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Lecture 8-b
Time Series: 

Stationarity, AR(p) & MA(q)

Brooks (4th edition): Chapter 6

© R. Susmel, 2020 (for private use, not to be posted/shared online).

Review: Times Series

• A time series 𝑦௧ is a process observed in sequence over time, 

𝑡 = 1, ...., 𝑇  𝑌௧ = {𝑦ଵ, 𝑦ଶ , 𝑦ଷ, ..., 𝑦்}.

• The main feature of time series: dependence. 

• With dependent observations, we need new assumptions and tools 
are needed: stationarity, ergodicity, & CLT for dependenet
obsevations (MDS CLT).

• Roughly speaking, stationarity requires constant moments for 𝑌௧; 
ergodicity requires that the dependence is short-lived, eventually 𝑦௧
has only a small influence on 𝑦௧ା௞, when 𝑘 is relatively large.
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Example: Assume ε௧ ~ WN(0, σ2).
𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧. (AR(1) process)

•  Mean
E[ 𝑦௧ ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Var[𝑦௧] = γ 0 ൌ  𝜙2 Var[𝑦௧ିଵ] + Var[ε௧] 
γሺ0ሻ = σ2/(1 - 𝜙2) (assuming | 𝜙 |< 1)

•  Covariance
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

 If  |𝜙 |< 1, AR(1) process is covariance stationary.

• Auto-correlation function (ACF): ρ 𝑘 ൌ ஓሺ௞ሻ 
ஓ(0) ൌ 𝜙௞

Review: Stationarity – Example 

Example: Assume ε௧ ~ WN(0, σ2).

𝑦௧ = μ ൅  𝑦௧ିଵ + ε௧ (Random Walk with drift process)

Doing backward substitution:
 𝑦௧ = μ  𝑡 + ∑ ε௧ି௝

௧ିଵ
௝ୀ଴ + 𝑦଴

•  Mean & Variance
E[𝑦௧] = μ  𝑡 + 𝑦଴
Var[𝑦௧] = γሺ0ሻ = ∑ σ2௧ିଵ

௝ୀ଴ = σ2 𝑡

 the RW process is non-stationary; that is, moments are time 
dependent.

Review: Non-Stationarity – Example 
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• Stationarity is an invariant property: The statistical characteristics of  
the time series do not vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the 
variance in two equal lengths time intervals will be more or less the 
same.

• In the long run, say 100-200 years, the stationarity assumption may 
not be realistic. 

• In general, time series analysis is done under the stationarity 
assumption.

Review: Stationarity: Remarks

• We want to estimate the mean of  the process {𝑍௧}, μ(𝑍௧). But, we 
need to distinguishing between ensemble average (with 𝑚 cross section 
observations) and time average (with T time series observations):

- Ensemble Average: 𝑧̿ ൌ
∑ ௓೔
೘
೔సభ

௠

- Time Series Average: 𝑧 ൌ
∑ ௓೟
೅
೟సభ

்

Q: Which estimator is the most appropriate? 
A: Ensemble Average, 𝑧̿. But, we cannot compute it for a time series. 

• The Ergodic Theorem tells us when 𝑧 can be used instead of  𝑧̿.

Theorem: A sufficient condition for ergodicity for the mean: 
ρ௞ → 0   as   𝑘 ൌ 𝑡௜ െ 𝑡௝ → ∞

We need the correlation between (𝑦௧೔ ,𝑦௧ೕ) to decrease as they grow 
further apart in time.

Review: Ergodicity
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• Invertibility allows us to convert an MA process into an AR process. 
AR processes are easier to use and estimate.

Example: Suppose we have an MA(1) process:

𝑦௧ =  𝜇 + θଵ ε௧ିଵ+ ε௧ = 𝜇 + θሺLሻε௧ – θሺLሻ = (1 ൅ θ1L)

Now, we multiply 𝜃 𝐿 ିଵon both sides of  the MA process
𝑦௧ = 𝜇 + θሺLሻ 𝜀௧.

 𝜃 𝐿 ିଵ 𝑦௧ = 𝜃 𝐿 ିଵ𝜇 + 𝜀௧ = 𝜇* + 𝜀௧

Then, we get an AR(∞):
𝑦௧ ൌ 𝜇∗ ൅ θ1𝑦௧ିଵ െ θଵ

ଶ 𝑦௧ିଶ ൅ θଵ
ଷ  𝑦௧ିଷെ θଵ

ସ𝑦௧ିସ ൅ ⋯൅ 𝜀௧

If  the resulting AR(∞) process is non-explosive, then, the MA(1) is 
invertible. The invertibility condition in this case: |θଵ| ൏ 1.

Review: Invertibility

• An MA process models Et[𝑦௧|𝐼௧ିଵ] with lagged error terms. An 
MA(𝑞) model involves 𝑞 lags of  𝜀௧. 

• We keep 𝜀௧ ~ WN(0, σ2)

Example: A linear MA(𝑞) model: 
𝑦௧ ൌ μ + θଵ 𝜀௧ିଵ + θଶ 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤ + 𝜀௧ = 𝜇 + θሺLሻ 𝜀௧,

where
𝜃 𝐿 = 1 ൅ θଵ L ൅ θଶ Lଶ ൅ θଶ Lଷ ൅ …൅ θ௤  L௤

• In time series, the constant does not affect the properties of  AR and 
MA process. Thus, in this situation we say “without loss of  
generalization”, we assume 𝜇 = 0.

Review: Moving Average Process  
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• Q: Is MA(𝑞) stationary? Check the moments (assume 𝜇 = 0).
𝑦௧ = 𝜀௧ ൅ θଵ 𝜀௧ିଵ + θ2 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤

•  Mean
E[𝑦௧] = E[𝜀௧] + θଵ E[𝜀௧ିଵ] + θ2 E[𝜀௧ିଶ] + ... + θ௤ E[𝜀௧ି௤] = 0

•  Variance
Var[𝑦௧] = Var[𝜀௧] + θଵଶ Var[𝜀௧ିଵ] + θଶଶ Var[𝜀௧ିଶ] + ... + θ௤ଶ  Var[𝜀௧ି௤] 

= (1 + θଵ
ଶ  + θଶ

ଶ  + ... + θ௤ଶ ) σ2.

•  Covariance
For the 𝑘 autocovariance:

γሺ𝑘ሻ = σ2 ∑ θ௝  θ௝ି௞
௤
௝ୀ௞ for |𝑘| ൑ q ሺθ଴ ൌ 1ሻ

γሺ𝑘ሻ = 0 for |𝑘| ൐ q

Remark: After lag q, the autocovariances (& ACFs) are 0.

Review: MA(𝒒) Process– Stationarity  

• Q: Is MA(1) stationary? Check the moments (assume 𝜇 = 0).
𝑦௧ = 𝜀௧ ൅ θଵ 𝜀௧ିଵ

•  Mean
E[𝑦௧] = E[𝜀௧] + θଵ E[𝜀௧ିଵ] = 0

•  Variance
Var[𝑦௧] = Var[𝜀௧] + θଵଶ Var[𝜀௧ିଵ]

= (1 + θଵ
ଶ ) σ2.

•  Covariance
For the 𝑘 autocovariance:

γሺ𝑘 ൌ 1ሻ = σ2 ∑ θ௝  θ௝ି௞
ଵ
௝ୀ௞ = σ2 θଵ for |𝑘| ൑ 1 ሺθ଴ ൌ 1ሻ

γሺ𝑘ሻ = 0 for |𝑘| ൐ 1

Remark: After lag 1, the autocovariances (& ACFs) are 0.

Review: MA(𝟏) Process– Stationarity  
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• It is easy to verify that the sums ∑ θ௝θ௝ି௞
௤
௝ୀ௞ are finite. Then, mean, 

variance and covariance are constant. 
 MA(q) is always stationary.

• Problem: It can be shown that for 𝜀௧ with same distribution (say, 
normal) the autocovariances are non-unique. Then, we select the 
invertible model, with an AR(∞) (non-explosive) representation.

Technical note: An invertible MA(q) is typically required to have roots 
of  the lag polynomial equation 𝜃 𝑧 = 0 greater than one in absolute 
value (outside the unit circle). In the MA(1) case, we require|θ1|< 1

Review: Moving Average Process – Stationarity  

• Recall the autocorrelation function (ACF): 
ρሺ𝑘ሻ ൌ  γሺ𝑘ሻ/γሺ0ሻ

• Then, for an MA(𝑞) process, the ACF:

ρሺ𝑘ሻ = 
∑ θೕθೕషೖ೜
ೕసೖ

(1 + θభమ + θమమ + ... +θ೜మ) for |𝑘| ൑ q

ρሺ𝑘ሻ = 0 for |𝑘| ൐ q

Remark: After lag q , the ACF are 0 (contrast with AR(1) model).

Note: The ACF is usually shown in a plot. When we plot ρ 𝑘 against 
𝑘, we plot also ρ 0 = 1.

• The sample correlogram is the plot of  the ACF against 𝑘. As the 
ACF lies between -1 and +1, the correlogram also lies between these 
values.

Review: MA Process – ACF
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• Autocorrelations

ρ 0 ൌ  γሺ0ሻ/γሺ0ሻ = 1

ρ 1 ൌ  γሺ1ሻ/γሺ0ሻ = θଵ/(1+ θଵ2) 

ρሺ2ሻ ൌ  γሺ2ሻ/γሺ0ሻ = 0

⋮
ρሺ𝑘ሻ ൌ  γሺ𝑘ሻ/γሺ0ሻ = 0 (for 𝑘 > 1)

Note that |ρ 1 | ≤ 0.5. 

When θ1 = 0.5  ρ 1 = 0.4. (|θ1| < 1  invertible)
θ1 = -0.9  ρ 1 = -0.497238. (|θ1| < 1  invertible)
θ1 = 2  ρ 1 = 0.4. (|θ1| > 1 non-invertible)

Note: We have two processes, with the same ACF, we select θ1 = 0.5. 

Review: MA Process – ACF for MA(1)

Example: Below, we compute & plot the ACF for the simulated process.
𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ

sim_ma1_5 <- arima.sim(list(order=c(0,0,1), ma=0.5), n=100) 
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_5

Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.438 0.069  0.014  0.103  0.173  0.107  0.015 -0.080 -0.054  0.011 -0.006  0.041  0.000 

14 15 16 17 18 19  20 21 22 23 
-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021  0.110 

Review: MA(1) Process – ACF: Simulations 
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• MA processes are more complicated to estimate since we do not 
observe the errors, 𝜀௧’s: Direct estimation is impossible. 

• Two indirect ways:
(1) Using method of  moments (MM): We match observed 
moments and solved for the parameters. For example, for an MA(1):

ρ 1 ൌ  θ1/(1 + θଵ
ଶ)

𝑟ଵ ൌ
𝜃෠

ሺ1 ൅ 𝜃෠ଶሻ
 ⇒   𝜃෠ ൌ

1 േ 1 െ 4𝑟ଵ
ଶ

2𝑟ଵ

• A nonlinear solution and difficult to solve.

(2) Using AR() representation: For MA(1) & |θ|<1, find 𝑎∈(-1; 1)
𝜀௧ 𝑎  = 𝑦௧ + 𝑎 𝑦௧ିଵ + aଶ 𝑦௧ିଶ + aଷ 𝑦௧ିଷ + ….

and look (numerically) for the least-square estimator

θ෠ = arg minθ {S(𝒚; θ) = ∑ ε௧ሺ𝑎ሻ்
௧ୀଵ

ଶ
ሽ (a௧= θ1

௧ .)

Review: MA Process – Estimation 

Review: Autoregressive (AR) Process

• We model the conditional expectation of 𝑦௧, E௧[𝑦௧|𝐼௧ିଵ], as a 
function of its past history. 

• We keep 𝜀௧ ~ WN(0, σ2).

• The most common models are AR models. An AR(1) model 
involves a single lag, while an AR(𝑝) model involves 𝑝 lags. Then, the 
AR(𝑝) process is given by:

𝑦௧ = 𝜇 + 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ + ... + 𝜙௣ 𝑦௧ି௣ + 𝜀௧, 𝜀௧ ~ WN.

Using the lag operator we write the AR(p) process: 𝜙(L) 𝑦௧ = 𝜀௧

with 𝜙(L) = 1 െ 𝜙ଵ L െ 𝜙ଶ L2 െ …െ 𝜙௣ L
௣
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• We can analyze the stability from the point of view of the roots of 
the lag polynomial. For the AR(1) process

𝜙ሺ𝑧ሻ = 1 െ 𝜙ଵ 𝑧 = 0  |𝑧| = 
ଵ

|థ1|
> 1 

That is, the AR(1) process is stable if the root of 𝜙(𝑧) is greater than 
one (also said as “the roots lie outside the unit circle”).

This result generalizes to AR(𝑝) process. 

Review: AR Process – AR(1): Stability

Example: We simulate and plot three AR(1) processes, with standard 
normal 𝜀௧ -i.e., 𝜀௧ ~ N(0, σ2 = 1): 

𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧ (𝜙ଵ = 0.5)
𝑦௧ = -0.9𝑦௧ିଵ + 𝜀௧ (𝜙ଵ = -0.9)
𝑦௧ = 2𝑦௧ିଵ + 𝜀௧ (𝜙ଵ = 2)

R script to plot 𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧ with 200 simulations
> plot(arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200), ylab="ACF",
main=(expression(AR(1)~~~phi==+.5)))

Review: AR(1) Process – Simulations 
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Example (continuation): 

Note: The process 𝜙ଵ > 0 is smoother than the ones with 𝜙ଵ< 0. 
The process with |𝜙ଵ| > 1, explodes!

Review: AR(1) Process – Simulations 

• An AR(1) model: 
𝑦௧ = 𝜙ଵ 𝑦௧ିଵ + 𝜀௧, 𝜀௧~ WN.

Last lecture, under the stationarity condition |𝜙1|< 1, we derived: 

• Moments

E[𝑦௧] = μ = 0 (assuming 𝜙ଵ≠ 1)

Var[𝑦௧] = γሺ0ሻ = σ2/(1 - 𝜙ଵ
ଶ) (assuming |𝜙ଵ|< 1)

γሺ𝑘ሻ = 𝜙ଵ
௞ γሺ0ሻ 

• We also derived the ACF:  

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

= 
థభ
ೖ ஓሺ଴ሻ  
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞

Remark: Assuming |𝜙ଵ|< 1, the ACF decays with 𝑘. 

Review: AR(1) Process – ACF
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• ACF for an AR(1) process: 

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

= 
థభ
ೖ ஓሺ଴ሻ  
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞

Note: The plot of  ρ 𝑘 against 𝑘, is called autocorrelogram.  We 
plot also ρ 0 , which is 1.

Note:
– when    0 < 𝜙ଵ< 1  All autocorrelations are positive.
– when  1 < 𝜙ଵ< 0  The sign of  ρ 𝑘 shows an alternating sign

pattern beginning with a negative value.
– when 𝜙ଵ = 1  AR(1) is non-stationary, ρ 𝑘 ൌ 1, for all 𝑘.

Present & past are always correlated!

Review: AR(1) Process – ACF

Example (continuation): Below, we compute and plot the ACF for 
the two stable simulated process.
1) 𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧
sim_ar1_5 <- arima.sim(list(order=c(1,0,0), ar=0.5), n=200) 
acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5)))
acf_ar1_5
Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.581  0.375  0.286  0.247  0.063 -0.013 -0.104 -0.109 -0.167 -0.126 -0.129 -0.076 -0.034 
14 15 16 17 18 19  20 21 22 23 
0.171 -0.124  0.061 -0.020 -0.004  0.029 -0.048  0.064 -0.075  0.095 

AR(1) Process – ACF: Simulations 
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Example (continuation): 
2) 𝑦௧ = - 0.9𝑦௧ିଵ + 𝜀௧
sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar=-0.9), n=200) acf_ar1_9 <-
acf(sim_ar1_9, main=(expression(AR(1)~~~phi==-.9)))
> acf_ar1_9
Autocorrelations of  series ‘sim_ma1_9’, by lag

0      1     2      3     4      5      6      7   8      9     10       11     12     13     
1.000 -0.908  0.823 -0.737  0.666 -0.603  0.548 -0.504  0.465 -0.430  0.400 -0.352  0.301 -0.232  
14 15 16 17     18     19     20     21     22     23 
0.171 -0.124  0.061 -0.020 -0.004  0.029 -0.048  0.064 -0.075  0.095 

AR(1) Process – ACF: Simulations 

Example 1: A process with |𝜙1|< 1 (actually, 0.065) is the monthly 
changes in the USD/GBP exchange rate. Below we plot its 
corresponding ACF:

AR(1) Process – Stationarity & ACF: Examples
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Example 1 (continuation): We plot the monthly changes in the 
USD/GBP exchange rate. Stationary series do not look smooth.

Q: Visually compute the mean in the 70s & in the 2010s. Do they look 
similar?

AR(1) Process – Stationarity & ACF: Examples

Example 2: A process with 𝜙1 ≈ 1 (actually, 0.99) is the nominal 
USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the 
time, but its decay is very slow (after 30 months, it is still .40 
correlated!): 

AR(1) Process – Stationarity & ACF: Examples
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Example 2 (continuation): We plot the exchange rate.  Non-
stationary series look smooth, smooth enough that you can spot 
trends. 

Q: Visually compute the mean in the 70s & in the 2010s. Do they look 
similar?

AR(1) Process – Stationarity & ACF: Examples

• An AR(2) model: 
𝑦௧ = 𝜇 + 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ + 𝜀௧, 𝜀௧ ~ WN.

• Moments: (𝜇 =0)
E[𝑦௧] = 

ఓ

(1ି థభି థమ)
= 0 (assuming 𝜙ଵ ൅ 𝜙ଶ ≠ 1)

Var[𝑦௧] = 
σ2

(ଵ ି థభ
మ ି థమ

మ) (assuming  𝜙ଵ
ଶ ൅ 𝜙ଶ

ଶ < 1)

• Autocovariance function 
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = E[(𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ + 𝜀௧) 𝑦௧ି௞]

= 𝜙ଵ E[𝑦௧ିଵ 𝑦௧ି௞] + 𝜙ଶ E[𝑦௧ିଶ 𝑦௧ି௞] + E[𝜀௧ 𝑦௧ି௞] 

= 𝜙ଵ γሺ𝑘 െ 1ሻ + 𝜙ଶ γሺ𝑘 െ 2ሻ + E[𝜀௧ 𝑦௧ି௞] 

We have a recursive formula.

AR(2) Process – Stationarity & ACF
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• Recursive formula: γሺ𝑘ሻ = 𝜙1 γሺ𝑘 െ 1ሻ + 𝜙ଶ γሺ𝑘 െ 2ሻ + E[𝜀௧ 𝑦௧ି௞] 

(𝑘=0) γሺ0ሻ = 𝜙ଵ γሺെ1ሻ + 𝜙ଶ γሺെ2ሻ + E[𝜀௧ 𝑦௧] 
= 𝜙ଵ γሺ1ሻ + 𝜙ଶ γሺ2ሻ + 𝜎ଶ

(𝑘=1) γሺ1ሻ = 𝜙ଵ γሺ0ሻ + 𝜙ଶ γሺ1ሻ + E[𝜀௧ 𝑦௧ିଵ] 
= 𝜙ଵ γሺ0ሻ + 𝜙ଶ γሺ1ሻ + 0

 γሺ1ሻ = [𝜙ଵ/(1 െ  𝜙ଶ)] γሺ0ሻ

(𝑘=2) γሺ2ሻ= 𝜙ଵ γሺ1ሻ + 𝜙ଶ γሺ0ሻ + E[𝜀௧ 𝑦௧ିଶ] 
= 𝜙ଵ γሺ1ሻ + 𝜙ଶ γሺ0ሻ + 0

 γሺ2ሻ = [𝜙ଵ
ଶ/(1 െ  𝜙ଶ) + 𝜙ଶ] γሺ0ሻ

Replacing γሺ1ሻ and γሺ2ሻ back to γሺ0ሻ:

γሺ0ሻ = [𝜙ଵ
ଶ/(1 - 𝜙ଶ)] γሺ0ሻ + [𝜙ଶ 𝜙ଵ

ଶ/(1 - 𝜙2) + 𝜙ଶ
ଶ] γሺ0ሻ + 𝜎ଶ

= 
ఙమ(1 − థ2)

(1 − థ2) ି థభ
మ (1 + థ2) + థమమ (1 − థ2)

 |𝜙2|<1

AR(2) Process – Stationarity & ACF

• Dividing the recursive formula for γሺ𝑘ሻ by γሺ0ሻ, we get the ACF:

ρሺ𝑘ሻ ൌ ஓሺ௞ሻ

ஓሺ଴ሻ
= 𝜙ଵ ρ 𝑘 െ 1 + 𝜙ଶ ρ 𝑘 െ 2  ൅

E[ఌ೟ ௬೟షೖ]
ஓሺ଴ሻ

(𝑘=0) ρሺ0ሻ = 1

(𝑘=1) ρሺ1ሻ = 𝜙ଵ/(1 െ 𝜙ଶ)

(𝑘=2) ρሺ2ሻ = 𝜙ଵ ρሺ1ሻ + 𝜙ଶ ρሺ0ሻ = 𝜙ଵ
ଶ/(1 െ 𝜙ଶ) + 𝜙ଶ

(𝑘=3) ρሺ3ሻ = 𝜙ଵ ρሺ2ሻ + 𝜙ଶ ρሺ1ሻ =
= 𝜙ଵ

ଷ/(1 െ 𝜙ଶ) + 𝜙ଵ 𝜙ଶ + 𝜙ଶ 𝜙ଵ/(1 െ 𝜙ଶ)

Remark: Again, we see exponential decay in the ACF.

From the work above, for stationarity, we need: 𝜙1 + 𝜙ଶ ≠ 1.
𝜙ଵ
ଶ + 𝜙ଶ

ଶ < 1.
|𝜙ଶ|< 1.

AR(2) Process – Stationarity & ACF
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Theorem: The linear AR(𝑝) process is strictly stationary and ergodic 
if  and only if the roots of 𝜙 𝐿 are |𝑧௝|>1 for all 𝑗, where |𝑧௝| is the 
modulus of  the complex number 𝑟௝ .

Note: If  one of  the 𝑧௝ ’s equals 1, (L) (& 𝑦௧) has a unit root –i.e., 
(1)=0. This is a special case of  non-stationarity.

• Recall  𝐿 ିଵ produces an infinite sum on the 𝜀௧ି௝ ’s. If  this sum 
does not explode, we say the process is stable. 

AR Process – Stationarity and Ergodicity

• We go back to the  general AR(𝑝). Define
𝒙௧ ൌ ሺ1 𝑦௧ିଵ 𝑦௧ିଶ. . . .𝑦௧ି௣ሻ   
𝛃 ൌ ሺ𝜇 𝜙ଵ 𝜙ଶ . . . . 𝜙௣ሻ

Then the model can be written as

𝑦௧ ൌ 𝒙௧′𝛃 ൅ 𝜀௧
• The OLS estimator is 𝐛 ൌ ሺ𝑿′𝑿ሻିଵ𝑿′𝒚

• Properties:

– Using the Ergodic Theorem, OLS estimator is consistent.

– Using the MDS CLT, OLS estimator is asymptotically normal.

 asymptotic inference is the same. 

• The asymptotic covariance matrix is estimated just as in the cross-
section case: The sandwich estimator.

AR Process – Estimation and Properties
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ARMA Process

• A combination of  AR(𝑝) and MA(𝑞) processes produces an 
ARMA(𝑝, 𝑞) process:

𝑦௧ ൌ 𝜇 ൅ ଵ 𝑦௧ିଵ ൅ ଶ 𝑦௧ିଶ ൅ . . .൅ ௣ 𝑦௧ି௣
൅ 𝜀௧ െ 𝜃ଵ 𝜀௧ିଵ െ 𝜃ଶ  𝜀௧ିଶ െ  …െ  𝜃௤ 𝜀௧ି௤

ൌ 𝜇 ൅ ∑ ௜
௣
௜ୀଵ 𝑦௧ି௜ െ ∑ 𝜃௜𝐿௜𝜀௧

௤
௜ୀଵ ൅ 𝜀௧

 ሺ𝐿ሻ𝑦௧ ൌ 𝜇 ൅ 𝜃ሺ𝐿ሻ𝜀௧

• Usually, we insist that ሺ𝐿ሻ ≠ 0, 𝜃ሺ𝐿ሻ ≠ 0 & that the polynomials 
ሺ𝐿ሻ, 𝜃ሺ𝐿ሻ have no common factors. This implies it is not a lower 
order ARMA model.

• Stationarity conditions: Since MA(𝑞) processes are always stationary, 
the stationarity conditions come from the AR(𝑝) part. Thus, we 
require the roots  𝐿 ൌ 0 to be outside the unit circle.

An ARMA(𝑝, 𝑞) model with common factors has a lower order 
ARMA model. That is, a lower 𝑝 and 𝑞.

Example: Common factors. 
Suppose we have the following ARMA(2, 3) model

𝑦௧ = 0.6 𝑦௧ିଵ - 0.3 𝑦௧ିଶ + 𝜀௧ െ 1.4 𝜀௧ିଵ ൅ 0.9 𝜀௧ିଶ + 0.3 𝜀௧ିଷ
with

ሺ𝐿ሻ ൌ 1 െ .6𝐿 ൅ .3𝐿ଶ

𝜃ሺ𝐿ሻ ൌ 1 െ 1.4𝐿 ൅ .9𝐿ଶ െ .3𝐿ଷ ൌ ሺ1 െ .6𝐿 ൅ .3𝐿ଶሻሺ1 െ 𝐿ሻ

This model simplifies to: 𝑦௧ ൌ ሺ1 െ 𝐿ሻ𝜀௧ 
ൌ 𝜀௧ െ 𝜀௧ିଵ  an MA(1) process.

• Simplify the common factors and keep the simpler representation.

ARMA Process – Common Factors
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• ARMA(𝑝, 𝑞) model:
ሺ𝐿ሻ 𝑦௧ െ 𝜇 ൌ 𝜃ሺ𝐿ሻ𝜀௧

• Cases:

Pure AR Representation: Π 𝐿 𝑦௧ െ 𝜇 ൌ 𝜀௧ ⇒ Π 𝐿 ൌ
೛ ௅

ఏ೜ ௅

Pure MA Representation: 𝑦௧ െ 𝜇 ൌ Ψ 𝐿 𝜀௧ ⇒ Ψ 𝐿 ൌ
ఏ೜ ௅

೛ ௅

Special cases: – 𝑝 = 0: MA(𝑞)
– 𝑞 = 0: AR(𝑝).

ARMA Process – Representation

• For an ARMA(1, 1) we have:.
𝑦௧ = 𝜇 + 𝜙ଵ 𝑦௧ିଵ+ θଵ 𝜀௧ିଵ + 𝜀௧, 𝜀௧ ~ WN.

• Moments: (𝜇 = 0)
E[𝑦௧] = 𝜇 / (1 െ 𝜙ଵ) = 0 (assuming 𝜙ଵ ≠ 1)

Var[𝑦௧] = σ2 (1 ൅ θଵ
ଶ ) / (1 െ ϕଵ

ଶ) (assuming |𝜙ଵ|< 1)

• Autocovariance function (𝜇 = 0)
γሺ𝑘ሻ = Cov[𝑦௧,  𝑦௧ି௞]

ൌ 𝐸 𝜙ଵ 𝑦௧ିଵ ൅ θଵ  𝜀௧ିଵ൅ 𝜀௧  𝑦௧ି௞
ൌ 𝜙ଵ 𝐸 𝑦௧ିଵ 𝑦௧ି௞ ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞
= 𝜙ଵ γ 𝑘 െ 1  ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞

• Again, we have a recursive formula.
γሺ𝑘ሻ = 𝜙ଵ γ 𝑘 െ 1  ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞

ARMA(1, 1) – Stationarity & ACF



RS – FEc - Lecture 8-b

19© R. Susmel, 2023 – Do not share/post online without written authorization.

• We have a recursive formula:
γ 𝑘 ൌ  𝜙1 

γ 𝑘 െ 1 ൅ 𝐸 𝜀௧ 𝑦௧ି௞ ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞

It can be shown, after a lot of  algebra: 

For 𝑘 = 0,
γ 0 ൌ 𝜙ଵ γ 1 ൅ σ2 

൅ θଵ 𝜙1 σ2 ൅ θ1σ2

For 𝑘 = 1, 
γ 1 ൌ  𝜙1 

γ 0 ൅ θଵ γ 1

For 𝑘 = 2, 
γ 2 ൌ  𝜙1 γ 1

For 𝑘, 
γ 𝑘 ൌ 𝜙ଵ

௞ିଵ γሺ1ሻ,  𝑘 ൐ 1 

 If |𝜙1|<1, exponential decay.

ARMA(1, 1) – Stationarity & ACF

• Two equations for γሺ0ሻ and γ 1 :

γ 0 ൌ 𝜙ଵ γ 1 ൅ σ2 ൅ θଵ 𝜙1 σ2 ൅ θ1 σ2

γ 1 ൌ 𝜙ଵ γ 0 ൅ θଵ γ 1

Solving for γ 0 & γ 1 :

γ 0 ൌ σ2 ଵ ା θభ
మ

 ା ଶ థభθభ
ଵ ି థభ

మ

γ 1 ൌ σ2 ଵ ା థଵ 
θభ

 
∗ థభା θభ

ଵ ି థభ
మ

⋮
γ 𝑘 ൌ 𝜙ଵ

௞ିଵ γሺ1ሻ,  𝑘 ൐ 1  If  |𝜙1|<1, exponential decay.

Note: If  stationary, ARMA(1,1) & AR(1) show exponential decay. 
Difficult to distinguish one from the other through autocovariances.

ARMA(1, 1) – Stationarity & ACF
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Theorem: If  (L) and θ(L) have no common factors, a (unique) 
stationary solution to  ሺ𝐿ሻ𝑦௧ ൌ 𝜃ሺ𝐿ሻ𝜀௧ exists if  and only if

𝑧 ൑ 1 ⇒ሺ𝑧ሻ ൌ 1 െ ଵ 𝑧 െ ଶ 𝑧ଶെ. . .െ௣  𝑧௣ ് 0. 

(i.e., roots of   𝑧 ൌ 0 need to be outside the unit circle, 𝑧 ൐ 1.)

This ARMA(𝑝, 𝑞) model is causal if  and only if  
|𝑧| ൑ 1 ⇒ሺ𝑧ሻ ൌ 1 െ ଵ𝑧 െ ଶ𝑧ଶെ. . .െ ௣𝑧௣ ് 0.

This ARMA(𝑝, 𝑞) model is invertible if  and only if

|𝑧| ൑ 1 ⇒ 𝜃ሺ𝑧ሻ ൌ 1 ൅ 𝜃ଵ𝑧 െ 𝜃ଶ𝑧ଶ൅. . .൅𝜃௣𝑧௣ ് 0.

Note: Real data cannot be exactly modeled using a finite number of  
parameters. We choose 𝑝, 𝑞 to create a good approximated model.

ARMA: Stationarity, Causality and Invertibility

• We defined the ARMA(𝑝, 𝑞) model:
𝜙ሺ𝐿ሻሺ𝑦௧ െ 𝜇ሻ ൌ 𝜃ሺ𝐿ሻ𝜀௧  

The mean does not affect the order of  the ARMA. Then, if  𝜇്0 , we 
demean the data: 𝑥௧ ൌ 𝑦௧ െ 𝜇.

Then, 𝜙 𝐿  𝑥௧ ൌ 𝜃 𝐿  𝜀௧   𝑥௧ is a demeaned ARMA process. 

• For the rest of  the lecture, we will study:
- Identification of  𝑝, 𝑞.
- Estimation of  ARMA(𝑝, 𝑞)

ARMA Process: Identification and Estimation
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• We define the autocovariance function: 𝛾ሺ𝑡 െ 𝑗ሻ ൌ 𝐸ሾ𝑦௧ 𝑦௧ି௝ሿ

• For an AR(𝑝) process, WLOG with μ=0 (or demeaned 𝑦௧), we get:

𝛾ሺ𝑡 െ 𝑗ሻ ൌ 𝐸ሾሺ𝜙ଵ 𝑦௧ିଵ𝑦௧ି௝ ൅ 𝜙ଶ𝑦௧ିଶ𝑦௧ି௝൅. . . .൅𝜙௣𝑦௧ି௣𝑦௧ି௝ ൅ 𝜀௧𝑦௧ି௝ሻሿ
    ൌ 𝜙ଵ 𝛾ሺ𝑗 െ 1ሻ ൅ 𝜙ଶ𝛾ሺ𝑗 െ 2ሻ൅. . . .൅𝜙௣𝛾ሺ𝑗 െ 𝑝ሻ

• The autocovariances, 𝛾 𝑡 െ 𝑗 , determine a system of  equations:

𝛾 0 ൌ 𝐸 𝑦௧ ,𝑦௧ ൌ 𝜙ଵ 𝛾 1 ൅ 𝜙ଶ 𝛾 2 ൅ 𝜙ଷ 𝛾 3  ൅. . . .൅ 𝜙௣ 𝛾ሺ𝑝ሻ ൅ 𝜎ଶ

𝛾 1 ൌ 𝐸 𝑦௧ ,𝑦௧ିଵ ൌ 𝜙ଵ 𝛾 0 ൅ 𝜙ଶ 𝛾 1 ൅ 𝜙ଷ 𝛾 2  ൅. . . .൅ 𝜙௣ 𝛾ሺ𝑝 െ 1ሻ
𝛾 2 ൌ 𝐸 𝑦௧ ,𝑦௧ିଶ ൌ 𝜙ଵ 𝛾 1 ൅ 𝜙ଶ 𝛾 0 ൅ 𝜙ଷ 𝛾 1  ൅. . . .൅ 𝜙௣ 𝛾ሺ𝑝 െ 2ሻ
⋮    ⋮    ⋮    ⋮    ⋮    ⋮

ACF: Estimation through Autocovariances

• The 𝑝x𝑝 system of  equations:

𝛾 1 ൌ 𝐸 𝑦௧ ,𝑦௧ିଵ ൌ 𝜙ଵ𝛾 0 ൅ 𝜙ଶ𝛾 1 ൅ 𝜙ଷ𝛾 2 ൅ . . .൅𝜙௣𝛾ሺ𝑝 െ 1ሻ
𝛾 2 ൌ 𝐸 𝑦௧ ,𝑦௧ିଶ ൌ 𝜙ଵ𝛾 1 ൅ 𝜙ଶ𝛾 0 ൅ 𝜙ଷ𝛾 1 ൅ . . .൅𝜙௣𝛾ሺ𝑝 െ 2ሻ
𝛾 3 ൌ 𝐸 𝑦௧ ,𝑦௧ିଷ ൌ 𝜙ଵ𝛾 2 ൅ 𝜙ଶ𝛾 1 ൅ 𝜙ଷ𝛾 0 ൅ . . .൅𝜙௣𝛾ሺ𝑝 െ 3ሻ
⋮    ⋮    ⋮    ⋮    ⋮    ⋮ 

Using linear algebra, we write the system as:  γ = Γ 𝜙

where

Γ = 

𝛾 0 𝛾 1 ⋯ 𝛾 𝑝 െ 1
𝛾 1 𝛾 0 ⋯ 𝛾 𝑝 െ 2
⋮ ⋮ ⋮ ⋮

𝛾 𝑝 െ 1 𝛾 𝑝 െ 2 ⋯ 𝛾 0

a 𝑝x𝑝 matrix

𝜙 is the 𝑝x1 vector of  AR(𝑝) coefficients
γ is the 𝑝x1 vector of  𝛾ሺ𝑘ሻ autocovariances.

ACF: Estimation (System of  Equations)
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• Now, we define the autocorrelation function (ACF):

𝜌ሺ𝑘ሻ ൌ
𝛾ሺ𝑘ሻ
𝛾 0

ൌ
covariance at lag 𝑘

variance

The ACF lies between -1 and +1, with 𝜌ሺ0ሻ ൌ 1.

• Dividing the autocovariance system by γ(0), we get: 

Or using linear algebra: Ρ 𝜙 = ρ

• These are Yule-Walker equations, which can be solved numerically.

𝜌ሺ0ሻ 𝜌ሺ1ሻ ⋯ 𝜌ሺ𝑝 െ 1ሻ
𝜌ሺ1ሻ 𝜌ሺ0ሻ ⋯ 𝜌ሺ𝑝 െ 2ሻ
⋮ ⋮ ⋯ ⋮

𝜌ሺ𝑝 െ 1ሻ 𝜌ሺ𝑝 െ 2ሻ ⋯ 𝜌ሺ0ሻ

𝜙ଵ
𝜙ଶ
⋮
𝜙௣

ൌ

𝜌ሺ1ሻ
𝜌ሺ2ሻ
⋮

𝜌ሺ𝑝ሻ

ACF: Estimation – Yule-Walker

• Estimation:  
Easy: Use sample moments to estimate 𝛾ሺ𝑘ሻ and plug in formula:

𝑟௞ ൌ 𝜌ො௞ ൌ
∑ሺ𝑌௧ െ 𝑌ሜ ሻሺ𝑌௧ା௞ െ 𝑌ሜ ሻ

∑ሺ𝑌௧ െ 𝑌ሜ ሻଶ

We plug 𝜌ො௞ = 𝑟௞ in the Yule-Walker equations and solve for 𝝓:

𝑹 𝜙 = 𝒓   𝜙෡ = 𝑹ିଵ 𝒓

where 𝑹 is the estimated correlation matrix P.

• The sample correlogram is the plot of  the ACF against 𝑘. As the ACF 
lies between -1 and +1, the correlogram also lies between these values.

ACF: Estimation & Correlogram
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• Distribution: 
For a linear, stationary process, with large T, the distribution of  the 
sample ACF, 𝑟௞ ൌ 𝜌ො௞ is approximately normal with:

r 
   ௗ  

 N(ρ, V/𝑇), V is the covariance matrix.

Under H0 (no autocorrelations) ρ௞ = 0 for all 𝑘 > 1.

r 
   ௗ  

 N(0, I/𝑇)  Var[𝑟௞] = 1/𝑇.

• Under H0, the SE = 1/ 𝑇  95% C.I.: 0 േ 1.96 * 𝟏/ 𝑻

Then, for an uncorrelated, WN sequence, approximately 95% of  the 
sample ACFs should be within the above C.I. limits. 

Note: The SE = 1/ 𝑇 are sometimes referred as Bartlett’s SE. 

ACF – Distribution

• The ACF can be used as a tool to select an ARMA(𝑝, 𝑞) model. In 
general, it is used to select the lag 𝑞 in an MA model.

Note: Ideally, “Tails off ” is exponential decay. In practice, we may see 
decay with a lot of  “noise” and a lot of  non-zero values.

• In the next slides, we simulate ARMA models. This is an “ideal” 
situation, we know the model that generated the data. Then, we look 
at the ACF to see if  it is easy to guess the model and order of  the 
model.

ACF – Identification

AR(𝑝) MA(𝑞) ARMA(𝑝, 𝑞)

ACF Tails off 0 after lag 𝑞 Tails off
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Example: Sample ACF for an AR(1) process: 

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞ 𝑘 = 0, 1, 2, …

Under stationarity, |𝜙1|< 1, the ACF will show exponential decay.

• Suppose 𝜙1 = 0.4. Then,

ρ 0 = 1
ρ 1 = 0.4
ρ 2  = 0.42 = 0.16
ρ 3  = 0.43 = 0.064
ρ 4  = 0.44 = 0.0256

⋮ 
ρ 𝑘 ൌ 0.4𝒌

ACF – AR(1)

Example (continuation): ρ 𝑘 ൌ  0.4௞

We simulate an AR(1) series with with 𝜙1 = 0.4, using the R function 
arima.sim.
sim_ar1_04 <- arima.sim(list(order=c(1,0,0), ar=0.4), n=200) #simulate AR(1) series
plot(sim_ar1_04, ylab="Simulated Series", main=(expression(AR(1):~~~phi==0.4)))
acf(sim_ar1_04) #plot ACF for sim series

Recall SE = 1/ 𝑇 = 1/ 200 = 0.07071068
 95% C.I.: 0 േ 1.96 * 0.07071068 = [-0.1386, 0.1386] 

ACF – AR(1)
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Example (continuation): Plot of  simulated series and ACF, with 
95% C.I.

ACF – AR(1)

Example (continuation): Sample ACF for an MA(1) process.
ρ 0 = 1

ρ 1 ൌ  θ1/(1+ θଵ
ଶ) for 𝑘 = 1, -1

ρ 𝑘 = 0 for |𝑘| > 1.

After k = 1 –i.e., one lag– the ACF dies out.

Suppose θ1 = 0.5. Then,
ρ 0 = 1
ρ 1 = 0.4
ρ 𝑘 = 0 for |𝑘| > 1.

We simulate an MA(1) series with 𝜙1= 0.4
sim_ma1_05 <- arima.sim(list(order=c(0,0,1), ma=0.5), n=200) #simulate MA(1) series
plot(sim_ma1_05, ylab="Simulated Series", main=(expression(MA(1):~~~theta==0.5)))
acf(sim_ma1_05) #plot ACF for sim series

ACF – MA(1)
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Example (continuation): Plot of  simulated series and ACF, with 
95% C.I.: [-0.1386, 0.1386] 

ACF – MA(1)

Example: Sample ACF for an MA(𝑞) process:

𝑦௧ ൌ 𝜇 ൅ 𝜀௧ ൅ 𝜃ଵ  𝜀௧ିଵ൅ 𝜃ଶ 𝜀௧ିଶ ൅ . . .൅ 𝜃௤ 𝜀௧ି௤

𝜌 𝑘 ൌ
∑ ఏೕఏೕషೖ
೜
ೕసೖ

ଵ ା ఏభ
మା ఏమ

మା … ା ఏ೜
మ   𝑘 ൑ 𝑞

ൌ 0        otherwise. 

For different 𝑘’s:
ρ 0 = 1

ρ 1 = 
ఏభ ା ఏమఏభ ା ఏయఏమ

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

ρ 2 = 
ఏమ ା ఏయఏభ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

ρ 3 = 
ఏయ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

ρ 𝑘 = 0 for |𝑘| > 3.

ACF – MA(𝒒)
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Example (continuation): 
𝑦௧ ൌ 𝜇 ൅ 𝜀௧ ൅ 𝜃ଵ  𝜀௧ିଵ൅ 𝜃ଶ  𝜀௧ିଶ൅ 𝜃ଷ 𝜀௧ିଷ

Suppose 𝜃ଵ = 0.5; 𝜃ଶ = 0.4; 𝜃ଷ = 0.2. Then,

ρ 0 = 1

ρ 1 = 
ఏభ ା ఏమఏభ ା ఏయఏమ

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.5+0.4∗0.5+0.1∗0.4
1 + 0.52 

+ 0.42+ 0.12 = 0.5211

ρ 2 = 
ఏమ ା ఏయఏభ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.4 + 0.1∗0.5

1 + 0.52 
+ 0.42 

+ 0.12 = 0.3169

ρ 3 = 
ఏయ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.1

1 + 0.52 
+ 0.42+ 0.12 = 0.0704

ρ 𝑘 = 𝟎 for |𝑘| > 3.

ACF – MA(𝒒 = 3)

Example (continuation): Plot of  simulated series and ACF with 95% 
CI: = [-0.1386, 0.1386] 
> sim_ma3_05 <- arima.sim(list(order=c(0,0,3), ma=c(0.5, 0.4, 0.2)), n=200)  # sim MA(3)

ACF – MA(𝒒 = 3)
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Example: Sample ACF for an ARMA(1,1) process:
𝑦௧ ൌ 𝜙1𝑦௧ିଵ ൅ 𝜀௧ ൅ 𝜃ଵ𝜀௧ିଵ

• From the autocovariances, we get

γ 0 ൌ σ2 1 ൅ θ1
ଶ ൅ 2𝜙1 θ1

1 െ 𝜙1 ଶ

γ 1 ൌ σ2 1 ൅ 𝜙1 θ1 ∗ 𝜙1 ൅  θ1

1 െ 𝜙1
ଶ

γ 𝑘 ൌ 𝜙1γ 𝑘 െ 1 ൌ 𝜙1
௞ିଵσ2 1 ൅ 𝜙1 θ1 ∗ 𝜙1 ൅  θ1

1 െ 𝜙1 ଶ

• Then,

𝜌ሺ𝑘ሻ ൌ 𝜙1
௞ିଵ ଵ ା థଵ ஘ଵ  ∗ థଵା஘ଵ

ଵ ା ஘ଵ
మା ଶథଵ஘ଵ

 If  |𝜙1|<1, exponential decay. Similar pattern to AR(1).

ACF – ARMA(1, 1)

Example (continuation): Sample ACF for an ARMA(1,1) process:
𝑦௧ ൌ 𝜙1𝑦௧ିଵ ൅ 𝜀௧ ൅ 𝜃ଵ𝜀௧ିଵ

The ACF for an ARMA(1,1):

ρሺ𝑘ሻ ൌ 𝜙1
௞ିଵ ଵ ା థଵ ஘ଵ  ∗ థଵା஘ଵ

ଵ ା ஘ଵ
మା ଶథଵ஘ଵ

• Suppose 𝜙1 
= 0.4, θ1 = 0.5. Then,

ρ 0 = 1

ρሺ1ሻ ൌ ଵ ା ଴.ସ ∗ ଴.ହ
 
∗ ଴.ସ ା ଴.ହ

ଵ ା 0 .ହమା ଶ∗଴.ସ∗଴.ହ
= 0.6545 

ρሺ2ሻ ൌ 0.4 *  
ଵ ା ଴.ସ ∗ ଴.ହ  ∗ ଴.ସ ା ଴.ହ

ଵ ା 0 .ହమା ଶ∗଴.ସ∗଴.ହ
= 0.2618

ρሺ3ሻ ൌ 0.4ଶ *  
ଵ ା ଴.ସ ∗ ଴.ହ  ∗ ଴.ସ ା ଴.ହ

ଵ ା 0 .ହమା ଶ∗଴.ସ∗଴.ହ
= 0.0233 

⋮ 

ρሺ𝑘ሻ ൌ 0.4௞ିଵ *  
ଵ ା ଴.ସ ∗ ଴.ହ  ∗ ଴.ସ ା ଴.ହ

ଵ ା 0 .ହమା ଶ∗଴.ସ∗଴.ହ

ACF – ARMA(1,1)
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Example (continuation): Plot of  simulated series and ACF
> sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)  #sim ARMA(1,1)

ACF – ARMA(1,1)

Example: US Monthly Returns (1871 – 2020, T=1,795)
Sh_da <- read.csv("C://Financial Econometrics/Shiller_2020data.csv", head=TRUE, 
sep=",")
x_P <- Sh_da$P
x_D <- Sh_da$D
T <- length(x_P)
lr_p <- log(x_P[-1]/x_P[-T])
lr_d <- log(x_D[-1]/x_D[-T])
acf_p <- acf(lr_p) # acf: R function that estimates the ACF
> acf_p
Autocorrelations of  series ‘lr_p’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.279 0.004 -0.043  0.017  0.074 0.039  0.039  0.044  0.035  0.034  0.022 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.010 -0.059 -0.058 -0.056  0.009  0.033  0.047 -0.040 -0.087 -0.090 -0.029  0.005 

24 25 26  27  28     29   30  31     32 
0.003 -0.013 -0.058 -0.018 -0.005  0.026  0.011  0.000  0.020

SE(𝑟௞) = 1/sqrt(T) = 1/sqrt(1,795) = .0236  95% CI: േ 2 * 0.0236

ACF – Example: U.S. Stock Returns
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Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020)

ACF – Example: U.S. Stock Returns

Note: With the exception of  first correlation, correlations are small. 
However, many are significant, not strange result when T is large. 

Example: US Monthly Changes in Dividends (1871 – 2020, 
T=1,795)

acf_d <- acf(lr_d)
> acf_d
Autocorrelations of  series ‘lr_d’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.462  0.516  0.432  0.444  0.326  0.442  0.288  0.283  0.265  0.202  0.168

12  13     14  15     16 17 18 19 20 21  22     23 
0.142 0.100  0.122  0.123  0.085  0.045  0.026 -0.013  0.001 -0.029 -0.049 -0.077    

24 25 26  27  28     29   30  31     32 
-0.038 -0.100 -0.095 -0.055 -0.081 -0.092 -0.034 -0.063 -0.089

High correlations and significant even after 32 months! 

ACF – Example: U.S. Stock Dividends
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Example (continuation): Correlogram for US Monthly Changes in 
Dividends (1871 – 2020)

Note: Correlations are positive for almost 1.5 years, then become 
negative.

ACF – Example: U.S. Stock Dividends

• The application of  the LB test to the ACF is straightforward. We use 
the Ljung-Box (LB) statistic to test  H0: ρଵ = ρଶ = ... = ρ௠= 0. 

Under H0: 

𝐿𝐵 ൌ 𝑇ሺ𝑇 ൅ 2ሻ∑ ሺ
ఘෝೖ
మ

ሺ்ି௞ሻ
௠
௞ୀଵ ሻ

  ௗ  
χ௠
ଶ

Example: LB test with 20 lags for US Monthly Returns and 
Changes in Dividends (1871 – 2020)
> Box.test(lr_p, lag=20, type= "Ljung-Box")

data:  lr_p
X-squared = 208.02, df = 20, p-value < 2.2e-16  Reject H0 at 5% level. 

> Box.test(lr_d, lag=20, type= "Ljung-Box")

data:  lr_d
X-squared = 2762.7, df = 20, p-value < 2.2e-16  Reject H0 at 5% level.

Conclusion: We found joint significance of  first 20 autocorrelations.

ACF – Joint Significance Tests
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• The ACF gives us a lot of  information about the order of  the 
dependence when the series we analyze follows a MA process: The 
ACF is zero after 𝑞 lags for an MA(𝑞) process.

• If  the series we analyze, however, follows an ARMA or AR, the ACF 
alone tells us little about the orders of  dependence: We only observe 
an exponential decay. 

• We introduce a new function that behaves like the ACF of  MA 
models, but for AR models, namely, the partial autocorrelation 
function (PACF). 

• The PACF is similar to the ACF. It measures correlation between 
observations that are 𝑘 time periods apart, after controlling for 
correlations at intermediate lags.

Partial ACF (PACF)

Intuition: Suppose we have an AR(1):
𝑦௧ ൌ 𝜙1 𝑦௧ିଵ ൅ 𝜀௧.

Then,
ρሺ2ሻ = 𝜙1

ଶ

The correlation between 𝑦௧ and 𝑦௧ିଶ is not zero, as it would be for an 
MA(1), because 𝑦௧ is dependent on 𝑦௧ିଶ through 𝑦௧ିଵ. 

Suppose we break this chain of  dependence by removing (“partialing
out”) the effect 𝑦௧ିଵ. Then, we consider the correlation between [𝑦௧ –
𝜙1𝑦௧ିଵ] & [𝑦௧ିଶ – 𝜙1𝑦௧ିଵ] –i.e., the correlation between 𝑦௧ & 𝑦௧ିଶ
with the linear dependence of  each on 𝑦௧ିଵ removed:

γሺ2ሻ = Cov(𝑦௧– 𝜙1𝑦௧ିଵ, 𝑦௧ିଶ – 𝜙1𝑦௧ିଵ) = Cov(𝜀௧, 𝑦௧ିଶ – 𝜙1 𝑦௧ିଵ) =0

Similarly,
γሺ𝑘ሻ = Cov(𝜀௧, 𝑦௧ି௞ – 𝜙1 𝑦௧ିଵ) = 0 for all 𝑘 > 1.

Partial ACF
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Definition: The PACF of  a stationary time series {𝑦௧} is 𝜙௛௛:

𝜙ଵଵ= Corr(𝑦௧,  𝑦௧ିଵ) = ρ(1)

𝜙௛௛ = Corr(𝑦௧ – E[𝑦௧|𝐼௧ିଵ], 𝑦௧ି௛ – E[𝑦௧ି௛|𝐼௧ିଵ]) for ℎ = 2, 3, ....

This removes the linear effects of  𝑦௧ିଶ, ..., 𝑦௧ି௛.

Example: AR(𝑝) process:
𝑦௧ ൌ 𝜇 ൅ ଵ 𝑦௧ିଵ ൅ ଶ 𝑦௧ିଶ ൅ . . .൅ ௣ 𝑦௧ି௣ ൅𝜀௧

𝐸 𝑦௧ 𝐼௧ିଵ ൌ 𝜇 ൅ 𝜙ଵ𝑦௧ିଵ ൅ 𝜙ଶ𝑦௧ିଶ ൅ . . .൅ 𝜙௛𝑦௧ି௛ିଵ
𝐸 𝑦௧ି௛ 𝐼௧ିଵ ൌ 𝜇 ൅ 𝜙ଵ𝑦௧ି௛ିଵ ൅ 𝜙ଶ𝑦௧ି௛ିଶ ൅ . . .൅ 𝜙௛𝑦௧ିଵ

Then, 𝜙௛௛ =𝜙௛ if  1≤ ℎ ≤ 𝑝
= 0 otherwise

 After the 𝑝th PACF, all remaining PACF are 0 for AR(𝑝) processes.

Partial ACF

• The PACF 𝜙௛௛ is also the last coefficient in the best linear 
prediction of  𝑦௧ given 𝑦௧ିଵ,𝑦௧ିଶ, ..., 𝑦௧ି௛. ( OLS!)

OLS estimation steps:
Regress 𝑦௧ against 𝑦௧ିଵ  𝜙ଵଵ: estimated coefficient of  𝑦௧ିଵ.

Regress 𝑦௧ against 𝑦௧ିଵ & 𝑦௧ିଶ  𝜙ଶଶ: estimated coefficient of  𝑦௧ିଶ.
⋮
Regress 𝑦௧ against 𝑦௧ିଵ, 𝑦௧ିଶ, … 𝑦௧ି௛ 𝜙௛௛: estimated coefficient 
of  𝑦௧ି௛.

• OLS estimation is simple, easy to use. Estimation by Yule-Walker 
equation is possible. The is also a recursive algorithm by Durbin-
Levinson. 

• The plot of  the PACF is called the partial correlogram.

Partial ACF
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Example: We simulate an AR(2) process:
𝑦௧ ൌ 𝜇 ൅ 𝜙1𝑦௧ିଵ ൅ 𝜙ଶ𝑦௧ିଶ ൅ 𝜀௧

sim_ar22 <- arima.sim(list(order=c(1,0,0), ar=c(0.5, 0.3)), n=200) #simulate AR(2) series
plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3)))) 

pacf_ar22 <- pacf(sim_ar22) 

Print PACF
> pacf_ar2

1 2 3 4 5 6 7 8  9    10     11 
0.558  0.286  0.038  0.103 -0.010  0.009  0.111  0.060 -0.021 -0.076  0.016

12  13     14  15     16 17 18 19 20 21  22      23 
-0.086 -0.139  0.100  0.061 -0.156  0.078 -0.103  0.043 -0.075  0.104  0.024  0.061

SE(𝜙௞௞) ≈ 1/sqrt(200) = .0707.  95% CI: േ 1.96 * 0.0707

Partial ACF – AR(𝒑=2)

Example (continuation): Plot of  simulated series and PACF
> plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3))))
> pacf_ar2 <- pacf(sim_ar22) 

Partial ACF – AR(𝒑=2)
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Example (continuation): 
Note: The PACF can be calculated by ℎ regressions, each one with ℎ
lags. The ℎℎ coefficient is the ℎth order PACF. Using ar R function:

> ar(sim_ar2, order.max=1, method = “ols")

Coefficients:
1  

0.5586  𝜙ଵଵ= 0.5586

Intercept: -0.008403 (0.0761) 

Order selected 1  sigma^2 estimated as  1.152

> ar(sim_ar2, order.max=2, method = "ols")

Coefficients:
1       2  

0.3974  0.2869  𝜙ଶଶ= 0.2869

Intercept: -0.009847 (0.07326) 

Order selected 2  sigma^2 estimated as  1.063

Partial ACF – AR(𝒑=2)

• Following the analogy that PACF for AR processes behaves like an 
ACF for MA processes, we will see exponential decay (“tails off”) in the 
partial correlogram for MA process. Similar pattern will also occur for 
ARMA(p, q) process. 

Example: We simulate an MA(1) process with 𝜃ଵ = 0.5.
sim_ma1 <- arima.sim(list(order=c(0,0,1), ma = 0.5), n=200)  
> pacf(sim_ma1)

Partial ACF – MA(𝒒)
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• For an ARMA processes, we will see exponential decay (“tails off”) in 
the partial correlogram. 

Example: We simulate an ARMA(1) process with 𝜙1= 0.4 & 𝜃ଵ= 0.5.
sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)  
> pacf(sim_arma11)

Partial ACF – ARMA(𝒑, 𝒒)

Example: US Monthly Returns (1871 – 2020, T=1,795)
pacf_p <- acf(lr_p) # pacf: R function that estimates the PACF
> pacf_p

Partial autocorrelations of  series ‘lr_p’, by lag

1 2 3 4 5 6 7 8  9    10     11 
0.278 -0.081 -0.026  0.041  0.058 0.002  0.038  0.032  0.016  0.022  0.009      

12 13     14  15     16 17 18 19 20 21  22     23 
-0.023 -0.057 -0.032 -0.045  0.027  0.017  0.037 -0.059 -0.051 -0.050  0.005    24 

23 24 25 26  27  28     29   30  31     32 
0.006  0.004 -0.005 -0.051  0.014 -0.007  0.037  0.008  0.018  0.023 

SE(rk) = 1/sqrt(1,795) = .0236.  95% C.I.: േ 2* 0.0236

PACF – Example: U.S. Stock Returns
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Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020)

> pacf(lr_p)

PACF – Example: U.S. Stock Returns

Note: With the exception of  the first partial correlation, partial 
correlations are small, though, again, some are significant.

Example: US Monthly Stock Dividends (1871 – 2020, T=1,795)

pacf_d <- pacf(lr_d)
> pacf_d

Partial autocorrelations of  series ‘lr_d’, by lag

1 2 3 4 5 6 7 8  9    10     11 
0.462  0.385  0.160  0.150 -0.033  0.189 -0.054 -0.056  0.027 -0.082 -0.019 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.063 -0.035 0.067  0.043  0.010 -0.057 -0.046 -0.043 -0.008 -0.031 -0.039 

24 25 26  27  28     29   30  31     32 
-0.041  0.050 -0.036 -0.030  0.091 0.006 -0.017  0.044 -0.002 -0.042 

Higher partial correlations than for stock returns.  

PACF – Example: U.S. Stock Dividends
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• Correlation approach.
Basic tools: sample ACF and sample PACF.

- ACF identifies order of  MA: Non-zero at lag q; zero for lags > q.
- PACF identifies order of  AR: Non-zero at lag p; zero for lags  >p.
- All other cases, try ARMA(p, q) with p > 0 and q > 0.

Summary: For p>0 and q>0.

ARIMA Models: Identification – Correlations

AR(p) MA(q) ARMA(p, q)

ACF Tails off 0 after lag q Tails off

PACF 0 after lag p Tails off Tails off

Note: Ideally, “Tails off ” is exponential decay. In practice, in these 
cases, we may see a lot of  non-zero values for the ACF and PACF.


