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Lecture 8-b
Time Series: 

Stationarity, AR(p) & MA(q)

Brooks (4th edition): Chapter 6
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Review: Times Series

• A time series 𝑦 is a process observed in sequence over time, 

t = 1, ...., T  Yt = {𝑦 , 𝑦 ,𝑦 , ..., 𝑦 }.

• Given the sequential nature of 𝑦 , we expect 𝑦 & 𝑦 to be 
dependent This is the main feature of time series: dependence. 

• With dependent observations, the classical results (based on LLN & 
CLT) are not to valid. New assumptions and tools are needed: 
stationarity, ergodicity, & CLT for martingale difference sequences.

• Roughly speaking, stationarity requires constant moments for 𝑦 ; 
ergodicity requires that the dependence is short-lived, eventually 𝑦
has only a small influence on 𝑦 , when 𝑘 is relatively large.
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Review: Times Series – Forecasting & WN

• The purpose of building a time series model: Forecasting.

• We estimate time series models to forecast out-of-sample. For 
example, the l-step ahead forecast: 𝑦 = E [𝑦 |𝐼 ],

where 𝐼 = {𝑦 , 𝑦 , 𝑦 , ....}

• Two popular models for E [𝑦 |𝐼 ]:

– Autoregressive (AR) process models E [𝑦 |𝐼 ] with lagged yt’s:

E [𝑦 |𝐼 ] = 𝑓 𝑦 , 𝑦 , 𝑦 , .... , 𝑦 )

Example: AR(1) process, 𝑦 = α + β 𝑦 + ε .

– Moving average (MA) process models E[yt|It-1] with lagged εt’s:

E [𝑦 |𝐼 ] = 𝑓 ε , ε , ε , .... , ε )

Example: MA(1) process, 𝑦 = μ + θ1 ε  + ε

• We want to select an appropriate time series model to forecast yt. 

The linear models we consider: AR(𝑝), MA(𝑞) or ARMA(𝑝, 𝑞). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine AR, MA or 
ARMA and the order of the model  -i.e., 𝑝, 𝑞.

Tools: ACF, PACF

(2) Estimate the model.

OLS, Method of Moments (complicated).

(3) Test the model.

Make sure errors are WN.

(4) Forecast.

Review: Times Series – Forecasting (again)
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• Key distinction: Conditional vs Unconditional moments.

Example: AR(1) process: 𝑦 = α + β 𝑦 + ε .

The conditional mean forecast at time t, conditioning on It-1, is:

E [𝑦 |𝐼 ] = E [𝑦 ] = α + β 𝑦

The unconditional mean is given by: 

E[𝑦 ] = α + β E[𝑦 ] =
α

1 − β =  μ = constant (β≠1)

The conditional mean is time varying; the unconditional mean is not!

Remark: Time series focuses on conditional forecasts.

Review: Times Series – Conditionality 

• We say that a process is stationary of    

1st order if  𝐹 𝑦 𝐹 𝑦 for any 𝑡1, k

2nd order if 𝐹 𝑦 ,𝑦 𝐹 𝑦 ,𝑦 for any 𝑡1, 𝑡2, k

Nth-order if 𝐹 𝑦 , … ,𝑦 𝐹 𝑦 , … ,𝑦 for any 𝑡1, ..., 𝑡T, k

• We focus on 2nd order stationarity, which is weaker: only consider 
mean and covariance (& easier to verify in practice). Thus, we need

E 𝑌 μ

Var 𝑌 σ 𝐸 𝑌 μ

Cov 𝑌 ,𝑌  𝐸 𝑌 μ 𝑌 μ = γ 𝑡1 
−𝑡2 = γ 𝑘

Notes: γ 𝑘 : autocovariance function, a function of  𝑘 = 𝑡1 
−𝑡2. 

γ 0 is the variance.

Review: Stationarity 
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• From the autocovariances, we derive the autocorrelations:

ρ 𝑘  
(0) = ρ 𝑘

ρ 𝑘 , a function of 𝑘, is called the auto-correlation function (ACF).

• The ACF is one of  the tools used to identify a model: MA(𝑞), AR(𝑝). 

Review: Stationarity & Autocovariances

Example: Assume ε ~ WN(0, σ2).
𝑦 = 𝜙 𝑦 + ε . (AR(1) process)

•  Mean
E[ 𝑦 ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Var[𝑦 ] = γ 0  𝜙2 Var[𝑦 ] + Var[ε ] 
γ 0 = σ2/(1 - 𝜙2) (assuming | 𝜙 |< 1)

•  Covariance
γ 𝑘 = Cov[𝑦 , 𝑦 ] = 𝜙  γ 0

 If  |𝜙 |< 1, AR(1) process is covariance stationary.

• Auto-correlation function (ACF): ρ 𝑘  
(0) 𝜙

Review: Stationarity – Example 
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Example: Assume ε ~ WN(0, σ2).

𝑦 = μ  𝑦 + ε  (Random Walk with drift process)

Doing backward substitution:
 𝑦 = μ  𝑡 + ∑ ε + 𝑦

•  Mean & Variance
E[𝑦 ] = μ  𝑡 + 𝑦
Var[𝑦 ] = γ 0 = ∑ σ2 = σ2 t

 the RW process is non-stationary; that is, moments are time 
dependent.

Review: Non-Stationarity – Example 

• Stationarity is an invariant property: The statistical characteristics of  
the time series do not vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the variance 
in two equal lengths time intervals will be more or less the same.

• In the long run, say 100-200 years, the stationarity assumption may 
not be realistic. 

• In general, time series analysis is done under the stationarity 
assumption.

Review: Stationarity: Remarks
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• We want to estimate the mean of  the process {𝑍 }, μ(𝑍 ). But, we 
need to distinguishing between ensemble average (with 𝑚 cross section 
observations) and time average (with T time series observations):

- Ensemble Average: 𝑧̿
∑

- Time Series Average: 𝑧
∑

Q: Which estimator is the most appropriate? 
A: Ensemble Average. But, it is impossible to calculate for a time series. 

• The Ergodic Theorem tells us when the time series average can be used.

Theorem: A sufficient condition for ergodicity for the mean: 
ρ → 0   as   𝑘 𝑡   𝑡 → ∞

We need the correlation between (𝑦 ,𝑦 ) to decrease as they grow 

further apart in time.

Review: Ergodicity

Example: Suppose we have an MA(1) process:

𝑦 =  𝜇 + θ1 ε + ε = 𝜇 + θ L ε – θ L = (1 θ1L)

Recall: 𝑓 𝑥 1 𝑥 𝑥 𝑥 𝑥  . . . ∑ 𝑥

Let 𝑥 = −θ1L, (L: lag operator). Then, assuming 𝜃 𝐿 ≠ 0:

𝜃 𝐿 ∑ θ1L = 1 θ1L θ  L θ  L θ1 L ⋯ 

Now, we multiply 𝜃 𝐿 on both sides of  the MA process
𝑦 = 𝜇 + θ L 𝜀 .

 𝜃 𝐿 𝑦 = 𝜃 𝐿 𝜇 + 𝜀 = 𝜇* + 𝜀

Then, we get an AR(∞):
𝑦 𝜇∗  θ1𝑦  θ 𝑦  θ  𝑦  θ 𝑦 ⋯ 𝜀

If  the AR(∞) process in non-explosive, then, the MA(1) is invertible.

Review: Invertibility
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• An MA process models Et[𝑦 |𝐼 ] with lagged error terms. An 
MA(𝑞) model involves 𝑞 lags. 

• We keep 𝜀 ~ WN(0, σ2)

Example: A linear MA(𝑞) model: 
𝑦 μ + θ  𝜀  + θ  𝜀 + ... + θ  𝜀  + 𝜀 = 𝜇 + θ L 𝜀 ,

where
𝜃 𝐿 = 1 θ  L θ  L θ  L … θ  L

• In time series, the constant does not affect the properties of  AR and 
MA process. Thus, in this situation we say “without loss of  
generalization”, we assume 𝜇 = 0.

Review: Moving Average Process  

• Q: Is MA(q) stationary? Check the moments (assume 𝜇 = 0).
𝑦 = 𝜀  θ1 𝜀  + θ2 𝜀 + ... + θq 𝜀

•  Mean
E[𝑦 ] = E[𝜀 ] + θ1 E[𝜀 ] + θ2 E[𝜀 ] + ... + θq E[𝜀 ] = 0

•  Variance
Var[𝑦 ] = Var[𝜀 ] + θ  Var[𝜀 ] + θ  Var[𝜀 ] + ... + θ   Var[𝜀 ] 

= (1 + θ   + θ   + ... + θ  ) σ2.

•  Covariance
In general, for the 𝑘 autocovariance:

γ 𝑘 = σ2 ∑ θ  θ for | 𝑘 |  q
γ 𝑘 = 0 for | 𝑘 |  q

Remark: After lag q, the autocovariances (& ACFs) are 0.

Review: Moving Average Process – Stationarity  
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• It is easy to verify that the sums ∑ θ θ are finite. Then, mean, 
variance and covariance are constant. 

 MA(q) is always stationary.

• Problem: It can be shown that for 𝜀 with same distribution (say, 
normal) the autocovariances are non-unique. Suppose you want to 
select one process to forecast. Which one? We select the invertible 
model, with an AR(∞) (non-explosive) representation.

Technical note: An invertible MA(q) is typically required to have roots 
of  the lag polynomial equation 𝜃 𝑧 = 0 greater than one in absolute 
value (outside the unit circle). In the MA(1) case, we require|θ1|< 1

Review: Moving Average Process – Stationarity  

Example: MA(1) process:

𝑦 = θ1 𝜀 + 𝜀 = μ + θ L 𝜀 , with θ(L) = (1+ θ1 L)

• Moments
E[𝑦 ] = 0

We derive the variance & autocovariances from the MA(𝑞) formula:

γ 𝑘 = σ2 ∑ θ  θ for |𝑘| q (where θ0 = 1)
γ 𝑘 = 0 for |𝑘|  q

• γ 𝑘 , with 𝑞 = 1
𝑘 = 0 γ 0  = σ2 ∑ θ  θ σ2 (1 + θ1

2)
𝑘 = 1 γ 1  = σ2 ∑ θ  θ σ2 (θ1)
𝑘  1 γ 𝑘  = 0 

Since the sums ∑ θ  θ are finite  MA(q) is always stationary.

Review: MA Process – MA(1): Moments
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• Autocorrelations

To get the ACF, we divide the autocovariances by γ 0 . Then:

ρ 0  γ 0 /γ 0 = 1

ρ 1  γ 1 /γ 0 = θ1/(1+ θ1
2) 

ρ 2   γ 2 /γ 0 = 0

⋮
ρ 𝑘   γ 𝑘 /γ 0 = 0 (for 𝑘 > 1)

Note that |ρ 1 | ≤ 0.5. 

When θ1 = 0.5  ρ 1 = 0.4. (|θ1| < 1  invertible)
θ1 = -0.9  ρ 1 = -0.497238. (|θ1| < 1  invertible)
θ1 = 2  ρ 1 = 0.4. (|θ1| < 1 non-invertible)

Note: We have two processes, with the same ACF, we select θ1 = 0.5. 

Review: MA Process – MA(1): ACF

Example (continuation): 

In general, for an MA(𝑞) process, the 𝑘 autocorrelation function (ACF):

ρ 𝑘 = 
∑ θ θ

(1 + θ  + θ  + ... +θ ) for |𝑘|  q

ρ 𝑘 = 0 for |𝑘|  q

Remark: After lag q , the ACF are 0 (contrast with AR(1) model).

Note: The ACF is usually shown in a plot. When we plot ρ 𝑘 against 
𝑘, we plot also ρ 0 = 1.

Review: MA Process – MA(1): ACF
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Example: Below, we compute & plot the ACF for the simulated process.
𝑦 = 𝜀  + 0.5 𝜀

sim_ma1_5 <- arima.sim(list(order=c(0,0,1), ma=0.5), n=100) 
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_5

Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.438 0.069  0.014  0.103  0.173  0.107  0.015 -0.080 -0.054  0.011 -0.006  0.041  0.000 

14 15 16 17 18 19  20 21 22 23 
-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021  0.110 

Review: MA(1) Process – ACF: Simulations 

• MA processes are more complicated to estimate since we do not 
observe the errors, 𝜀 ’s: Direct estimation is impossible. 

• Two indirect ways:
(1) Using method of  moments (MM): e matched observed 
moments and solved for the parameters. For example, for an MA(1):

ρ 1  θ1/(1+ θ ) 

• A nonlinear solution and difficult to solve.

(2) Using AR() representation: For MA(1) & |θ|<1, find 𝑎∈(-1; 1)
𝜀 𝑎  = 𝑦 + 𝑎 𝑦 + a  𝑦  + a  𝑦 + ….

and look (numerically) for the least-square estimator

θ = arg minθ {S(𝒚; θ) = ∑ ε 𝑎 (a = θ1 .)

Review: MA Process – Estimation 

𝑟
𝜃

1 𝜃
 ⇒   𝜃

1 1 4𝑟
2𝑟
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Autoregressive (AR) Process

• We model the conditional expectation of 𝑦 , E [𝑦 |𝐼 ], as a 
function of its past history. 

• We keep 𝜀 ~ WN(0, σ2)

• The most common models are AR models. An AR(1) model 
involves a single lag, while an AR(𝑝) model involves 𝑝 lags. Then, the 
AR(𝑝) process is given by:

𝑦 = 𝜇 + 𝜙  𝑦 + 𝜙  𝑦 +... + 𝜙  𝑦 + 𝜀 , 𝜀  ~ WN.

Using the lag operator we write the AR(p) process: 𝜙(L) 𝑦 = 𝜀

with 𝜙(L) = 1 𝜙  L 𝜙  L2 … 𝜙  L

AR Process: SDE

• We can look at an AR(𝑝) process:

𝑦 = 𝜇 + 𝜙  𝑦 + 𝜙  𝑦 +... + 𝜙  𝑦 + 𝜀 , 

as a stochastic (linear) difference equation (SDE). With difference equations 
we try to get a solution –i.e., given some initial conditions/history, we 
know the value of 𝑦 for any 𝑡– and, then, we study its characteristics 
(stability, long-run value, etc.).

The solution to a DE can be written as a sum of two solutions:

1) Homogeneous equation (the part that only depends on the 𝑦 ’s): 

𝑦 = 𝜙  𝑦 + 𝜙  𝑦 +... + 𝜙  𝑦 (set 𝜇 + 𝜀 = 0)

2) A particular solution to the equation. 

• Once we get a solution, we study its stability. We want a stable one. 
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• We get a solution to the simple case, the AR(1) process.

𝑦 = μ + 𝜙  𝑦 + 𝜀  , 𝜀  ~ WN.

Using the backward substitution method:

𝑦 = 𝜇 (1 + 𝜙 + 𝜙 +... + 𝜙 ) + ∑ 𝜙 𝜀 + 𝜙  𝑦

Note: The solution is a function of 𝑡, the sequence 𝜀 , 𝜀 , ..., 𝜀
and initial condition 𝑦 . The effect of 𝑦 “dies out” if |𝜙1|< 1.

• The stability of the solution is crucial. With a stable solution, 𝑦
does not explode. This is good: We need well defined moments.

It turns out the stability of the equation depends on the solution to 
the homogenous equation. In the AR(1) case (setting 𝜇 & 𝜀 ’s = 0):

𝑦 = 𝜙  𝑦  If|𝜙1|< 1, 𝑦 never explodes, as 𝑡→ ∞.

AR Process – AR(1): Solution

• We can analyze the stability from the point of view of the roots of 
the lag polynomial. For the AR(1) process

𝜙(z) = 1  𝜙  z = 0  |z| = | 1|
> 1 

That is, the AR(1) process is stable if the root of 𝜙(z) is greater than 
one (also said as “the roots lie outside the unit circle”).

This result generalizes to AR(𝑝) process: 

AR Process – AR(1): Solution & Stability
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• For the AR(2), 𝑦 =  𝜙  𝑦 – 𝜙2 𝑦

Lag polynomial: 𝜙(L) = 1  𝜙 L  𝜙 𝐿  = 0.

We need the roots of 𝜙(z) to be outside the unit circle.

The characteristic polynomial of the AR(2) can be written as: 

𝜙(z) = 1 – (λ1+ λ2) z – λ1 λ2 z2 = (1 – λ1 
z) (1 – λ2 

z) = 0 

where 𝜙1 = λ1+ λ2, and 𝜙2 = λ1 
λ2. (λ1 & λ2 are eigenvalues.)

If |λ1|<1, and |λ2|<1, roots lie outside the unit root  stationary

Then, some implications for 𝜙1 & 𝜙2:

|λ1+ λ2|< 2 ⇒|𝜙1|< 2

| λ1 
λ2|< 1 ⇒|𝜙2|< 1

AR Process – AR(2): Solution & Stability

• Summary:

We say the process is globally (asymptotically) stable if the solution of the 
associated homogenous equation tends to 0, as 𝑡→ ∞.

Theorem

A necessary and sufficient condition for global asymptotical stability 
of a 𝑝th order deterministic difference equation with constant 
coefficients is that all roots of the associated lag polynomial equation 
𝜙(z)=0 have moduli strictly more than 1.

(For the case of real roots, moduli = “absolute values.”)

AR Process – AR(p): Solution & Stability
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• An AR(1) model: 
𝑦 = 𝜙  𝑦 + 𝜀 , 𝜀 ~ WN.

Last lecture, under the stationarity condition |𝜙1|< 1, we derived: 

• Moments

E[𝑦 ] = μ = 0 (assuming 𝜙 ≠ 1)

Var[𝑦 ] = γ 0  = σ2/(1 - 𝜙 ) (assuming |𝜙 |< 1)

γ 1  = 𝜙  γ 0  

γ 2  = 𝜙 γ 0  

γ 3  = 𝜙 γ 0  
⋮

γ 𝑘  = 𝜙  γ 0  

AR(1) Process – Stationarity & ACF

• We derive the autocorrelations: 

ρ 𝑘   
= 

    𝜙

Remark: Assuming |𝜙 |< 1, the ACF decays with 𝑘. 

When we plot ρ 𝑘 against 𝑘, we plot also ρ 0 which is 1.

Note:
– when    0 < 𝜙 < 1  All autocorrelations are positive.
– when  1 < 𝜙 < 0  The sign of  ρ 𝑘 shows an alternating sign

pattern beginning a negative value.
– when 𝜙 = 1  AR(1) is non-stationary, ρ 𝑘  1, for all 𝑘.

Present & past are always correlated!

AR(1) Process – Stationarity & ACF
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Example: We simulate and plot three MA(1) processes, with standard 
normal 𝜀  -i.e., σ=1: 

𝑦 = 0.5𝑦 + 𝜀
𝑦 = -0.9𝑦 + 𝜀
𝑦 = 2𝑦 + 𝜀

R script to plot 𝑦 = 0.5 yt-1 + 𝜀 with 200 simulations
> plot(arima.sim(list(order=c(1,0,0), ar=0.5), n=200), ylab="ACF",
main=(expression(AR(1)~~~phi==+.5)))

AR(1) Process – Stationarity & ACF: Simulations 

Example (continuation): 

Note: The process θ1 > 0 is smoother than the ones with θ1 < 0. The 
process with |θ1| > 1, explodes!

AR(1) Process – Stationarity & ACF: Simulations 
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Example (continuation): Below, we compute and plot the ACF for the 
the two stable simulated process.
1) 𝑦 = 0.5 𝑦 + 𝜀
sim_ar1_5 <- arima.sim(list(order=c(1,0,0), ar=0.5), n=200) 
acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5)))
acf_ar1_5
Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.351  0.055 -0.005 -0.054  0.002 -0.036 -0.119 -0.008 -0.099 -0.125 -0.066 -0.036 -0.023 
14 15 16 17 18 19  20 21 22 23 
-0.042  0.062  0.119  0.102  0.087  0.099  0.065  0.056  0.047  0.044 

AR(1) Process – Stationarity & ACF: Simulations 

Example (continuation): 
2) 𝑦 = - 0.9𝑦 + 𝜀
sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar=-0.9), n=200) acf_ar1_9 <-
acf(sim_ar1_9, main=(expression(AR(1)~~~phi==-.9)))
> acf_ar1_9
Autocorrelations of  series ‘sim_ma1_9’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14 15 16 17 18 19  20 21 22 23 
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105

AR(1) Process – Stationarity & ACF: Simulations 
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Example: A process with |𝜙1|< 1 (actually, 0.065) is the monthly 
changes in the USD/GBP exchange rate. Below we plot its 
corresponding ACF:

AR(1) Process – Stationarity & ACF: Examples

Example: Below we plot the monthly changes in the USD/GBP 
exchange rate. Stationary series do not look smooth:

AR(1) Process – Stationarity & ACF
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Example: A process with 𝜙1 ≈ 1 (actually, 0.99) is the nominal 
USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the 
time, but its decay is very slow (after 30 months, it is still .40 
correlated!): 

AR(1) Process – Stationarity & ACF

Example: Below we plot the nominal USD/GBP exchange rate.  
Stationary series look smooth, smooth enough that you can clearly 
spot trends: 

AR(1) Process – Stationarity & ACF
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• An AR(2) model: 
𝑦 = 𝜇 + 𝜙 𝑦 + 𝜙  𝑦 + 𝜀 , 𝜀 ~ WN.

• Moments: (𝜇 =0)
E[𝑦 ] = (1   ) = 0 (assuming 𝜙  𝜙 ≠ 1)

Var[𝑦 ] = 
σ2

(     ) (assuming  𝜙   𝜙 < 1)

• Autocovariance function 
γ 𝑘  = Cov[𝑦 , 𝑦 ] = E[(𝜙  𝑦 + 𝜙 𝑦 + 𝜀 ) 𝑦 ]

= 𝜙 E[𝑦 𝑦 ] + 𝜙 E[𝑦 𝑦 ] + E[𝜀  𝑦 ] 

= 𝜙  γ 𝑘 1  + 𝜙  γ 𝑘 2  + E[𝜀  𝑦 ] 

We have a recursive formula.

AR(2) Process – Stationarity & ACF

• Recursive formula: γ 𝑘  = 𝜙1 γ 𝑘 1  + 𝜙  γ 𝑘 2  + E[𝜀  𝑦 ] 

(𝑘=0) γ 0  = 𝜙  γ 1  + 𝜙  γ 2  + E[𝜀  𝑦 ] 
= 𝜙  γ 1  + 𝜙  γ 2  + 𝜎

(𝑘=1) γ 1  = 𝜙  γ 0  + 𝜙  γ 1  + E[𝜀  𝑦 ] 
= 𝜙  γ 0  + 𝜙  γ 1 + 0

 γ 1 = [𝜙 /(1  𝜙 )] γ 0

(𝑘=2) γ 2 = 𝜙  γ 1  + 𝜙  γ 0  + E[𝜀  𝑦 ] 
= 𝜙  γ 1  + 𝜙  γ 0 + 0

 γ 2  = [𝜙 /(1  𝜙 ) + 𝜙 ] γ 0

Replacing γ 1 and γ 2  back to γ 0 :

γ 0 = [𝜙 /(1 - 𝜙 )] γ 0 + [𝜙  𝜙 /(1 - 𝜙2) + 𝜙 ] γ 0 + 𝜎

= 
(1 − 2)

(1 − 2)   (1 + 2) +  (1 − 2)
 |𝜙2|<1

AR(2) Process – Stationarity & ACF
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• Dividing the recursive formula for γ 𝑘 by γ 0 , we get the ACF:

ρ 𝑘 = 𝜙  ρ 𝑘 1 + 𝜙  ρ 𝑘 2  
E[  ]

(𝑘=0) ρ 0  = 1

(𝑘=1) ρ 1 = 𝜙 /(1 𝜙 )

(𝑘=2) ρ 2  = 𝜙  ρ 1 + 𝜙  ρ 0 = 𝜙 /(1 𝜙 ) + 𝜙

(𝑘=3) ρ 3  = 𝜙  ρ 2 + 𝜙  ρ 1 =
= 𝜙 /(1 𝜙 ) + 𝜙 𝜙 + 𝜙  𝜙 /(1 𝜙 )

Remark: Again, we see exponential decay in the ACF.

From the work above, for stationarity, we need: 𝜙1 + 𝜙 ≠ 1.
𝜙 + 𝜙 < 1.
|𝜙 |< 1.

AR(2) Process – Stationarity & ACF

Theorem: The linear AR(𝑝) process is strictly stationary and ergodic 
if  and only if the roots of (L)  are |𝑧 |>1 for all 𝑗, where |𝑧 | is the 
modulus of  the complex number 𝑟 .

Note: If  one of  the 𝑧 ’s equals 1, (L) (& 𝑦 ) has a unit root –i.e., 
(1)=0. This is a special case of  non-stationarity.

• Recall  𝐿 produces an infinite sum on the 𝜀 ’s. If  this sum 
does not explode, we say the process is stable. 

• If  the process is stable, we can calculate δ𝑦 /δ𝜀 .

δ
δ = How much 𝑦 is affected today by an innovation 𝑡 𝑗 periods 

ago, 𝜀 . 

When expressed as a function of  𝑗, we call this dynamic multiplier. 

AR Process – Stationarity and Ergodicity
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• The dynamic multiplier measurers the effect of  an innovation, 𝜀 , 
(economist like to call the 𝜀 ’s, “shocks”) on subsequent values of  𝑦 : 
That is, the first derivative on the “Wold representation” –i.e., a 
stationary process represented as an MA process:

δ
δ

 = 
δ
δ = ψ . 

where ψ ′s are the coefficient of  the (inverted) AR representation.

For an AR(1) process: 

δ
δ

 = 
δ
δ = 𝜙

• That is, the dynamic multiplier for any linear stochastic difference 
equation (SDE) depends only on the length of  time 𝑗, not on time 𝑡. 

AR Process – Dynamic Multiplier

• The impulse-response function (IRF) is an accumulation of  the 
sequence of  dynamic multipliers, as a function of  time from the one 
time change in the innovation, 𝜀 .

• Usually, IRFs are represented with a graph, that measures the effect 
of  the innovation, 𝜀 , on 𝑦 over time:

δ
δ + 

δ
δ + 

δ
δ +... = ψ + ψ + ψ + ...

• Once we estimate the AR, MA or ARMA coefficients, we draw an 
IRF.

AR Process – Impulse Response Function
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Example: AR(1) process: 
𝑦 = 𝜇 + 𝜙  𝑦 + 𝜀 , 𝜀 ~ WN. 

The AR(1) is stable if  |𝜙 |<1  stationarity condition.

We invert the AR(1) to get an MA(∞): 1/ 1 𝜙1 ∑ ϕ   

Then,
𝑦 𝜇∗ +ϕ  𝜀  ϕ  𝜀 ϕ  𝜀  ϕ  𝜀 ⋯ + 𝜀 .

Under the stationarity condition, we calculate the dynamic multiplier: 
δ𝑦 /δ𝜀 = ϕ

Accumulated over time, after 𝐽 periods, the effect of  shock 𝜀 at t+J is: 

IRF(at 𝑡 𝐽) = ∑  ϕ  

AR Process – IRF: AR(1)

Example (continuation): Suppose 𝜙 = 0.40. Then,

δ𝑦 /δ𝜀 = 𝜙 = 0.40
δ𝑦 /δ𝜀 = ϕ = 0.402

⋮
δ𝑦 /δ𝜀 = ϕ = 0.40J

After 𝐽 5, periods, the accumulated effect of  a shock today is: 
IRF(at 𝑡 5) = 0.40 + 0.402 + 0.403 + 0.404 + 0.405 = 0.65984 

AR Process – IRF: AR(1)
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• We go back to the  general AR(𝑝). Define
𝒙 1 𝑦  𝑦 . . . .𝑦    
𝛃 𝜇 𝜙  𝜙  . . . . 𝜙

Then the model can be written as

𝑦 𝒙 ′𝛃 𝜀
• The OLS estimator is 𝐛 𝑿′𝑿 𝑿′𝒚

• Properties:

– Using the Ergodic Theorem, OLS estimator is consistent.

– Using the MDS CLT, OLS estimator is asymptotically normal.

 asymptotic inference is the same. 

• The asymptotic covariance matrix is estimated just as in the cross-
section case: The sandwich estimator.

AR Process – Estimation and Properties

ARMA Process

• A combination of  AR(𝑝) and MA(𝑞) processes produces an 
ARMA(𝑝, 𝑞) process:

𝑦 𝜇   𝑦   𝑦   . . .    𝑦
 𝜀 𝜃  𝜀 𝜃  𝜀   …  𝜃  𝜀

𝜇 ∑  𝑦 ∑ 𝜃 𝐿 𝜀 𝜀

 𝐿 𝑦 𝜇 𝜃 𝐿 𝜀

• Usually, we insist that (L) ≠ 0, θ(L) ≠ 0 & that the polynomials 
(L), θ(L) have no common factors. This implies it is not a lower order 
ARMA model.
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• For an ARMA(1,1) we have:.
𝑦 = 𝜇 + 𝜙 𝑦 + θ  𝜀 + 𝜀 , 𝜀 ~ WN.

• Moments: (𝜇 = 0)
E[𝑦 ] = 𝜇 / (1 𝜙 ) = 0 (assuming 𝜙 ≠ 1)

Var[𝑦 ] = σ2 (1 θ ) / (1  ϕ ) (assuming |𝜙 |< 1)

• Autocovariance function (𝜇 = 0)
γ 𝑘  = Cov[𝑦 ,  𝑦 ]

𝐸 𝜙  𝑦 θ  𝜀  𝜀  𝑦
𝜙  𝐸 𝑦  𝑦 θ  𝐸 𝜀  𝑦 𝐸 𝜀  𝑦

= 𝜙  γ 𝑘 1  θ  𝐸 𝜀  𝑦  𝐸 𝜀  𝑦

• Again, we have a recursive formula.
γ 𝑘  = 𝜙  γ 𝑘 1  θ  𝐸 𝜀  𝑦  𝐸 𝜀  𝑦

ARMA(1,1) – Stationarity & ACF

• We have a recursive formula:
γ 𝑘  𝜙1γ 𝑘 1 𝐸 𝜀  𝑦 θ  𝐸 𝜀  𝑦

For 𝑘 = 0,
γ 0 𝜙  γ 1 𝐸 𝜀  𝑦

2
θ

 
𝐸 𝜀   𝑦   

1    θ1
𝜙  γ 1  σ2  θ

 
𝐸 𝜀 𝜙1𝑦  𝜀   θ1𝜀

1  θ1
𝜙  γ 1 σ2 

θ  𝜙1 σ2 θ1σ2

For 𝑘 = 1, 
γ 1  𝜙1 

γ 0 𝐸 𝜀  𝑦 θ 𝐸 𝜀  𝑦

 𝜙1 
γ 0 θ  𝐸 𝜀  𝜙1𝑦 θ1𝜀 + 𝜀

 𝜙1 
γ 0 θ  γ 1

ARMA(1,1) – Stationarity & ACF
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• γ 𝑘  𝜙1γ 𝑘 1 𝐸 𝜀  𝑦 θ  𝐸 𝜀  𝑦

For 𝑘 = 2, 
γ 2  𝜙1 

γ 1 𝐸 𝜀  𝑦 θ  𝐸 𝜀  𝑦
 𝜙1 γ 1 θ  𝐸 𝜀  𝜙1 𝑦 θ1 𝜀  + 𝜀
 𝜙1 γ 1

For 𝑘, 
γ 𝑘 𝜙  γ 𝑘 1

𝜙  γ 1 ,  𝑘 1 

 If |𝜙1|<1, exponential decay.
 

• Two equations for γ 0  and γ 1 :

γ 0 𝜙  γ 1 σ2 
θ  𝜙1 σ2 θ1 σ2

γ 1 𝜙  γ 0 θ  γ 1

ARMA(1,1) – Stationarity & ACF

• Two equations for γ 0  and γ 1 :

γ 0 𝜙  γ 1 σ2 θ  𝜙1 σ2 θ1 σ2

γ 1 𝜙  γ 0 θ  γ 1

Solving for γ 0 & γ 1 :

γ 0 σ2   θ    θ
  

γ 1 σ2   
 
θ

 
∗  θ

  

⋮
γ 𝑘 𝜙  γ 1 ,  𝑘 1  If  |𝜙1|<1, exponential decay.

Note: If  stationary, ARMA(1,1) & AR(1) show exponential decay. 
Difficult to distinguish one from the other through autocovariances.

ARMA(1,1) – Stationarity & ACF
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Example: Common factors. 
Suppose we have the following ARMA(2, 3) model

 𝐿 𝑦 𝜃 𝐿 𝜀
with

 𝐿 1 .6𝐿 .3𝐿
𝜃 𝐿 1 1.4𝐿 .9𝐿 .3𝐿 1 .6𝐿 .3𝐿 1 𝐿

This model simplifies to: 𝑦 1 𝐿 𝜀   an MA(1) process.

• We just simplify the common factors and keep the simpler 
representation.

ARMA Process – Common Factors

• AR Representation: Π 𝐿 𝑦 𝜇 𝜀 ⇒ Π 𝐿


• Pure MA Representation: 𝑦 𝜇 Ψ 𝐿 𝜀 ⇒ Ψ 𝐿 

• Special ARMA(𝑝, 𝑞) cases: – 𝑝 = 0: MA(𝑞)
– 𝑞 = 0: AR(𝑝).

ARMA Process – Representation
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Theorem: If  (L) and θ(L) have no common factors, a (unique) 
stationary solution to   𝐿 𝑦 𝜃 𝐿 𝜀 exists if  and only if

𝑧 1 ⇒ 𝑧 1   𝑧   𝑧 . . .   𝑧 0. 

This ARMA(𝑝, 𝑞) model is causal if  and only if  
|𝑧| 1 ⇒ 𝑧 1  𝑧  𝑧 . . .   𝑧 0.

This ARMA(𝑝, 𝑞) model is invertible if  and only if

|𝑧| 1 ⇒ 𝜃 𝑧 1 𝜃 𝑧 𝜃 𝑧 . . . 𝜃 𝑧 0.

Note: Real data cannot be exactly modeled using a finite number of  
parameters. We choose 𝑝, 𝑞 to create a good approximated model.

ARMA: Stationarity, Causality and Invertibility

• We defined the ARMA(𝑝, 𝑞) model:
𝜙 𝐿 𝑦 𝜇 𝜃 𝐿 𝜀   

The mean does not affect the order of  the ARMA. Then, if  𝜇 0 , we 
demean the data: 𝑥 𝑦 𝜇.

Then, 𝜙 𝐿  𝑥 𝜃 𝐿  𝜀   𝑥 is a demeaned ARMA process. 

• For the rest of  the lecture, we will study:
- Identification of  𝑝, 𝑞.
- Estimation of  ARMA(𝑝, 𝑞)

ARMA Process
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• We define the autocovariance function: 𝛾 𝑡 𝑗 𝐸 𝑦  𝑦

• For an AR(𝑝) process, WLOG with μ=0 (or demeaned 𝑦 ), we get:

𝛾 𝑡 𝑗 𝐸 𝜙  𝑦 𝑦 𝜙 𝑦 𝑦 . . . . 𝜙 𝑦 𝑦 𝜀 𝑦
    𝜙  𝛾 𝑗 1 𝜙 𝛾 𝑗 2 . . . . 𝜙 𝛾 𝑗 𝑝

• The autocovariances, 𝛾 𝑡 𝑗 , determine a system of  equations:

𝛾 0 𝐸 𝑦 ,𝑦 𝜙  𝛾 1 𝜙  𝛾 2 𝜙  𝛾 3  . . . .  𝜙  𝛾 𝑝 𝜎
𝛾 1 𝐸 𝑦 ,𝑦 𝜙  𝛾 0 𝜙  𝛾 1 𝜙  𝛾 2  . . . .  𝜙  𝛾 𝑝 1
𝛾 2 𝐸 𝑦 ,𝑦 𝜙  𝛾 1 𝜙  𝛾 0 𝜙  𝛾 1  . . . .  𝜙  𝛾 𝑝 2
⋮    ⋮    ⋮    ⋮    ⋮    ⋮

Autocovariance Function (Again)  

• The 𝑝x𝑝 system of  equations:

𝛾 1 𝐸 𝑦 ,𝑦 𝜙 𝛾 0 𝜙 𝛾 1 𝜙 𝛾 2  . . . 𝜙 𝛾 𝑝 1
𝛾 2 𝐸 𝑦 ,𝑦 𝜙 𝛾 1 𝜙 𝛾 0 𝜙 𝛾 1  . . . 𝜙 𝛾 𝑝 2
𝛾 3 𝐸 𝑦 ,𝑦 𝜙 𝛾 2 𝜙 𝛾 1 𝜙 𝛾 0  . . . 𝜙 𝛾 𝑝 3
⋮    ⋮    ⋮    ⋮    ⋮    ⋮ 

Using linear algebra, we write the system as:  γ = Γ 𝜙

where

Γ = 

𝛾 0 𝛾 1 ⋯ 𝛾 𝑝 1
𝛾 1 𝛾 0 ⋯ 𝛾 𝑝 2
⋮ ⋮ ⋮ ⋮

𝛾 𝑝 1 𝛾 𝑝 2 ⋯ 𝛾 0

a 𝑝x𝑝 matrix

𝜙 is the 𝑝x1 vector of  AR(𝑝) coefficients
γ is the 𝑝x1 vector of  𝛾 𝑘 autocovariances.

Autocovariance Function (Again)  
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• Now, we define the autocorrelation function (ACF):

𝜌 𝑘
𝛾 𝑘 )

γ(0)

covariance at lag 𝑘
variance

The ACF lies between -1 and +1, with 𝜌 0 1.

• Dividing the autocovariance system by γ(0), we get: 

Or using linear algebra: Ρ 𝜙 = ρ

• These are Yule-Walker equations, which can be solved numerically.

Autocorrelation Function (ACF)

𝜌 0 𝜌 1 ⋯ 𝜌 𝑝 1
𝜌 1 𝜌 0 ⋯ 𝜌 𝑝 2
⋮ ⋮ ⋯ ⋮

𝜌 𝑝 1 𝜌 𝑝 2 ⋯ 𝜌 0

𝜙
𝜙
⋮
𝜙

𝜌 1
𝜌 2
⋮

𝜌 𝑝

• Estimation:  
Easy: Use sample moments to estimate γ(k) and plug in formula:

𝑟 𝜌
∑ 𝑌 𝑌 𝑌 𝑌

∑ 𝑌 𝑌

Then, we plug the 𝜌  in the Yule-Walker equations and solve for 𝝓:

 Ρ 𝜙 =  ρ

• The sample correlogram is the plot of  the ACF against k. As the ACF 
lies between -1 and +1, the correlogram also lies between these values.

:

ACF – Estimation & Correlogram
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• Distribution: 
For a linear, stationary process, with large T, the distribution of  the 
sample ACF, 𝑟 𝜌 is approximately normal with:

r 
     

 N(ρ, V/𝑇), V is the covariance matrix.

Under H0: ρ = 0 for all 𝑘 > 1.

r 
     

 N(0, I/𝑇)  Var[r(k)] = 1/𝑇.

• Under H0, the SE = 1/ 𝑇  95% C.I.: 0 1.96 * 𝟏/ 𝑻

Then, for a white noise sequence, approximately 95% of  the sample 
ACFs should be within the above C.I. limits. 

Note: The SE = 1/ 𝑇 are sometimes referred as Bartlett’s SE. 

ACF – Distribution

Example: Sample ACF for an AR(1) process: 
Under stationarity:

ρ 𝑘    𝜙 𝑘 = 0, 1, 2, …

If  | 𝜙1 |< 1, the ACF will show exponential decay.

• Suppose 𝜙1 = 0.4. Then,

ρ 0 = 1
ρ 1 = 0.4
ρ 2  = 0.42 = 0.16
ρ 3  = 0.43 = 0.064
ρ 4  = 0.44 = 0.0256

⋮ 
ρ 𝑘 0.4𝒌

ACF – AR(1)
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Example (continuation): ρ 𝑘  0.4

We simulate an AR(1) series with with 𝜙1 = 0.4, using the R function 
arima.sim.
sim_ar1_04 <- arima.sim(list(order=c(1,0,0), ar=0.4), n=200) #simulate AR(1) series
plot(sim_ar1_04, ylab="Simulated Series", main=(expression(AR(1):~~~phi==0.4)))
acf(sim_ar1_04) #plot ACF for sim series

ACF – AR(1)

Example (continuation): Plot of  simulated series and ACF

ACF – AR(1)
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Example (continuation): Sample ACF for an MA(1) process.
ρ 0 = 1

ρ 1  θ1/(1+ θ ) for 𝑘 = 1, -1

ρ 𝑘 = 0 for |𝑘| > 1.

After k = 1 –i.e., one lag– the ACF dies out.

Suppose θ1 = 0.5. Then,
ρ 0 = 1
ρ 1 = 0.4
ρ 𝑘 = 0 for |𝑘| > 1.

We simulate an MA(1) series with 𝜙1=0.4
sim_ma1_05 <- arima.sim(list(order=c(0,0,1), ma=0.5), n=200) #simulate MA(1) series
plot(sim_ma1_05, ylab="Simulated Series", main=(expression(MA(1):~~~theta==0.5)))
acf(sim_ma1_05) #plot ACF for sim series

ACF – MA(1)

Example (continuation): Plot of  simulated series and ACF

ACF – MA(1)
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Example: Sample ACF for an MA(𝑞) process:

𝑦 𝜇 𝜀 𝜃  𝜀 𝜃  𝜀   . . .  𝜃  𝜀

𝜌 𝑘
∑

    …  
  𝑘 𝑞

0        otherwise. 

For different 𝑘’s:
ρ 0 = 1

ρ 1 = 
    

    

ρ 2 = 
   

    

ρ 3 = 
 

    

ρ 𝑘 = 0 for |𝑘| > 3.

ACF – MA(𝒒)

Example (continuation): 
𝑦 𝜇 𝜀 𝜃  𝜀 𝜃  𝜀 𝜃  𝜀

Suppose 𝜃 = 0.5; 𝜃 = 0.4; 𝜃 = 0.2. Then,

ρ 0 = 1

ρ 1 = 
    

    
= 

0.5+0.4∗0.5+0.1∗0.4
1 + 0.52 

+ 0.42+ 0.12 = 0.5211

ρ 2 = 
   

    
= 

0.4 + 0.1∗0.5
1 + 0.52 

+ 0.42 
+ 0.12 = 0.3169

ρ 3 = 
 

    
= 

0.1
1 + 0.52 

+ 0.42+ 0.12 = 0.0704

ρ 𝑘 = 𝟎 for |𝑘| > 3.

ACF – MA(q=3)
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Example (continuation): Plot of  simulated series and ACF
> sim_ma3_05 <- arima.sim(list(order=c(0,0,3), ma=c(0.5, 0.4, 0.1)), n=200)  # sim MA(3)

ACF – MA(q=3)

Example: Sample ACF for an ARMA(1,1) process:
𝑦 𝜙1𝑦 𝜀 𝜃 𝜀

• From the autocovariances, we get

γ 0 σ2 1 θ1 2𝜙1 θ1

1 𝜙1 

γ 1 σ2 1 𝜙1 θ1 ∗ 𝜙1  θ1

1 𝜙1 

γ 𝑘 𝜙1γ 𝑘 1 𝜙1 σ2 1 𝜙1 θ1 ∗ 𝜙1  θ1

1 𝜙1 

• Then,

𝜌 𝑘 𝜙1
    ∗ 

   

 If  |𝜙1|<1, exponential decay. Similar pattern to AR(1).

ACF – ARMA(1,1)
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Example (continuation): Sample ACF for an ARMA(1,1) process:
𝑦 𝜙1𝑦 𝜀 𝜃 𝜀

The ACF for an ARMA(1,1):

ρ 𝑘 𝜙1
    ∗ 

   

• Suppose 𝜙1 
= 0.4, θ1 = 0.5. Then,

ρ 0 = 1

ρ 1   .  ∗ .
 
∗ .   .

  0 .  ∗ . ∗ .
= 0.6545 

ρ 2 0.4 *  
  .  ∗ .  ∗ .   .

  0 .  ∗ . ∗ .
= 0.2618

ρ 3 0.42 *  
  .  ∗ .  ∗ .   .

  0 .  ∗ . ∗ .
= 0.0233 

⋮ 

ρ 𝑘 0.4k-1 *  
  .  ∗ .  ∗ .   .

  0 .  ∗ . ∗ .

ACF – ARMA(1,1)

Example (continuation): Plot of  simulated series and ACF
> sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)  #sim ARMA(1,1)

ACF – ARMA(1,1)
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Example: US Monthly Returns (1871 – 2020, T=1,795)
Sh_da <- read.csv("C://Financial Econometrics/Shiller_2020data.csv", head=TRUE, 
sep=",")
x_P <- Sh_da$P
x_D <- Sh_da$D
T <- length(x_P)
lr_p <- log(x_P[-1]/x_P[-T])
lr_d <- log(x_D[-1]/x_D[-T])
acf_p <- acf(lr_p) # acf: R function that estimates the ACF
> acf_p
Autocorrelations of  series ‘lr_p’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.279 0.004 -0.043  0.017  0.074 0.039  0.039  0.044  0.035  0.034  0.022 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.010 -0.059 -0.058 -0.056  0.009  0.033  0.047 -0.040 -0.087 -0.090 -0.029  0.005 

24 25 26  27  28     29   30  31     32 
0.003 -0.013 -0.058 -0.018 -0.005  0.026  0.011  0.000  0.020

SE(rk) = 1/sqrt(T) = 1/sqrt(1,795) = .0236.  95% C.I.: 2* 0.0236

ACF – Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020)

ACF – Example: U.S. Stock Returns

Note: With the exception of  first correlation, correlations are small. 
However, many are significant, not strange result when T is large. 
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Example: US Monthly Changes in Dividends (1871 – 2020, 
T=1,795)

acf_d <- acf(lr_d)
> acf_d
Autocorrelations of  series ‘lr_d’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.462  0.516  0.432  0.444  0.326  0.442  0.288  0.283  0.265  0.202  0.168

12  13     14  15     16 17 18 19 20 21  22     23 
0.142 0.100  0.122  0.123  0.085  0.045  0.026 -0.013  0.001 -0.029 -0.049 -0.077    

24 25 26  27  28     29   30  31     32 
-0.038 -0.100 -0.095 -0.055 -0.081 -0.092 -0.034 -0.063 -0.089

High correlations and significant even after 32 months! 

ACF – Example: U.S. Stock Dividends

Example (continuation): Correlogram for US Monthly Changes in 
Dividends (1871 – 2020)

Note: Correlations are positive for almost 1.5 years, then become 
negative.

ACF – Example: U.S. Stock Dividends
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• The application of  the LB test to the ACF is straightforward. 

Recall that we use the the Ljung-Box (LB) statistic to test H0: ρ1= 
ρ2=...= ρm= 0. Under H0, 

𝐿𝐵 𝑇 𝑇 2 ∑ → χ

Example: LB test with 20 lags for US Monthly Returns and 
Changes in Dividends (1871 – 2020)
> Box.test(lr_p, lag=20, type= "Ljung-Box")

data:  lr_p
X-squared = 208.02, df = 20, p-value < 2.2e-16  Reject H0 at 5% level. 

> Box.test(lr_d, lag=20, type= "Ljung-Box")

data:  lr_d
X-squared = 2762.7, df = 20, p-value < 2.2e-16  Reject H0 at 5% level.

Conclusion: We found joint significance of  first 20 autocorrelations.

ACF – Joint Significance Tests

• The ACF gives us a lot of  information about the order of  the 
dependence when the series we analyze follows a MA process: The 
ACF is zero after 𝑞 lags for an MA(𝑞) process.

• If  the series we analyze, however, follows an ARMA or AR, the ACF 
alone tells us little about the orders of  dependence: We only observe 
an exponential decay. 

• We introduce a new function that behaves like the ACF of  MA 
models, but for AR models, namely, the partial autocorrelation 
function (PACF). 

• The PACF is similar to the ACF. It measures correlation between 
observations that are k time periods apart, after controlling for 
correlations at intermediate lags.

Partial ACF (PACF)
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Intuition: Suppose we have an AR(1):
𝑦 𝜙1𝑦 𝜀 .

Then,
γ 2  = 𝜙1

2 γ 0  

The correlation between 𝑦 and 𝑦 is not zero, as it would be for an 
MA(1), because 𝑦 is dependent on 𝑦 through 𝑦 . 

Suppose we break this chain of  dependence by removing (“partialing
out”) the effect 𝑦 . Then, we consider the correlation between [𝑦 –
𝜙1𝑦 ] & [𝑦 – 𝜙1𝑦 ] –i.e, the correlation between 𝑦 & 𝑦
with the linear dependence of  each on 𝑦 removed:

γ 2  = Cov(𝑦 – 𝜙1𝑦 , 𝑦 – 𝜙1𝑦 ) = Cov(𝜀 , 𝑦 – 𝜙1 𝑦 ) =0

Similarly,
γ 𝑘  = Cov(𝜀 , 𝑦 – 𝜙1 𝑦 ) = 0 for all 𝑘 > 1.

Partial ACF

Definition: The PACF of   a stationary time series {𝑦 } is

𝜙 = Corr(𝑦 ,  𝑦 ) = ρ(1)

𝜙 = Corr(𝑦 – E[𝑦 |𝐼 ], 𝑦 – E[𝑦 |𝐼 ]) for ℎ = 2, 3, ....

This removes the linear effects of  𝑦 , ..., 𝑦 .

• The PACF 𝜙 is also the last coefficient in the best linear 
prediction of  𝑦 given 𝑦 ,𝑦 , ..., 𝑦 . ( OLS!)

• Estimation by Yule-Walker equation, using sample estimates: 
𝝓 𝑹 𝜸 𝑘  a recursive system,

where 𝜙h = (𝜙 , 𝜙 , ..., 𝜙 ) and 𝑹 is the (ℎxℎ) correlation matrix.

• OLS is used. Also, a recursive algorithm by Durbin-Levinson.

Partial ACF
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Example: AR(𝑝) process:

Then, 𝜙 =𝜙 if  1≤ ℎ ≤ 𝑝
= 0 otherwise

 After the 𝑝th PACF, all remaining PACF are 0 for AR(𝑝) processes.

• The plot of  the PACF is called the partial correlogram.

Partial ACF – AR(p)

𝑦 𝜇 𝜙1𝑦 𝜙 𝑦   . . .  𝜙 𝑦 𝜀
𝐸 𝑦 𝐼 𝜇 𝜙 𝑦 𝜙 𝑦   . . .  𝜙 𝑦
𝐸 𝑦 𝐼 𝜇 𝜙 𝑦 𝜙 𝑦   . . .  𝜙 𝑦

Example: We simulate an AR(2) process:
𝑦 𝜇 𝜙1𝑦 𝜙 𝑦  𝜀

sim_ar22 <- arima.sim(list(order=c(1,0,0), ar=c(0.5, 0.3)), n=200) #simulate AR(2) series
plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3)))) 

pacf_ar22 <- pacf(sim_ar22) 

Print PACF
> pacf_ar2

1 2 3 4 5 6 7 8  9    10     11 
0.558  0.286  0.038  0.103 -0.010  0.009  0.111  0.060 -0.021 -0.076  0.016

12  13     14  15     16 17 18 19 20 21  22      23 
-0.086 -0.139  0.100  0.061 -0.156  0.078 -0.103  0.043 -0.075  0.104  0.024  0.061

SE(rk) ≈ 1/sqrt(200) = .0707.  95% C.I.: 2* 0.0707

Partial ACF – AR(p=2)
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Example (continuation): Plot of  simulated series and PACF
> plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3))))
> pacf_ar2 <- pacf(sim_ar22) 

Partial ACF – AR(p=2)

Example (continuation): 
Note: The PACF can be calculated by ℎ regressions, each one with ℎ
lags. The ℎℎ coefficient is the ℎ th order PACF. Using ar R function:

> ar(sim_ar2, order.max=1, method = “ols")

Coefficients:
1  

0.5586

Intercept: -0.008403 (0.0761) 

Order selected 1  sigma^2 estimated as  1.152

> ar(sim_ar2, order.max=2, method = "ols")

Coefficients:
1       2  

0.3974  0.2869

Intercept: -0.009847 (0.07326) 

Order selected 2  sigma^2 estimated as  1.063

Partial ACF – AR(p=2)
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• Following the analogy that PACF for AR processes behaves like an 
ACF for MA processes, we will see exponential decay (“tails off”) in the 
partial correlogram for MA process. Similar pattern will also occur for 
ARMA(p, q) process. 

Example: We simulate an MA(1) process with 𝜃  = 0.5.
sim_ma1 <- arima.sim(list(order=c(0,0,1), ma = 0.5), n=200)  
> pacf(sim_ma1)

Partial ACF – MA(q)

• For an ARMA processes, we will see exponential decay (“tails off”) in 
the partial correlogram. 

Example: We simulate an ARMA(1) process with 𝜙1= 0.4 & 𝜃 = 0.5.
sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)  
> pacf(sim_arma11)

Partial ACF – ARMA(p,q)
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Example: US Monthly Returns (1871 – 2020, T=1,795)
pacf_p <- acf(lr_p) # pacf: R function that estimates the PACF
> pacf_p

Partial autocorrelations of  series ‘lr_p’, by lag

1 2 3 4 5 6 7 8  9    10     11 
0.278 -0.081 -0.026  0.041  0.058 0.002  0.038  0.032  0.016  0.022  0.009      

12 13     14  15     16 17 18 19 20 21  22     23 
-0.023 -0.057 -0.032 -0.045  0.027  0.017  0.037 -0.059 -0.051 -0.050  0.005    24 

23 24 25 26  27  28     29   30  31     32 
0.006  0.004 -0.005 -0.051  0.014 -0.007  0.037  0.008  0.018  0.023 

SE(rk) = 1/sqrt(1,795) = .0236.  95% C.I.: 2* 0.0236

PACF – Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020)

> pacf(lr_p)

PACF – Example: U.S. Stock Returns

Note: With the exception of  the first partial correlation, partial 
correlations are small, though, again, some are significant.
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Example: US Monthly Stock Dividends (1871 – 2020, T=1,795)

pacf_d <- pacf(lr_d)
> pacf_d

Partial autocorrelations of  series ‘lr_d’, by lag

1 2 3 4 5 6 7 8  9    10     11 
0.462  0.385  0.160  0.150 -0.033  0.189 -0.054 -0.056  0.027 -0.082 -0.019 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.063 -0.035 0.067  0.043  0.010 -0.057 -0.046 -0.043 -0.008 -0.031 -0.039 

24 25 26  27  28     29   30  31     32 
-0.041  0.050 -0.036 -0.030  0.091 0.006 -0.017  0.044 -0.002 -0.042 

Higher partial correlations than for stock returns.  

PACF – Example: U.S. Stock Dividends

• Correlation approach.
Basic tools: sample ACF and sample PACF.

- ACF identifies order of  MA: Non-zero at lag q; zero for lags > q.
- PACF identifies order of  AR: Non-zero at lag p; zero for lags  >p.
- All other cases, try ARMA(p, q) with p > 0 and q > 0.

Summary: For p>0 and q>0.

ARIMA Models: Identification – Correlations

AR(p) MA(q) ARMA(p, q)

ACF Tails off 0 after lag q Tails off

PACF 0 after lag p Tails off Tails off

Note: Ideally, “Tails off ” is exponential decay. In practice, in these 
cases, we may see a lot of  non-zero values for the ACF and PACF.
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89

ARMA Models: Identification – AR(1)

90

ARMA Models: Identification – AR(2)
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91

ARMA Models: Identification – MA(1)

92

ARMA Models: Identification – MA(2)


