Lecture 9-a Time Series: Identification of AR, MA \& ARMA Models

Brooks (4 $4^{\text {th }}$ edition): Chapter 6
© R. Susmel, 2023 (for private use, not to be posted/shared online).

Review: Times Series

- A time series y_{t} is a process observed in sequence over time, $t=1, \ldots, T \quad \Rightarrow Y_{t}=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right\}$.
- Main feature of time series: dependence.
- Popular models for $\mathrm{E}\left[y_{t} \mid I_{t-1}\right]$:
- AR process: $\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]=f\left(y_{t-1}, y_{t-2}, y_{t-3}, \ldots.\right\}$

Example: $\operatorname{AR}(1)$ process, $y_{t}=\alpha+\beta y_{t-1}+\varepsilon_{t}$.

- MA process: $\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]=f\left(\varepsilon_{t-1}, \varepsilon_{t-2}, \varepsilon_{t-3}, \ldots.\right)$

Example: MA(1) process, $y_{t}=\mu+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}$

- ARMA process: $\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]=f\left(y_{t-1}, y_{t-2}, \ldots ., \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots.\right)$

Review: Times Series - Forecasting

- We want to select an appropriate time series model to forecast y_{t}. The linear models we consider: $\operatorname{AR}(p), \operatorname{MA}(q)$ or $\operatorname{ARMA}(p, q)$.
- Steps for forecasting:
(1) Identify the appropriate model. That is, determine AR, MA or ARMA and the order of the model -i.e., p, q.

Tools: ACF, PACF, Information Criteria
(2) Estimate the model.

OLS, Method of Moments (complicated).
(3) Test the model.

Make sure errors are WN.
(4) Forecast.

Review: Moving Average Process

- A linear MA (q) model:

$$
y_{t}=\mu+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-q}+\varepsilon_{t}=\mu+\theta(L) \varepsilon_{t},
$$

where

$$
\theta(L)=1+\theta_{1} \mathrm{~L}+\theta_{2} \mathrm{~L}^{2}+\theta_{3} \mathrm{~L}^{3}+\ldots+\theta_{\mathrm{q}} \mathrm{~L}^{q}
$$

- Check stationarity (Constant moments)
- Mean

$$
\mathrm{E}\left[y_{t}\right]=\mathrm{E}\left[\varepsilon_{t}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{t-1}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{t-2}\right]+\ldots+\theta_{\mathrm{q}} \mathrm{E}\left[\varepsilon_{t-q}\right]=0
$$

- Variance

$$
\begin{aligned}
\operatorname{Var}\left[y_{t}\right] & =\operatorname{Var}\left[\varepsilon_{t}\right]+\theta_{1}^{2} \operatorname{Var}\left[\varepsilon_{t-1}\right]+\theta_{2}^{2} \operatorname{Var}\left[\varepsilon_{t-2}\right]+\ldots+\theta_{q}^{2} \operatorname{Var}\left[\varepsilon_{t-q}\right] \\
& =\left(1+\theta_{1}^{2}+\theta_{2}^{2}+\ldots+\theta_{q}^{2}\right) \sigma^{2} .
\end{aligned}
$$

- Covariance

$$
\begin{array}{cc}
\gamma(q)=\sigma^{2} \sum_{j=q}^{q} \theta_{j} \theta_{j-q} & \text { (where } \left.\theta_{0}=1\right) \\
& \Rightarrow \mathrm{MA}(q) \text { is always stationary. }
\end{array}
$$

Review: Moving Average Process - Stationarity

$$
\gamma(q)=\sigma^{2} \sum_{j=q}^{q} \theta_{j} \theta_{j-q} \quad \quad\left(\text { where } \theta_{0}=1\right)
$$

In general, for the k autocovariance:

$$
\begin{array}{ll}
\gamma(k)=\sigma^{2} \sum_{j=k}^{q} \theta_{j} \theta_{j-k} & \text { for }|k| \leq q \\
\gamma(k)=0 & \text { for }|k|>q
\end{array}
$$

Remark: After lag q, the autocovariances (and autocorrelation functions) are 0 .

- It can be shown that for ε_{t} with the same distribution (say, normal) the autocovariances are non-unique. In this case, we select the MA(q) model that's invertible.

Technical note: An invertible $\mathrm{MA}(q)$ is typically required to have roots of the lag polynomial equation $\theta(z)=0$ greater than one in absolute value ("outside the unit circle"). In the MA(1) case, we require $\left|\theta_{1}\right|<1$.

Review: MA(1) Process - ACF

Example: MA(1) process:

- $\gamma(k)$
$k=0 \quad \gamma(0)=\sigma^{2} \sum_{j=0}^{1} \theta_{j} \theta_{j-0}=\sigma^{2}\left(1+\theta_{1}^{2}\right)$
$k=1 \quad \gamma(1)=\sigma^{2} \sum_{j=1}^{1} \theta_{j} \theta_{j-1}=\sigma^{2}\left(\theta_{1}\right)$
$k>1 \quad \gamma(k)=0$
\Rightarrow After lag $q=1$, the autocovariances are 0 .
To get the ACF, we divide $\gamma(k)$ by $\gamma(0)$. Then:

$$
\begin{aligned}
& \rho(0)=\gamma(0) / \gamma(0)=1 \\
& \rho(1)=\gamma(1) / \gamma(0)=\theta_{1} \sigma^{2} / \sigma^{2}\left(1+\theta_{1}^{2}\right)=\theta_{1} /\left(1+\theta_{1}^{2}\right) \\
& \vdots \\
& \rho(k)=\gamma(k) / \gamma(0)=0 \quad \quad(\text { for } k>1)
\end{aligned}
$$

Review: MA(1) Process - ACF

Example (continuation):

$$
\rho(1)=\theta_{1} /\left(1+\theta_{1}^{2}\right)
$$

Note that $|\rho(1)| \leq 0.5$.
When $\theta_{1}=0.5 \quad \Rightarrow \rho(1)=0.4$.
$\theta_{1}=-0.9 \quad \Rightarrow \rho(1)=-0.497238$.
$\theta_{1}=2 \quad \Rightarrow \rho(1)=0.4 . \quad$ (same $\rho(1)$ for $\left.\theta_{1} \& 1 / \theta_{1}\right)$
If we use the ACF to select a model, we select the invertible process with $\theta_{1}=0.5$.

Review: MA Process - Estimation

- MA processes are more complicated to estimate since we do not observe the errors, ε_{t} 's: Direct estimation is impossible.
- Two indirect ways:
(1) Using method of moments (MM): We match observed moments and solved for the parameters. For example, for an MA(1):

$$
\begin{aligned}
& \rho(1)=\theta_{1} /\left(1+\theta_{1}^{2}\right) \\
& r_{1}=\frac{\hat{\theta}}{\left(1+\hat{\theta}^{2}\right)} \quad \Rightarrow \quad \hat{\theta}=\frac{1 \pm \sqrt{1-4 r_{1}^{2}}}{2 r_{1}}
\end{aligned}
$$

- A nonlinear solution and difficult to solve.
(2) Using $\operatorname{AR}(\infty)$ representation: For $\operatorname{MA}(1) \&|\theta|<1$, find $a \in(-1 ; 1)$

$$
\varepsilon_{t}(a)=y_{t}+a y_{t-1}+a^{2} y_{t-2}+a^{3} y_{t-3}+\ldots .
$$

and look (numerically) for the least-square estimator

$$
\hat{\boldsymbol{\theta}}=\arg \min _{\theta}\left\{\mathrm{S}(\boldsymbol{y} ; \boldsymbol{\theta})=\sum_{i=1}^{T} \varepsilon_{i}(a)^{2}\right\} \quad\left(a^{i}=\theta_{1}{ }^{i} .\right)
$$

Review: Autoregressive (AR) Process

- $\operatorname{An} \operatorname{AR}(p)$ process is given by:

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{\mathrm{p}} y_{t-p}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N
$$

Using the lag operator we write the $\operatorname{AR}(p)$ process: $\quad \phi(L) y_{t}=\varepsilon_{t}$
with

$$
\phi(L)=1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{\mathrm{p}} L^{\mathrm{p}}
$$

- Stability of $\operatorname{AR}(p)$:

We need the roots of $\phi(\curvearrowright)=0$ to be outside the unit circle.
For the $\operatorname{AR}(1)$ process

$$
\phi(z)=1-\phi_{1} z=0 \quad \Rightarrow|z|=\frac{1}{\left|\phi_{1}\right|}>1
$$

That is, the $\operatorname{AR}(1)$ process is stable if the root of $\phi(\approx)$ is greater than one ("the roots lie outside the unit circle").

Review: AR(1) Process - Stationarity \& ACF

- An AR(1) model:

$$
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
$$

Under the stationarity condition $\left|\phi_{1}\right|<1$, we derived the moments:

$$
\begin{array}{ll}
\mathrm{E}\left[y_{t}\right]=\mu=0 & \text { (assuming } \left.\phi_{1} \neq 1\right) \\
\operatorname{Var}\left[y_{t}\right]=\gamma(0)=\sigma^{2} /\left(1-\phi_{1}^{2}\right) & \text { (assuming } \left.\left|\phi_{1}\right|<1\right) \\
\gamma(k)=\phi_{1}^{k} \gamma(0) &
\end{array}
$$

- ACF: $\quad \rho(k)=\frac{\gamma(k)}{\gamma(0)}=\phi_{1}^{k} \quad$ (ACF decays with k.)

Patterns:

- when $0<\phi_{1}<1 \Rightarrow$ All autocorrelations are positive.
- when $-1<\phi_{1}<0 \Rightarrow$ The sign of $\rho(k)$ shows an alternating sign pattern beginning a negative value.

Review: AR Process - Stationarity \& Ergodicity

Theorem: The linear $\operatorname{AR}(p)$ process is strictly stationary and ergodic if and only if the roots of $\phi(z)$ are $\left|z_{j}\right|>1$ for all j, where $\left|z_{j}\right|$ is the modulus of the complex number r_{j}.

Note: If one of the z_{j} 's equals $1, \phi(\mathrm{~L})\left(\& y_{t}\right)$ has a unit root-i.e., $\phi(1)=0$. This is a special case of non-stationarity.

- Inverting $\phi(\mathrm{L})$ produces a process with an infinite sum of ε_{t-j} 's. If this sum does not explode, we say the process is stable.
- $\operatorname{AR}(p)$ model: $\quad \phi(L) y_{t}=\mu+\varepsilon_{t}$,
where

$$
\phi(L)=1-\phi_{1} L^{1}-L^{2} \phi_{2}-\ldots-\phi_{p} L^{p}
$$

Then, $\quad y_{t}=\phi(L)^{-1}\left(\mu+\varepsilon_{t}\right), \quad \Rightarrow$ an MA (∞) process!

Review: AR Process - Estimation \& Properties

- Back to the general $\operatorname{AR}(p)$. Define

$$
\left.\begin{array}{l}
\boldsymbol{x}_{t}=\left(\begin{array}{llll}
1 & y_{t-1} & y_{t-2} & \ldots
\end{array} y_{t-p}\right.
\end{array}\right)
$$

Then the model can be written as

$$
y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t}
$$

- The OLS estimator is $\quad \mathbf{b}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}$
- Properties:
- Using the Ergodic Theorem, OLS estimator is consistent.
- Using the MDS CLT, OLS estimator is asymptotically normal. \Rightarrow asymptotic inference is the same.
- The asymptotic covariance matrix is estimated just as in the crosssection case: The sandwich estimator.

ARMA Process

- A combination of $\operatorname{AR}(p)$ and $\mathrm{MA}(q)$ processes produces an $\operatorname{ARMA}(p, q)$ process:

$$
\begin{aligned}
y_{t}= & \mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p}+\varepsilon_{t}-\theta_{1} \varepsilon_{t-1}-\theta_{2} \varepsilon_{t-2}-\ldots-\theta_{q} \varepsilon_{t-q} \\
=\mu & +\sum_{i=1}^{p} \phi_{i} y_{t-i}-\sum_{i=1}^{q} \theta_{i} L^{i} \varepsilon_{t}+\varepsilon_{t} \\
& \Rightarrow \phi(L) y_{t}=\mu+\theta(L) \varepsilon_{t}
\end{aligned}
$$

- Usually, we insist that $\phi(\mathrm{L}) \neq 0, \theta(\mathrm{~L}) \neq 0$ \& that the polynomials $\phi(\mathrm{L}), \theta(\mathrm{L})$ have no common factors. This implies it is not a lower order ARMA model.

ARMA(1,1) - Stationarity \& ACF

- For an $\operatorname{ARMA}(1,1)$ we have:.

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}, \quad \quad \varepsilon_{t} \sim W N
$$

- Moments: $(\mu=0)$

$$
\begin{array}{lc}
\mathrm{E}\left[y_{t}\right]=\mu /\left(1-\phi_{1}\right)=0 & \left.\quad \text { assuming } \phi_{1} \neq 1\right) \\
\operatorname{Var}\left[y_{t}\right]=\sigma^{2}\left(1+\theta_{1}^{2}\right) /\left(1-\phi_{1}{ }^{2}\right)\left(\text { assuming }\left|\phi_{1}\right|<1\right)
\end{array}
$$

- Autocovariance function $(\mu=0)$

$$
\begin{aligned}
\gamma(k) & =\operatorname{Cov}\left[y_{t}, y_{t-k}\right] \\
& =E\left[\left\{\phi_{1} y_{t-1}+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right\} y_{t-k}\right] \\
& =\phi_{1} E\left[y_{t-1} y_{t-k}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right]+E\left[\varepsilon_{t} y_{t-k}\right] \\
& =\phi_{1} \gamma(k-1)+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right]+E\left[\varepsilon_{t} y_{t-k}\right]
\end{aligned}
$$

We have a recursive formula.

ARMA(1,1) - Stationarity \& ACF

- $\operatorname{ARMA}(1,1): \quad y_{t}=\phi_{1} y_{t-1}+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}$,

Recursive formula:
$\gamma(k)=\phi_{1} \gamma(k-1)+E\left[\varepsilon_{t} y_{t-k}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right]$
$\gamma(0)=\phi_{1} \gamma(1)+\sigma^{2}+\theta_{1}\left(\phi_{1} \sigma^{2}+\theta_{1} \sigma^{2}\right)$
$\gamma(1)=\phi_{1} \gamma(0)+\theta_{1} \sigma^{2}$
Two equations for $\gamma(0)$ and $\gamma(1)$. Solving for $\gamma(0)$:
$\gamma(0)=\sigma^{2} \frac{1+\theta_{1}^{2}+2 \phi_{1} \theta_{1}}{1-\phi_{1}{ }^{2}}$
$\gamma(1)=\phi_{1} \sigma^{2} \frac{1+\theta_{1}^{2}+2 \phi_{1} \theta_{1}}{1-\phi_{1}^{2}}+\theta_{1} \sigma^{2}=\sigma^{2} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1-\phi_{1}^{2}}$

ARMA(1,1) - Stationarity \& ACF

Continuing the process:

$$
\begin{aligned}
\gamma(2) & =E\left[y_{t} y_{t-2}\right] \\
& =E\left[\left\{\phi_{1} y_{t-1}-\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right\} y_{t-2}\right] \\
& =\phi_{1} E\left[y_{t-1} y_{t-2}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-2}\right]+E\left[\varepsilon_{t} y_{t-2}\right] \\
& =\phi_{1} \gamma(1)
\end{aligned}
$$

- In general:

$$
\begin{aligned}
\gamma(k)= & \phi_{1} \gamma(k-1)=\phi_{1}^{k-1} \gamma(1), \quad k>1 \\
& \Rightarrow \text { If }\left|\phi_{1}\right|<1, \text { exponential decay and stationary. }
\end{aligned}
$$

Note: If stationary, $\operatorname{ARMA}(1,1)$ and $\operatorname{AR}(1)$ show exponential decay. Difficult to distinguish one from the other by looking at the autocovariance functions.

ARMA Process - Representation

- AR Representation: $\Pi(L)\left(y_{t}-\mu\right)=\varepsilon_{t} \Rightarrow \Pi(L)=\frac{\phi_{p}(L)}{\theta_{q}(L)}$
- Pure MA Representation: $\quad\left(y_{t}-\mu\right)=\Psi(L) \varepsilon_{t} \Rightarrow \Psi(L)=\frac{\theta_{q}(L)}{\phi_{p}(L)}$
- Special ARMA (p, q) cases: $\quad-p=0: \operatorname{MA}(q)$
$-q=0: \operatorname{AR}(p)$.

ARMA: Stationarity, Causality and Invertibility

Theorem: If $\phi(\mathrm{L})$ and $\theta(L)$ have no common factors, a (unique) stationary solution to $\phi(L) y_{t}=\theta(L) \varepsilon_{t}$ exists if and only if

$$
|z| \leq 1 \Rightarrow \phi(z)=1-\phi_{1} z-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p} \neq 0 .
$$

This $\operatorname{ARMA}(p, q)$ model is causal-i.e., AR part can be inverted) if and only if

$$
|z| \leq 1 \Rightarrow \phi(z)=1-\phi_{1} z-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p} \neq 0 .
$$

This $\operatorname{ARMA}(p, q)$ model is invertible if and only if

$$
|z| \leq 1 \Rightarrow \theta(z)=1+\theta_{1} z-\theta_{2} z^{2}+\ldots+\theta_{p} z^{p} \neq 0 .
$$

Note: Real data cannot be exactly modeled using a finite number of parameters. We choose p, q to create a good approximated model.

ARMA Process

- We defined the $\operatorname{ARMA}(p, q)$ model:

$$
\phi(L)\left(y_{t}-\mu\right)=\theta(L) \varepsilon_{t}
$$

The mean does not affect the order of the ARMA. Then, if $\mu \neq 0$, we demean the data: $x_{t}=y_{t}-\mu$.

Then, $\quad \phi(L) x_{t}=\theta(L) \varepsilon_{t} \quad \Rightarrow x_{t}$ is a demeaned ARMA process.

- For the rest of the lecture, we will study:
- Identification of p, q.
- Estimation of ARMA (p, q)

Autocovariance Function (Again)

- For an $\operatorname{AR}(p)$ process, WLOG with $\mu=0$ (or demeaned y_{t}), we get a recursive formula to compute $\gamma(k=t-j)$:

$$
\gamma(t-j)=\phi_{1} \gamma(j-1)+\phi_{2} \gamma(j-2)+\ldots+\phi_{p} \gamma(j-p)
$$

- The autocovariances, $\gamma(t-j)$, determine a system of equations:

$$
\begin{aligned}
& \gamma(0)=E\left[y_{t}, y_{t}\right]=\phi_{1} \gamma(1)+\phi_{2} \gamma(2)+\phi_{3} \gamma(3)+\ldots+\phi_{p} \gamma(p)+\sigma^{2} \\
& \gamma(1)=E\left[y_{t}, y_{t-1}\right]=\phi_{1} \gamma(0)+\phi_{2} \gamma(1)+\phi_{3} \gamma(2)+\ldots+\phi_{p} \gamma(p-1) \\
& \gamma(2)=E\left[y_{t}, y_{t-2}\right]=\phi_{1} \gamma(1)+\phi_{2} \gamma(0)+\phi_{3} \gamma(1)+\ldots+\phi_{p} \gamma(p-2)
\end{aligned}
$$

Using linear algebra, we can write the system as:

$$
\Gamma \phi=\gamma
$$

where $\boldsymbol{\Gamma}$ is a $p \times p$ matrix of autocovariances, with $\gamma(0)$ on the diagonal; ϕ is the $p \mathrm{x} 1$ vector of $\operatorname{AR}(p)$ coefficients; and γ is the $p \mathrm{x} 1$ vector of $\gamma(k)$ autocovariances.

Autocorrelation Function (ACF)

- Now, we define the autocorrelation function (ACF):

$$
\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\frac{\text { covariance at lag } k}{\text { variance }}
$$

The ACF lies between -1 and +1 , with $\rho(0)=1$.

- Dividing the autocovariance system by $\gamma(0)$, we get:

$$
\left[\begin{array}{cccc}
\rho(0) & \rho(1) & \cdots & \rho(p-1) \\
\rho(1) & \rho(0) & \cdots & \rho(p-2) \\
\vdots & \vdots & \cdots & \vdots \\
\rho(p-1) & \rho(p-2) & \cdots & \rho(0)
\end{array}\right]\left[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p}
\end{array}\right]=\left[\begin{array}{c}
\rho(1) \\
\rho(2) \\
\vdots \\
\rho(p)
\end{array}\right]
$$

Or using linear algebra: $\quad \mathbf{P} \boldsymbol{\phi}=\boldsymbol{\rho}$

- These are "Yule-Walker" equations, which can be solved numerically.

ACF - Estimation \& Correlogram

- Estimation:

Easy: Use sample moments to estimate $\gamma(k)$ and plug in formula:

$$
r_{k}=\hat{\rho}_{k}=\frac{\sum\left(Y_{t}-\bar{Y}\right)\left(Y_{t+k}-\bar{Y}\right)}{\sum\left(Y_{t}-\bar{Y}\right)^{2}}
$$

Then, we plug the $\hat{\rho}_{k}$ in the Yule-Walker equations and solve for $\boldsymbol{\phi}$:

$$
\widehat{\mathbf{P}} \boldsymbol{\phi}=\widehat{\boldsymbol{\rho}}
$$

- The sample correlogram is the plot of the ACF against k. As the ACF lies between -1 and +1 , the correlogram also lies between these values.

ACF - Distribution

- Distribution:

For a linear, stationary process, with large T, the distribution of the sample ACF, $r_{k}=\hat{\rho}_{k}$ is approximately normal with:

$$
\mathbf{r} \xrightarrow{d} \mathrm{~N}(\boldsymbol{\rho}, \mathbf{V} / T), \quad \mathbf{V} \text { is the covariance matrix. }
$$

Under $\mathrm{H}_{0}: \rho_{k}=0$ for all $k>1$.

$$
\mathbf{r} \xrightarrow{d} \mathrm{~N}(\mathbf{0}, \mathbf{I} / T) \quad \Rightarrow \operatorname{Var}[\mathbf{r}(k)]=1 / T .
$$

- Under H_{0}, the $\mathrm{SE}[\mathrm{r}]=1 / \sqrt{T} \quad \Rightarrow 95 \%$ C.I.: $0 \pm 1.96 * 1 / \sqrt{T}$

Then, for a white noise sequence, approximately 95% of the sample ACFs should be within the above C.I. limits.

ACF - AR(1)

Example: Sample ACF for an AR(1) process:
Under stationarity:

$$
\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\phi_{1}^{k} \quad k=0,1,2, \ldots
$$

If $\left|\phi_{1}\right|<1$, the ACF will show exponential decay.

- Suppose $\phi_{1}=0.4$. Then,

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=0.4 \\
& \rho(2)=0.4^{2}=0.16 \\
& \rho(3)=0.4^{3}=0.064 \\
& \rho(4)=0.4^{4}=0.0256 \\
& \vdots \\
& \rho(k)=0.4^{k}
\end{aligned}
$$

ACF - MA(q)

Example: Sample ACF for an MA (q) process:

$$
\begin{array}{rlr}
y_{t} & =\mu+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{q} \varepsilon_{t-q} \\
\rho(k) & =\frac{\sum_{j=k}^{q} \theta_{j} \theta_{j-k}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\cdots+\theta_{q}^{2}\right)} & k \leq q \\
& =0 & \text { otherwise. }
\end{array}
$$

Suppose we have an MA(3). Then, for different k 's:

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{\theta_{1}+\theta_{2} \theta_{1}+\theta_{3} \theta_{2}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)} \\
& \rho(2)=\frac{\theta_{2}+\theta_{3} \theta_{1}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)} \\
& \rho(3)=\frac{\theta_{3}{ }^{2}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)} \\
& \rho(k)=0 \quad \text { for }|k|>3 .
\end{aligned}
$$

$\mathrm{ACF}-\mathrm{MA}(\mathrm{q}=3)$

Example (continuation): $\quad y_{t}=\mu+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\theta_{3} \varepsilon_{t-3}$
Suppose $\theta_{1}=0.5 ; \theta_{2}=0.4 ; \theta_{3}=0.2$. Then,

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{\theta_{1}+\theta_{2} \theta_{1}+\theta_{3} \theta_{2}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)}=\frac{0.5+0.4 * 0.5+0.1 * 0.4}{1+0.5^{2}+0.4^{2}+0.1^{2}}=0.5211 \\
& \rho(2)=\frac{\theta_{2}+\theta_{3} \theta_{1}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)}=\frac{0.4+0.1 * 0.5}{1+0.5^{2}+0.4^{2}+0.1^{2}}=0.3169 \\
& \rho(3)=\frac{0.1}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)}=\frac{0.1}{1+0.5^{2}+0.4^{2}+0.1^{2}}=0.0704 \\
& \rho(k)=\mathbf{0} \quad \text { for }|k|>3 .
\end{aligned}
$$

ACF - ARMA(1, 1)

Example: Sample ACF for an $\operatorname{ARMA}(1,1)$ process:

$$
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}
$$

From the autocovariances, we get
$\gamma(0)=\sigma^{2} \frac{1+\theta_{1}{ }^{2}+2 \phi_{1} \theta_{1}}{1-\phi_{1}{ }^{2}}$
$\gamma(1)=\sigma^{2} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1-\phi_{1}{ }^{2}}$
$\gamma(k)=\phi_{1} \gamma(k-1)=\phi_{1}{ }^{k-1} \sigma^{2} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1-\phi_{1}{ }^{2}}$
Then,

$$
\rho(k)=\phi_{1}{ }^{k-1} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1+\theta_{1}^{2}+2 \phi_{1} \theta_{1}}
$$

\Rightarrow If $\left|\phi_{1}\right|<1$, exponential decay. Similar pattern to $\operatorname{AR}(1)$.

$\operatorname{ACF}-\operatorname{ARMA}(1,1)$

Example (continuation): Sample ACF for an $\operatorname{ARMA}(1,1)$ process:

$$
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}
$$

The ACF for an ARMA(1,1):

$$
\rho(k)=\phi_{1}^{k-1} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1+\theta_{1}^{2}+2 \phi_{1} \theta_{1}}
$$

Suppose $\phi_{1}=0.4, \theta_{1}=0.5$. Then,

$$
\vdots
$$

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * .5}=0.6545 \\
& \rho(2)=0.4 * \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}=0.2618 \\
& \rho(3)=0.4^{2} * \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}=0.0233 \\
& \rho(k)=0.4^{k-1} * \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}
\end{aligned}
$$

ACF - Example: U.S. Stock Returns

Example: US Monthly Returns (1871-2020, $T=1,795$)
Sh_da <- read.csv("C://Financial Econometrics/Shiller_2020data.csv", head=TRUE, sep=",")
x_P <-Sh_da\$P
x_D <-Sh_da\$D
$\mathrm{T}<-$ length $\left(\mathrm{x} _\mathrm{P}\right)$
$\operatorname{lr} _\mathrm{p}<-\log \left(\mathrm{x} _\mathrm{P}[-1] / \mathrm{x} _\mathrm{P}[-\mathrm{T}]\right)$
$\operatorname{lr} _\mathrm{d}<-\log \left(\mathrm{x} _\mathrm{D}[-1] / \mathrm{x} _\mathrm{D}[-\mathrm{T}]\right)$
acf_p <- acf(lr_p) \# acf: R function that estimates the ACF
$>$ acf_p
Autocorrelations of series 'lr_p', by lag

0	1	2	3	4	5	6	7	8	9	10	11
1.000	0.279	0.004	-0.043	0.017	0.074	0.039	0.039	0.044	0.035	0.034	0.022
12	13	14	15	16	17	18	19	20	21	22	23
-0.010	-0.059	-0.058	-0.056	0.009	0.033	0.047	-0.040	-0.087	-0.090	-0.029	0.005
24	25	26	27	28	29	30	31	32			
0.003	-0.013	-0.058	-0.018	-0.005	0.026	0.011	0.000	0.020			

$\mathrm{SE}\left(\mathrm{r}_{k}\right)=1 / \operatorname{sqrt}(T)=1 / \operatorname{sqrt}(1,795)=.0236 . \Rightarrow 95 \%$ C.I.: $\pm 2^{*} 0.0236$

ACF - Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns (1871-2020)

Note: With the exception of first correlation, correlations are small. However, many are significant, not strange result when T is large.

ACF - Example: U.S. Stock Dividends

Example: US Monthly Changes in Dividends (1871-2020, $T=1,795$)
acf_d <- acf(lr_d)
$>$ acf_d
Autocorrelations of series 'lr_d', by lag

0	1	2	3	4	5	6	7	8	9	10	11
1.000	0.462	0.516	0.432	0.444	0.326	0.442	0.288	0.283	0.265	0.202	0.168
12	13	14	15	16	17	18	19	20	21	22	23
0.142	0.100	0.122	0.123	0.085	0.045	0.026	-0.013	0.001	-0.029	-0.049	-0.077
24	25	26	27	28	29	30	31	32			
-0.038	-0.100	-0.095	-0.055	-0.081	-0.092	-0.034	-0.063	-0.089			

High correlations and significant even after 32 months!

ACF - Example: U.S. Stock Dividends

Example (continuation): Correlogram for US Monthly Changes in Dividends (1871-2020)

Note: Correlations are positive for almost 1.5 years, then become negative.

ACF - Joint Significance Tests

Recall we compute the Ljung-Box (LB) statistic as:

$$
L B=T *(T+2) \sum_{k=1}^{m}\left(\frac{\widehat{\rho}_{k}^{2}}{(T-k)}\right)
$$

The LB test can be used to determine if the first m sample ACFs are jointly equal to zero.

Under $\mathrm{H}_{0}: \rho_{1}=\rho_{2}=\ldots=\rho_{\mathrm{m}}=0, \quad L B \xrightarrow{d} \chi_{m}^{2}$

ACF - Joint Significance Tests

Example: LB test with 20 lags for US Monthly Returns and Changes in Dividends (1871-2020)
> Box.test(lr_p, lag=20, type= "Ljung-Box")
Box-Ljung test
data: lr_p
X -squared $=208.02, \mathrm{df}=20, \mathrm{p}$-value $<2.2 \mathrm{e}-16 \quad \Rightarrow$ Reject H_{0} at 5% level. Joint significant first 20 correlations.
> Box.test(lir_d, lag=20, type= "Ljung-Box")
Box-Ljung test
data: lr_d
X -squared $=2762.7, \mathrm{df}=20, \mathrm{p}$-value $<2.2 \mathrm{e}-16 \quad \Rightarrow$ Reject H_{0} at 5% level. Joint significant first 20 correlations.

Partial ACF (PACF)

- The ACF gives us a lot of information about the order of the dependence when the series we analyze follows a MA process: The ACF is zero after q lags for an $\mathrm{MA}(q)$ process.
- If the series we analyze, however, follows an ARMA or AR, the ACF alone tells us little about the orders of dependence: We only observe an exponential decay.
- We introduce a new function that behaves like the ACF of MA models, but for AR models, namely, the partial autocorrelation function (PACF).
- The PACF is similar to the ACF. It measures correlation between observations that are k time periods apart, after controlling for correlations at intermediate lags.

Partial ACF

Intuition: Suppose we have an $\operatorname{AR}(1)$:

$$
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}
$$

Then,

$$
\gamma(2)=\phi_{1}{ }^{2} \gamma(0)
$$

The correlation between y_{t} and y_{t-2} is not zero, as it would be for an MA(1), because y_{t} is dependent on y_{t-2} through y_{t-1}.

Suppose we break this chain of dependence by removing ("partialing out") the effect y_{t-1}. Then, we consider the correlation between $\left[y_{t}-\right.$ $\left.\phi_{1} y_{t-1}\right] \&\left[y_{t-2}-\phi_{1} y_{t-1}\right]$-i.e, the correlation between $y_{t} \& y_{t-2}$ with the linear dependence of each on y_{t-1} removed:

$$
\gamma(2)=\operatorname{Cov}\left(y_{t}-\phi_{1} y_{t-1}, y_{t-2}-\phi_{1} y_{t-1}\right)=\operatorname{Cov}\left(\varepsilon_{t}, y_{t-2}-\phi_{1} y_{t-1}\right)=0
$$

Similarly,
$\gamma(k)=\operatorname{Cov}\left(\varepsilon_{t}, y_{t-k}-\phi_{1} y_{t-1}\right)=0$ for all $k>1$.

Partial ACF

Definition: The PACF of a stationary time series $\left\{y_{t}\right\}$ is
$\phi_{11}=\operatorname{Corr}\left(y_{t}, y_{t-1}\right)=\rho(1)$
$\phi_{h h}=\operatorname{Corr}\left(y_{t}-\mathrm{E}\left[y_{t} \mid I_{t-1}\right], y_{t-h}-\mathrm{E}\left[y_{t-h} \mid I_{t-1}\right]\right) \quad$ for $h=2,3, \ldots$.
This removes the linear effects of y_{t-2}, \ldots, y_{t-h}.

- The PACF $\phi_{h h}$ is also the last coefficient in the best linear prediction of y_{t} given $y_{t-1}, y_{t-2}, \ldots, y_{t-h} . \quad(\Rightarrow$ OLS! $)$
- Estimation by Yule-Walker equation, using sample estimates:

$$
\widehat{\boldsymbol{\phi}}_{h}=[\widehat{\boldsymbol{R}}]^{-1} \widehat{\boldsymbol{\gamma}}(k) \quad \Rightarrow \text { a recursive system },
$$

where $\boldsymbol{\phi}_{h}=\left(\phi_{h 1}, \phi_{h 2}, \ldots, \phi_{h h}\right)$ and \boldsymbol{R} is the $\left(h_{\mathrm{x}} h\right)$ correlation matrix.

- OLS is used. Also, a recursive algorithm by Durbin-Levinson.

Partial ACF - AR(p)

Example: $\operatorname{AR}(p)$ process:

$$
\begin{aligned}
& y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p}+\varepsilon_{t} \\
& E\left[y_{t} \mid I_{t-1}\right]=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-h-1} \\
& E\left[y_{t-h} \mid I_{t-1}\right]=\mu+\phi_{1} y_{t-h-1}+\phi_{2} y_{t-h-2}+\ldots+\phi_{p} y_{t-1}
\end{aligned}
$$

Then, $\quad \phi_{h h}=\phi_{h} \quad$ if $1 \leq h \leq p$
$=0 \quad$ otherwise
\Rightarrow After the $p^{\text {th }} P A C F$, all remaining PACF are 0 for $\operatorname{AR}(p)$ processes.

- The plot of the PACF is called the partial correlogram.

Partial ACF - AR(p=2)

Example: We simulate an $\mathrm{AR}(2)$ process:

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}
$$

sim_ar22 <- arima.sim(list(order=c(1,0,0), ar=c(0.5, 0.3)), $n=200) \quad$ \#simulate AR(2) series plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3)))) pacf_ar22 <- pacf(sim_ar22)

Print PACF
> pacf_ar2

1	2	3	4	5	6	7	8	9	10	11
0.558	0.286	0.038	0.103	-0.010	0.009	0.111	0.060	-0.021	-0.076	0.016
12	13	14	15	16	17	18	19	20	21	22
-0.086	-0.139	0.100	0.061	-0.156	0.078	-0.103	0.043	-0.075	0.104	0.024
	0.061									
SE $\left(\mathrm{r}_{k}\right) \approx 1 / \operatorname{sqrt}(200)=.0707$.		$\Rightarrow 95 \%$	C.I.: $\pm 2^{*}$	0.0707						

Partial ACF - AR(p=2)

Example: We simulate an $\mathrm{AR}(2)$ process:

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}
$$

sim_ar22 $<$ - arima. $\operatorname{sim}(\operatorname{list}(\operatorname{order}=c(1,0,0), \operatorname{ar}=c(0.5,0.3)), n=200) \quad$ \#simulate $\operatorname{AR}(2)$ series plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3))))
pacf_ar22 <- pacf(sim_ar22)
Print PACF
> pacf_ar2

1	2	3	4	5	6	7	8	9	10	11	
0.558	0.286	0.038	0.103	-0.010	0.009	0.111	0.060	-0.021	-0.076	0.016	
12	13	14	15	16	17	18	19	20	21	22	23
-0.086	-0.139	0.100	0.061	-0.156	0.078	-0.103	0.043	-0.075	0.104	0.024	0.061

$\mathrm{SE}\left(\mathrm{r}_{k}\right) \approx 1 / \operatorname{sqrt}(200)=.0707 . \quad \Rightarrow 95 \%$ C.I.: $\pm 2^{*} 0.0707$

Partial ACF - AR(p=2)

Example (continuation): Plot of simulated series and PACF
$>$ plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3))))
$>$ pacf_ar2 <- pacf(sim_ar22)

Partial ACF - AR(p=2)

Example (continuation):

Note: The PACF can be calculated by b regressions, each one with b lags. The $b b$ coefficient is the $b^{\text {th }}$ order PACF. Using ar function:

```
> ar(sim_ar2,order.max =1, method = "ols")
Coefficients:
    1
0.5586
Intercept: -0.008403 (0.0761)
Order selected 1 sigma^2 estimated as 1.152
>ar(sim_ar2, order.max =2, method = "ols")
Coefficients:
    1 2
0.3974 0.2869
Intercept: -0.009847 (0.07326)
Order selected 2 sigma^2 estimated as 1.063
```


Partial ACF - MA(q)

- Following the analogy that PACF for AR processes behaves like an ACF for MA processes, we will see exponential decay ("tails off") in the partial correlogram for MA process. Similar pattern will also occur for ARMA(p, q) process.

Example: We simulate an MA(1) process with $\theta_{1}=0.5$.
sim_ma1 <- arima.sim(list $($ order $=c(0,0,1), \mathrm{ma}=0.5), \mathrm{n}=200)$
$>$ pacf(sim_ma1)

Partial ACF - ARMA(p,q)

- For an ARMA processes, we will see exponential decay ("tails off") in the partial correlogram.

Example: We simulate an ARMA(1) process with $\phi_{1}=0.4 \& \theta_{1}=0.5$. sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), $\mathrm{n}=200$) $>$ pacf(sim_arma11)

PACF - Example: U.S. Stock Returns

Example: US Monthly Returns (1871-2020, $T=1,795$)
pacf_p $<-$ acf($\left(\operatorname{lr} _p\right) \quad \#$ pacf: R function that estimates the PACF
$>$ pacf_p

Partial autocorrelations of series 'lr_p', by lag

1	2	3	4	5	6	7	8	9	10	11	
0.278	-0.081	-0.026	0.041	0.058	0.002	0.038	0.032	0.016	0.022	0.009	
12	13	14	15	16	17	18	19	20	21	22	23
-0.023	-0.057	-0.032	-0.045	0.027	0.017	0.037	-0.059	-0.051	-0.050	0.005	24
23	24	25	26	27	28	29	30	31	32		
0.006	0.004	-0.005	-0.051	0.014	-0.007	0.037	0.008	0.018	0.023		
SE $\left(\mathbf{r}_{k}\right)$	$=1 / \operatorname{sqrt}(1,795)$	$=.0236$.			$\Rightarrow 95 \%$	C.I.: $\pm 2^{*}$	0.0236				

PACF - Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns (1871-2020)
> pacf(lr_p)

Note: With the exception of the first partial correlation, partial correlations are small, though, again, some are significant.

PACF - Example: U.S. Stock Dividends

Example: US Monthly Stock Dividends (1871-2020, $T=1,795$)

```
pacf_d <- pacf(lr_d)
> pacf_d
Partial autocorrelations of series 'lr_d', by lag
\begin{tabular}{cccccccccccl}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \\
0.462 & 0.385 & 0.160 & 0.150 & -0.033 & 0.189 & -0.054 & -0.056 & 0.027 & -0.082 & -0.019 & \\
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
-0.063 & -0.035 & 0.067 & 0.043 & 0.010 & -0.057 & -0.046 & -0.043 & -0.008 & -0.031 & -0.039 & \\
24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & & \\
-0.041 & 0.050 & -0.036 & -0.030 & 0.091 & 0.006 & -0.017 & 0.044 & -0.002 & -0.042 &
\end{tabular}
```

Higher partial correlations than for stock returns.

ARIMA Models: Identification - Correlations

- Correlation approach.

Basic tools: sample ACF and sample PACF.

- ACF identifies order of MA: Non-zero at lag q; zero for lags $>q$.
- PACF identifies order of AR: Non-zero at lag p; zero for lags $>p$.
- All other cases, try $\operatorname{ARMA}(p, q)$ with $p>0$ and $q>0$.

Summary: For $p>0 \& q>0$.

	AR (p)	$\operatorname{MA}(q)$	$\operatorname{ARMA}(p, q)$
ACF	Tails off	0 after lag q	Tails off
PACF	0 after lag p	Tails off	Tails off

Note: Ideally, "Tails off" is exponential decay. In practice, in these cases, we may see a lot of non-zero values for the ACF and PACF.

ARMA Models: Identification - AR(1)

ARMA Models: Identification - ARMA(1,1)

AR(1) - $\mathrm{Pni}=0.7$; Theta $=-0.5$

ARMA Models: Identification - ARMA(1,1)

ARMA Models: Identification - ARMA(1,1)

Example: Monthly US Returns (1871-2020).

- Note: ARMA(1,1), MA(1), AR(2)?

ARMA Models: Identification - ARMA(1,1)

Example: Monthly Changes in US Dividends (1871-2020).

- Note: Not clear: Maybe long a $\operatorname{ARMA}(p, q)$ or needs differencing?

ARMA Models: Identification - ARMA(1,1)

Example: Monthly Log Changes in Oil Prices (1973-2020).

- Note: MA(1), AR(4)?

ARMA Models: Identification - ARMA(1,1)

Example: Monthly Log Changes in Gold (1973-2020).

- Note: No clear ARMA structure.

ARMA Model: Identification - IC

- It is difficult to identify an ARMA model using the ACF and PACF. It is common to rely on information criteria (IC).
- IC's are equal to the estimated variance or the log-likelihood function plus a penalty factor, that depends on k. Many IC's:
- Akaike Information Criterion (AIC)

AIC $=-2 *(\ln L-k)=-2 \ln L+2 * k$
\Rightarrow if normality AIC $=T^{*} \ln \left(\mathbf{e}^{\prime} \mathbf{e} / T\right)+2^{*} k \quad$ (+constants)

- Bayes-Schwarz Information Criterion (BIC or SBIC)

BIC $=-2 * \ln L-\ln (T) * k$
\Rightarrow if normality AIC $=T^{*} \ln \left(\mathbf{e}^{\prime} \mathbf{e} / T\right)+\ln (T) * k \quad$ (+constants)

- Hannan-Quinn (HQIC)

HQIC $=-2^{*}(\ln L-k \quad[\ln (\ln (T))]$
\Rightarrow if normality AIC $=T^{*} \ln \left(\mathbf{e}^{\prime} \mathbf{e} / T\right)+2 k[\ln (\ln (T))]$ (+constants)

ARIMA Model: Identification - IC

- There are modifications of IC to get better finite sample behavior, a popular one is AIC corrected, AICc, statistic:

$$
A I C c=T \widehat{\ln \sigma^{2}}+\frac{2 k(k+1)}{T-k-1}
$$

- AICc converges to AIC as T gets large. Using AICc is not a bad idea.
- For $\operatorname{AR}(p)$ models, other AR-specific criteria are possible: Akaike's final prediction error (FPE), Akaike's BIC, Parzen's CAT.
- Hannan and Rissannen's (1982) minic (=Minimum IC): Calculate the BIC for different p 's (estimated first) and different q 's. Select the best model-i.e., lowest BIC.

Note: Box, Jenkins, and Reinsel (1994) proposed using the AIC above.

ARMA Model: Identification - IC

Example: Monthly US Returns (1871-2020) Hannan and Rissannen (1982)'s minic, based on AIC.

Minimum Information Criterion
Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5
AR 0 $\quad-6403.59-6552.94-6552.69-6554.27-6552.88$-6557.37
AR $1 \quad-6545.22 \quad-6552.23-6551.86-6552.42-6552.64-6561.48$
AR 2 $\quad-6554.76-6553.28 ~-6554.85-6554.35-6564.32-6559.48$
AR 3 $\quad-6553.94 \quad-6552.53-6554.44-6552.33-6550.36-6558.52$
AR $4 \quad-6554.98 \quad-6559.83-6559.92-6558.94$
AR 5 $\quad \mathbf{- 6 5 5 8 . 8 1} \begin{array}{lllllll}-6558.65 & -6557.45 & -6555.78 & -6558.66 & -6556.06\end{array}$

- Note: Best Model is ARMA $(2,4)$; other potential candidates:

ARMA(1,5), ARMA(4,2), ARMA (5,0).

Non-Stationary Time Series Models

- The ACF is as a rough indicator of whether a trend is present in a series. A slow decay in ACF is indicative of highly correlated data, which suggests a true unit root process, or a trend stationary process.
- Formal tests can help to determine whether a system contains a trend and whether the trend is deterministic or stochastic (unit root).
- We will analyze two situations faced in ARMA models:
(1) Deterministic trend - Simple model: $y_{t}=\alpha+\beta t+\varepsilon_{t}$ - Solution: Detrending -i.e., regress y_{t} on a constant and a time trend, t. Then, keep residuals for further modeling.
(2) Stochastic trend - Simple model: $y_{t}=\mu+y_{t-1}+\varepsilon_{t}$.
- Solution: Differencing-i.e., apply $\Delta=(1-L)$ operator to y_{t}. Then, use Δy_{t} for further modeling.

Non-Stationary Time Series Models

Example: Plot of US Monthly Prices and Dividends (1871-2020)

Non-Stationary Models: Deterministic Trend

- Suppose we have the following model, with a determinist trend:

$$
\begin{aligned}
& y_{t}=\alpha+\beta t+\varepsilon_{t} . \quad \Rightarrow \Delta y_{t}=y_{t}-y_{t-1} \\
&=\beta t-\beta(t-1)+\varepsilon_{t}-\varepsilon_{t-1} \\
&=\beta+\varepsilon_{t}-\varepsilon_{t-1} \\
& \Rightarrow \mathrm{E}\left[\Delta y_{t}\right]=\beta
\end{aligned}
$$

- $\left\{y_{t}\right\}$ will show only temporary departures from trend line $\alpha+\beta t$. This type of model is called a trend stationary (TS) model.
- If a series has a deterministic time trend, then we detrend y_{t}. That is, we remove the influence of t from y_{t} : We simply regress y_{t} on an intercept and a time trend $(t=1,2, \ldots, T)$; then, save the residuals:

$$
e_{t}=y_{t}-\widehat{\alpha}-\widehat{\beta} t \quad \text { (the residuals are the detrended } y_{t} \text { series) }
$$

- But, we do not necessarily get stationary series by detrending.

Non-Stationary Models: Deterministic Trend

- Many economic series exhibit "exponential trend/growth". They grow over time like an exponential function over time instead of a linear function. In this cases, it is common to work with logs

$$
\begin{array}{ll}
\ln \left(y_{t}\right)=\alpha+\beta t+\varepsilon_{t} . & \left.\Leftrightarrow y_{t}=e^{\alpha+\beta t+\varepsilon_{t}}\right) \\
\Rightarrow \text { The average growth rate is: } \mathrm{E}\left[\Delta \ln \left(y_{t}\right)\right]=\beta
\end{array}
$$

- We can have a more general model:

$$
y_{t}=\alpha+\phi_{1} y_{t-1}+\cdots+\phi_{p} y_{t-p}+\beta_{1} t+\beta_{2} t^{2}+\ldots+\beta_{k} t^{k}+\varepsilon_{t} .
$$

- Estimation of $\operatorname{AR}(p)$ with a trend component:
- OLS.
- Frish-Waugh method (a 2-step method):
(1) Detrend y_{t} : regress y_{t} against a constant \& a time trend, t. Then, get the residuals ($=y_{t}$ without the influence of t).
(2) Use residuals to estimate the $\operatorname{AR}(p)$ model.

Non-Stationary Models: Deterministic Trend

Example: We detrend U.S. Stock Prices
$\begin{array}{ll}\mathrm{T}<- \text { length(x_P) } & \text { \# length of series } \\ \text { trend }<-\mathrm{c}(1: \mathrm{T}) & \text { \# create trend } \\ \text { det_P }<-\operatorname{lm}\left(\mathrm{x} _\mathrm{P} \sim \text { trend }\right) & \text { \# regression to get detrended e } \\ \text { detrend_P <- det_P\$residuals } & \\ \text { plot(detrend_P, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time") } \\ \text { title("Detrended U.S. Stock Prices") } & \end{array}$

Monthly U.S. Stock Price

Detrended U.S. Stock Prices

Non-Stationary Models: Deterministic Trend

Example: We detrend U.S. Stock Prices adding a square trend

```
trend2<- trend^2
```

det_P $<-\operatorname{lm}\left(x _P \sim\right.$ trend + trend 2$) \quad$ \# regression to get detrended e detrend_P <- det_P\$residuals
plot(detrend_P, type="1", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time") title("Detrended U.S. Stock Prices with linear and quadratic trends")

Non-Stationary Models: Deterministic Trend

Example: We detrend Log U.S. Stock Prices adding a squared trend
1_P <- $\log (\mathrm{x}$ _P $)$
det_l $<-\operatorname{lm}\left(1 _\mathrm{P} \sim\right.$ trend $) \quad$ \# regression to get detrended e detrend_lP <- det_lP\$residuals
plot(detrend_lP, type="l", col="blue", ylab ="Detrended Log U.S. Prices", xlab ="Time") title("Detrended Log U.S. Stock Prices")
det_lP2 <- lm(1_P ~ trend + trend2) \# regression to get detrended e
det_1P2<- det_1P2\$residuals
plot(det_lP2, type="l", col="blue", ylab ="Det Log U.S. Prices", xlab ="Time")
title("Detrended Log U.S. Stock Prices with linear and quadratic trends")

Non-Stationary Models: Stochastic Trend

- The more modern approach is to consider trends in time series as a variable trend.
- A variable trend exists when a trend changes in an unpredictable way. Therefore, it is considered stochastic.
- Recall the $\operatorname{AR}(1)$ model: $\quad y_{t}=\mu+\phi_{1} y_{t-1}+\varepsilon_{t}$
- As long as $\left|\phi_{1}\right|<1$, everything is fine, we have a stationary $\operatorname{AR}(1)$ process: OLS is consistent, t-stats are asymptotically normal, etc.
- Now consider the special case where $\phi_{1}=1$:

$$
y_{t}=\mu+y_{t-1}+\varepsilon_{t}
$$

Q: Where is the (stochastic) trend? No t term.

Non-Stationary Models: Stochastic Trend

- Let us replace recursively the lag of y_{t} on the right-hand side:

$$
\begin{aligned}
y_{t} & =\mu+y_{t-1}+\varepsilon_{t} \\
& =\mu+\left(\mu+y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
& \ldots \\
& =y_{0}+t \mu+\sum_{j=0}^{t} \varepsilon_{t-j} \\
& \downarrow \\
& \text { Deterministic trend }
\end{aligned}
$$

- This process is called a "random walke with drift": y_{t} grows with t.
- Each ε_{t} shock represents a shift in the intercept. All values of $\left\{\varepsilon_{t}\right\}$ have a 1 as coefficient \Rightarrow each shock never vanishes (permanent).
- We remove the trend by differencing y_{t}

$$
\Rightarrow \Delta y_{t}=(1-L) y_{t}=\mu+\varepsilon_{t}
$$

Note: Applying the $(1-L)$ operator to a time series is called differencing

Non-Stationary Models: Stochastic Trend

Example: We difference U.S. Stock Prices, using the diff R function:

```
diff_P <- diff(x_P)
> plot(diff_P,type="l", col="blue", ylab ="Differenced U.S. Stock Prices", xlab ="Time")
> title("Differenced U.S. Stock Prices")
```

Monthly U.S. Stock Price

Non-Stationary Models: Stochastic Trend

- y_{t} is said to have a stochastic trend (ST), since each ε_{t} shock gives a permanent and random change in the conditional mean of the series.
- For these situations, we use Autoregressive Integrated Moving Average (ARIMA) models.
- Q: Deterministic or Stochastic Trend?

They appear similar: Both lead to growth over time. The difference is how we think of ε_{t}. Should a shock today affect y_{t+1} ?
$-\mathrm{TS}: y_{t+1}=\mu+\beta(t+1)+\varepsilon_{t+1} \quad \Rightarrow \varepsilon_{t}$ does not affect y_{t+1}.
-ST: $\quad y_{t+1}=\mu+y_{t}+\varepsilon_{t+1}=\mu+\left[\mu+y_{t-1}+\varepsilon_{t}\right]+\varepsilon_{t+1}$
$=2 * \mu+y_{t-1}+\varepsilon_{t}+\varepsilon_{t+1} \Rightarrow \varepsilon_{t}$ affects y_{t+1}.
(In fact, the shock ε_{t} has a permanent impact.)

$\operatorname{ARIMA}(\boldsymbol{p}, \boldsymbol{d}, \boldsymbol{q})$ Models

- For $p, d, q \geq 0$, we say that a time series $\left\{y_{t}\right\}$ is an $\operatorname{ARIMA}(p, d, q)$ process if $w_{t}=\Delta^{d} y_{t}=(1-L)^{d} y_{t}$ is $\operatorname{ARMA}(p, q)$. That is,

$$
\phi(L)(1-L)^{d} y_{t}=\theta(L) \varepsilon_{t}
$$

- Applying the $(1-L)$ operator to a time series is called differencing.

Notation: If y_{t} is non-stationary, but $\Delta^{d} y_{t}$ is stationary, then y_{t} is integrated of order d, or $\mathrm{I}(d)$. A time series with unit root is $\mathrm{I}(1)$. A stationary time series is $\mathrm{I}(0)$.

Examples:

Example 1: RW: $y_{t}=y_{t-1}+\varepsilon_{t}$.
y_{t} is non-stationary, but

$$
w_{t}=(1-L) y_{t}=\varepsilon_{t} \quad \Rightarrow w_{t} \sim \mathrm{WN}!
$$

Now, $y_{t} \sim \operatorname{ARIMA}(0,1,0)$.

$\operatorname{ARIMA}(\boldsymbol{p}, \boldsymbol{d}, \boldsymbol{q})$ Models

Example 2: $\operatorname{AR}(1)$ with time trend: $y_{t}=\mu+\delta t+\phi_{1} y_{t-1}+\varepsilon_{t}$. y_{t} is non-stationary, but

$$
\begin{aligned}
w_{t} & =(1-L) y_{t} \\
& =\mu+\delta t+\phi_{1} y_{t-1}+\varepsilon_{t}-\left[\mu+\delta(t-1)+\phi_{1} y_{t-2}+\varepsilon_{t-1}\right] . \\
& =\delta+\phi_{1} w_{t-1}+\varepsilon_{t}-\varepsilon_{t-1} \quad \Rightarrow w_{t} \sim \operatorname{ARIMA}(1,1) .
\end{aligned}
$$

Now, $y_{t} \sim \operatorname{ARIMA}(1,1,1)$.

- We call both process first difference stationary.

Note:

- Example 1: Differencing a series with a unit root in the AR part of the model reduces the AR order.
- Example 2: Differencing can introduce an extra MA structure. We introduced non-invertibility $\left(\theta_{1}=1\right)$. This happens when we difference a TS series. Detrending should be used in these cases.

