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Lecture 9-a
Time Series: 

Identification of AR, MA & 
ARMA Models

Brooks (4th edition): Chapter 6

© R. Susmel, 2023 (for private use, not to be posted/shared online).

Review: Times Series

• A time series 𝑦௧ is a process observed in sequence over time, 

𝑡 = 1, ...., T  𝑌௧ = {𝑦ଵ, 𝑦ଶ , 𝑦ଷ, ..., 𝑦்}.

• Popular models for E[𝑦௧|𝐼௧ିଵ]:

– AR process:  Et[𝑦௧|𝐼௧ିଵ] = f(𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, ....}

Example: AR(1) process, 𝑦௧ = μ + 𝜙ଵ 𝑦௧ିଵ + ε௧.

– MA process:  Et[𝑦௧|𝐼௧ିଵ] = f(ε௧ିଵ, ε௧ିଶ, ε௧ିଷ, ....)

Example: MA(1) process, 𝑦௧ = μ + θ1 ε௧ିଵ + ε௧

– ARMA process:  Et[𝑦௧|𝐼௧ିଵ] = f(𝑦௧ିଵ, 𝑦௧ିଶ, ...., ε௧ିଵ, ε௧ିଶ, ....)

Example: ARMA(1,1) process, 𝑦௧ = μ +𝜙ଵ 𝑦௧ିଵ+ θ1 ε௧ିଵ + ε௧
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• We want to select an appropriate time series model to forecast 𝑦௧. 
The linear models we consider: AR(𝑝), MA(𝑞) or ARMA(𝑝, 𝑞). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine AR, MA or 
ARMA and the order of the model  -i.e., 𝑝, 𝑞.

Tools: ACF, PACF, Information Criteria

(2) Estimate the model.

OLS, Method of Moments (complicated).

(3) Test the model.

Make sure errors are WN.

(4) Forecast.

Review: Times Series – Forecasting

• A linear MA(𝑞) model: 
𝑦௧ ൌ 𝜇 + θ1 𝜀௧ିଵ + θ2 𝜀௧ିଶ + ... + θq 𝜀௧ି + 𝜀௧

• Stationarity? Yes  MA(q) is always stationary.

• ACF:

ρ 𝑘 ൌ  ஓሺሻ 
ஓሺሻ

ൌ  
∑ θೕθೕషೖ
ೕసೖ

(1 + θభమ + θమమ + ... + θమ) for | 𝑘 |  q (θ0 = 1)

ρ 𝑘 ൌ 0 for | 𝑘 |  q

ACF as identification tool: After lag q, the autocorrelations are 0.

• Estimation: Complicated to estimate, we do not observe the errors, 
𝜀௧’s. Direct estimation is impossible. Indirect methods:

(1) Using method of  moments (MM)
(2) Using AR() representation

Review: MA Process  
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Review: AR Process

• A linear AR(𝑝) model: 

𝑦௧ = 𝜇 + 𝜙1 𝑦௧ିଵ + 𝜙2 𝑦௧ିଶ +... +𝜙p 𝑦௧ି + 𝜀௧, 𝜀௧ ~ WN.

Using the lag operator we write the AR(p) process: 𝜙(L) 𝑦௧ = 𝜀௧ 

with 𝜙(L) = 1 െ 𝜙1 L െ 𝜙2 L2 െ ... െ 𝜙p Lp

• Stationarity? Depends on the ′s. 
We need the roots of 𝜙ሺ𝑧ሻ = 0 to be outside the unit circle.

Example: For the AR(1) process

𝜙ሺ𝑧ሻ = 1 െ 𝜙1 𝑧 = 0  |𝑧| = 
ଵ

|థ1|
> 1. 

Its corresponding ACF: ρ 𝑘 ൌ  ஓሺሻ 
ஓሺሻ

ൌ  𝜙ଵ


• ACF: For AR(1) ρ 𝑘 ൌ  ஓሺሻ 
ஓሺሻ

ൌ  𝜙ଵ


If  stationary, ACF decays with 𝑘. Patterns:
– when    0 < 1 < 1  All autocorrelations are positive.
– when  1 < 1 < 0  The sign of  ρ 𝑘 shows an alternating sign

pattern beginning with a negative value.

ACF as identification tool: Exponential decay.

• Estimation: OLS. We define
𝒙௧ ൌ ሺ1 𝑦௧ିଵ 𝑦௧ିଶ. . . .𝑦௧ିሻ   
𝛃 ൌ ሺ 𝜙ଵ 𝜙ଶ . . . . 𝜙ሻ

Then, the model can be written as
𝑦௧ ൌ 𝒙௧′𝛃  𝜀௧

• The OLS estimator is 𝐛 ൌ ሺ𝑿′𝑿ሻିଵ𝑿′𝒚

Review: AR(1) Process – ACF
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• ARMA(𝑝, 𝑞) process: A combination of  AR(𝑝) & MA(𝑞) processes:

𝑦௧ ൌ 𝜇  ଵ𝑦௧ିଵ  ଶ𝑦௧ିଶ. . . .𝑦௧ି  𝜀௧ െ 𝜃ଵ𝜀௧ିଵ െ 𝜃ଶ𝜀௧ିଶെ . . .െ 𝜃𝜀௧ି

  𝐿  𝑦௧ ൌ 𝜇  𝜃 𝐿  𝜀௧

• Usually, we insist that ሺ𝐿ሻ ≠ 0, 𝜃ሺ𝐿ሻ ≠ 0 & that the polynomials 
ሺ𝐿ሻ, 𝜃ሺ𝐿ሻ have no common factors. 

• Stationarity? Since MA(𝑞) processes are always stationary, the 
stationarity conditions come from the AR(𝑝) part. Thus, we require 
the roots  𝐿 ൌ 0 to be outside the unit circle.

• ACF: A recursive formula. After lag 𝑞, we see the exponential 
decay, given by the AR part. The ACF for an ARMA(1,1):

ρሺ𝑘ሻ ൌ 𝜙1
ିଵ ଵ ା థଵ ଵ  ∗ థଵାଵ

ଵ ା ଵ
మା ଶథଵଵ

Review: ARMA Process – Stationarity & ACF

• ACF: A recursive formula. After lag 𝑞, we see the exponential 
decay, given by the AR part. The ACF for an ARMA(1,1):

ρሺ𝑘ሻ ൌ 𝜙1
ିଵ ଵ ା థଵ ଵ  ∗ థଵାଵ

ଵ ା ଵ
మା ଶథଵଵ

ACF as identification tool: If  stationary, exponential decay.

• Estimation: Complicated by MA part. In practice, use iterative OLS. 
Steps:
1. Estimate AR(𝑝) part.
2. Use Step (1) to estimate (unobserved) noise 𝜀௧
3. Regress 𝑦௧ against 𝑦௧ିଵ, 𝑦௧ିଶ, ..., 𝑦௧ି, 𝜀௧̂ିଵ, ... ,  𝜀௧̂ି
4. Get new estimates of  𝜀௧. Repeat Step (3).  

Review: ARMA Process – Stationarity & ACF
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• ACF Estimation
Easy: Use sample moments to estimate 𝛾(𝑘) and plug in formula:

𝑟 ൌ 𝜌ො ൌ
∑ሺ𝑌௧ െ 𝑌ሜ ሻሺ𝑌௧ା െ 𝑌ሜ ሻ

∑ሺ𝑌௧ െ 𝑌ሜ ሻଶ

• The sample correlogram is the plot of  the ACF against 𝑘. 

• ACF Distribution
The asymptotic distribution of  the sample 𝑟 ൌ 𝜌ො is normal with:

r 
   ௗ  

 N(ρ, V/𝑇), V is the covariance matrix.

Under H0: 𝜌 = 0  for all 𝑘 > 1.

r 
   ௗ  

 N(0, I/𝑇)  Var[𝑟] = 1/𝑇 .

• Under H0, the SE[𝑟] = 1/ 𝑇  95% C.I.: 0 േ 1.96 * 𝟏/ 𝑻

Review: ACF – Estimation & Distribution

• The ACF can be used as a tool to select an ARMA(𝑝, 𝑞) model. In 
general, it is used to select the lag 𝑞 in an MA model.

Note: Ideally, “Tails off ” is exponential decay. In practice, we may see 
decay with a lot of  “noise” and a lot of  non-zero values.

• In the next slides, we simulate ARMA models. This is an “ideal” 
situation, we know the model that generated the data, we know what 
the ACF should look like in theory. Then, we look at the empirical 
ACF to see if  it is easy to guess the model and order of  the model.

Review: ACF – Identification

AR(𝑝) MA(𝑞) ARMA(𝑝, 𝑞)

ACF Tails off 0 after lag 𝒒 Tails off
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Simulated Example: Sample ACF for an AR(1) process: 
Under stationarity:

ρ 𝑘 ൌ  ஓሺሻ 
ஓሺሻ

ൌ  𝜙ଵ
 𝑘 = 0, 1, 2, …

If  |𝜙1|< 1, the ACF will show exponential decay.

• Suppose 𝜙1 = 0.4. Then, the theoretical ACF:

ρ 0 = 1
ρ 1 = 0.4
ρ 2  = 0.42 = 0.16
ρ 3  = 0.43 = 0.064
ρ 4  = 0.44 = 0.0256
⋮ 
ρ 𝑘 ൌ 0.4𝒌

Review: ACF – AR(1)

Simulated Example (continuation): Plot of  simulated series and 
ACF, with 95% C.I. = [-0.1386, 0.1386]. 

> sim_ar1_04 <- arima.sim(list(order=c(1,0,0), ar=0.4), n=200)  # sim AR(1)

Review: ACF – AR(1)
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Simulated Example: 
𝑦௧ ൌ 𝜇  𝜀௧  𝜃ଵ𝜀௧ିଵ  𝜃ଶ𝜀௧ିଶ  𝜃ଷ𝜀௧ିଷ

Suppose θ1 = 0.5; θ2 = 0.4; θ3 = 0.2. Then, the theoretical ACF:

ρ 0 = 1

ρ 1 = 
ఏభ ା ఏమఏభ ା ఏయఏమ

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.5+0.4∗0.5+0.1∗0.4
1 + 0.52 

+ 0.42+ 0.12 = 0.5211

ρ 2 = 
ఏమ ା ఏయఏభ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.4 + 0.1∗0.5

1 + 0.52 
+ 0.42 

+ 0.12 = 0.3169

ρ 3 = 
ఏయ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.1

1 + 0.52 
+ 0.42+ 0.12 = 0.0704

ρ 𝑘 = 𝟎 for |𝑘| > 3.

Review: ACF – MA(𝒒 = 3)

Simulated Example (continuation): Plot of  simulated series and 
ACF with 95% C.I. = [-0.1386, 0.1386]. 

> sim_ma3_05 <- arima.sim(list(order=c(0,0,3), ma=c(0.5, 0.4, 0.2)), n=200)  # sim MA(3)

Review: ACF – MA(𝒒 = 3)
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Simulated Example: Sample ACF for an ARMA(1,1) process:
𝑦௧ ൌ 𝜙1𝑦௧ିଵ  𝜀௧  𝜃ଵ𝜀௧ିଵ

The ACF for an ARMA(1,1):

ρሺ𝑘ሻ ൌ 𝜙1
ିଵ ଵ ା థଵ ଵ  ∗ థଵାଵ

ଵ ା ଵ
మା ଶథଵଵ

Suppose 𝜙1 
= 0.4, θ1 = 0.5. Then, the theoretical ACF:

ρ 0 = 1

ρሺ1ሻ ൌ ଵ ା .ସ ∗ .ହ
 
∗ .ସ ା .ହ

ଵ ା 0 .ହమା ଶ∗.ସ∗.ହ
= 0.6545 

ρሺ2ሻ ൌ 0.4 *  
ଵ ା .ସ ∗ .ହ  ∗ .ସ ା .ହ

ଵ ା 0 .ହమା ଶ∗.ସ∗.ହ
= 0.2618

ρሺ3ሻ ൌ 0.42 *  
ଵ ା .ସ ∗ .ହ  ∗ .ସ ା .ହ

ଵ ା 0 .ହమା ଶ∗.ସ∗.ହ
= 0.0233 

⋮ 

ρሺ𝑘ሻ ൌ0.4k-1 *  
ଵ ା .ସ ∗ .ହ  ∗ .ସ ା .ହ

ଵ ା 0 .ହమା ଶ∗.ସ∗.ହ

Review: ACF – ARMA(1, 1)

Simulated Example (continuation): Plot of  simulated series and 
ACF with 95% C.I. = [-0.1386, 0.1386]. 

> sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)  #sim ARMA(1,1)

Review: ACF – ARMA(1,1)
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Example: US Monthly Returns (1871 – 2020, 𝑇 = 1,795)
Sh_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Shiller_2020data.csv", 
head=TRUE, sep=",")
x_P <- Sh_da$P
x_D <- Sh_da$D
T <- length(x_P)
lr_p <- log(x_P[-1]/x_P[-T])
lr_d <- log(x_D[-1]/x_D[-T])
acf_p <- acf(lr_p) # acf: R function that estimates the ACF
> acf_p
Autocorrelations of  series ‘lr_p’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.279 0.004 -0.043  0.017  0.074 0.039  0.039  0.044  0.035  0.034  0.022 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.010 -0.059 -0.058 -0.056  0.009  0.033  0.047 -0.040 -0.087 -0.090 -0.029  0.005 

24 25 26  27  28     29   30  31     32 
0.003 -0.013 -0.058 -0.018 -0.005  0.026  0.011  0.000  0.020

SEሾ𝑟ሿ = 1/ 𝑇 = 1/ 𝟏,𝟕𝟗𝟓 = .0236.  95% C.I.: േ 2* 0.0236

Review: ACF – Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020), with 95% CI = [-0.0472, 0.0472]. 

Review: ACF – Example: U.S. Stock Returns

Note: With the exception of  first correlation, correlations are small. 
However, many are significant, not strange result when T is large. 
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Example: US Monthly Changes in Dividends (1871 – 2020, 𝑇 = 
1,795)

acf_d <- acf(lr_d)
> acf_d
Autocorrelations of  series ‘lr_d’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.462  0.516  0.432  0.444  0.326  0.442  0.288  0.283  0.265  0.202  0.168

12  13     14  15     16 17 18 19 20 21  22     23 
0.142 0.100  0.122  0.123  0.085  0.045  0.026 -0.013  0.001 -0.029 -0.049 -0.077    

24 25 26  27  28     29   30  31     32 
-0.038 -0.100 -0.095 -0.055 -0.081 -0.092 -0.034 -0.063 -0.089

High correlations and significant even after 32 months! 

Review: ACF – Example: U.S. Stock Dividends

Example (continuation): Correlogram for US Monthly Changes in 
Dividends (1871 – 2020, 𝑇=1,795), with 95% CI = [-0.0472, 0.0472]. 

Note: Correlations are positive for almost 1.5 years, then become 
negative.

Review: ACF – Example: U.S. Stock Dividends
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• Recall we compute the Ljung-Box (LB) statistic as:

𝐿𝐵 ൌ 𝑇 ∗ 𝑇  2  ∑ ሺ
ఘෝೖ
మ

ሺ்ିሻ

ୀଵ ሻ

The LB test can be used to determine if  the first 𝑚 sample ACFs are 
jointly equal to zero. 

Under H0: ρ1= ρ2 = ... = ρ= 0, 𝐿𝐵 
  ௗ  

χ
ଶ

• Usually, we use LB tests to make sure the chosen ARMA model does 
not have any correlation structure on the residuals –i.e., they look WN.

Review: ACF – Joint Significance Tests

Example: LB test with 20 lags for US Monthly Returns and 
Changes in Dividends (1871 – 2020, 𝑇 = 1,795)

> Box.test(lr_p, lag=20, type= "Ljung-Box")

Box-Ljung test

data:  lr_p
X-squared = 208.02, df  = 20, p-value < 2.2e-16  Reject H0 at 5% level. Joint significant

first 20 correlations.

> Box.test(lr_d, lag=20, type= "Ljung-Box")

Box-Ljung test

data:  lr_d
X-squared = 2762.7, df  = 20, p-value < 2.2e-16  Reject H0 at 5% level. Joint significant

first 20 correlations.

Review: ACF – Joint Significance Tests
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• The ACF gives us a lot of  information about the order of  the 
dependence when the series we analyze follows a MA process: The 
ACF is zero after 𝑞 lags for an MA(𝑞) process.

• We introduce a new function that behaves like the ACF of  MA 
models, but for AR models: The partial autocorrelation function 
(PACF). 

• The PACF is similar to the ACF. It measures correlation between 
observations that are 𝑘 time periods apart, after controlling for 
correlations at intermediate lags.

Review: Partial ACF (PACF)

Intuition: Suppose we have an AR(1):
𝑦௧ ൌ 𝜙1 𝑦௧ିଵ  𝜀௧.

Then,
γሺ2ሻ = 𝜙1

2 γሺ0ሻ 

The correlation between 𝑦௧ and 𝑦௧ିଶ is not zero, as it would be for an 
MA(1), because 𝑦௧ is dependent on 𝑦௧ିଶ through 𝑦௧ିଵ. 

Suppose we break this chain of  dependence by removing (“partialing
out”) the effect 𝑦௧ିଵ. Then, we consider the correlation between [𝑦௧ –
𝜙1𝑦௧ିଵ] & [𝑦௧ିଶ – 𝜙1𝑦௧ିଵ] –i.e, the correlation between 𝑦௧ & 𝑦௧ିଶ
with the linear dependence of  each on 𝑦௧ିଵ removed:

γሺ2ሻ = Cov(𝑦௧– 𝜙1𝑦௧ିଵ, 𝑦௧ିଶ – 𝜙1𝑦௧ିଵ) = Cov(𝜀௧, 𝑦௧ିଶ – 𝜙1 𝑦௧ିଵ) =0

Similarly,
γሺ𝑘ሻ = Cov(𝜀௧, 𝑦௧ି – 𝜙1 𝑦௧ିଵ) = 0 for all 𝑘 > 1.

Review: Partial ACF
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• The PACF 𝜙 is also the last coefficient in the best linear 
prediction of  𝑦௧ given 𝑦௧ିଵ,𝑦௧ିଶ, ..., 𝑦௧ି. ( OLS!)

OLS estimation steps:
Regress 𝑦௧ against 𝑦௧ିଵ

 𝜙ଵଵ: estimated coefficient of  𝑦௧ିଵ.

Regress 𝑦௧ against 𝑦௧ିଵ & 𝑦௧ିଶ
 𝜙ଶଶ: estimated coefficient of  𝑦௧ିଶ.

⋮
Regress 𝑦௧ against 𝑦௧ିଵ, 𝑦௧ିଶ, … 𝑦௧ି

 𝜙: estimated coefficient of  𝑦௧ି.

• OLS estimation is simple, easy to use. Estimation by Yule-Walker 
equation (Method of  Moments) is possible. 

• The plot of  the PACF is called the partial correlogram.

Review: Partial ACF

Simulated Example: We simulate an AR(2) process:
𝑦௧ ൌ 𝜇  𝜙1 𝑦௧ିଵ  𝜙ଶ  𝑦௧ିଶ 𝜀௧

sim_ar22 <- arima.sim(list(order=c(1,0,0), ar=c(0.5, 0.3)), n=200) #simulate AR(2) series
plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3)))) 

pacf_ar22 <- pacf(sim_ar22) 

Print PACF

> pacf_ar2

1 2 3 4 5 6 7 8  9    10     11 
0.558  0.286  0.038  0.103 -0.010  0.009  0.111  0.060 -0.021 -0.076  0.016

12  13     14  15     16 17 18 19 20 21  22      23 
-0.086 -0.139  0.100  0.061 -0.156  0.078 -0.103  0.043 -0.075  0.104  0.024  0.061

SEሾ𝑃𝐴𝐶𝐹ሿ ≈ 1/ 𝟐𝟎𝟎 = .0707.  95% C.I.: 0 േ 2 * 0.0707

Partial ACF – AR(𝒑 = 2)
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Simulated Example (continuation): Plot of  simulated series & 
PACF with 95% C.I. = [-0.1386, 0.1386]. 

> plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3))))
> pacf_ar2 <- pacf(sim_ar22) 

Partial ACF – AR(𝒑 = 2)

Simulated Example (continuation): 
Note: The PACF can be calculated by ℎ regressions, each one with ℎ
lags. The ℎℎ coefficient is the ℎth order PACF. Using ar function:

> ar(sim_ar2, order.max=1, method = “ols")

Coefficients:
1  

0.5586

Intercept: -0.008403 (0.0761) 

Order selected 1  sigma^2 estimated as  1.152

> ar(sim_ar2, order.max=2, method = "ols")

Coefficients:
1       2  

0.3974  0.2869

Intercept: -0.009847 (0.07326) 

Order selected 2  sigma^2 estimated as  1.063

Partial ACF – AR(𝒑 = 2)
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• Following the analogy that PACF for AR processes behaves like an 
ACF for MA processes, we expect exponential decay (“tails off”) in the 
partial correlogram for MA process. 

Simulated Example: We simulate an MA(1) process with 𝜃ଵ = 0.5.
sim_ma1 <- arima.sim(list(order=c(0,0,1), ma = 0.5), n=200)  
> pacf(sim_ma1)

Partial ACF – MA(𝒒)

• For an ARMA processes, after lag 𝑝, the MA part will dominate the 
behavior of  the PACF, thus we expect exponential decay (“tails off”) in 
the partial correlogram. 

Simulated Example: We simulate an ARMA(1) process with 𝜙1= 0.4 
& 𝜃ଵ= 0.5.
sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)  
> pacf(sim_arma11)

Partial ACF – ARMA(𝒑, 𝒒)
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Example: US Monthly Returns (1871 – 2020, 𝑇 = 1,795)
pacf_p <- acf(lr_p) # pacf: R function that estimates the PACF
> pacf_p

Partial autocorrelations of  series ‘lr_p’, by lag

1 2 3 4 5 6 7 8  9    10     11 
0.278 -0.081 -0.026  0.041  0.058 0.002  0.038  0.032  0.016  0.022  0.009      

12 13     14  15     16 17 18 19 20 21  22     23 
-0.023 -0.057 -0.032 -0.045  0.027  0.017  0.037 -0.059 -0.051 -0.050  0.005    24 

23 24 25 26  27  28     29   30  31     32 
0.006  0.004 -0.005 -0.051  0.014 -0.007  0.037  0.008  0.018  0.023 

SEሾ𝑃𝐴𝐶𝐹ሿ ≈ 1/ 𝟏,𝟕𝟗𝟓 = .0236.  95% C.I.: 0 േ 2 * 0.0236

PACF – Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020, 𝑇 = 1,795) with 95% C.I. = [-0.0472, 0.0472]. 

> pacf(lr_p)

PACF – Example: U.S. Stock Returns

Note: With the exception of  the first partial correlation, partial 
correlations are small, though, again, some are significant.
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Example: US Monthly Stock Dividends (1871 – 2020, T=1,795)

pacf_d <- pacf(lr_d)
> pacf_d

Partial autocorrelations of  series ‘lr_d’, by lag

1 2 3 4 5 6 7 8  9    10     11 
0.462  0.385  0.160  0.150 -0.033  0.189 -0.054 -0.056  0.027 -0.082 -0.019 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.063 -0.035 0.067  0.043  0.010 -0.057 -0.046 -0.043 -0.008 -0.031 -0.039 

24 25 26  27  28     29   30  31     32 
-0.041  0.050 -0.036 -0.030  0.091 0.006 -0.017  0.044 -0.002 -0.042 

Higher partial correlations than for stock returns.  

PACF – Example: U.S. Stock Dividends

• Correlation approach.
Basic tools: sample ACF and sample PACF.

- ACF identifies order of  MA: Non-zero at lag 𝑞; zero for lags > 𝑞.
- PACF identifies order of  AR: Non-zero at lag 𝑝; zero for lags > 𝑝.
- All other cases, try ARMA(𝑝, 𝑞) with 𝑝 > 0 and 𝑞 > 0.

Summary: For 𝑝 > 0 & 𝑞 > 0. 

ARIMA Models: Identification – Correlations

AR(𝑝) MA(𝑞) ARMA(𝑝, 𝑞)

ACF Tails off 0 after lag 𝒒 Tails off

PACF 0 after lag 𝒑 Tails off Tails off

Note: Ideally, “Tails off ” is exponential decay. In practice, in these 
cases, we may see a lot of  non-zero values for the ACF and PACF.
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35

ARMA Models: Identification – AR(2)

36

ARMA Models: Identification – MA(2)
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37

ARMA Models: Identification – ARMA(1, 1)

38

ARMA Models: Identification – ARMA(𝒑, 𝒒)?

• Note: ARMA(1,1), MA(1), AR(2)?

Example: Monthly US Returns (1871 - 2020).
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39• Note: Not clear: Maybe long a ARMA(𝑝, 𝑞) or needs differencing?

Example: Monthly Changes in US Dividends (1871 - 2020).

ARMA Models: Identification – ARMA(𝒑, 𝒒)?

40• Note: MA(1), AR(4)?

Example: Monthly Log Changes in Oil Prices (1973 - 2020).

ARMA Models: Identification – ARMA(𝒑, 𝒒)?
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41• Note: No clear ARMA structure.

Example: Monthly Log Changes in Gold (1973 - 2020).

ARMA Models: Identification – ARMA(𝒑, 𝒒)?

• It is difficult to identify an ARMA model using the ACF and PACF. 
It is common to rely on information criteria (IC).

• IC’s are equal to the estimated variance or the log-likelihood 
function plus a penalty factor, that depends on 𝑘. Many IC’s:

- Akaike Information Criterion (AIC)
AIC = -2 * (ln L – 𝑘) = -2 ln L + 2 * 𝑘
 if  normality AIC = T * ln(𝒆′𝒆/T) + 2* 𝑘 (+constants)

- Bayes-Schwarz Information Criterion (BIC or SBIC)
BIC = -2 * ln L – ln(T) * 𝑘
 if  normality AIC = T * ln(𝒆′𝒆/T) + ln(T) * 𝑘 (+constants)

- Hannan-Quinn (HQIC)
HQIC = -2*(ln L – 𝑘 [ln(ln(T))]
 if  normality AIC = T * ln(𝒆′𝒆/T) + 2 𝑘 [ln(ln(T))] (+constants)

ARMA Model: Identification - IC
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• There are modifications of  IC to get better finite sample behavior, a 
popular one is AIC corrected, AICc, statistic:

𝐴𝐼𝐶𝑐 ൌ 𝑇 𝑙𝑛𝜎ොଶ 
2𝑘ሺ𝑘  1ሻ
𝑇 െ 𝑘 െ 1

• AICc converges to AIC as T gets large. Using AICc is not a bad idea.

• For AR(𝑝) models, other AR-specific criteria are possible: Akaike’s
final prediction error (FPE), Akaike’s BIC, Parzen’s CAT.

• Hannan and Rissannen’s (1982) minic (=Minimum IC): Calculate the 
BIC for different 𝑝’s (estimated first) and different 𝑞’s. Select the best 
model –i.e., lowest BIC.

Note: Box, Jenkins, and Reinsel (1994) proposed using the AIC above.

ARIMA Model: Identification - IC

Example: Monthly US Returns (1871 - 2020) Hannan and Rissannen
(1982)’s minic, based on AIC.

ARMA Model: Identification - IC

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 -6403.59 -6552.94 -6552.69 -6554.27 -6552.88 -6557.37

AR 1 -6545.22 -6552.23 -6551.86 -6552.42 -6552.64 -6561.48

AR 2 -6554.76 -6553.28 -6554.85 -6554.35 -6564.32 -6559.48

AR 3 -6553.94 -6552.53 -6554.44 -6552.33 -6550.36 -6558.52

AR 4 -6554.98 -6559.83 -6559.92 -6558.94 -6554.1 -6558.16

AR 5 -6558.81 -6558.65 -6557.45 -6555.78 -6558.66 -6556.06

• Note: Best Model is ARMA(2,4); other potential candidates: 
ARMA(1,5); ARMA(5,0), ARMA(4,2).
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• A trend is usually easy to spot. A more sophisticated visual tool is the 
ACF: a slow decay in ACF is indicative of  highly correlated data, 
which suggests a trend. 

• A series with a trend is not stationary. To build a forecasting model, 
we need to remove the trend from the series. The models we consider:

(1) Deterministic trend: 𝑦௧ is a function of  𝑡. For example,
𝑦௧ = 𝛼 + β 𝑡 + 𝜀௧

(2) Stochastic trend:  𝑦௧ is a function of  aggregated errors,  𝜀௧, over 
time. For example, 

𝑦௧ = μ + 𝑦௧ିଵ+ 𝜀௧ = 𝑦 + 𝑡 𝜇 + ∑ 𝜀௧ି
௧
ୀ

• The process to remove the trend depends on the structure of  the 
DGP of  𝑦௧. 

Non-Stationary Time Series Models

• The process to remove the trend depends on the nature of  the DGP 
of  the trending 𝑦௧:

(1) Deterministic trend  – Simple model: 𝑦௧ = 𝛼 + β 𝑡 + 𝜀௧
– Solution: Detrending –i.e., regress 𝑦௧ on a constant and a time 
trend, 𝑡. Then, keep residuals for further modeling.

(2) Stochastic trend  – Simple model:  𝑦௧ = μ + 𝑦௧ିଵ+ 𝜀௧.
– Solution: Differencing –i.e., apply ∆ = (1 െ 𝐿) operator to 𝑦௧. 
Then, use ∆𝑦௧ for further modeling.

Non-Stationary Time Series Models
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Example: Plot of  US Monthly Prices and Dividends (1871 – 2020)

Non-Stationary Time Series Models

• Suppose we have the following model, with a determinist trend: 
𝑦௧=  +  𝑡 + 𝜀௧.

• {𝑦௧} will show only temporary departures from trend line  +  𝑡. 
This type of  model is called a trend stationary (TS) model.

• Note that trivially, by definition, 𝜀௧ is WN. Then, removing  +  𝑡
from 𝑦௧ creates a WN series –i.e., the influence of  𝑡 from 𝑦௧is gone:

𝜀௧ ൌ 𝑦௧ െ  െ  𝑡

• When we replace  &  by their OLS estimates, we detrend 𝑦௧. The 
residual from the OLS is called detrended 𝑦௧.

𝑒௧ ൌ 𝑦௧ െ ෝ െ  𝑡 (the residuals are the detrended 𝑦௧ series)

Non-Stationary Models: Deterministic Trend
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• We can detrend in more complicated models. For example, suppose e 
have a stationary AR(𝑝) model with linear and quadratic trends: 

𝑦௧ ൌ 𝛼  𝜙1𝑦௧ିଵ  ⋯  𝜙𝑝𝑦௧ି  βଵ𝑡  βଶ𝑡ଶ  𝜀௧ .

• Note that removing from 𝑦௧ a constant, a linear and a quadratic 
trend creates a series, 𝑤௧, which is composed of   a WN error, 𝜀௧, and 
the AR(𝑝) part:

𝑤௧ ൌ  𝜀௧  𝜙1𝑦௧ିଵ ⋯  𝜙𝑝𝑦௧ି ൌ 𝑦௧ െ  െ βଵ𝑡 െ βଶ𝑡ଶ

• This is a stationary series: the dependence on 𝑡 is gone. We will work 
with the residual from a regression of  𝑦௧ agains a constant, 𝑡 and 𝑡ଶ:

𝑤ෝ௧ ൌ 𝑦௧ െ ෝ െ ଵ 𝑡 െ ଶ𝑡ଶ (𝑤ෝ௧= detrended 𝑦௧).

Remark: We do not necessarily get stationary series by detrending.

Non-Stationary Models: Deterministic Trend

• Many economic series exhibit “exponential trend/growth”. They 
grow over time like an exponential function over time instead of  a 
linear function. In this cases, it is common to work with logs

ln(𝑦௧) = 𝛼 +  𝑡 + 𝜀௧. ( 𝑦௧ = 𝑒ఈ +  ௧ + ఌ)

 The average growth rate is: E[Δln(𝑦௧)] = 

• We can have a more general model:
𝑦௧ ൌ 𝛼  𝜙1𝑦௧ିଵ ⋯  𝜙𝑝𝑦௧ି  βଵ𝑡  βଶ𝑡ଶ. . . β𝑡  𝜀௧ .

• Estimation of  AR(𝑝) with a trend component:
- OLS. 
- Frish-Waugh method (a 2-step method):

(1) Detrend 𝑦௧: regress 𝑦௧ against a constant & a time trend, 𝑡. 
Then, get the residuals (=𝑦௧ without the influence of  𝑡).

(2) Use residuals to estimate the AR(𝑝) model.  

Non-Stationary Models: Deterministic Trend
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Simulated Example: We simulate an AR(1) series with a trend:
𝑦௧ ൌ 0.3  0.2 𝑦௧ିଵ  0.05 𝑡  𝜀௧ .

T_sim <- 200 # Length of  simulation
y_sim <- matrix(0,T_sim,1) # Vector to accumulate simulated data
u <- rnorm(T_sim, sd = 1) # Draw T_sim normally distributed errors
mu <- 0.3 # Constant
phi1 <- 0.2 # Change to create different AR(1) patterns
mu_t <- .05 # Trend coefficient
t <- 2 # Time index for observations
while (t <= T_sim) {  
y_sim[t] = mu + phi1 * y_sim[t-1] +  mu_t * t + u[t] # y_sim simulated values
t <- t + 1

} 
y_det_t <- y_sim[2: T_sim]
plot(y_det_t, type="l", col = "blue", main = "Simulated Series with a Deterministic Trend")

# Detrend series
trend <- c(1:(T_sim1-1))
fit_det_t <- lm(y_det_t ~ trend)
y_det_t_filt <- fit_det_t$residuals # Filtered series
plot(y_det_t_filt, type="l", main = "Detrended Simulated Series")

Non-Stationary Models: Deterministic Trend

Simulated Example (continuation): We plot the simulated AR(1) 
series (blue) and the detrended simulated series (red).

Non-Stationary Models: Deterministic Trend
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Simulated Example (continuation):  Now, we add a quadratic trend:
𝑦௧ ൌ 0.3  0.2 𝑦௧ିଵ  0.05 𝑡  0.003 𝑡ଶ  𝜀௧.

mu_t2 <- .003 # Trend square coefficient
t <- 2 # Time index for observations
while (t <= T_sim) {  
y_sim[t] = mu + phi1 * y_sim[t-1] +  mu_t * t + u[t] # y_sim simulated autocorrelated values
t <- t + 1
} 
y_det_t <- y_sim[2: T_sim]
plot(y_det_t, type="l", col = "blue", main = "Simulated Series with a Deterministic Trend")

# Detrend series with only a linear trend
trend <- c(1:(T_sim1-1))
fit_det_t <- lm(y_det_t ~ trend)
y_det_t_filt <- fit_det_t$residuals # Filtered series
plot(y_det_t_filt, type="l", main = "Detrended Simulated Series")

## Detrend series with a linear & Quadratic trends
trend2 <- trend^2fit_det_t <- lm(y_det_t ~ trend + trend2)
y_det_t_filt <- fit_det_t$residuals # Filtered series
plot(y_det_t_filt, type="l", col = "violet", main="Detrended Simulated Series")

Non-Stationary Models: Deterministic Trend

Simulated Example (continuation): We plot the simulated AR(1) 
series (blue) and the detrended series with a linear trend (violet).

Non-Stationary Models: Deterministic Trend
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Simulated Example (continuation): We plot the detrended
simulated series with a linear and quadratic trends (red).

Non-Stationary Models: Deterministic Trend

Remark: A series with a quadratic trend, needs to be detrended with a 
quadratic trend, otherwise extra patterns (U-shape, in this case) 
appear. Once we use an appropriate detrending model, we use the 
detrended series –i.e., the residuals– for furthering (ARMA) modeling.

Example: We detrend U.S. Stock Prices

T <- length(x_P) # length of  series
trend <- c(1:T) # create trend
det_P <- lm(x_P ~ trend) # regression to get detrended e
detrend_P <- det_P$residuals
plot(detrend_P, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time")
title("Detrended U.S. Stock Prices")

Non-Stationary Models: Deterministic Trend

Note: Extra pattern in detrended series  Using the wrong model.
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Example: We detrend U.S. Stock Prices adding a square trend

trend2 <- trend^2
det_P <- lm(x_P ~ trend + trend2) # regression to get detrended e
detrend_P <- det_P$residuals
plot(detrend_P, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time")
title("Detrended U.S. Stock Prices with linear and quadratic trends")

Non-Stationary Models: Deterministic Trend

 Still using the wrong model to detrend: Try exponential trend.

Example: We detrend Log U.S. Stock Prices adding a squared trend
l_P <- log(x_P)
det_lP <- lm(l_P ~ trend) # regression to get detrended e
detrend_lP <- det_lP$residuals
plot(detrend_lP, type="l", col="blue", ylab ="Detrended Log U.S. Prices", xlab ="Time")
title("Detrended Log U.S. Stock Prices")

det_lP2 <- lm(l_P ~ trend + trend2) # regression to get detrended e
det_lP2 <- det_lP2$residuals
plot(det_lP2, type="l", col="blue", ylab ="Det Log U.S. Prices", xlab ="Time")
title("Detrended Log U.S. Stock Prices with linear and quadratic trends")

Non-Stationary Models: Deterministic Trend
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• The more modern approach is to consider trends in time series as a 
variable trend. 

• A variable trend exists when a trend changes in an unpredictable way. 
Therefore, it is considered stochastic.

• Recall the AR(1) model: 𝑦௧ = 𝜇 + 𝜙1 𝑦௧ିଵ + 𝜀௧

• As long as |𝜙1| < 1, everything is fine, we have a stationary AR(1) 
process: OLS is consistent, t-stats are asymptotically normal, etc.

• Now consider the special case where 𝜙1 
= 1:

𝑦௧ = 𝜇 + 𝑦௧ିଵ + 𝜀௧
Q: Where is the (stochastic) trend? No 𝑡 term.

Non-Stationary Models: Stochastic Trend

• Let us replace recursively the lag of  𝑦௧ on the right-hand side:
𝑦௧ = 𝜇 + 𝑦௧ିଵ + 𝜀௧

= 𝜇 + (𝜇 + 𝑦௧ିଶ+ 𝜀௧ିଵ) + 𝜀௧
...
= 𝑦 + 𝑡 𝜇 + ∑ 𝜀௧ି

௧
ୀ

• This process is called a “random walk with drift”: 𝑦௧ grows with 𝑡.

• Each 𝜀௧ shock represents a shift in the intercept. All values of  {𝜀௧} 
have a 1 as coefficient  each shock never vanishes (permanent).

• We remove the trend by differencing 𝑦௧
 ∆𝑦௧ = (1 െ 𝐿) 𝑦௧ = 𝜇 + 𝜀௧

Note: Applying the (1 െ 𝐿) operator to a time series is called differencing

Non-Stationary Models: Stochastic Trend

Deterministic trend Accumulation of errors (shocks) – stochastic part 
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Example: We difference U.S. Stock Prices, using the diff R function:

diff_P <- diff(x_P)
> plot(diff_P,type="l", col="blue", ylab ="Differenced U.S. Stock Prices", xlab ="Time")
> title("Differenced U.S. Stock Prices")

Non-Stationary Models: Stochastic Trend

Remark: Trend is gone  Use first differences for AR modeling.

• 𝑦௧ is said to have a stochastic trend (ST), since each 𝜀௧ shock gives a 
permanent and random change in the conditional mean of  the series. 

• For these situations, we use Autoregressive Integrated Moving Average 
(ARIMA) models. 

• Q: Deterministic or Stochastic Trend?
They appear similar: Both lead to growth over time. The difference is 
how we think of  𝜀௧. Should a shock today affect 𝑦௧ାଵ?

– TS:   𝑦௧ାଵ = 𝜇 +  (𝑡 + 1) + 𝜀௧ାଵ  𝜀௧ does not affect 𝑦௧ାଵ. 

– ST:   𝑦௧ାଵ= 𝜇 + 𝑦௧+ 𝜀௧ାଵ = 𝜇 + [𝜇 + 𝑦௧ିଵ + 𝜀௧] + 𝜀௧ାଵ
= 2 ∗ 𝜇 + 𝑦௧ିଵ + 𝜀௧ + 𝜀௧ାଵ  𝜀௧ affects 𝑦௧ାଵ. 
(In fact, the shock 𝜀௧ has a permanent impact.) 

Non-Stationary Models: Stochastic Trend
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• For 𝑝, 𝑑, 𝑞 ≥ 0, we say that a time series {𝑦௧} is an ARIMA (𝑝, 𝑑, 𝑞)
process if  𝑤௧ = Δௗ  𝑦௧ = ሺ1 െ 𝐿ሻௗ  𝑦௧ is ARMA(𝑝, 𝑞). That is,

𝜙ሺ𝐿ሻሺ1 െ 𝐿ሻௗ  𝑦௧ ൌ 𝜃 𝐿  𝜀௧  

• Applying the (1 െ 𝐿) operator to a time series is called differencing.

Notation: If 𝑦௧ is non-stationary, but Δd 𝑦௧ is stationary, then 𝑦௧ is 
integrated of  order 𝑑, or I(𝑑). A time series with unit root is I(1). A 
stationary time series is I(0). 

Examples:
Example 1: RW:   𝑦௧ =  𝑦௧ିଵ + 𝜀௧. 
 𝑦௧ is non-stationary, but

𝑤௧ = (1 െ 𝐿)  𝑦௧ = 𝜀௧  𝑤௧ ~ WN!

Now,  𝑦௧ ~ ARIMA(0, 1, 0). 

ARIMA(𝒑, 𝒅, 𝒒) Models

Example 2: AR(1) with time trend:  𝑦௧ = 𝜇 + δ 𝑡 + 𝜙1 𝑦௧ିଵ + 𝜀௧. 
𝑦௧ is non-stationary, but  

𝑤௧ = (1 െ 𝐿) 𝑦௧
= 𝜇 + δ 𝑡 + 𝜙1 𝑦௧ିଵ + 𝜀௧ – [𝜇 + δ (𝑡 - 1) + 𝜙1  𝑦௧ିଶ + 𝜀௧ିଵ]. 
= δ + 𝜙1 

𝑤௧ିଵ + 𝜀௧ – 𝜀௧ିଵ  𝑤௧ ~ ARIMA(1, 1).

Now,  𝑦௧ ~ ARIMA(1, 1, 1).

• We call both process first difference stationary.

Note: 
− Example 1: Differencing a series with a unit root in the AR part of  
the model reduces the AR order.

− Example 2: Differencing can introduce an extra MA structure. We 
introduced non-invertibility (θଵ= 1). This happens when we difference 
a TS series. Detrending should be used in these cases. 

ARIMA(𝒑, 𝒅, 𝒒) Models
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• In practice: 
A root near 1 of  the AR polynomial  differencing
A root near 1 of  the MA polynomial  over-differencing

• In general, we have the following results: 
- Too little differencing: not stationary.
- Too much differencing: extra dependence introduced. 

• Finding the right 𝑑 is crucial. For identifying preliminary values of  𝑑:
- Use a time plot.
- Check for slowly decaying (persistent) ACF/PACF.

Note: There are many formal tests for unit roots. Most popular tests: 
ADF (Augmented Dickey-Fuller) and PP (Phillips-Perron).

ARIMA(𝒑, 𝒅, 𝒒) Models

Example 1: Monthly Stock Price levels (1871-2020)

acf_P <- acf(x_P)
> acf_P
Autocorrelations of  series ‘x_p’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000 0.992 0.984 0.977 0.971 0.966 0.961 0.954 0.946 0.938 0.931 0.924     

12  13     14  15     16 17 18 19 20 21  22     23 
0.917 0.911 0.904 0.897 0.891 0.884 0.877 0.871 0.865 0.860 0.854 0.848 

24 25 26  27  28     29   30  31     32 
0.841 0.834 0.827 0.821 0.815 0.809 0.803 0.797 0.790 

Very high autocorrelations. Looks like 𝜙1 ≈ 1.

ARIMA Models: Unit Roots 1?
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Example 1: Monthly Stock Price levels (1871-2020)

ARIMA Models – Unit Roots 1: ACF & PACF

Example 2: Monthly Interest Rates (1871-2020)

acf_i <- acf(x_i)
> acf_i
Autocorrelations of  series ‘x_i’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000 0.996 0.990 0.985 0.980 0.975 0.970 0.965 0.960 0.956 0.951 0.946 

12  13     14  15     16 17 18 19 20 21  22     23 
0.940 0.934 0.929 0.924 0.919 0.915 0.912 0.908 0.904 0.901 0.899 0.896 

24 25 26  27  28     29   30  31     32 
0.894 0.891 0.889 0.887 0.884 0.882 0.879 0.877 0.874 

Very high autocorrelations. Looks like 𝜙1 ≈ 1.

ARIMA Models: Unit Roots 2?
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Example 2: Monthly Interest Rates (1871-2020)

ARIMA Models – Unit Roots 2: ACF & PACF

• A random walk (RW) is a process where the current value of  a 
variable is composed of  the past value plus an error term defined as a 
white noise (a normal variable with zero mean and variance one).

• RW is an ARIMA(0,1,0) process 
𝑦௧ ൌ 𝑦௧ିଵ  𝜀௧     ⇒ Δ𝑦௧ ൌ 1 െ 𝐿 𝑦௧ ൌ 𝜀௧,   𝜀௧ ~ 𝑊𝑁 0,𝜎ଶ .

• Popular model. Used to explain the behavior of  financial assets, 
unpredictable movements (Brownian motions, drunk persons). 

• A special case (limiting) of  an AR(1) process: a unit-root process.

• Implication:  E[𝑦௧ାଵ|𝐼௧] = 𝑦௧  ∆𝑦௧ is absolutely random.

• Thus, a RW is nonstationary, and its variance increases with 𝑡.

ARIMA Models – Random Walk
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• Change in 𝑦௧ is partially deterministic (𝜇) and partially stochastic.
𝑦௧ െ 𝑦௧ିଵ ൌ Δ𝑦௧ ൌ 𝜇  𝜀௧

• Recall that 𝑦௧ can also be written as
𝑦௧ = 𝑦 + 𝑡 𝜇 + ∑ 𝜀௧ି

௧
ୀ

 𝜀௧ has a permanent effect on the mean of  𝑦௧.

• Recall the difference between conditional and unconditional 
forecasts:

E[𝑦௧] = 𝑦 + 𝑡 𝜇 (Unconditional forecast)
E[𝑦௧ା௦|𝑦௧] = 𝑦௧+ 𝑠 𝜇 (Conditional forecast)

ARIMA Models – RW with Drift

Examples: A simulated RW in R
T_sim <- 200
u <- rnorm(200) # Draw T_sim normally distributed errors
y_sim <- matrix(0,T_sim,1)
rho <- 1 # Change to create different correlation patterns
a <- 2
mu <- 0 # Time index for observations
while (a <= T_sim) {

y_sim[a] = mu + rho * y_sim[a-1] + u[a] # y_sim simulated autocorrelated values
a <- a + 1
} 
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time")
title("Simulated RW Series with no drift")

ARIMA Models – Random Walk
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Examples: Two simulated RW one with drift and one without drift
T_sim <- 200 # Sample size for simulation
u <- rnorm(200) # Draw T_sim normally distributed errors
y_sim <- matrix(0,T_sim,1) # Vector to collect simulated data
phi <- 1 # Set phi = 1 for RW
a <- 2 # Time index for observations
mu <- 0 # RW Drift
while (a <= T_sim) {

y_sim[a] = mu + phi * y_sim[a-1] + u[a] # y_sim simulated RW values
a <- a + 1
} 
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time")
title("Simulated RW Series with no drift")

ARIMA Models – Random Walk

• Two series: 1) True USD/GBP 1973-2023 series; 2) A simulated RW 
(same drift and variance). Very similar pattern! 

ARIMA Models – RW with Drift


