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Lecture 9-a
Time Series: 

Identification of AR, MA & 
ARMA Models

Brooks (4th edition): Chapter 6

© R. Susmel, 2023 (for private use, not to be posted/shared online).

Review: Times Series

• A time series 𝑦 is a process observed in sequence over time, 

𝑡 = 1, ...., T  Yt = {𝑦 , 𝑦 ,𝑦 , ..., 𝑦 }.

• Main feature of time series: dependence. 

• Popular models for E[𝑦 |𝐼 ]:

– AR process:  Et[𝑦 |𝐼 ] = f(𝑦 , 𝑦 , 𝑦 , ....}

Example: AR(1) process, 𝑦 = α + β 𝑦 + ε .

– MA process:  Et[𝑦 |𝐼 ] = f(ε , ε , ε , ....)

Example: MA(1) process, 𝑦 = μ + θ1 ε  + ε

– ARMA process:  Et[𝑦 |𝐼 ] = f(𝑦 , 𝑦 , ...., ε , ε , ....)
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• We want to select an appropriate time series model to forecast yt. 

The linear models we consider: AR(p), MA(q) or ARMA(p, q). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine AR, MA or 
ARMA and the order of the model  -i.e., p, q.

Tools: ACF, PACF, Information Criteria

(2) Estimate the model.

OLS, Method of Moments (complicated).

(3) Test the model.

Make sure errors are WN.

(4) Forecast.

Review: Times Series – Forecasting

• A linear MA(𝑞) model: 
𝑦 𝜇 + θ1 𝜀  + θ2 𝜀 + ... + θq 𝜀  + 𝜀 = 𝜇 + θ L 𝜀 ,

where
θ L = 1 θ1L θ2L θ3L … θqL

• Check stationarity (Constant moments)
•  Mean

E[𝑦 ] = E[𝜀 ] + θ1 E[𝜀 ] + θ2 E[𝜀 ] + ... + θq E[𝜀 ] = 0

•  Variance
Var[𝑦 ] = Var[𝜀 ] + θ Var[𝜀 ] + θ Var[𝜀 ] + ... + θ Var[𝜀 ] 

= (1 + θ + θ + ... + θ ) σ2.

• Covariance
γ 𝑞 = σ2 ∑ θ θ (where θ0 = 1)

 MA(q) is always stationary.

Review: Moving Average Process  
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γ 𝑞 = σ2 ∑ θ θ (where θ0 = 1)

In general, for the 𝑘 autocovariance:
γ 𝑘 = σ2 ∑ θ θ for | 𝑘 |  q
γ 𝑘 = 0 for | 𝑘 |  q

Remark: After lag q, the autocovariances (and autocorrelation 
functions) are 0.

• It can be shown that for 𝜀 with the same distribution (say, normal) 
the autocovariances are non-unique. In this case, we select the MA(𝑞)
model that’s invertible. 

Technical note: An invertible MA(𝑞) is typically required to have roots 
of  the lag polynomial equation θ(𝑧) = 0 greater than one in absolute 
value (“outside the unit circle”). In the MA(1) case, we require|θ1|< 1.

Review: Moving Average Process – Stationarity  

Example: MA(1) process:

• γ 𝑘  
𝑘 = 0 γ 0  = σ2 ∑ θ θ σ2 (1 + θ )
𝑘 = 1 γ 1  = σ2 ∑ θ θ σ2 (θ1)
𝑘  1 γ 𝑘  = 0 

 After lag q  1 , the autocovariances are 0.

To get the ACF, we divide γ 𝑘  by γ 0 . Then:

ρ 0  γ 0 /γ 0 = 1 

ρ 1  γ 1 /γ 0 = θ1σ2 /σ2 (1+ θ ) = θ1/(1+ θ ) 

⋮
ρ 𝑘   γ 𝑘 /γ 0 = 0 (for 𝑘 > 1)

Review: MA(1) Process – ACF
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Example (continuation): 
ρ 1  θ1/(1+ θ1

2) 

Note that |ρ 1 | ≤ 0.5. 

When θ1 = 0.5  ρ 1 = 0.4.
θ1 = -0.9  ρ 1 = -0.497238. 
θ1 = 2  ρ 1 = 0.4. (same ρ 1 for θ1 & 1/θ1)

If  we use the ACF to select a model, we select the invertible process 
with θ1 = 0.5. 

Review: MA(1) Process – ACF

• MA processes are more complicated to estimate since we do not 
observe the errors, 𝜀 ’s: Direct estimation is impossible. 

• Two indirect ways:
(1) Using method of  moments (MM): We match observed 
moments and solved for the parameters. For example, for an MA(1):

ρ 1  θ1/(1+ θ ) 

𝑟  ⇒   𝜃
    

• A nonlinear solution and difficult to solve.

(2) Using AR() representation: For MA(1) & |θ|<1, find 𝑎 ∈ (-1; 1)
𝜀 𝑎  = 𝑦 + 𝑎 𝑦 + a  𝑦  + a  𝑦 + ….

and look (numerically) for the least-square estimator

θ = arg minθ {S(𝒚; θ) = ∑ ε 𝑎 (a = θ1 .)

Review: MA Process – Estimation 
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Review: Autoregressive (AR) Process

• An AR(𝑝) process is given by:

𝑦 = μ + 𝜙1 𝑦 + 𝜙2 𝑦 +... +𝜙p 𝑦 + 𝜀 , 𝜀  ~ WN.

Using the lag operator we write the AR(p) process: 𝜙(L) 𝑦 = 𝜀  

with 𝜙(L) = 1 - 𝜙1 L - 𝜙2 L2 - ... - 𝜙p Lp

• Stability of AR(𝑝):

We need the roots of 𝜙(z) = 0 to be outside the unit circle.

For the AR(1) process

𝜙(z) = 1 - 𝜙1 z = 0  |z| = | 1|
> 1 

That is, the AR(1) process is stable if the root of 𝜙(z) is greater than 
one (“the roots lie outside the unit circle”).

• An AR(1) model: 
𝑦 = 𝜙1 𝑦 + 𝜀 , 𝜀 ~ WN.

Under the stationarity condition |𝜙1|< 1, we derived the moments:

E[𝑦 ] = μ = 0 (assuming 𝜙1 ≠ 1)

Var[𝑦 ] = γ 0  = σ2/(1 - 𝜙 ) (assuming |𝜙1|< 1)

γ 𝑘  = 𝜙 γ 0  

• ACF: ρ 𝑘    𝜙 (ACF decays with 𝑘.)

Patterns:
– when    0 < 1 < 1  All autocorrelations are positive.
– when  1 < 1 < 0  The sign of  ρ 𝑘 shows an alternating sign

pattern beginning a negative value.

Review: AR(1) Process – Stationarity & ACF
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Theorem: The linear AR(𝑝) process is strictly stationary and ergodic 
if  and only if the roots of (z)  are |zj|>1 for all j, where |zj| is the 
modulus of  the complex number rj.

Note: If  one of  the zj’s equals 1, (L) (& 𝑦 ) has a unit root –i.e., 
(1)=0. This is a special case of  non-stationarity.

• Inverting (L) produces a process with an infinite sum of  𝜀 ’s. If  
this sum does not explode, we say the process is stable. 

• AR(𝑝) model: 𝜙 𝐿 𝑦 𝜇 𝜀 , 
where 

𝜙 𝐿 1 𝜙 𝐿 𝐿 𝜙 . . . . 𝜙 𝐿

Then, 𝑦 𝜙 𝐿 𝜇 𝜀 ,  an MA(∞) process!

Review: AR Process – Stationarity & Ergodicity

• Back to the  general AR(𝑝). Define
𝒙 1 𝑦  𝑦 . . . .𝑦    
𝛃 𝜇     . . . . 

Then the model can be written as

𝑦 𝒙 ′𝛃 𝜀
• The OLS estimator is 𝐛 𝑿′𝑿 𝑿′𝒚

• Properties:

– Using the Ergodic Theorem, OLS estimator is consistent.

– Using the MDS CLT, OLS estimator is asymptotically normal.

 asymptotic inference is the same. 

• The asymptotic covariance matrix is estimated just as in the cross-
section case: The sandwich estimator.

Review: AR Process – Estimation &  Properties
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• A combination of  AR(𝑝) and MA(𝑞) processes produces an 
ARMA(𝑝, 𝑞) process:

• Usually, we insist that (L) ≠ 0, θ(L) ≠ 0 & that the polynomials 
(L), θ(L) have no common factors. This implies it is not a lower order 
ARMA model.

ARMA Process

𝑦 𝜇  𝑦  𝑦 . . . .  𝑦 𝜀 𝜃 𝜀 𝜃 𝜀 . . . 𝜃 𝜀

 𝜇  𝑦 𝜃 𝐿 𝜀 𝜀  

 𝐿 𝑦 𝜇 𝜃 𝐿 𝜀

• For an ARMA(1,1) we have:.
𝑦 = μ + 𝜙1 𝑦 + θ1 𝜀 + 𝜀 , 𝜀 ~ WN.

• Moments: (μ = 0)
E[𝑦 ] = μ / (1 𝜙1) = 0 (assuming 𝜙1 ≠ 1)

Var[𝑦 ] = σ2 (1 θ ) / (1 𝜙1
2) (assuming |𝜙1|< 1)

• Autocovariance function (μ = 0)
γ 𝑘  = Cov[𝑦 ,  𝑦 ]

𝐸 𝜙1𝑦 θ1𝜀  𝜀  𝑦
𝜙1𝐸 𝑦  𝑦 θ1𝐸 𝜀  𝑦 𝐸 𝜀  𝑦

= 𝜙1 γ 𝑘 1  θ1𝐸 𝜀  𝑦  𝐸 𝜀  𝑦

We have a recursive formula.

ARMA(1,1) – Stationarity & ACF
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• ARMA(1,1): 𝑦 = 𝜙1 𝑦 + θ1 𝜀 + 𝜀 ,

Recursive formula:

γ 𝑘 𝜙1γ 𝑘 1 𝐸 𝜀  𝑦 θ1𝐸 𝜀  𝑦

γ 0 𝜙1γ 1 𝜎 θ1 𝜙1𝜎 θ1𝜎

γ 1 𝜙1 γ 0 θ1𝜎

Two equations for γ 0  and γ 1 . Solving for γ 0 :

γ 0 𝜎
1 θ 2𝜙1 θ1

1 𝜙1 

γ 1 𝜙1 𝜎
 θ   θ1

  
θ1𝜎 = 𝜎

   θ1 ∗
 

 θ1
  

ARMA(1,1) – Stationarity & ACF

Continuing the process:
γ 2 𝐸 𝑦  𝑦

𝐸 𝜙1𝑦 θ1𝜀 𝜀  𝑦
𝜙1𝐸 𝑦  𝑦 θ1𝐸 𝜀  𝑦 𝐸 𝜀  𝑦
𝜙1 γ 1

• In general:
γ 𝑘 𝜙1γ 𝑘 1 𝜙1 γ 1 ,  𝑘 1

 If  |𝜙1|<1, exponential decay and stationary.

Note: If  stationary, ARMA(1,1) and AR(1) show exponential decay. 
Difficult to distinguish one from the other by looking at the 
autocovariance functions.

ARMA(1,1) – Stationarity & ACF
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• AR Representation: Π 𝐿 𝑦 𝜇 𝜀 ⇒ Π 𝐿


• Pure MA Representation: 𝑦 𝜇 Ψ 𝐿 𝜀 ⇒ Ψ 𝐿 

• Special ARMA(𝑝, 𝑞) cases: – 𝑝 = 0: MA(𝑞)
– 𝑞 = 0: AR(𝑝).

ARMA Process – Representation

Theorem: If  (L) and θ(L) have no common factors, a (unique) 
stationary solution to  𝐿 𝑦 𝜃 𝐿 𝜀 exists if  and only if

|𝑧| 1 ⇒ 𝑧 1   𝑧  𝑧 . . .  𝑧 0. 

This ARMA(𝑝, 𝑞) model is causal –i.e., AR part can be inverted) if  and 
only if  

|𝑧| 1 ⇒ 𝑧 1  𝑧  𝑧 . . .   𝑧 0.

This ARMA(𝑝, 𝑞) model is invertible if  and only if

|𝑧| 1 ⇒ 𝜃 𝑧 1 𝜃 𝑧 𝜃 𝑧 . . . 𝜃 𝑧 0.

Note: Real data cannot be exactly modeled using a finite number of  
parameters. We choose 𝑝, 𝑞 to create a good approximated model.

ARMA: Stationarity, Causality and Invertibility
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• We defined the ARMA(𝑝, 𝑞) model:
𝜙 𝐿 𝑦 𝜇 𝜃 𝐿 𝜀   

The mean does not affect the order of  the ARMA. Then, if  𝜇 0 , we 
demean the data: 𝑥 𝑦 𝜇.

Then, 𝜙 𝐿  𝑥 𝜃 𝐿  𝜀   𝑥 is a demeaned ARMA process. 

• For the rest of  the lecture, we will study:
- Identification of   𝑝, 𝑞.
- Estimation of  ARMA(𝑝, 𝑞)

ARMA Process

• For an AR(p) process, WLOG with μ=0 (or demeaned 𝑦 ), we get a 
recursive formula to compute 𝛾 𝑘 𝑡 𝑗  :

𝛾 𝑡 𝑗 𝜙 𝛾 𝑗 1 𝜙 𝛾 𝑗 2  . . . .  𝜙 𝛾 𝑗 𝑝

• The autocovariances, 𝛾 𝑡 𝑗 , determine a system of  equations:

𝛾 0 𝐸 𝑦 ,𝑦 𝜙 𝛾 1 𝜙 𝛾 2 𝜙 𝛾 3  . . . .  𝜙 𝛾 𝑝 𝜎
𝛾 1 𝐸 𝑦 ,𝑦 𝜙 𝛾 0 𝜙 𝛾 1 𝜙 𝛾 2  . . . .  𝜙 𝛾 𝑝 1
𝛾 2 𝐸 𝑦 ,𝑦 𝜙 𝛾 1 𝜙 𝛾 0 𝜙 𝛾 1  . . . .  𝜙 𝛾 𝑝 2
⋮    ⋮    ⋮    ⋮    ⋮    ⋮

Using linear algebra, we can write the system as:

Γ 𝜙 = γ

where Γ is a pxp matrix of  autocovariances, with 𝛾 0 on the diagonal; 
𝜙 is the px1 vector of  AR(p) coefficients; and γ is the px1 vector of  
𝛾 𝑘 autocovariances.

Autocovariance Function (Again)  
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• Now, we define the autocorrelation function (ACF):

𝜌 𝑘
γ(𝑘)

γ(0)

covariance at lag 𝑘
variance

The ACF lies between -1 and +1, with 𝜌 0 1.

• Dividing the autocovariance system by γ(0), we get: 

Or using linear algebra: Ρ 𝜙 = ρ

• These are “Yule-Walker” equations, which can be solved numerically.

Autocorrelation Function (ACF)

𝜌 0 𝜌 1 ⋯ 𝜌 𝑝 1
𝜌 1 𝜌 0 ⋯ 𝜌 𝑝 2
⋮ ⋮ ⋯ ⋮

𝜌 𝑝 1 𝜌 𝑝 2 ⋯ 𝜌 0

𝜙
𝜙
⋮
𝜙

𝜌 1
𝜌 2
⋮

𝜌 𝑝

• Estimation:  
Easy: Use sample moments to estimate γ(k) and plug in formula:

𝑟 𝜌
∑ 𝑌 𝑌 𝑌 𝑌

∑ 𝑌 𝑌

Then, we plug the 𝜌  in the Yule-Walker equations and solve for 𝝓:

 Ρ 𝜙 =  ρ

• The sample correlogram is the plot of  the ACF against k. As the ACF 
lies between -1 and +1, the correlogram also lies between these values.

:

ACF – Estimation & Correlogram
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• Distribution: 
For a linear, stationary process, with large T, the distribution of  the 
sample ACF, 𝑟 𝜌 is approximately normal with:

r 
     

 N(ρ, V/T), V is the covariance matrix.

Under H0: ρk = 0 for all k>1.

r 
     

 N(0, I/T)  Var[r(k)] = 1/T.

• Under H0, the SE[r] = 1/ 𝑇  95% C.I.: 0 1.96 * 𝟏/ 𝑻

Then, for a white noise sequence, approximately 95% of  the sample 
ACFs should be within the above C.I. limits. 

ACF – Distribution

Example: Sample ACF for an AR(1) process: 
Under stationarity:

ρ 𝑘    𝜙 𝑘 = 0, 1, 2, …

If  | 𝜙1 |< 1, the ACF will show exponential decay.

• Suppose 𝜙1 = 0.4. Then,

ρ 0 = 1
ρ 1 = 0.4
ρ 2  = 0.42 = 0.16
ρ 3  = 0.43 = 0.064
ρ 4  = 0.44 = 0.0256
⋮ 
ρ 𝑘 0.4𝒌

ACF – AR(1)
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Example: Sample ACF for an MA(q) process:

𝜌 𝑘
∑

⋯
  𝑘 𝑞

0        otherwise.

Suppose we have an MA(3). Then, for different 𝑘’s:
ρ 0 = 1

ρ 1 = 
    

    

ρ 2 = 
   

    

ρ 3 = 
 

    

ρ 𝑘 = 0 for |𝑘| > 3.

ACF – MA(q)

𝑦 𝜇 𝜀 𝜃 𝜀 𝜃 𝜀 . . . 𝜃 𝜀

Example (continuation): 

Suppose θ1 = 0.5; θ2 = 0.4; θ3 = 0.2. Then,

ρ 0 = 1

ρ 1 = 
    

    
= 

0.5+0.4∗0.5+0.1∗0.4
1 + 0.52 

+ 0.42+ 0.12 = 0.5211

ρ 2 = 
   

    
= 

0.4 + 0.1∗0.5
1 + 0.52 

+ 0.42 
+ 0.12 = 0.3169

ρ 3 = 
 

    
= 

0.1
1 + 0.52 

+ 0.42+ 0.12 = 0.0704

ρ 𝑘 = 𝟎 for |𝑘| > 3.

ACF – MA(q=3)

𝑦 𝜇 𝜀 𝜃 𝜀 𝜃 𝜀 𝜃 𝜀
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Example: Sample ACF for an ARMA(1,1) process:
𝑦 𝜙1𝑦 𝜀 𝜃 𝜀

From the autocovariances, we get

γ 0 𝜎
1 θ1 2𝜙1 θ1

1 𝜙1 

γ 1 𝜎
1 𝜙1 θ1 ∗ 𝜙1  θ1

1 𝜙1 

γ 𝑘 𝜙1γ 𝑘 1 𝜙1 𝜎
1 𝜙1 θ1 ∗ 𝜙1  θ1

1 𝜙1 

Then,

𝜌 𝑘 𝜙1
    ∗ 

   

 If  |𝜙1|<1, exponential decay. Similar pattern to AR(1).

ACF – ARMA(1, 1)

Example (continuation): Sample ACF for an ARMA(1,1) process:
𝑦 𝜙1𝑦 𝜀 𝜃 𝜀

The ACF for an ARMA(1,1):

ρ 𝑘 𝜙1
    ∗ 

   

Suppose 𝜙1 
= 0.4, θ1 = 0.5. Then,

ρ 0 = 1

ρ 1   .  ∗ .
 
∗ .   .

  0 .  ∗ . ∗ .
= 0.6545 

ρ 2 0.4 *  
  .  ∗ .  ∗ .   .

  0 .  ∗ . ∗ .
= 0.2618

ρ 3 0.42 *  
  .  ∗ .  ∗ .   .

  0 .  ∗ . ∗ .
= 0.0233 

⋮ 

ρ 𝑘 0.4k-1 *  
  .  ∗ .  ∗ .   .

  0 .  ∗ . ∗ .

ACF – ARMA(1, 1)
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Example: US Monthly Returns (1871 – 2020, T = 1,795)
Sh_da <- read.csv("C://Financial Econometrics/Shiller_2020data.csv", head=TRUE, 
sep=",")
x_P <- Sh_da$P
x_D <- Sh_da$D
T <- length(x_P)
lr_p <- log(x_P[-1]/x_P[-T])
lr_d <- log(x_D[-1]/x_D[-T])
acf_p <- acf(lr_p) # acf: R function that estimates the ACF
> acf_p
Autocorrelations of  series ‘lr_p’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.279 0.004 -0.043  0.017  0.074 0.039  0.039  0.044  0.035  0.034  0.022 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.010 -0.059 -0.058 -0.056  0.009  0.033  0.047 -0.040 -0.087 -0.090 -0.029  0.005 

24 25 26  27  28     29   30  31     32 
0.003 -0.013 -0.058 -0.018 -0.005  0.026  0.011  0.000  0.020

SE(rk) = 1/sqrt(T) = 1/sqrt(1,795) = .0236.  95% C.I.: 2* 0.0236

ACF – Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020)

ACF – Example: U.S. Stock Returns

Note: With the exception of  first correlation, correlations are small. 
However, many are significant, not strange result when T is large. 



RS – FEc - Lecture 9

16© R. Susmel, 2023 – Do not post/share online without authorization

Example: US Monthly Changes in Dividends (1871 – 2020, 
T=1,795)

acf_d <- acf(lr_d)
> acf_d
Autocorrelations of  series ‘lr_d’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.462  0.516  0.432  0.444  0.326  0.442  0.288  0.283  0.265  0.202  0.168

12  13     14  15     16 17 18 19 20 21  22     23 
0.142 0.100  0.122  0.123  0.085  0.045  0.026 -0.013  0.001 -0.029 -0.049 -0.077    

24 25 26  27  28     29   30  31     32 
-0.038 -0.100 -0.095 -0.055 -0.081 -0.092 -0.034 -0.063 -0.089

High correlations and significant even after 32 months! 

ACF – Example: U.S. Stock Dividends

Example (continuation): Correlogram for US Monthly Changes in 
Dividends (1871 – 2020)

Note: Correlations are positive for almost 1.5 years, then become 
negative.

ACF – Example: U.S. Stock Dividends
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Recall we compute the Ljung-Box (LB) statistic as:

𝐿𝐵 𝑇 ∗ 𝑇 2 ∑

The LB test can be used to determine if  the first m sample ACFs are 
jointly equal to zero. 

Under H0: ρ1= ρ2=...= ρm= 0, 𝐿𝐵 
    

χ

ACF – Joint Significance Tests

Example: LB test with 20 lags for US Monthly Returns and 
Changes in Dividends (1871 – 2020)

> Box.test(lr_p, lag=20, type= "Ljung-Box")

Box-Ljung test

data:  lr_p
X-squared = 208.02, df  = 20, p-value < 2.2e-16  Reject H0 at 5% level. Joint significant

first 20 correlations.

> Box.test(lr_d, lag=20, type= "Ljung-Box")

Box-Ljung test

data:  lr_d
X-squared = 2762.7, df  = 20, p-value < 2.2e-16  Reject H0 at 5% level. Joint significant

first 20 correlations.

ACF – Joint Significance Tests
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• The ACF gives us a lot of  information about the order of  the 
dependence when the series we analyze follows a MA process: The 
ACF is zero after 𝑞 lags for an MA(𝑞) process.

• If  the series we analyze, however, follows an ARMA or AR, the ACF 
alone tells us little about the orders of  dependence: We only observe 
an exponential decay. 

• We introduce a new function that behaves like the ACF of  MA 
models, but for AR models, namely, the partial autocorrelation 
function (PACF). 

• The PACF is similar to the ACF. It measures correlation between 
observations that are k time periods apart, after controlling for 
correlations at intermediate lags.

Partial ACF (PACF)

Intuition: Suppose we have an AR(1):
𝑦 𝜙1 𝑦 𝜀 .

Then,
γ 2  = 𝜙1

2 γ 0  

The correlation between 𝑦 and 𝑦 is not zero, as it would be for an 
MA(1), because 𝑦 is dependent on 𝑦 through 𝑦 . 

Suppose we break this chain of  dependence by removing (“partialing
out”) the effect 𝑦 . Then, we consider the correlation between [𝑦 –
𝜙1𝑦 ] & [𝑦 – 𝜙1𝑦 ] –i.e, the correlation between 𝑦 & 𝑦
with the linear dependence of  each on 𝑦 removed:

γ 2  = Cov(𝑦 – 𝜙1𝑦 , 𝑦 – 𝜙1𝑦 ) = Cov(𝜀 , 𝑦 – 𝜙1 𝑦 ) =0

Similarly,
γ 𝑘  = Cov(𝜀 , 𝑦 – 𝜙1 𝑦 ) = 0 for all 𝑘 > 1.

Partial ACF
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Definition: The PACF of   a stationary time series {𝑦 } is

𝜙 = Corr(𝑦 ,  𝑦 ) = ρ(1)

𝜙 = Corr(𝑦 – E[𝑦 |𝐼 ], 𝑦 – E[𝑦 |𝐼 ]) for ℎ = 2, 3, ....

This removes the linear effects of  𝑦 , ..., 𝑦 .

• The PACF 𝜙 is also the last coefficient in the best linear 
prediction of  𝑦 given 𝑦 ,𝑦 , ..., 𝑦 . ( OLS!)

• Estimation by Yule-Walker equation, using sample estimates: 
𝝓 𝑹 𝜸 𝑘  a recursive system,

where 𝜙h = (𝜙 , 𝜙 , ..., 𝜙 ) and 𝑹 is the (ℎxℎ) correlation matrix.

• OLS is used. Also, a recursive algorithm by Durbin-Levinson.

Partial ACF

Example: AR(𝑝) process:

Then, 𝜙 =𝜙 if  1≤ ℎ ≤ 𝑝
= 0 otherwise

 After the 𝑝th PACF, all remaining PACF are 0 for AR(𝑝) processes.

• The plot of  the PACF is called the partial correlogram.

Partial ACF – AR(𝒑)

𝑦 𝜇 𝜙1𝑦 𝜙 𝑦   . . .  𝜙 𝑦 𝜀
𝐸 𝑦 𝐼 𝜇 𝜙 𝑦 𝜙 𝑦   . . .  𝜙 𝑦
𝐸 𝑦 𝐼 𝜇 𝜙 𝑦 𝜙 𝑦   . . .  𝜙 𝑦
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Example: We simulate an AR(2) process:
𝑦 𝜇 𝜙1𝑦 𝜙 𝑦  𝜀

sim_ar22 <- arima.sim(list(order=c(1,0,0), ar=c(0.5, 0.3)), n=200) #simulate AR(2) series
plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3)))) 

pacf_ar22 <- pacf(sim_ar22) 

Print PACF
> pacf_ar2

1 2 3 4 5 6 7 8  9    10     11 
0.558  0.286  0.038  0.103 -0.010  0.009  0.111  0.060 -0.021 -0.076  0.016

12  13     14  15     16 17 18 19 20 21  22      23 
-0.086 -0.139  0.100  0.061 -0.156  0.078 -0.103  0.043 -0.075  0.104  0.024  0.061

SE(rk) ≈ 1/sqrt(200) = .0707.  95% C.I.: 2* 0.0707

Partial ACF – AR(𝒑=2)

Example: We simulate an AR(2) process:
𝑦 𝜇 𝜙1 

𝑦 𝜙  𝑦  𝜀

sim_ar22 <- arima.sim(list(order=c(1,0,0), ar=c(0.5, 0.3)), n=200) #simulate AR(2) series
plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3)))) 

pacf_ar22 <- pacf(sim_ar22) 

Print PACF
> pacf_ar2

1 2 3 4 5 6 7 8  9    10     11 
0.558  0.286  0.038  0.103 -0.010  0.009  0.111  0.060 -0.021 -0.076  0.016

12  13     14  15     16 17 18 19 20 21  22      23 
-0.086 -0.139  0.100  0.061 -0.156  0.078 -0.103  0.043 -0.075  0.104  0.024  0.061

SE(rk) ≈ 1/sqrt(200) = .0707.  95% C.I.: 2* 0.0707

Partial ACF – AR(p=2)
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Example (continuation): Plot of  simulated series and PACF
> plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3))))
> pacf_ar2 <- pacf(sim_ar22) 

Partial ACF – AR(p=2)

Example (continuation): 
Note: The PACF can be calculated by h regressions, each one with h 
lags. The hh coefficient is the hth order PACF. Using ar function:

> ar(sim_ar2, order.max=1, method = “ols")

Coefficients:
1  

0.5586

Intercept: -0.008403 (0.0761) 

Order selected 1  sigma^2 estimated as  1.152

> ar(sim_ar2, order.max=2, method = "ols")

Coefficients:
1       2  

0.3974  0.2869

Intercept: -0.009847 (0.07326) 

Order selected 2  sigma^2 estimated as  1.063

Partial ACF – AR(p=2)
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• Following the analogy that PACF for AR processes behaves like an 
ACF for MA processes, we will see exponential decay (“tails off”) in the 
partial correlogram for MA process. Similar pattern will also occur for 
ARMA(p, q) process. 

Example: We simulate an MA(1) process with 𝜃  = 0.5.
sim_ma1 <- arima.sim(list(order=c(0,0,1), ma = 0.5), n=200)  
> pacf(sim_ma1)

Partial ACF – MA(q)

• For an ARMA processes, we will see exponential decay (“tails off”) in 
the partial correlogram. 

Example: We simulate an ARMA(1) process with 𝜙1= 0.4 & 𝜃 = 0.5.
sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)  
> pacf(sim_arma11)

Partial ACF – ARMA(p,q)
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Example: US Monthly Returns (1871 – 2020, T=1,795)
pacf_p <- acf(lr_p) # pacf: R function that estimates the PACF
> pacf_p

Partial autocorrelations of  series ‘lr_p’, by lag

1 2 3 4 5 6 7 8  9    10     11 
0.278 -0.081 -0.026  0.041  0.058 0.002  0.038  0.032  0.016  0.022  0.009      

12 13     14  15     16 17 18 19 20 21  22     23 
-0.023 -0.057 -0.032 -0.045  0.027  0.017  0.037 -0.059 -0.051 -0.050  0.005    24 

23 24 25 26  27  28     29   30  31     32 
0.006  0.004 -0.005 -0.051  0.014 -0.007  0.037  0.008  0.018  0.023 

SE(rk) = 1/sqrt(1,795) = .0236.  95% C.I.: 2* 0.0236

PACF – Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020)

> pacf(lr_p)

PACF – Example: U.S. Stock Returns

Note: With the exception of  the first partial correlation, partial 
correlations are small, though, again, some are significant.
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Example: US Monthly Stock Dividends (1871 – 2020, T=1,795)

pacf_d <- pacf(lr_d)
> pacf_d

Partial autocorrelations of  series ‘lr_d’, by lag

1 2 3 4 5 6 7 8  9    10     11 
0.462  0.385  0.160  0.150 -0.033  0.189 -0.054 -0.056  0.027 -0.082 -0.019 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.063 -0.035 0.067  0.043  0.010 -0.057 -0.046 -0.043 -0.008 -0.031 -0.039 

24 25 26  27  28     29   30  31     32 
-0.041  0.050 -0.036 -0.030  0.091 0.006 -0.017  0.044 -0.002 -0.042 

Higher partial correlations than for stock returns.  

PACF – Example: U.S. Stock Dividends

• Correlation approach.
Basic tools: sample ACF and sample PACF.

- ACF identifies order of  MA: Non-zero at lag 𝑞; zero for lags > 𝑞.
- PACF identifies order of  AR: Non-zero at lag 𝑝; zero for lags > 𝑝.
- All other cases, try ARMA(𝑝, 𝑞) with 𝑝 > 0 and 𝑞 > 0.

Summary: For 𝑝 > 0 & 𝑞 > 0. 

ARIMA Models: Identification – Correlations

AR(𝑝) MA(𝑞) ARMA(𝑝, 𝑞)

ACF Tails off 0 after lag 𝑞 Tails off

PACF 0 after lag 𝑝 Tails off Tails off

Note: Ideally, “Tails off ” is exponential decay. In practice, in these 
cases, we may see a lot of  non-zero values for the ACF and PACF.
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49

ARMA Models: Identification – AR(1)

50

ARMA Models: Identification – AR(2)
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51

ARMA Models: Identification – MA(1)

52

ARMA Models: Identification – MA(2)
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53

ARMA Models: Identification – ARMA(1,1)

54

ARMA Models: Identification – ARMA(1,1)
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55

ARMA Models: Identification – ARMA(1,1)

• Note: ARMA(1,1), MA(1), AR(2)?

Example: Monthly US Returns (1871 - 2020).

56

ARMA Models: Identification – ARMA(1,1)

• Note: Not clear: Maybe long a ARMA(𝑝, 𝑞) or needs differencing?

Example: Monthly Changes in US Dividends (1871 - 2020).
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57

ARMA Models: Identification – ARMA(1,1)

• Note: MA(1), AR(4)?

Example: Monthly Log Changes in Oil Prices (1973 - 2020).

58

ARMA Models: Identification – ARMA(1,1)

• Note: No clear ARMA structure.

Example: Monthly Log Changes in Gold (1973 - 2020).
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• It is difficult to identify an ARMA model using the ACF and PACF. 
It is common to rely on information criteria (IC).

• IC’s are equal to the estimated variance or the log-likelihood 
function plus a penalty factor, that depends on 𝑘. Many IC’s:

- Akaike Information Criterion (AIC)
AIC = -2 * (ln L – 𝑘) = -2 ln L + 2 * 𝑘
 if  normality AIC = T * ln(e’e/T) + 2* 𝑘 (+constants)

- Bayes-Schwarz Information Criterion (BIC or SBIC)
BIC = -2 * ln L – ln(T) * 𝑘
 if  normality AIC = T * ln(e’e/T) + ln(T) * 𝑘 (+constants)

- Hannan-Quinn (HQIC)
HQIC = -2*(ln L – 𝑘 [ln(ln(T))]
 if  normality AIC = T * ln(e’e/T) + 2 𝑘 [ln(ln(T))]  (+constants)

ARMA Model: Identification - IC

• There are modifications of  IC to get better finite sample behavior, a 
popular one is AIC corrected, AICc, statistic:

𝐴𝐼𝐶𝑐 𝑇 ln𝜎
2𝑘 𝑘 1
𝑇 𝑘 1

• AICc converges to AIC as T gets large. Using AICc is not a bad idea.

• For AR(𝑝) models, other AR-specific criteria are possible: Akaike’s
final prediction error (FPE), Akaike’s BIC, Parzen’s CAT.

• Hannan and Rissannen’s (1982) minic (=Minimum IC): Calculate the 
BIC for different 𝑝’s (estimated first) and different 𝑞’s. Select the best 
model –i.e., lowest BIC.

Note: Box, Jenkins, and Reinsel (1994) proposed using the AIC above.

ARIMA Model: Identification - IC
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Example: Monthly US Returns (1871 - 2020) Hannan and Rissannen
(1982)’s minic, based on AIC.

ARMA Model: Identification - IC

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 -6403.59 -6552.94 -6552.69 -6554.27 -6552.88 -6557.37

AR 1 -6545.22 -6552.23 -6551.86 -6552.42 -6552.64 -6561.48

AR 2 -6554.76 -6553.28 -6554.85 -6554.35 -6564.32 -6559.48

AR 3 -6553.94 -6552.53 -6554.44 -6552.33 -6550.36 -6558.52

AR 4 -6554.98 -6559.83 -6559.92 -6558.94 -6554.1 -6558.16

AR 5 -6558.81 -6558.65 -6557.45 -6555.78 -6558.66 -6556.06

• Note: Best Model is ARMA(2,4); other potential candidates: 
ARMA(1,5), ARMA(4,2), ARMA (5,0).

• The ACF is as a rough indicator of  whether a trend is present in a 
series. A slow decay in ACF is indicative of  highly correlated data, 
which suggests a true unit root process, or a trend stationary process.

• Formal tests can help to determine whether a system contains a 
trend and whether the trend is deterministic or stochastic (unit root).

• We will analyze two situations faced in ARMA models: 
(1) Deterministic trend  – Simple model: 𝑦 = 𝛼 + β 𝑡 + 𝜀
– Solution: Detrending –i.e., regress 𝑦 on a constant and a time trend, 
𝑡. Then, keep residuals for further modeling.

(2) Stochastic trend  – Simple model:  𝑦 = μ + 𝑦 + 𝜀 .
– Solution: Differencing –i.e., apply ∆ = (1 𝐿) operator to 𝑦 . Then, 
use ∆𝑦 for further modeling.

Non-Stationary Time Series Models
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Example: Plot of  US Monthly Prices and Dividends (1871 – 2020)

Non-Stationary Time Series Models

• Suppose we have the following model, with a determinist trend: 
𝑦 =  +  𝑡 + 𝜀 .  Δ𝑦 = 𝑦 – 𝑦

=  𝑡 –  (𝑡 – 1) + 𝜀 – 𝜀
=  + 𝜀 – 𝜀

 E[Δ𝑦 ] = 

• {𝑦 } will show only temporary departures from trend line  +  𝑡. 
This type of  model is called a trend stationary (TS) model.

• If  a series has a deterministic time trend, then we detrend 𝑦 . That 
is, we remove the influence of  𝑡 from 𝑦 : We simply regress 𝑦 on an 
intercept and a time trend (𝑡 = 1, 2, …, T); then, save the residuals:

𝑒 𝑦   𝑡 (the residuals are the detrended 𝑦 series)

• But, we do not necessarily get stationary series by detrending.

Non-Stationary Models: Deterministic Trend
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• Many economic series exhibit “exponential trend/growth”. They 
grow over time like an exponential function over time instead of  a 
linear function. In this cases, it is common to work with logs

ln(𝑦 ) = 𝛼 +  𝑡 + 𝜀 . ( 𝑦 = 𝑒  +   + )

 The average growth rate is: E[Δln(𝑦 )] = 

• We can have a more general model:
𝑦 𝛼 𝜙1𝑦  ⋯  𝜙𝑝𝑦 β 𝑡 β 𝑡 . . .  β 𝑡 𝜀 .

• Estimation of  AR(𝑝) with a trend component:
- OLS. 
- Frish-Waugh method (a 2-step method):

(1) Detrend 𝑦 : regress 𝑦 against a constant & a time trend, 𝑡. 
Then, get the residuals (=𝑦 without the influence of  𝑡).

(2) Use residuals to estimate the AR(𝑝) model.  

Non-Stationary Models: Deterministic Trend

Example: We detrend U.S. Stock Prices

T <- length(x_P) # length of  series
trend <- c(1:T) # create trend
det_P <- lm(x_P ~ trend) # regression to get detrended e
detrend_P <- det_P$residuals
plot(detrend_P, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time")
title("Detrended U.S. Stock Prices")

Non-Stationary Models: Deterministic Trend
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Example: We detrend U.S. Stock Prices adding a square trend

trend2 <- trend^2
det_P <- lm(x_P ~ trend + trend2) # regression to get detrended e
detrend_P <- det_P$residuals
plot(detrend_P, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time")
title("Detrended U.S. Stock Prices with linear and quadratic trends")

Non-Stationary Models: Deterministic Trend

Example: We detrend Log U.S. Stock Prices adding a squared trend
l_P <- log(x_P)
det_lP <- lm(l_P ~ trend) # regression to get detrended e
detrend_lP <- det_lP$residuals
plot(detrend_lP, type="l", col="blue", ylab ="Detrended Log U.S. Prices", xlab ="Time")
title("Detrended Log U.S. Stock Prices")

det_lP2 <- lm(l_P ~ trend + trend2) # regression to get detrended e
det_lP2 <- det_lP2$residuals
plot(det_lP2, type="l", col="blue", ylab ="Det Log U.S. Prices", xlab ="Time")
title("Detrended Log U.S. Stock Prices with linear and quadratic trends")

Non-Stationary Models: Deterministic Trend
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• The more modern approach is to consider trends in time series as a 
variable trend. 

• A variable trend exists when a trend changes in an unpredictable way. 
Therefore, it is considered stochastic.

• Recall the AR(1) model: 𝑦 = 𝜇 + 𝜙1 𝑦 + 𝜀

• As long as |𝜙1| < 1, everything is fine, we have a stationary AR(1) 
process: OLS is consistent, t-stats are asymptotically normal, etc.

• Now consider the special case where 𝜙1 
= 1:

𝑦 = 𝜇 + 𝑦 + 𝜀
Q: Where is the (stochastic) trend? No 𝑡 term.

Non-Stationary Models: Stochastic Trend

• Let us replace recursively the lag of  𝑦 on the right-hand side:
𝑦 = 𝜇 + 𝑦 + 𝜀

= 𝜇 + (𝜇 + 𝑦 + 𝜀 ) + 𝜀
...
= 𝑦 + 𝑡 𝜇 + ∑ 𝜀

• This process is called a “random walk with drift”: 𝑦 grows with 𝑡.

• Each 𝜀 shock represents a shift in the intercept. All values of  {𝜀 } 
have a 1 as coefficient  each shock never vanishes (permanent).

• We remove the trend by differencing 𝑦
 ∆𝑦 = (1 𝐿) 𝑦 = 𝜇 + 𝜀

Note: Applying the (1 𝐿) operator to a time series is called differencing

Non-Stationary Models: Stochastic Trend

Deterministic trend
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Example: We difference U.S. Stock Prices, using the diff R function:

diff_P <- diff(x_P)
> plot(diff_P,type="l", col="blue", ylab ="Differenced U.S. Stock Prices", xlab ="Time")
> title("Differenced U.S. Stock Prices")

Non-Stationary Models: Stochastic Trend

• 𝑦 is said to have a stochastic trend (ST), since each 𝜀 shock gives a 
permanent and random change in the conditional mean of  the series. 

• For these situations, we use Autoregressive Integrated Moving Average 
(ARIMA) models. 

• Q: Deterministic or Stochastic Trend?
They appear similar: Both lead to growth over time. The difference is 
how we think of  𝜀 . Should a shock today affect 𝑦 ?

– TS:   𝑦 = 𝜇 +  (𝑡 + 1) + 𝜀  𝜀 does not affect 𝑦 . 

– ST:   𝑦 = 𝜇 + 𝑦 + 𝜀 = 𝜇 + [𝜇 + 𝑦 + 𝜀 ] + 𝜀
= 2 ∗ 𝜇 + 𝑦 + 𝜀 + 𝜀  𝜀 affects 𝑦 . 
(In fact, the shock 𝜀 has a permanent impact.) 

Non-Stationary Models: Stochastic Trend
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• For 𝑝, 𝑑, 𝑞 ≥ 0, we say that a time series {𝑦 } is an ARIMA (𝑝, 𝑑, 𝑞)
process if  𝑤  = Δ  𝑦 = 1 𝐿  𝑦 is ARMA(𝑝, 𝑞). That is,

𝜙 𝐿 1 𝐿  𝑦 𝜃 𝐿  𝜀   

• Applying the (1 𝐿) operator to a time series is called differencing.

Notation: If 𝑦 is non-stationary, but Δd 𝑦 is stationary, then 𝑦 is 
integrated of  order 𝑑, or I(𝑑). A time series with unit root is I(1). A 
stationary time series is I(0). 

Examples:
Example 1: RW:   𝑦 =  𝑦 + 𝜀 . 
 𝑦 is non-stationary, but

𝑤  = (1 𝐿)  𝑦 = 𝜀  𝑤  ~ WN!

Now,  𝑦 ~ ARIMA(0, 1, 0). 

ARIMA(𝒑, 𝒅, 𝒒) Models

Example 2: AR(1) with time trend:  𝑦 = 𝜇 + δ 𝑡 + 𝜙1 𝑦 + 𝜀 . 
𝑦 is non-stationary, but  

𝑤 = (1 𝐿) 𝑦
= 𝜇 + δ 𝑡 + 𝜙1 𝑦 + 𝜀 – [𝜇 + δ (𝑡 - 1) + 𝜙1  𝑦 + 𝜀 ]. 
= δ + 𝜙1 

𝑤 + 𝜀 – 𝜀  𝑤 ~ ARIMA(1, 1).

Now,  𝑦 ~ ARIMA(1, 1, 1).

• We call both process first difference stationary.

Note: 
− Example 1: Differencing a series with a unit root in the AR part of  
the model reduces the AR order.

− Example 2: Differencing can introduce an extra MA structure. We 
introduced non-invertibility (θ =1). This happens when we difference 
a TS series. Detrending should be used in these cases. 

ARIMA(𝒑, 𝒅, 𝒒) Models


