficient 65

Holt-Winters (HW) ES: Additive

• In the multiplicative seasonal case (with an additive trend), we have 
the ℎ-step ahead forecast: 

𝑌 ℎ 𝑆 ℎ 𝑇 ∗ 𝐼

• Details for multiplicative seasonality –i.e., 𝑌 /𝐼 – and additive trend

- The forecast, 𝑆 , now shows the average 𝑌 adjusted ( ). 

- The trend, 𝑇 , is a weighted average of 𝑇 and the change in 𝑆 . 

- The seasonality is also a weighted average of 𝐼 and the 𝑌 /𝑆 . 

• Then, the model has three equations:

𝑆 𝛼   1 𝛼  𝑆 𝑇

𝑇 β 𝑆 𝑆   1 β  𝑇
𝐼 𝛾   1 𝛾  𝐼 66

Holt-Winters (HW) ES: Multiplicative
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• We think of (𝑌 /𝑆 ) as capturing seasonal effects.

s = # of periods in the seasonal cycles

(s = 4, for quarterly data; s = 12, for monthly)

• Again, we have only three parameters:

 = smoothing parameter

β = trend coefficient

 = seasonality coefficient

• Q: How do we determine these 3 parameters?

- Ad-hoc method: α, β and  can be chosen as values between 

0.02 < , , β <0.2 

- Optimal method: Minimization of the MSE, as in SES. 67

Holt-Winters (HW) ES: Multiplicative

Example: An industrial firm uses HW ES to forecast sales next two 
quarters (ℎ = 1, 2, & 3; with 𝑠 = 4):

𝑌 ℎ 𝑌 𝑆 ℎ 𝑇 ∗ 𝐼
with 𝑆 , 𝑇 , & 𝐼 factors given by:

𝑆 𝛼   1 𝛼  𝑆 𝑇

𝑇 β 𝑆 𝑆   1 β  𝑇
𝐼 𝛾   1 𝛾  𝐼

The firm estimates: 𝛼 = 0.25; β = 0.1; & 𝛾 = 0.4. It observes 𝑌 = 5; 
last quarter’s smoothed forecasts: 𝑆 = 3, 𝑇 = 1.2; & last year’s 
seasonal factors: 𝐼 = 1.1, 𝐼 = 0.7, 𝐼 = 1.2, & 𝐼 = 0.8.

• Components forecasts: 

𝑆 0.25 
5

1.1   1 0.25  ∗ 3 1.3 = 4.2864

Holt-Winters (HW) ES: Multiplicative
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Example (continuation):

𝑆 0.25 ∗  5
1.1   1 0.25  ∗  3 1.2 = 4.2864

𝑇 0.1 ∗ 4.2864 3   1 0.1  ∗ 1.2  1.2086

𝐼 0.4 ∗  5
4.2864 

  1 0.4  ∗  1.1 = 1.1266

The forecast for ℎ = 1 (next quarter) is:
𝑌 4.2864 1.2086 ∗ 0.𝟕 = 4.8125

The forecast for ℎ = 2 & 3 are: 
𝑌 4.2864  2 ∗ 1.2086 ∗ 1.2 = 7.8475. 

𝑌 4.2864   3 ∗ 1.2086 ∗ 0.8 = 6.1329. 

Holt-Winters (HW) ES: Multiplicative

• Initial values for algorithm

- We need at least one complete season of data to determine the 
initial estimates of  𝐼 .

- Initial values for multiplicative model:

𝑆 𝑌 /𝑠

𝑇
1
𝑠
𝑌 𝑌

𝑠
𝑌 𝑌

𝑠
⋯

𝑌 𝑌
𝑠

or T 𝑌 /𝑠 𝑌 /𝑠 /𝑠

70

HW ES: Initial Values
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• Algorithm to compute initial values for seasonal component Is.

Assume we have T observation and quarterly seasonality (s=4):

(1) Compute the averages of each of T years.

𝐴 𝑌 , /4 ,  𝑡 1, 2,⋯ , 6 yearly averages

(2) Divide the observations by the appropriate yearly mean: 𝑌 , /𝐴 .

(3) 𝐼 is formed by computing the average 𝑌 , /𝐴 per year:

𝐼 ∑ 𝑌 , /𝐴  𝑠 1, 2, 3, 4

71

HW ES: Initial Values

• We can damp the trend as the forecast horizon increases, using a 
parameter 𝜙. For the multiplicative model we have:

𝑆 𝛼
𝑌
𝐼

1 𝛼 𝑆 𝜙 𝑇

𝑇 β 𝑆 𝑆 1 β 𝑇

𝐼 𝛾
𝑌
𝑆

1 𝛾 𝐼

• ℎ-step ahead forecast: 
𝑌 ℎ  𝑆   1 𝜙 𝜙 ⋯ 𝜙 𝑇 ∗ 𝐼

• This model is based on practice: It seems to work well for industrial 
outputs. Not a lot of theory or clear justification behind the damped 
trend. 72

HW ES: Damped Model 
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• Overall, we have different models, incorporating different features:
- Trend:  Additive or multiplicative, dampened or not
- Seasonal variability: Additive or multiplicative 

• Q: With all these models, which one we should use?  It depends on 
the data at hand.

5. Dampened trend with additive 
seasonal variability.

6. Multiplicative seasonal variability 
and dampened trend.

ES Models – Damped Model: Types

74

Example: We want to forecast log U.S. monthly vehicle sales with 
HW. We use the R function HoltWinters(). 

l_car_18 <- l_car[1:512]
l_car_ts <- ts(l_car_18, start = c(1976, 1), frequency = 12) # convert lr_d in a ts object
hw_d_car <- HoltWinters(l_car_18, seasonal="additive")
> hw_d_car
Holt-Winters exponential smoothing with trend and additive seasonal component.

Call:
HoltWinters(x = lr_d_ts, seasonal = "additive")

Smoothing parameters:
alpha: 0.4355244  Estimated smoothing parameter
beta : 0.009373815  Estimated trend parameter ≈ 0 (no trend)
gamma:0.3446495  Estimated seasonal parameter

HW ES: Example – Log U.S. Vehicles Sales 
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75

Example (continuation): 
> hw_d_car

Coefficients:
[,1]

a    7.177857555  forecast for level
b    0.0001100345  forecast for trend
s1  -0.075314457  forecast for seasonal month 1
s2  -0.084468361  forecast for seasonal month 2
s3   0.049447067
s4  -0.273299309
s5  -0.138251757
s6  -0.026603921
s7  -0.144953062
s8   0.079214066
s9   0.037899454
s10  0.020477134
s11  0.089309775
s12 -0.012530316

HW ES: Example – Log U.S. Vehicles Sales 

76

Example (continuation):
plot(hw_d_car)

HW ES: Example – Log U.S. Vehicles Sales 
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77

Example (continuation): Now, we forecast one-step ahead forecasts
T_last <- nrow(hw_d_car$fitted)
h <- 25
ses_f_hw <- matrix(0,h,1)
alpha <- 0.4355244
beta <- 0.009373815
gamma <- 0.3446495
y <- l_car
T <- length(l_car)
sm <- matrix(0,T,1)
Tr <- matrix(0,T,1)
I <- matrix(0,T,1)
T1 <- T-h+1
a <- T1
sm[a-1] <- 7.177857555
Tr[a-1] <- -0.000309358
I[501:512] <- c(-0.075314457,-0.084468361,0.049447067,-0.273299309,-0.138251757, -
0.026603921, -0.144953062,0.079214066,0.037899454,0.020477134,0.089309775,-
0.012530316)

SES: Forecasting Log U.S. Vehicles Sales

78

Example (continuation):
while (a <= T) {

sm[a] = alpha * y[a-1] +  (1-alpha) * sm[a-1]
Tr[a] = beta * (sm[a] - sm[a-1]) + (1 - beta) * Tr[a-1]
I[a] = gamma * (y[a] - sm[a]) + (1 - gamma) * I[a - 12]

a <- a + 1
}
hh <- c(1:h)
car_f_hw <- sm[T1:T] + hh*Tr[T1:T] + I[T1:T]
car_f_hw
f_error_c_hw<- car_f_hw - y[T1:T]
plot(car_f_hw, type="l", main ="SES Forecasts: Log Vehicle Sales")

SES: Forecasting Log U.S. Vehicles Sales
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79

Example (continuation):
plot(f_error_c_hw, type="l", main ="SES Forecasts Errors: Log Vehicle Sales")

MSE_hw <- sum(f_error_c_hw^2)/h
> MSE_hw
[1] 0.01655964

SES: Forecasting Log U.S. Vehicles Sales

• Remarks

- If a computer program selects  = 0 = β, it has a lack of trend or 
seasonality. It implies a constant (deterministic) component. In this 
case, an ARIMA model with deterministic trend may be a more 
appropriate model. 

- For HW ES, a seasonal weight near one implies that a non-seasonal 
model may be more appropriate. 

- We can model seasonalities as multiplicative or additive:
 Multiplicative seasonality: Forecastt = St * It-s. 
 Additive seasonality: Forecastt = St + It-s.

80

HW ES: Remarks
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• The mean squared error (MSE) and mean absolute error (MAE) are 
the most popular accuracy measures:

MSE = ∑ 𝑦 𝑦 ∑ 𝑒

MAE = ∑ |𝑦 𝑦 | ∑ |𝑒 |

where 𝑚 is the number of  out-of-sample forecasts.

• But other measures are routinely used:

- Mean absolute percentage error (MAPE) = ∑ | |

- Absolute MAPE (AMAPE) = ∑ | |

Remark: There is an asymmetry in MAPE, the level 𝑦 matters.

Evaluation of  forecasts – Accuracy measures

- % correct sign predictions (PCSP) = ∑ 𝑧

where 𝑧 = 1 if  𝑦  ∗ 𝑦 ) > 0 

= 0, otherwise.

- % correct direction change predictions (PCDP)= ∑ 𝑧

where 𝑧 = 1 if  𝑦 𝑦 ) * (𝑦 𝑦 ) >0 

= 0, otherwise.

Remark: We value forecasts with the right direction (sign) or forecast 
that can predict turning points. For stock investors, the sign matters!

• MSE penalizes large errors more heavily than small errors, the sign 
prediction criterion, like MAE, does not penalize large errors more. 

Evaluation of  forecasts – Accuracy measures
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Example: We compute MSE and the % of  correct direction change 
(PCDC) predictions for the one-step forecasts for U.S. monthly 
vehicles sales based on the SES and HW ES models.
> MSE_ses 

[1] 0.027889

> MSE_hw

[1] 0.01655964

• We calculate PCDC with following script for HW & SES:
bb_hw <- (car_f_hw - y[(T1-1):(T-1)]) * (y[T1:T] - y[(T1-1):(T-1)])

indicator_hw <- ifelse(bb_hw > 0,1,0) # ifelse (“if  else”) produces a 1 if  condition is true

pcdc_hw <- sum(indicator_hw)/h

> indicator_hw

[1] 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0

> pcdc_hw

[1] 0.76

Evaluation of  forecasts – Accuracy measures

Example (continuation):
bb_s <- (ses_f_c - y[(T1-1):(T-1)]) * (y[T1:T] - y[(T1-1):(T-1)])

indicator_s <- ifelse(bb_s > 0,1,0)

pcdc_s <- sum(indicator_s)/h

> indicator_s

[1] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0

> pcdc_s

[1] 0.76

Note: Same percentage of correct direction change (PCDC) 
predictions, but the sequence of  correct predictions is not the same. 

Evaluation of  forecasts – Accuracy measures
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• To determine if  one model predicts better than another, we define 
the loss differential between two forecasts: 

𝑑 = g(𝑒 ) – g(𝑒 )

where g(.) is the forecasting loss function,  M1 and M2 are two 
competing sets of  forecasts –could be from models or something else.

• We only need {𝑒 } & {𝑒 }, not the structure of  M1 or M2. In 
this sense, this approach is “model-free.”

• Typical (symmetric) loss functions:  g(𝑒 ) = 𝑒 &  g(𝑒 ) =|𝑒 |. 

• But other g(.)’s can be used: g(𝑒 ) = exp(λ 𝑒 ) – λ 𝑒 (λ>0).

Note: This is a more general test than MGN: It works for any loss 
function, not just MSE.

Evaluation of  forecasts – DM Test

• Then, we test the null hypotheses of  equal predictive accuracy: 
H0: E[𝑑 ] = 0
H1: E[𝑑 ] = μ ≠ 0.

- Diebold and Mariano (1995) assume {𝑒 } & {𝑒 } is covariance 
stationarity and other regularity conditions (finite Var[𝑑 ], 
independence of  forecasts after ℓ periods) needed to apply CLT. 
Then,

𝑑 𝜇

𝑉𝑎𝑟 𝑑 /𝑇
 
  

 𝑁 0,1 ,   𝑑
1
𝑚

𝑑

• Then, under H0, the DM test is a simple z-test:

𝐷𝑀
𝑑

𝑉𝑎𝑟 𝑑 /𝑇
 
  

 𝑁 0,1

Evaluation of  forecasts – DM Test
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where 𝑉𝑎𝑟 𝑑 is a consistent estimator of  the variance, usually based 
on sample autocovariances of  𝑑 :

𝑉𝑎𝑟 𝑑 𝛾 0 2 𝛾 𝑗

ℓ

• There are some suggestion to calculate small sample modification of  
the DM test. For example, :

DM* = DM/{[T + 1 – 2 ℓ + ℓ (ℓ – 1)/T]/T}1/2 ~ 𝑡 .

where ℓ-step ahead forecast. If  time-varying volatility (ARCH) is 
suspected, replace ℓ with [0.5 √(T)] + ℓ.

Note:  If  {𝑒 } & {𝑒 } are perfectly correlated, the numerator and 
denominator of  the DM test are both converging to 0 as  T → ∞.  

 Avoid DM test when this situation is suspected (say, two 
nested models.) Though, in small samples, it is OK.

Evaluation of  forecasts – DM Test

Example: Code in R
dm.test <- function (e1, e2, h = 1, power = 2) {

d <- c(abs(e1))^power - c(abs(e2))^power
d.cov <- acf(d, na.action = na.omit, lag.max = h - 1, type = "covariance", plot = FALSE)$acf[, , 1]
d.var <- sum(c(d.cov[1], 2 * d.cov[-1]))/length(d)
dv <- d.var #max(1e-8,d.var)
if(dv > 0)
STATISTIC <- mean(d, na.rm = TRUE) / sqrt(dv)

else if(h==1)
stop("Variance of  DM statistic is zero")

else
{
warning("Variance is negative, using horizon h=1")
return(dm.test(e1,e2,alternative,h=1,power))

}
n <- length(d)

k <- ((n + 1 - 2*h + (h/n) * (h-1))/n)^(1/2)
STATISTIC <- STATISTIC * k
names(STATISTIC) <- "DM"

}

Evaluation of  forecasts – DM Test
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Example: We compare the SES and HW forecasts for the log of  U.S. 
monthly vehicle sales. We use the dm.test function, part of  the forecast 
package.

library(forecast)
> dm.test(f_error_c_ses, f_error_c_hw, power=2)

Diebold-Mariano Test

data:  f_error_c_sesf_error_c_hw
DM = 1.6756, Forecast horizon = 1, Loss function power = 2, p-value = 0.1068
alternative hypothesis: two.sided

> dm.test(f_error_c_ses,f_error_c_hw, power=1)

Diebold-Mariano Test

data:  f_error_c_sesf_error_c_hw
DM = 1.94, Forecast horizon = 1, Loss function power = 1, p-value = 0.064
alternative hypothesis: two.sided

Note: Cannot reject H0: MSESES = MSEHW at 5% level

Evaluation of  forecasts – DM Test

• The DM tests is routinely used. Its “model-free” approach has 
appeal.  There are model-dependent tests, with more complicated 
asymptotic distributions.

• The loss function does not need to be symmetric (like MSE).

• The DM test is based on the notion of  unconditional –i.e., on 
average over the whole sample- expected loss. 

• Following Morgan, Granger and Newbold (1977), the DM statistic 
can be calculated by regression of  dt, on an intercept, using NW SE. 
But, we can also condition on variables that may explain dt. We move 
from an unconditional to a conditional expected loss perspective.

Evaluation of  forecasts – DM Test: Remarks
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• Idea – from Bates & Granger (Operations Research Quarterly, 1969):

- We have different forecasts from R models: 

𝑌 ℓ ,𝑌 ℓ , . . . ,𝑌 ℓ

• Q: Why not combine them?

• Very common practice in economics, finance and politics, reported 
by the press as “consensus forecast.” Usually, as a simple average.

• Q: Advantage? Lower forecast variance. Diversification argument.

Intuition: Individual forecasts are each based on partial information 
sets (say, private information) or models. 91

Combination of  Forecasts 

𝑌 ℓ 𝜔 𝑌 ℓ 𝜔 𝑌 ℓ . . . . 𝜔 𝑌 ℓ

• The variance of the forecasts is:

𝑉𝑎𝑟 𝑌 ℓ 𝜔 𝑉𝑎𝑟 𝑌 ℓ

+ 2∑ ∑ 𝜔 𝜔 Covar 𝑌 ℓ 𝑌 ℓ

Note: Ideally, we would like to have negatively correlated forecasts.

• Assuming unbiased forecasts and uncorrelated errors,

𝑉𝑎𝑟 𝑌 ℓ 𝜔 𝜎

Example: Simple average: ωj=1/R. Then,

𝑉𝑎𝑟 𝑌 ℓ 1/𝑅 𝜎 .

Combination of  Forecasts – Optimal Weights 
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Example: We combine the SES and HW forecast of log US vehicles 
sales:
f_comb <- (ses_f_c + car_f_hw)/2

f_error_comb <- f_comb - y[T1:T]

> var(f_comb)

[1] 0.0178981

> var(car_f_hw)

[1] 0.02042458

> var(ses_f_c)

[1] 0.01823237

Combination of  Forecasts – Optimal Weights 

• We can derived optimal weights –i,e., ωj’s that minimize the variance 
of the forecast. Under the uncorrelated assumption: 

Under the uncorrelated assumption: 

• The ωj*’s are inversely proportional to their variances. 

• In general, forecasts are biased and correlated. The correlations will 
appear in the above formula for the optimal weights. For the two 
forecasts case:

Combination of  Forecasts – Optimal Weights 

𝜔 ∗ 𝜎 𝜎

𝜔 ∗ 𝜎 𝜎 𝜎 𝜎 2𝜎⁄ 𝜎 𝜌𝜎 𝜎 𝜎 𝜎 2𝜌𝜎 𝜎⁄
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• In general, forecasts are biased and correlated. The correlations will 
appear in the above formula for the optimal weights. Ideally, we 
would like to have negatively correlated forecasts.

• Granger and Ramanathan(1984) used a regression method to 
combine forecasts. 

- Regress the actual value on the forecasts. The estimated 
coefficients are the weights.

• Should use a constrained regression

– Omit the constant

– Enforce non-negative coefficients.

– Constrain coefficients to sum to one 95

Combination of  Forecasts: Regression Weights 

𝑦 ℓ 𝛽 𝑌 ℓ 𝛽 𝑌 ℓ . . . . 𝛽 𝑌 ℓ 𝜀 ℓ

Example: We regress the SES and HW forecasts against the 
observed  car sales to obtain optimal weights. We omit the constant
> lm(y[T1:T] ~ ses_f_c + car_f_hw - 1)

Call:

lm(formula = y[T1:T] ~ ses_f_c + car_f_hw - 1)

Coefficients:

ses_f_c car_f_hw

-0.5426    1.5472 

Note: Coefficients (weights) add up to 1. But, we see negative 
weights... In general, we use a constrained regression, forcing 
parameters to be between 0 and 1 (& non-negative). But, h=25 
delivers not a lot of observations to do non-linear estimation.

Combination of  Forecasts: Regression Weights 
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• Remarks:

- To get weights, we do not include a constant. Here, we are assuming 
unbiased forecasts. If the forecasts are biased, we include a constant.

- To account for potential correlation of errors, we can allow for 
ARMA residuals or include yT+l-1 in the regression.

- Time varying weights are also possible.

• Should weights matter? Two views:

- Simple averages outperform more complicated combination 
techniques.

- Sampling variability may affect weight estimates to the extent that 
the combination has a larger MSE. 

97

Combination of  Forecasts: Regression Weights 

• Since the late 1960s, combination weights have generally been 
chosen to minimize a symmetric, squared-error loss function.  

• But, asymmetric loss functions can also be used. More recent 
research work find that the optimal weights depend on higher order 
moments, such a skewness.

98

Forecasting: Final Comments 


