Lecture 8-b Time Series: Stationarity, AR(p) \& MA(q)

Brooks (4 $4^{\text {th }}$ edition): Chapter 6
© R. Susmel, 2020 (for private use, not to be posted/shared online).

Review: Times Series

- A time series y_{t} is a process observed in sequence over time, $\mathrm{t}=1, \ldots ., T \quad \Rightarrow \mathrm{Y}_{\mathrm{t}}=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right\}$.
- Given the sequential nature of y_{t}, we expect $y_{t} \& y_{t-1}$ to be dependent This is the main feature of time series: dependence.
- With dependent observations, the classical results (based on LLN \& CLT) are not to valid. New assumptions and tools are needed: stationarity, ergodicity, \& CLT for martingale difference sequences.
- Roughly speaking, stationarity requires constant moments for y_{t}; ergodicity requires that the dependence is short-lived, eventually y_{t} has only a small influence on y_{t+k}, when k is relatively large.

Review: Times Series - Forecasting \& WN

- The purpose of building a time series model: Forecasting.
- We estimate time series models to forecast out-of-sample. For example, the l-step ahead forecast: $\hat{y}_{T+l}=\mathrm{E}_{t}\left[y_{t+l} \mid I_{t}\right]$, where $I_{t}=\left\{y_{t-1}, y_{t-2}, y_{t-3}, \ldots.\right\}$
- Two popular models for $\mathrm{E}_{t}\left[y_{t} \mid I_{t}\right]$:
- Autoregressive (AR) process models $\mathrm{E}_{t}\left[y_{t} \mid I_{t}\right]$ with lagged y_{t} 's:

$$
\mathrm{E}_{t}\left[y_{t} \mid I_{t}\right]=f\left(y_{t-1}, y_{t-2}, y_{t-3}, \ldots ., y_{t-p}\right)
$$

Example: $\operatorname{AR}(1)$ process, $\quad y_{t}=\alpha+\beta y_{t-1}+\varepsilon_{t}$.

- Moving average (MA) process models $\mathrm{E}\left[\mathrm{y}_{\mathrm{t}} \mid I_{\mathrm{t}-1}\right]$ with lagged ε_{t} 's:

$$
\mathrm{E}_{t}\left[y_{t} \mid I_{t}\right]=f\left(\varepsilon_{t-1}, \varepsilon_{t-2}, \varepsilon_{t-3}, \ldots ., \varepsilon_{t-q}\right)
$$

Example: MA(1) process, $\quad y_{t}=\mu+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}$

Review: Times Series - Forecasting (again)

- We want to select an appropriate time series model to forecast y_{t}. The linear models we consider: $\operatorname{AR}(p), \operatorname{MA}(q)$ or $\operatorname{ARMA}(p, q)$.
- Steps for forecasting:
(1) Identify the appropriate model. That is, determine AR, MA or ARMA and the order of the model -i.e., p, q.

Tools: ACF, PACF
(2) Estimate the model.

OLS, Method of Moments (complicated).
(3) Test the model.

Make sure errors are WN.
(4) Forecast.

Review: Times Series - Conditionality

- Key distinction: Conditional vs Unconditional moments.

Example: $\operatorname{AR}(1)$ process: $\quad y_{t}=\alpha+\beta y_{t-1}+\varepsilon_{t}$.
The conditional mean forecast at time t, conditioning on $I_{\mathrm{t}-1}$, is:

$$
\mathrm{E}_{t}\left[y_{t} \mid I_{t}\right]=\mathrm{E}_{t}\left[y_{t}\right]=\alpha+\beta y_{t-1}
$$

The unconditional mean is given by:

$$
E\left[y_{t}\right]=\alpha+\beta E\left[y_{t-1}\right]=\frac{\alpha}{1-\beta}=\mu=\text { constant }
$$

The conditional mean is time varying; the unconditional mean is not!

Remark: Time series focuses on conditional forecasts.

Review: Stationarity

- We say that a process is stationary of
$1^{\text {st }}$ order if $\quad F\left(y_{t_{1}}\right)=F\left(y_{t_{1+k}}\right) \quad$ for any t_{1}, k
$2^{\text {nd }}$ order if $\quad F\left(y_{t_{1}}, y_{t_{2}}\right)=F\left(y_{t_{1+k}}, y_{t_{2+k}}\right) \quad$ for any t_{1}, t_{2}, k
$N^{\text {th_-order if }} F\left(y_{t_{1}}, \ldots, y_{t_{T}}\right)=F\left(y_{t_{1+k}}, \ldots, y_{t_{T+k}}\right)$ for any $t_{1}, \ldots, t_{\mathrm{T}}, k$
- We focus on $2^{\text {nd }}$ order stationarity, which is weaker: only consider mean and covariance ($\&$ easier to verify in practice). Thus, we need

$$
\begin{aligned}
& \mathrm{E}\left[Y_{t}\right]=\mu \\
& \operatorname{Var}\left(Y_{t}\right)=\sigma^{2}=E\left[\left(Y_{t}-\mu\right)^{2}\right] \\
& \operatorname{Cov}\left(Y_{t_{1}}, Y_{t_{2}}\right)=E\left[\left(Y_{t_{1}}-\mu\right)\left(Y_{t_{2}}-\mu\right)\right]=\gamma\left(t_{1}-t_{2}\right)=\gamma(k)
\end{aligned}
$$

Notes: $\gamma(k)$: autocovariance function, a function of $k=t_{1}-t_{2}$. $\gamma(0)$ is the variance.

Review: Stationarity \& Autocovariances

- From the autocovariances, we derive the autocorrelations:

$$
\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\rho(k)
$$

$\rho(k)$, a function of k, is called the auto-correlation function (ACF).

- The ACF is one of the tools used to identify a model: $\operatorname{MA}(q), \operatorname{AR}(p)$.

Review: Stationarity - Example

Example: Assume $\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$.

$$
y_{t}=\phi y_{t-1}+\varepsilon_{t} . \quad(\operatorname{AR}(1) \text { process })
$$

- Mean

$$
\mathrm{E}\left[y_{t}\right]=\mu=0 \quad \text { (assuming } \phi \neq 1 \text {) }
$$

- Variance
$\operatorname{Var}\left[y_{t}\right]=\gamma(0)=\phi^{2} \operatorname{Var}\left[y_{t-1}\right]+\operatorname{Var}\left[\varepsilon_{t}\right]$ $\gamma(0)=\sigma^{2} /\left(1-\phi^{2}\right) \quad$ (assuming $\left.|\phi|<1\right)$
- Covariance

$$
\gamma(k)=\operatorname{Cov}\left[y_{t}, y_{t-k}\right]=\phi^{k} \gamma(0)
$$

\Rightarrow If $|\phi|<1, \operatorname{AR}(1)$ process is covariance stationary.

- Auto-correlation function (ACF): $\quad \rho(k)=\frac{\gamma(k)}{\gamma(0)}=\phi^{k}$

Review: Non-Stationarity - Example

Example: Assume $\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$.

$$
y_{t}=\mu+y_{t-1}+\varepsilon_{t} \quad \text { (Random Walk with drift process) }
$$

Doing backward substitution:

$$
\Rightarrow y_{t}=\mu t+\sum_{j=0}^{t-1} \varepsilon_{t-j}+y_{0}
$$

- Mean \& Variance
$\mathrm{E}\left[y_{t}\right]=\mu t+y_{0}$
$\operatorname{Var}\left[y_{t}\right]=\gamma(0)=\sum_{j=0}^{t-1} \sigma^{2}=\sigma^{2} \mathrm{t}$
\Rightarrow the RW process is non-stationary; that is, moments are time dependent.

Review: Stationarity: Remarks

- Stationarity is an invariant property: The statistical characteristics of the time series do not vary over time.
- If IBM is weak stationary, then, the returns of IBM may change month to month or year to year, but the average return and the variance in two equal lengths time intervals will be more or less the same.
- In the long run, say 100-200 years, the stationarity assumption may not be realistic.
- In general, time series analysis is done under the stationarity assumption.

Review: Ergodicity

- We want to estimate the mean of the process $\left\{Z_{t}\right\}, \mu\left(Z_{t}\right)$. But, we need to distinguishing between ensemble average (with m cross section observations) and time average (with T time series observations):
- Ensemble Average: $\overline{\bar{Z}}=\frac{\sum_{i=1}^{m} z_{i}}{m}$
- Time Series Average: $\bar{z}=\frac{\sum_{t=1}^{T} Z_{t}}{T}$

Q: Which estimator is the most appropriate?
A: Ensemble Average. But, it is impossible to calculate for a time series.

- The Ergodic Theorem tells us when the time series average can be used.

Theorem: A sufficient condition for ergodicity for the mean:

$$
\rho_{k} \rightarrow 0 \quad \text { as } \quad k=t_{i}-t_{j} \rightarrow \infty
$$

We need the correlation between $\left(y_{t_{i}}, y_{t_{j}}\right)$ to decrease as they grow further apart in time.

Review: Invertibility

Example: Suppose we have an MA(1) process:

$$
y_{t}=\mu+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}=\mu+\theta(L) \varepsilon_{t} \quad-\theta(L)=\left(1+\theta_{1} L\right)
$$

Recall: $f(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\ldots=\sum_{n=0}^{\infty} x^{n}$
Let $x=-\theta_{1} L$, (L : lag operator). Then, assuming $\theta(L) \neq 0$:

$$
\theta(L)^{-1}=\sum_{n=0}^{\infty}\left(-\theta_{1} L\right)^{n}=1-\theta_{1} L+\theta_{1}^{2} L^{2}-\theta_{1}^{3} L^{3}+\theta_{1}^{4} L^{4}+\cdots
$$

Now, we multiply $\theta(L)^{-1}$ on both sides of the MA process

$$
y_{t}=\mu+\theta(L) \varepsilon_{t}
$$

$$
\Rightarrow \quad \theta(L)^{-1} y_{t}=\theta(L)^{-1} \mu+\varepsilon_{t}=\mu^{*}+\varepsilon_{t}
$$

Then, we get an $\operatorname{AR}(\infty)$:

$$
y_{t}=\mu_{*}+\theta_{1} y_{t-1}-\theta_{1}^{2} y_{t-2}+\theta_{1}^{3} y_{t-3}-\theta_{1}^{4} y_{t-4}+\cdots+\varepsilon_{t}
$$

If the $\mathrm{AR}(\infty)$ process in non-explosive, then, the $\mathrm{MA}(1)$ is invertible.

Review: Moving Average Process

- An MA process models $\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]$ with lagged error terms. An MA (q) model involves q lags.
- We keep $\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$

Example: A linear MA (q) model:

$$
y_{t}=\mu+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{q} \varepsilon_{t-q}+\varepsilon_{t}=\mu+\theta(L) \varepsilon_{t},
$$

where

$$
\theta(L)=1+\theta_{1} L+\theta_{2} L^{2}+\theta_{2} L^{3}+\ldots+\theta_{q} L^{q}
$$

- In time series, the constant does not affect the properties of AR and MA process. Thus, in this situation we say "without loss of generalization", we assume $\mu=0$.

Review: Moving Average Process - Stationarity

- Q: Is MA (q) stationary? Check the moments (assume $\mu=0$).

$$
y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-q}
$$

- Mean

$$
\mathrm{E}\left[y_{t}\right]=\mathrm{E}\left[\varepsilon_{t}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{t-1}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{t-2}\right]+\ldots+\theta_{\mathrm{q}} \mathrm{E}\left[\varepsilon_{t-q}\right]=0
$$

- Variance

$$
\begin{aligned}
\operatorname{Var}\left[y_{t}\right] & =\operatorname{Var}\left[\varepsilon_{t}\right]+\theta_{1}^{2} \operatorname{Var}\left[\varepsilon_{t-1}\right]+\theta_{2}^{2} \operatorname{Var}\left[\varepsilon_{t-2}\right]+\ldots+\theta_{q}^{2} \operatorname{Var}\left[\varepsilon_{t-q}\right] \\
& =\left(1+\theta_{1}^{2}+\theta_{2}^{2}+\ldots+\theta_{q}^{2}\right) \sigma^{2} .
\end{aligned}
$$

- Covariance

In general, for the k autocovariance:

$$
\begin{array}{ll}
\gamma(k)=\sigma^{2} \sum_{j=k}^{q} \theta_{j} \theta_{j-k} & \text { for }|k| \leq q \\
\gamma(k)=0 & \text { for }|k|>q
\end{array}
$$

Remark: After lag q, the autocovariances ($\& \mathrm{ACFs}$) are 0 .

Review: Moving Average Process - Stationarity

- It is easy to verify that the sums $\sum_{j=k}^{q} \theta_{j} \theta_{j-k}$ are finite. Then, mean, variance and covariance are constant.
$\Rightarrow \mathrm{MA}(q)$ is always stationary.
- Problem: It can be shown that for ε_{t} with same distribution (say, normal) the autocovariances are non-unique. Suppose you want to select one process to forecast. Which one? We select the invertible model, with an $\operatorname{AR}(\infty)$ (non-explosive) representation.

Technical note: An invertible $\mathrm{MA}(q)$ is typically required to have roots of the lag polynomial equation $\theta(z)=0$ greater than one in absolute value (outside the unit circle). In the MA(1) case, we require $\left|\theta_{1}\right|<1$

Review: MA Process - MA(1): Moments

Example: MA(1) process:

$$
y_{t}=\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}=\mu+\theta(L) \varepsilon_{t}, \text { with } \theta(L)=\left(1+\theta_{1} L\right)
$$

- Moments

$$
\mathrm{E}\left[y_{t}\right]=0
$$

We derive the variance \& autocovariances from the $\mathrm{MA}(q)$ formula:

$$
\begin{array}{lll}
\gamma(k)=\sigma^{2} \sum_{j=k}^{q} \theta_{j} \theta_{j-k} & \text { for }|k| \leq q & \left(\text { where } \theta_{0}=1\right) \\
\gamma(k)=0 & \text { for }|k|>q &
\end{array}
$$

- $\gamma(k)$, with $q=1$
$k=0$
$\gamma(0)=\sigma^{2} \sum_{j=0}^{1} \theta_{j} \theta_{j-0}=\sigma^{2}\left(1+\theta_{1}{ }^{2}\right)$
$k=1 \quad \gamma(1)=\sigma^{2} \sum_{j=1}^{1} \theta_{j} \theta_{j-1}=\sigma^{2}\left(\theta_{1}\right)$
$k>1 \quad \gamma(k)=0$
Since the sums $\sum_{j=k}^{q} \theta_{j} \theta_{j-k}$ are finite $\Rightarrow \mathrm{MA}(q)$ is always stationary.

Review: MA Process - MA(1): ACF

- Autocorrelations

To get the ACF, we divide the autocovariances by $\gamma(0)$. Then:

$$
\begin{aligned}
& \rho(0)=\gamma(0) / \gamma(0)=1 \\
& \rho(1)=\gamma(1) / \gamma(0)=\theta_{1} /\left(1+\theta_{1}{ }^{2}\right) \\
& \rho(2)=\gamma(2) / \gamma(0)=0 \\
& \vdots \\
& \rho(k)=\gamma(k) / \gamma(0)=0 \quad(\text { for } k>1)
\end{aligned}
$$

Note that $|\rho(1)| \leq 0.5$.
When $\theta_{1}=0.5 \Rightarrow \rho(1)=0.4 . \quad\left(\left|\theta_{1}\right|<1 \Rightarrow\right.$ invertible $)$
$\theta_{1}=-0.9 \Rightarrow \rho(1)=-0.497238 . \quad\left(\left|\theta_{1}\right|<1 \Rightarrow\right.$ invertible $)$
$\theta_{1}=2 \quad \Rightarrow \rho(1)=0.4 . \quad\left(\left|\theta_{1}\right|<1\right.$ non-invertible $)$
Note: We have two processes, with the same ACF, we select $\theta_{1}=0.5$.

Review: MA Process - MA(1): ACF

Example (continuation):

In general, for an MA (q) process, the k autocorrelation function (ACF):

$$
\begin{array}{ll}
\rho(k)=\frac{\sum_{j=k}^{q} \theta_{j} \theta_{j-k}}{\left(1+\theta_{1}^{2}+\theta_{2}^{2}+\ldots+\theta_{q}^{2}\right)} & \text { for }|k| \leq q \\
\rho(k)=0 & \text { for }|k|>q
\end{array}
$$

Remark: After lag q, the ACF are 0 (contrast with AR(1) model).
Note: The ACF is usually shown in a plot. When we plot $\rho(k)$ against k, we plot also $\rho(0)=1$.

Review: MA(1) Process - ACF: Simulations

Example: Below, we compute \& plot the ACF for the simulated process.

$$
y_{t}=\varepsilon_{t}+0.5 \varepsilon_{t-1}
$$

sim_ma1_5 <- arima.sim(list(order=c($0,0,1$), ma=0.5), $\mathrm{n}=100)$
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_5
Autocorrelations of series 'sim_ma1_5', by lag

0	1	2	3	4	5	6	7	8	9	10	11	12	13

14	15	16	17	18	19	20	21	22	23

$-0.094-0.147-0.129-0.082-0.150-0.196-0.251-0.235-0.021 \quad 0.110$

Review: MA Process - Estimation

- MA processes are more complicated to estimate since we do not observe the errors, ε_{t} 's: Direct estimation is impossible.
- Two indirect ways:
(1) Using method of moments (MM): e matched observed moments and solved for the parameters. For example, for an MA(1):

$$
\begin{aligned}
& \rho(1)=\theta_{1} /\left(1+\theta_{1}^{2}\right) \\
& r_{1}=\frac{\hat{\theta}}{\left(1+\hat{\theta}^{2}\right)} \Rightarrow \hat{\theta}=\frac{1 \pm \sqrt{1-4 r_{1}^{2}}}{2 r_{1}}
\end{aligned}
$$

- A nonlinear solution and difficult to solve.
(2) Using $\operatorname{AR}(\infty)$ representation: For $\mathrm{MA}(1) \&|\theta|<1$, find $a \in(-1 ; 1)$

$$
\varepsilon_{t}(a)=y_{t}+a y_{t-1}+a^{2} y_{t-2}+a^{3} y_{t-3}+\ldots
$$

and look (numerically) for the least-square estimator

$$
\hat{\boldsymbol{\theta}}=\arg \min _{\theta}\left\{\mathrm{S}(\boldsymbol{y} ; \boldsymbol{\theta})=\sum_{i=1}^{T} \varepsilon_{i}(a)^{2}\right\} \quad\left(a^{i}=\theta_{1}{ }^{i} .\right)
$$

Autoregressive (AR) Process

- We model the conditional expectation of $y_{t}, \mathrm{E}_{t}\left[y_{t} \mid I_{t-1}\right]$, as a function of its past history.
- We keep $\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$
- The most common models are AR models. An AR(1) model involves a single lag, while an $\operatorname{AR}(p)$ model involves p lags. Then, the $\mathrm{AR}(p)$ process is given by:

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
$$

Using the lag operator we write the $\operatorname{AR}(p)$ process: $\quad \phi(L) y_{t}=\varepsilon_{t}$ with

$$
\phi(L)=1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{p} L^{p}
$$

AR Process: SDE

- We can look at an $\operatorname{AR}(p)$ process:

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p}+\varepsilon_{t}
$$

as a stochastic (inear) difference equation (SDE). With difference equations we try to get a solution -i.e., given some initial conditions/history, we know the value of y_{t} for any t-and, then, we study its characteristics (stability, long-run value, etc.).

The solution to a DE can be written as a sum of two solutions:

1) Homogeneous equation (the part that only depends on the y_{t} 's):

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p} \quad\left(\operatorname{set} \mu+\varepsilon_{t}=0\right)
$$

2) A particular solution to the equation.

- Once we get a solution, we study its stability. We want a stable one.

AR Process - AR(1): Solution

-We get a solution to the simple case, the $\operatorname{AR}(1)$ process.

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \quad \varepsilon_{t} \sim W N
$$

Using the backward substitution method:

$$
y_{t}=\mu\left(1+\phi_{1}+\phi_{1}^{2}+\ldots+\phi_{1}^{t-1}\right)+\sum_{j=0}^{t-1} \phi_{1}^{j} \varepsilon_{t-j}+\phi_{1}^{t} y_{0}
$$

Note: The solution is a function of t, the sequence $\varepsilon_{t}, \varepsilon_{t-1}, \ldots, \varepsilon_{1}$ and initial condition y_{0}. The effect of y_{0} "dies out" if $\left|\phi_{1}\right|<1$.

- The stability of the solution is crucial. With a stable solution, y_{t} does not explode. This is good: We need well defined moments.

It turns out the stability of the equation depends on the solution to the homogenous equation. In the $\operatorname{AR}(1)$ case (setting $\mu \& \varepsilon_{t}$'s $=0$):

$$
y_{t}=\phi_{1}^{t} y_{0} \quad \Rightarrow \text { If }\left|\phi_{1}\right|<1, y_{t} \text { never explodes, as } t \rightarrow \infty .
$$

AR Process - AR(1): Solution \& Stability

- We can analyze the stability from the point of view of the roots of the lag polynomial. For the $\operatorname{AR}(1)$ process

$$
\phi(z)=1-\phi_{1} z=0 \quad \Rightarrow|z|=\frac{1}{\left|\phi_{1}\right|}>1
$$

That is, the $\operatorname{AR}(1)$ process is stable if the root of $\phi(\approx)$ is greater than one (also said as "the roots lie outside the unit circle").

This result generalizes to $\operatorname{AR}(p)$ process:

AR Process - AR(2): Solution \& Stability

- For the $\operatorname{AR}(2), \quad y_{t}=\phi_{1} y_{t-1}-\phi_{2} y_{t-2}$

Lag polynomial: $\quad \phi(L)=1-\phi_{1} L-\phi_{2} L^{2}=0$.
We need the roots of $\phi(\approx)$ to be outside the unit circle.
The characteristic polynomial of the $\operatorname{AR}(2)$ can be written as:

$$
\phi(\vartheta)=1-\left(\lambda_{1}+\lambda_{2}\right) z-\lambda_{1} \lambda_{2} z^{2}=\left(1-\lambda_{1} \vartheta\right)\left(1-\lambda_{2} \vartheta\right)=0
$$

where $\phi_{1}=\lambda_{1}+\lambda_{2}$, and $\phi_{2}=\lambda_{1} \lambda_{2} . \quad\left(\lambda_{1} \& \lambda_{2}\right.$ are eigenvalues.
If $\left|\lambda_{1}\right|<1$, and $\left|\lambda_{2}\right|<1$, roots lie outside the unit root \Rightarrow stationary Then, some implications for $\phi_{1} \& \phi_{2}$:

$$
\begin{array}{ll}
\left|\lambda_{1}+\lambda_{2}\right|<2 & \Rightarrow\left|\phi_{1}\right|<2 \\
\left|\lambda_{1} \lambda_{2}\right|<1 & \Rightarrow\left|\phi_{2}\right|<1 \\
\hline
\end{array}
$$

AR Process - AR(p): Solution \& Stability

- Summary:

We say the process is globally (asymptotically) stable if the solution of the associated homogenous equation tends to 0 , as $t \rightarrow \infty$.

Theorem

A necessary and sufficient condition for global asymptotical stability of a $p^{\text {th }}$ order deterministic difference equation with constant coefficients is that all roots of the associated lag polynomial equation $\phi(:)=0$ have moduli strictly more than 1.
(For the case of real roots, moduli = "absolute values.")

AR(1) Process - Stationarity \& ACF

- An AR(1) model:

$$
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
$$

Last lecture, under the stationarity condition $\left|\phi_{1}\right|<1$, we derived:

- Moments

$$
\vdots
$$

$$
\begin{array}{ll}
\mathrm{E}\left[y_{t}\right]=\mu=0 & \text { (assuming } \left.\phi_{1} \neq 1\right) \\
\operatorname{Var}\left[y_{t}\right]=\gamma(0)=\sigma^{2} /\left(1-\phi_{1}^{2}\right) & \text { (assuming } \left.\left|\phi_{1}\right|<1\right) \\
\gamma(1)=\phi_{1} \gamma(0) & \\
\gamma(2)=\phi_{1}^{2} \gamma(0) & \\
\gamma(3)=\phi_{1}^{3} \gamma(0) & \\
\gamma(k)=\phi_{1}^{k} \gamma(0) &
\end{array}
$$

AR(1) Process - Stationarity \& ACF

- We derive the autocorrelations:

$$
\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\frac{\phi_{1}^{k} \gamma(0)}{\gamma(0)}=\phi_{1}^{k}
$$

Remark: Assuming $\left|\phi_{1}\right|<1$, the ACF decays with k.
When we plot $\rho(k)$ against k, we plot also $\rho(0)$ which is 1 .

Note:

- when $0<\phi_{1}<1 \Rightarrow$ All autocorrelations are positive.
- when $-1<\phi_{1}<0 \Rightarrow$ The sign of $\rho(k)$ shows an alternating sign pattern beginning a negative value.
- when $\phi_{1}=1 \quad \Rightarrow \operatorname{AR}(1)$ is non-stationary, $\rho(k)=1$, for all k. Present \& past are always correlated!

AR(1) Process - Stationarity \& ACF: Simulations

Example: We simulate and plot three MA(1) processes, with standard normal ε_{t}-i.e., $\sigma=1$:

$$
\begin{aligned}
& y_{t}=0.5 y_{t-1}+\varepsilon_{t} \\
& y_{t}=-0.9 y_{t-1}+\varepsilon_{t} \\
& y_{t}=2 y_{t-1}+\varepsilon_{t}
\end{aligned}
$$

R script to plot $y_{t}=0.5 \mathrm{y}_{\mathrm{t}-1}+\varepsilon_{t} \quad$ with 200 simulations $>$ plot(arima.sim(list(order=c(1,0,0), ar=0.5), $\mathrm{n}=200$), ylab="ACF", main $=(\operatorname{expression}(\operatorname{AR}(1) \sim \sim \sim$ phi==+.5)))

AR(1) Process - Stationarity \& ACF: Simulations

Example (continuation):

Note: The process $\theta_{1}>0$ is smoother than the ones with $\theta_{1}<0$. The process with $\left|\theta_{1}\right|>1$, explodes!

AR(1) Process - Stationarity \& ACF: Simulations

Example (continuation): Below, we compute and plot the ACF for the the two stable simulated process.

1) $y_{t}=0.5 y_{t-1}+\varepsilon_{t}$
sim_ar1_5<- arima.sim(list(order=c(1,0,0), ar=0.5), n=200)
acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5))) acf_ar1_5
Autocorrelations of series 'sim_ma1_5', by lag

$\quad 0$	1	2	3	4	5	6	7	8	9	10	11	12	13
1.000	0.351	0.055	-0.005	-0.054	0.002	-0.036	-0.119	-0.008	-0.099	-0.125	-0.066	-0.036	-0.023
14	15	16	17	18	19	20	21	22	23				
-0.042	0.062	0.119	0.102	0.087	0.099	0.065	0.056	0.047	0.044				

AR(1) Process - Stationarity \& ACF: Simulations

Example (continuation):

2) $y_{t}=-0.9 y_{t-1}+\varepsilon_{t}$
sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar=-0.9), $\mathrm{n}=200)$ acf_ar1_9 <-
acf(sim_ar1_9, main=(expression(AR(1)~~~phi==-.9)))
> acf_ar1_9
Autocorrelations of series 'sim_ma1_9', by lag
$\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$ 1.000-0.584 0.093 0.061-0.132 $0.147-0.181 \quad 0.122-0.013-0.023$ 0.014-0.012 $0.092-0.199$ $\begin{array}{llllllllll}14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}$ 0.193-0.155 $0.143-0.1070 .0140 .174-0.244 \quad 0.196-0.1540 .105$
$A R(1) \phi=-0.9$

AR(1) Process - Stationarity \& ACF: Examples

Example: A process with $\left|\phi_{1}\right|<1$ (actually, 0.065) is the monthly changes in the USD/GBP exchange rate. Below we plot its corresponding ACF:

AR(1) Process - Stationarity \& ACF

Example: Below we plot the monthly changes in the USD/GBP exchange rate. Stationary series do not look smooth:

AR(1) Process - Stationarity \& ACF

Example: A process with $\phi_{1} \approx 1$ (actually, 0.99) is the nominal USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the time, but its decay is very slow (after 30 months, it is still . 40 correlated!):

AR(1) Process - Stationarity \& ACF

Example: Below we plot the nominal USD/GBP exchange rate. Stationary series look smooth, smooth enough that you can clearly spot trends:

AR(2) Process - Stationarity \& ACF

- An AR(2) model:

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
$$

- Moments: $(\mu=0)$

$$
\begin{array}{ll}
\mathrm{E}\left[y_{t}\right]=\frac{\mu}{\left(1-\phi_{1}-\phi_{2}\right)}=0 & \text { (assuming } \left.\phi_{1}+\phi_{2} \neq 1\right) \\
\operatorname{Var}\left[y_{t}\right]=\frac{\sigma^{2}}{\left(1-\phi_{1}^{2}-\phi_{2}^{2}\right)} & \left(\text { assuming } \phi_{1}^{2}+\phi_{2}^{2}<1\right)
\end{array}
$$

- Autocovariance function

$$
\begin{aligned}
\gamma(k) & =\operatorname{Cov}\left[y_{t}, y_{t-k}\right]=\mathrm{E}\left[\left(\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}\right) y_{t-k}\right] \\
& =\phi_{1} \mathrm{E}\left[y_{t-1} y_{t-k}\right]+\phi_{2} \mathrm{E}\left[y_{t-2} y_{t-k}\right]+\mathrm{E}\left[\varepsilon_{t} y_{t-k}\right] \\
& =\phi_{1} \gamma(k-1)+\phi_{2} \gamma(k-2)+\mathrm{E}\left[\varepsilon_{t} y_{t-k}\right]
\end{aligned}
$$

We have a recursive formula.

AR(2) Process - Stationarity \& ACF

- Recursive formula: $\gamma(k)=\phi_{1} \gamma(k-1)+\phi_{2} \gamma(k-2)+\mathrm{E}\left[\varepsilon_{t} y_{t-k}\right]$

$$
\begin{aligned}
& (k=0) \quad \gamma(0)=\phi_{1} \gamma(-1)+\phi_{2} \gamma(-2)+\mathrm{E}\left[\varepsilon_{t} y_{t}\right] \\
& =\phi_{1} \gamma(1)+\phi_{2} \gamma(2)+\sigma^{2} \\
& (k=1) \quad \gamma(1)=\phi_{1} \gamma(0)+\phi_{2} \gamma(1)+E\left[\varepsilon_{t} y_{t-1}\right] \\
& =\phi_{1} \gamma(0)+\phi_{2} \gamma(1)+0 \\
& \Rightarrow \gamma(1)=\left[\phi_{1} /\left(1-\phi_{2}\right)\right] \gamma(0) \\
& (k=2) \quad \gamma(2)=\phi_{1} \gamma(1)+\phi_{2} \gamma(0)+\mathrm{E}\left[\varepsilon_{t} y_{t-2}\right] \\
& =\phi_{1} \gamma(1)+\phi_{2} \gamma(0)+0 \\
& \Rightarrow \gamma(2)=\left[\phi_{1}^{2} /\left(1-\phi_{2}\right)+\phi_{2}\right] \gamma(0)
\end{aligned}
$$

Replacing $\gamma(1)$ and $\gamma(2)$ back to $\gamma(0)$:

$$
\begin{aligned}
\gamma(0) & =\left[\phi_{1}^{2} /\left(1-\phi_{2}\right)\right] \gamma(0)+\left[\phi_{2} \phi_{1}^{2} /\left(1-\phi_{2}\right)+\phi_{2}^{2}\right] \gamma(0)+\sigma^{2} \\
& =\frac{\sigma^{2}\left(1-\phi_{2}\right)}{\left(1-\phi_{2}\right)-\phi_{1}^{2}\left(1+\phi_{2}\right)+\phi_{2}^{2}\left(1-\phi_{2}\right)} \quad \Rightarrow\left|\phi_{2}\right|<1
\end{aligned}
$$

AR(2) Process - Stationarity \& ACF

- Dividing the recursive formula for $\gamma(k)$ by $\gamma(0)$, we get the ACF:

$$
\begin{aligned}
& \rho(k) \\
(k=0) & \rho(0)=1 \\
(k=1) & \rho(1)
\end{aligned}=\phi_{1} /\left(1-\phi_{2}\right) .
$$

Remark: Again, we see exponential decay in the ACF.
From the work above, for stationarity, we need: $\quad \phi_{1}+\phi_{2} \neq 1$.
$\phi_{1}^{2}+\phi_{2}^{2}<1$.
$\left|\phi_{2}\right|<1$.

AR Process - Stationarity and Ergodicity

Theorem: The linear $\operatorname{AR}(p)$ process is strictly stationary and ergodic if and only if the roots of $\phi(\mathrm{L})$ are $\left|z_{j}\right|>1$ for all j, where $\left|z_{j}\right|$ is the modulus of the complex number r_{j}.

Note: If one of the z_{j} 's equals $1, \phi(\mathrm{~L})\left(\& y_{t}\right)$ has a unit root -i.e., $\phi(1)=0$. This is a special case of non-stationarity.

- Recall $\phi(L)^{-1}$ produces an infinite sum on the ε_{t-j} 's. If this sum does not explode, we say the process is stable.
- If the process is stable, we can calculate $\delta y_{t} / \delta \varepsilon_{t-j}$.
$\frac{\delta y_{t}}{\delta \varepsilon_{t-j}}=$ How much y_{t} is affected today by an innovation $t-j$ periods ago, ε_{t-j}.

When expressed as a function of \boldsymbol{j}, we call this dynamic multiplier.

AR Process - Dynamic Multiplier

- The dynamic multiplier measurers the effect of an innovation, ε_{t}, (economist like to call the ε_{t} 's, "shocks") on subsequent values of y_{t} : That is, the first derivative on the "Wold representation" -i.e., a stationary process represented as an MA process:

$$
\frac{\delta y_{t+j}}{\delta \varepsilon_{t}}=\frac{\delta y_{t}}{\delta \varepsilon_{0}}=\Psi_{j} .
$$

where $\psi_{j}{ }^{\prime}$ s are the coefficient of the (inverted) AR representation.
For an $\mathrm{AR}(1)$ process:

$$
\frac{\delta y_{t+j}}{\delta \varepsilon_{t}}=\frac{\delta y_{t}}{\delta \varepsilon_{0}}=\phi^{j}
$$

- That is, the dynamic multiplier for any linear stochastic difference equation (SDE) depends only on the length of time j, not on time t.

AR Process - Impulse Response Function

- The impulse-response function (IRF) is an accumulation of the sequence of dynamic multipliers, as a function of time from the one time change in the innovation, ε_{t}.
- Usually, IRFs are represented with a graph, that measures the effect of the innovation, ε_{t}, on y_{t} over time:

$$
\frac{\delta y_{t+j}}{\delta \varepsilon_{t}}+\frac{\delta y_{t+j+1}}{\delta \varepsilon_{t}}+\frac{\delta y_{t+j+2}}{\delta \varepsilon_{t}}+\ldots=\psi_{j}+\psi_{j+1}+\psi_{j+2}+\ldots
$$

- Once we estimate the AR, MA or ARMA coefficients, we draw an IRF.

AR Process - IRF: AR(1)

Example: $\operatorname{AR}(1)$ process:

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \quad \varepsilon_{t} \sim W N
$$

The $\operatorname{AR}(1)$ is stable if $\left|\phi_{1}\right|<1 \quad \Rightarrow$ stationarity condition.
We invert the $\operatorname{AR}(1)$ to get an $\operatorname{MA}(\infty): 1 /\left(1-\phi_{1}\right)=\sum_{j=0}^{\infty} \phi_{1}^{j}$
Then,

$$
y_{t}=\mu *+\phi_{1}^{1} \varepsilon_{t-1}+\phi_{2}^{2} \varepsilon_{t-2}+\phi_{2}^{3} \varepsilon_{t-3}+\phi_{2}^{4} \varepsilon_{t-4}+\cdots+\varepsilon_{t} .
$$

Under the stationarity condition, we calculate the dynamic multiplier:

$$
\delta y_{t+1} / \delta \varepsilon_{t-j}=\phi_{1}^{j}
$$

Accumulated over time, after J periods, the effect of shock ε_{t} at $\mathrm{t}+\mathrm{J}$ is:

$$
\operatorname{IRF}(\mathrm{at} t+J)=\sum_{j=0}^{J-1} \phi_{1}^{j}
$$

AR Process - IRF: AR(1)

Example (continuation): Suppose $\phi_{1}=0.40$. Then,

$$
\begin{gathered}
\delta y_{t} / \delta \varepsilon_{t-1}=\phi_{1}=0.40 \\
\delta y_{t} / \delta \varepsilon_{t-2}=\phi_{1}^{2}=0.40^{2} \\
\vdots \\
\delta y_{t} / \delta \varepsilon_{t-J}=\phi_{1}^{J}=0.40^{J}
\end{gathered}
$$

After $J=5$, periods, the accumulated effect of a shock today is:
$\operatorname{IRF}($ at $t+5)=\mathbf{0 . 4 0}+\mathbf{0 . 4 0 ^ { 2 }}+\mathbf{0 . 4 0 ^ { 3 }}+\mathbf{0 . 4 0 ^ { 4 }}+\mathbf{0 . 4 0 ^ { 5 }}=0.65984$

AR Process - Estimation and Properties

- We go back to the general $\operatorname{AR}(p)$. Define

$$
\left.\begin{array}{l}
\boldsymbol{x}_{t}=\left(\begin{array}{lll}
1 & y_{t-1} & y_{t-2}
\end{array} \ldots y_{t-p}\right.
\end{array}\right)
$$

Then the model can be written as

$$
y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t}
$$

- The OLS estimator is $\quad \mathbf{b}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}$
- Properties:
- Using the Ergodic Theorem, OLS estimator is consistent.
- Using the MDS CLT, OLS estimator is asymptotically normal. \Rightarrow asymptotic inference is the same.
- The asymptotic covariance matrix is estimated just as in the crosssection case: The sandwich estimator.

ARMA Process

- A combination of $\operatorname{AR}(p)$ and $\mathrm{MA}(q)$ processes produces an $\operatorname{ARMA}(p, q)$ process:

$$
\begin{aligned}
& y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p} \\
& \quad+\varepsilon_{t}-\theta_{1} \varepsilon_{t-1}-\theta_{2} \varepsilon_{t-2}-\ldots-\theta_{q} \varepsilon_{t-q} \\
& =\mu+\sum_{i=1}^{p} \phi_{i} y_{t-i}-\sum_{i=1}^{q} \theta_{i} L^{i} \varepsilon_{t}+\varepsilon_{t} \\
& \quad \Rightarrow \phi(L) y_{t}=\mu+\theta(L) \varepsilon_{t}
\end{aligned}
$$

- Usually, we insist that $\phi(\mathrm{L}) \neq 0, \theta(\mathrm{~L}) \neq 0$ \& that the polynomials $\phi(\mathrm{L}), \theta(\mathrm{L})$ have no common factors. This implies it is not a lower order ARMA model.

ARMA(1,1) - Stationarity \& ACF

- For an ARMA $(1,1)$ we have:.

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}, \quad \quad \varepsilon_{t} \sim W N
$$

- Moments: $(\mu=0)$

$$
\begin{array}{ll}
\mathrm{E}\left[y_{t}\right]=\mu /\left(1-\phi_{1}\right)=0 & \text { (assuming } \left.\phi_{1} \neq 1\right) \\
\operatorname{Var}\left[y_{t}\right]=\sigma^{2}\left(1+\theta_{1}^{2}\right) /\left(1-\phi_{1}^{2}\right) & \text { (assuming } \left.\left|\phi_{1}\right|<1\right)
\end{array}
$$

- Autocovariance function $(\mu=0)$

$$
\begin{aligned}
\gamma(k) & =\operatorname{Cov}\left[y_{t}, y_{t-k}\right] \\
& =E\left[\left\{\phi_{1} y_{t-1}+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right\} y_{t-k}\right] \\
& =\phi_{1} E\left[y_{t-1} y_{t-k}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right]+E\left[\varepsilon_{t} y_{t-k}\right] \\
& =\phi_{1} \gamma(k-1)+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right]+E\left[\varepsilon_{t} y_{t-k}\right]
\end{aligned}
$$

- Again, we have a recursive formula.

$$
\gamma(k)=\phi_{1} \gamma(k-1)+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right]+E\left[\varepsilon_{t} y_{t-k}\right]
$$

ARMA(1,1) - Stationarity \& ACF

- We have a recursive formula:

$$
\gamma(k)=\phi_{1} \gamma(k-1)+E\left[\varepsilon_{t} y_{t-k}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right]
$$

For $k=0$,

$$
\begin{aligned}
\gamma(0) & =\phi_{1} \gamma(-1)+\underbrace{E\left[\varepsilon_{t} y_{t}\right]}_{\sigma^{2}}+\theta_{1} E\left[\begin{array}{l}
\varepsilon_{t-1} \underbrace{y_{t}}_{\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}} \\
\\
\end{array}\right] \phi_{1} \gamma(1)+\sigma^{2}+\theta_{1} E[\varepsilon_{t-1}(\phi_{1} \underbrace{y_{t-1}}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}) \\
& =\phi_{1} \gamma(1)+\sigma^{2}+\theta_{1}\left(\phi_{1} \sigma^{2}+\theta_{1} \sigma^{2}\right)
\end{aligned}
$$

For $k=1$,

$$
\begin{aligned}
\gamma(1) & =\phi_{1} \gamma(0)+E\left[\varepsilon_{t} y_{t-1}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-1}\right] \\
& =\phi_{1} \gamma(0)+\theta_{1} E\left[\varepsilon_{t-1}\left\{\phi_{1} y_{t-2}+\theta_{1} \varepsilon_{t-2}+\varepsilon_{t-1}\right\}\right] \\
& =\phi_{1} \gamma(0)+\theta_{1} \gamma(1)
\end{aligned}
$$

ARMA(1,1) - Stationarity \& ACF

$$
\text { - } \quad \gamma(k)=\phi_{1} \gamma(k-1)+E\left[\varepsilon_{t} y_{t-k}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right]
$$

For $k=2$,

$$
\begin{aligned}
\gamma(2) & =\phi_{1} \gamma(1)+E\left[\varepsilon_{t} y_{t-2}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-2}\right] \\
& =\phi_{1} \gamma(1)+\theta_{1} E\left[\varepsilon_{t-1}\left\{\phi_{1} y_{t-3}+\theta_{1} \varepsilon_{t-3}+\varepsilon_{t-2}\right\}\right] \\
& =\phi_{1} \gamma(1)
\end{aligned}
$$

For k,

$$
\begin{aligned}
\gamma(k)= & \phi_{1} \gamma(k-1) \\
= & \phi_{1}^{k-1} \gamma(1), \quad k>1 \\
& \Rightarrow \text { If }\left|\phi_{1}\right|<1, \text { exponential decay. }
\end{aligned}
$$

- Two equations for $\gamma(0)$ and $\gamma(1)$:

$$
\begin{aligned}
& \gamma(0)=\phi_{1} \gamma(1)+\sigma^{2}+\theta_{1}\left(\phi_{1} \sigma^{2}+\theta_{1} \sigma^{2}\right) \\
& \gamma(1)=\phi_{1} \gamma(0)+\theta_{1} \gamma(1)
\end{aligned}
$$

ARMA(1,1) - Stationarity \& ACF

- Two equations for $\gamma(0)$ and $\gamma(1)$:
$\gamma(0)=\phi_{1} \gamma(1)+\sigma^{2}+\theta_{1}\left(\phi_{1} \sigma^{2}+\theta_{1} \sigma^{2}\right)$
$\gamma(1)=\phi_{1} \gamma(0)+\theta_{1} \gamma(1)$
Solving for $\gamma(0) \& \gamma(1)$:

$$
\begin{aligned}
& \gamma(0)=\sigma^{2} \frac{1+\theta_{1}{ }^{2}+2 \phi_{1} \theta_{1}}{1-\phi_{1}{ }^{2}} \\
& \gamma(1)=\sigma^{2} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1-\phi_{1}{ }^{2}}
\end{aligned}
$$

$$
\vdots
$$

$$
\gamma(k)=\phi_{1}^{k-1} \gamma(1), \quad k>1 \quad \Rightarrow \text { If }\left|\phi_{1}\right|<1, \text { exponential decay. }
$$

Note: If stationary, $\operatorname{ARMA}(1,1) \& \operatorname{AR}(1)$ show exponential decay.
Difficult to distinguish one from the other through autocovariances.

ARMA Process - Common Factors

Example: Common factors.
Suppose we have the following $\operatorname{ARMA}(2,3)$ model

$$
\phi(L) y_{t}=\theta(L) \varepsilon_{t}
$$

with

$$
\begin{aligned}
& \phi(L)=1-.6 L+.3 L^{2} \\
& \theta(L)=1-1.4 L+.9 L^{2}-.3 L^{3}=\left(1-.6 L+.3 L^{2}\right)(1-L)
\end{aligned}
$$

This model simplifies to: $y_{t}=(1-L) \varepsilon_{t} \quad \Rightarrow$ an MA(1) process.

- We just simplify the common factors and keep the simpler representation.

ARMA Process - Representation

- AR Representation: $\Pi(L)\left(y_{t}-\mu\right)=\varepsilon_{t} \Rightarrow \Pi(L)=\frac{\phi_{p}(L)}{\theta_{q}(L)}$
- Pure MA Representation: $\quad\left(y_{t}-\mu\right)=\Psi(L) \varepsilon_{t} \Rightarrow \Psi(L)=\frac{\theta_{q}(L)}{\phi_{p}(L)}$
- Special $\operatorname{ARMA}(p, q)$ cases: $\quad-p=0: \operatorname{MA}(q)$
$-q=0: \operatorname{AR}(p)$.

ARMA: Stationarity, Causality and Invertibility

Theorem: If $\phi(\mathrm{L})$ and $\theta(L)$ have no common factors, a (unique) stationary solution to $\phi(L) y_{t}=\theta(L) \varepsilon_{t}$ exists if and only if

$$
|z| \leq 1 \Rightarrow \phi(z)=1-\phi_{1} z-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p} \neq 0 .
$$

This ARMA (p, q) model is causal if and only if

$$
|z| \leq 1 \Rightarrow \phi(z)=1-\phi_{1} z-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p} \neq 0 .
$$

This ARMA (p, q) model is invertible if and only if

$$
|z| \leq 1 \Rightarrow \theta(z)=1+\theta_{1} z-\theta_{2} z^{2}+\ldots+\theta_{p} z^{p} \neq 0 .
$$

Note: Real data cannot be exactly modeled using a finite number of parameters. We choose p, q to create a good approximated model.

ARMA Process

- We defined the $\operatorname{ARMA}(p, q)$ model:

$$
\phi(L)\left(y_{t}-\mu\right)=\theta(L) \varepsilon_{t}
$$

The mean does not affect the order of the ARMA. Then, if $\mu \neq 0$, we demean the data: $x_{t}=y_{t}-\mu$.

Then, $\quad \phi(L) x_{t}=\theta(L) \varepsilon_{t} \quad \Rightarrow x_{t}$ is a demeaned ARMA process.

- For the rest of the lecture, we will study:
- Identification of p, q.
- Estimation of ARMA (p, q)

Autocovariance Function (Again)

- We define the autocovariance function: $\gamma(t-j)=E\left[y_{t} y_{t-j}\right]$
- For an $\operatorname{AR}(p)$ process, WLOG with $\mu=0$ (or demeaned y_{t}), we get:

$$
\begin{aligned}
\gamma(t-j) & =E\left[\left(\phi_{1} y_{t-1} y_{t-j}+\phi_{2} y_{t-2} y_{t-j}+\ldots+\phi_{p} y_{t-p} y_{t-j}+\varepsilon_{t} y_{t-j}\right)\right] \\
& =\phi_{1} \gamma(j-1)+\phi_{2} \gamma(j-2)+\ldots+\phi_{p} \gamma(j-p)
\end{aligned}
$$

- The autocovariances, $\gamma(t-j)$, determine a system of equations:

$$
\begin{aligned}
& \gamma(0)=E\left[y_{t}, y_{t}\right]=\phi_{1} \gamma(1)+\phi_{2} \gamma(2)+\phi_{3} \gamma(3)+\ldots+\phi_{p} \gamma(p)+\sigma^{2} \\
& \gamma(1)=E\left[y_{t}, y_{t-1}\right]=\phi_{1} \gamma(0)+\phi_{2} \gamma(1)+\phi_{3} \gamma(2)+\ldots+\phi_{p} \gamma(p-1) \\
& \gamma(2)=E\left[y_{t}, y_{t-2}\right]=\phi_{1} \gamma(1)+\phi_{2} \gamma(0)+\phi_{3} \gamma(1)+\ldots .+\phi_{p} \gamma(p-2) \\
& \begin{array}{cccccc}
\gamma & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}
\end{aligned}
$$

Autocovariance Function (Again)

- The $p \times p$ system of equations:
$\gamma(1)=E\left[y_{t}, y_{t-1}\right]=\phi_{1} \gamma(0)+\phi_{2} \gamma(1)+\phi_{3} \gamma(2)+\ldots+\phi_{p} \gamma(p-1)$
$\gamma(2)=E\left[y_{t}, y_{t-2}\right]=\phi_{1} \gamma(1)+\phi_{2} \gamma(0)+\phi_{3} \gamma(1)+\ldots+\phi_{p} \gamma(p-2)$
$\gamma(3)=E\left[y_{t}, y_{t-3}\right]=\phi_{1} \gamma(2)+\phi_{2} \gamma(1)+\phi_{3} \gamma(0)+\ldots+\phi_{p} \gamma(p-3)$
$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$
Using linear algebra, we write the system as: $\boldsymbol{\gamma}=\boldsymbol{\Gamma} \boldsymbol{\phi}$
where

$$
\boldsymbol{\Gamma}=\left[\begin{array}{cccc}
\gamma(0) & \gamma(1) & \cdots & \gamma(p-1) \\
\gamma(1) & \gamma(0) & \cdots & \gamma(p-2) \\
\vdots & \vdots & \vdots & \vdots \\
\gamma(p-1) & \gamma(p-2) & \cdots & \gamma(0)
\end{array}\right] \quad \text { a } p \times p \text { matrix }
$$

ϕ is the $p_{\mathrm{x} 1}$ vector of $\operatorname{AR}(p)$ coefficients γ is the $p_{\mathrm{x} 1}$ vector of $\gamma(k)$ autocovariances.

Autocorrelation Function (ACF)

- Now, we define the autocorrelation function (ACF):

$$
\rho(k)=\frac{\gamma(k))}{\gamma(0)}=\frac{\text { covariance at lag } k}{\text { variance }}
$$

The ACF lies between -1 and +1 , with $\rho(0)=1$.

- Dividing the autocovariance system by $\gamma(0)$, we get:

$$
\left[\begin{array}{cccc}
\rho(0) & \rho(1) & \cdots & \rho(p-1) \\
\rho(1) & \rho(0) & \cdots & \rho(p-2) \\
\vdots & \vdots & \cdots & \vdots \\
\rho(p-1) & \rho(p-2) & \cdots & \rho(0)
\end{array}\right]\left[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p}
\end{array}\right]=\left[\begin{array}{c}
\rho(1) \\
\rho(2) \\
\vdots \\
\rho(p)
\end{array}\right]
$$

Or using linear algebra: $\quad \mathbf{P} \boldsymbol{\phi}=\boldsymbol{\rho}$

- These are Yule-Walker equations, which can be solved numerically.

ACF - Estimation \& Correlogram

- Estimation:

Easy: Use sample moments to estimate $\gamma(k)$ and plug in formula:

$$
r_{k}=\hat{\rho}_{k}=\frac{\sum\left(Y_{t}-\bar{Y}\right)\left(Y_{t+k}-\bar{Y}\right)}{\sum\left(Y_{t}-\bar{Y}\right)^{2}}
$$

Then, we plug the $\hat{\rho}_{k}$ in the Yule-Walker equations and solve for $\boldsymbol{\phi}$:

$$
\widehat{\mathbf{P}} \boldsymbol{\phi}=\widehat{\boldsymbol{\rho}}
$$

- The sample correlogram is the plot of the ACF against k. As the ACF lies between -1 and +1 , the correlogram also lies between these values.

ACF - Distribution

- Distribution:

For a linear, stationary process, with large T, the distribution of the sample ACF, $r_{k}=\hat{\rho}_{k}$ is approximately normal with:

$$
\mathbf{r} \xrightarrow{d} \mathrm{~N}(\boldsymbol{\rho}, \mathbf{V} / T), \quad \mathbf{V} \text { is the covariance matrix. }
$$

Under $\mathrm{H}_{0}: \rho_{k}=0$ for all $k>1$.

$$
\mathbf{r} \xrightarrow{d} \mathrm{~N}(\mathbf{0}, \mathbf{I} / \boldsymbol{T}) \quad \Rightarrow \operatorname{Var}[\mathrm{r}(k)]=1 / \boldsymbol{T} .
$$

- Under H_{0}, the $\mathrm{SE}=1 / \sqrt{T} \quad \Rightarrow 95 \%$ C.I.: $0 \pm 1.96 * 1 / \sqrt{\boldsymbol{T}}$

Then, for a white noise sequence, approximately 95% of the sample ACFs should be within the above C.I. limits.

Note: The $\mathrm{SE}=1 / \sqrt{T}$ are sometimes referred as Bartlett's SE.

ACF - AR(1)

Example: Sample ACF for an AR(1) process:
Under stationarity:

$$
\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\phi_{1}^{k} \quad k=0,1,2, \ldots
$$

If $\left|\phi_{1}\right|<1$, the ACF will show exponential decay.

- Suppose $\phi_{1}=0.4$. Then,

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=0.4 \\
& \rho(2)=0.4^{2}=0.16 \\
& \rho(3)=0.4^{3}=0.064 \\
& \rho(4)=0.4^{4}=0.0256 \\
& \\
& \rho(k)=0.4^{k}
\end{aligned}
$$

!

ACF - AR(1)

Example (continuation): $\rho(k)=0.4^{k}$
We simulate an $\operatorname{AR}(1)$ series with with $\phi_{1}=0.4$, using the R function arima.sim.

$$
\begin{aligned}
& \text { sim_ar1_04<- arima.sim(list(order=c(1,0,0), ar=0.4), } \mathrm{n}=200) \quad \text { \#simulate AR(1) series } \\
& \text { plot } \left.\left(\operatorname{sim} _ \text {ar1_04, ylab="Simulated Series", main=(expression }(\operatorname{AR}(1): \sim \sim \sim \text { phi }==0.4)\right)\right) \\
& \text { acf(sim_ar1_04) } \quad \text { \#plot ACF for sim series }
\end{aligned}
$$

ACF - AR(1)

Example (continuation): Plot of simulated series and ACF

ACF - MA(1)

Example (continuation): Sample ACF for an MA(1) process.

$$
\begin{array}{ll}
\rho(0)=1 & \\
\rho(1)=\theta_{1} /\left(1+\theta_{1}^{2}\right) & \text { for } k=1,-1 \\
\rho(k)=0 & \text { for }|k|>1 .
\end{array}
$$

After $k=1$-i.e., one lag- the ACF dies out.
Suppose $\theta_{1}=0.5$. Then,

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=0.4 \\
& \rho(k)=0 \quad \text { for }|k|>1 .
\end{aligned}
$$

We simulate an $\mathrm{MA}(1)$ series with $\boldsymbol{\phi}_{1}=0.4$
sim_ma1_05 <- arima.sim(list(order $=c(0,0,1), m a=0.5), n=200) \quad$ \#simulate MA(1) series plot(sim_ma1_05, ylab="Simulated Series", main=(expression(MA(1):~~~theta==0.5))) acf(sim_ma1_05)

ACF - MA(1)

Example (continuation): Plot of simulated series and ACF

$\mathrm{ACF}-\mathrm{MA}(\boldsymbol{q})$

Example: Sample ACF for an MA (q) process:

$$
\begin{array}{rlrl}
y_{t} & =\mu+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{q} \varepsilon_{t-q} \\
\rho(k) & =\frac{\sum_{j=k}^{q} \theta_{j} \theta_{j-k}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\ldots+\theta_{q}{ }^{2}\right)} & & k \leq q \\
& =0 & & \text { otherwise. }
\end{array}
$$

For different k 's:

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{\theta_{1}+\theta_{2} \theta_{1}+\theta_{3} \theta_{2}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)} \\
& \rho(2)=\frac{\theta_{2}+\theta_{3} \theta_{1}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)} \\
& \rho(3)=\frac{\theta_{3}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)} \\
& \rho(k)=0 \quad \text { for }|k|>3 .
\end{aligned}
$$

$\mathrm{ACF}-\mathrm{MA}(\mathrm{q}=3)$

Example (continuation):

$$
y_{t}=\mu+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\theta_{3} \varepsilon_{t-3}
$$

Suppose $\theta_{1}=0.5 ; \theta_{2}=0.4 ; \theta_{3}=0.2$. Then,

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{\theta_{1}+\theta_{2} \theta_{1}+\theta_{3} \theta_{2}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)}=\frac{0.5+0.4 * 0.5+0.1 * 0.4}{1+0.5^{2}+0.4^{2}+0.1^{2}}=\mathbf{0 . 5 2 1 1} \\
& \rho(2)=\frac{\theta_{2}+\theta_{3} \theta_{1}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)}=\frac{0.4+0.1 * 0.5}{1+0.5^{2}+0.4^{2}+0.1^{2}}=\mathbf{0 . 3 1 6 9} \\
& \rho(3)=\frac{0.1}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)}=\frac{0.5^{2}}{1+0.5^{2}+0.4^{2}+0.1^{2}}=\mathbf{0 . 0 7 0 4} \\
& \rho(k)=\mathbf{0} \quad \text { for }|k|>3 .
\end{aligned}
$$

$\mathrm{ACF}-\mathrm{MA}(\mathrm{q}=3)$

Example (continuation): Plot of simulated series and ACF
$>$ sim_ma3_05 <- arima.sim(list(order=c $(0,0,3), \mathrm{ma}=\mathrm{c}(0.5,0.4,0.1)), \mathrm{n}=200) \quad$ \# sim MA(3)

ACF - ARMA $(1,1)$

Example: Sample ACF for an $\operatorname{ARMA}(1,1)$ process:

$$
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}
$$

- From the autocovariances, we get
$\gamma(0)=\sigma^{2} \frac{1+\theta_{1}{ }^{2}+2 \phi_{1} \theta_{1}}{1-\phi_{1}{ }^{2}}$
$\gamma(1)=\sigma^{2} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1-\phi_{1}{ }^{2}}$
$\gamma(k)=\phi_{1} \gamma(k-1)=\phi_{1}{ }^{k-1} \sigma^{2} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1-\phi_{1}{ }^{2}}$
- Then,

$$
\rho(k)=\phi_{1}{ }^{k-1} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1+\theta_{1}^{2}+2 \phi_{1} \theta_{1}}
$$

\Rightarrow If $\left|\phi_{1}\right|<1$, exponential decay. Similar pattern to $\operatorname{AR}(1)$.

ACF - ARMA $(1,1)$

Example (continuation): Sample ACF for an ARMA(1,1) process: $y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}$
The ACF for an $\operatorname{ARMA}(1,1)$:

$$
\rho(k)=\phi_{1}^{k-1} \frac{\left(1+\phi_{1} \theta_{1}\right) *\left(\phi_{1}+\theta_{1}\right)}{1+\theta_{1}^{2}+2 \phi_{1} \theta_{1}}
$$

- Suppose $\phi_{1}=0.4, \theta_{1}=0.5$. Then,

$$
\rho(0)=1
$$

$$
\rho(1)=\frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}=0.6545
$$

$$
\rho(2)=0.4 * \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}=0.2618
$$

$$
\rho(3)=0.4^{2} * \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}=\mathbf{0 . 0 2 3 3}
$$

:

$$
\rho(k)=0.4^{k-1} * \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}
$$

ACF - ARMA $(1,1)$

Example (continuation): Plot of simulated series and ACF
$>$ sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), $n=200$) \#sim ARMA(1,1)

ACF - Example: U.S. Stock Returns

Example: US Monthly Returns (1871-2020, $T=1,795$)
Sh_da <- read.csv("C://Financial Econometrics/Shiller_2020data.csv", head=TRUE, sep=",")
x_P <-Sh_da\$P
x_D <-Sh_da\$D
$\mathrm{T}<-$ length (x_P)
$\operatorname{lr} _\mathrm{p}<-\log \left(\mathrm{x} _\mathrm{P}[-1] / \mathrm{x} _\mathrm{P}[-\mathrm{T}]\right)$
$\operatorname{lr} _\mathrm{d}<-\log \left(\mathrm{x} _\mathrm{D}[-1] / \mathrm{x} _\mathrm{D}[-\mathrm{T}]\right)$
acf_p $<-\operatorname{acf}\left(\operatorname{lr} _\mathrm{p}\right) \quad \#$ acf: R function that estimates the ACF
$>$ acf_p
Autocorrelations of series 'lr_p', by lag

0	1	2	3	4	5	6	7	8	9	10	11
1.000	0.279	0.004	-0.043	0.017	0.074	0.039	0.039	0.044	0.035	0.034	0.022
12	13	14	15	16	17	18	19	20	21	22	23
-0.010	-0.059	-0.058	-0.056	0.009	0.033	0.047	-0.040	-0.087	-0.090	-0.029	0.005
24	25	26	27	28	29	30	31	32			
0.003	-0.013	-0.058	-0.018	-0.005	0.026	0.011	0.000	0.020			

$\mathrm{SE}\left(\mathrm{r}_{k}\right)=1 / \operatorname{sqrt}(T)=1 / \operatorname{sqrt}(1,795)=.0236 . \Rightarrow 95 \%$ C.I.: $\pm 2^{*} 0.0236$

ACF - Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns (1871-2020)

Note: With the exception of first correlation, correlations are small. However, many are significant, not strange result when T is large.

ACF - Example: U.S. Stock Dividends

Example: US Monthly Changes in Dividends (1871-2020, $T=1,795$)
acf_d <- acf(lr_d)
$>$ acf_d
Autocorrelations of series 'lr_d', by lag

0	1	2	3	4	5	6	7	8	9	10	11
1.000	0.462	0.516	0.432	0.444	0.326	0.442	0.288	0.283	0.265	0.202	0.168
12	13	14	15	16	17	18	19	20	21	22	23
0.142	0.100	0.122	0.123	0.085	0.045	0.026	-0.013	0.001	-0.029	-0.049	-0.077
24	25	26	27	28	29	30	31	32			
-0.038	-0.100	-0.095	-0.055	-0.081	-0.092	-0.034	-0.063	-0.089			

High correlations and significant even after 32 months!

ACF - Example: U.S. Stock Dividends

Example (continuation): Correlogram for US Monthly Changes in Dividends (1871-2020)

Note: Correlations are positive for almost 1.5 years, then become negative.

ACF - Joint Significance Tests

- The application of the LB test to the ACF is straightforward.

Recall that we use the the Ljung-Box (LB) statistic to test H_{0} : $\rho_{1}=$ $\rho_{2}=\ldots=\rho_{\mathrm{m}}=0$. Under H_{0},

$$
L B=T(T+2) \sum_{k=1}^{m}\left(\frac{\widehat{\rho}_{k}^{2}}{(T-k)}\right) \xrightarrow{d} \chi_{m}^{2}
$$

Example: LB test with 20 lags for US Monthly Returns and Changes in Dividends (1871-2020)
> Box.test(lr_p, lag=20, type= "Ljung-Box")
data: lr_p
X -squared $=208.02, \mathrm{df}=20$, p -value $<2.2 \mathrm{e}-16 \quad \Rightarrow$ Reject H_{0} at 5% level.
> Box.test(lr_d, lag=20, type= "Ljung-Box")
data: lr_d
X -squared $=2762.7, \mathrm{df}=20$, p -value $<2.2 \mathrm{e}-16 \quad \Rightarrow$ Reject H_{0} at 5% level.
Conclusion: We found joint significance of first 20 autocorrelations.

Partial ACF (PACF)

- The ACF gives us a lot of information about the order of the dependence when the series we analyze follows a MA process: The ACF is zero after q lags for an $\mathrm{MA}(q)$ process.
- If the series we analyze, however, follows an ARMA or AR, the ACF alone tells us little about the orders of dependence: We only observe an exponential decay.
- We introduce a new function that behaves like the ACF of MA models, but for AR models, namely, the partial autocorrelation function (PACF).
- The PACF is similar to the ACF. It measures correlation between observations that are k time periods apart, after controlling for correlations at intermediate lags.

Partial ACF

Intuition: Suppose we have an $\operatorname{AR}(1)$:

$$
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t} .
$$

Then,

$$
\gamma(2)=\phi_{1}{ }^{2} \gamma(0)
$$

The correlation between y_{t} and y_{t-2} is not zero, as it would be for an MA(1), because y_{t} is dependent on y_{t-2} through y_{t-1}.

Suppose we break this chain of dependence by removing ("partialing out') the effect y_{t-1}. Then, we consider the correlation between $\left[y_{t}-\right.$ $\left.\phi_{1} y_{t-1}\right] \&\left[y_{t-2}-\phi_{1} y_{t-1}\right]$-i.e, the correlation between $y_{t} \& y_{t-2}$ with the linear dependence of each on y_{t-1} removed:
$\gamma(2)=\operatorname{Cov}\left(y_{t}-\phi_{1} y_{t-1}, y_{t-2}-\phi_{1} y_{t-1}\right)=\operatorname{Cov}\left(\varepsilon_{t}, y_{t-2}-\phi_{1} y_{t-1}\right)=0$
Similarly,
$\gamma(k)=\operatorname{Cov}\left(\varepsilon_{t}, y_{t-k}-\phi_{1} y_{t-1}\right)=0$ for all $k>1$.

Partial ACF

Definition: The PACF of a stationary time series $\left\{y_{t}\right\}$ is
$\phi_{11}=\operatorname{Corr}\left(y_{t}, y_{t-1}\right)=\rho(1)$
$\phi_{h h}=\operatorname{Corr}\left(y_{t}-\mathrm{E}\left[y_{t} \mid I_{t-1}\right], y_{t-h}-\mathrm{E}\left[y_{t-h} \mid I_{t-1}\right]\right) \quad$ for $h=2,3, \ldots$.
This removes the linear effects of y_{t-2}, \ldots, y_{t-h}.

- The PACF $\phi_{h h}$ is also the last coefficient in the best linear prediction of y_{t} given $y_{t-1}, y_{t-2}, \ldots, y_{t-h} . \quad(\Rightarrow$ OLS! $)$
- Estimation by Yule-Walker equation, using sample estimates:

$$
\widehat{\boldsymbol{\phi}}_{h}=[\widehat{\boldsymbol{R}}]^{-1} \widehat{\boldsymbol{\gamma}}(k) \quad \Rightarrow \text { a recursive system },
$$

where $\boldsymbol{\phi}_{h}=\left(\phi_{h 1}, \phi_{h 2}, \ldots, \phi_{h h}\right)$ and \boldsymbol{R} is the $(h \times h)$ correlation matrix.

- OLS is used. Also, a recursive algorithm by Durbin-Levinson.

Partial ACF - AR(p)

Example: $\operatorname{AR}(p)$ process:

$$
\begin{aligned}
& y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p}+\varepsilon_{t} \\
& E\left[y_{t} \mid I_{t-1}\right]=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-h-1} \\
& E\left[y_{t-h} \mid I_{t-1}\right]=\mu+\phi_{1} y_{t-h-1}+\phi_{2} y_{t-h-2}+\ldots+\phi_{p} y_{t-1}
\end{aligned}
$$

Then, $\quad \phi_{h h}=\phi_{h} \quad$ if $1 \leq h \leq p$

$$
=0 \quad \text { otherwise }
$$

\Rightarrow After the $p^{\text {th }} P A C F$, all remaining PACF are 0 for $\operatorname{AR}(p)$ processes.

- The plot of the PACF is called the partial correlogram.

Partial ACF - AR(p=2)

Example: We simulate an $\mathrm{AR}(2)$ process:

$$
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}
$$

sim_ar22 <- arima.sim(list(order=c(1,0,0), ar=c(0.5, 0.3)), $n=200) \quad$ \#simulate AR(2) series plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3))))
pacf_ar22 <- pacf(sim_ar22)
Print PACF
> pacf_ar2

1	2	3	4	5	6	7	8	9	10	11	
0.558	0.286	0.038	0.103	-0.010	0.009	0.111	0.060	-0.021	-0.076	0.016	
12	13	14	15	16	17	18	19	20	21	22	23
-0.086	-0.139	0.100	0.061	-0.156	0.078	-0.103	0.043	-0.075	0.104	0.024	0.061

$\mathrm{SE}\left(\mathrm{r}_{k}\right) \approx 1 / \operatorname{sqrt}(200)=.0707 . \quad \Rightarrow 95 \%$ C.I.: $\pm 2^{*} 0.0707$

Partial ACF - AR(p=2)

Example (continuation): Plot of simulated series and PACF
$>$ plot(sim_ar22, ylab="Simulated Series", main=(expression(AR(2):~~~phi==c(0.5,0.3))))
$>$ pacf_ar2 <- pacf(sim_ar22)

Partial ACF - AR(p=2)

Example (continuation):

Note: The PACF can be calculated by h regressions, each one with h lags. The $h h$ coefficient is the $h^{\text {th }}$ order PACF. Using $a r \mathrm{R}$ function:

```
> ar(sim_ar2, order.max=1, method = "ols")
Coefficients:
    1
0.5586
Intercept: -0.008403 (0.0761)
Order selected 1 sigma^2 estimated as 1.152
>ar(sim_ar2, order.max=2, method = "ols")
Coefficients:
    1 2
0.3974 0.2869
Intercept: -0.009847 (0.07326)
Order selected 2 sigma^2 estimated as 1.063
```


Partial ACF - MA(q)

- Following the analogy that PACF for AR processes behaves like an ACF for MA processes, we will see exponential decay ("tails off") in the partial correlogram for MA process. Similar pattern will also occur for ARMA(p, q) process.

Example: We simulate an $\mathrm{MA}(1)$ process with $\theta_{1}=0.5$.
sim_ma1 <- arima.sim(list $($ order $=c(0,0,1), \mathrm{ma}=0.5), \mathrm{n}=200)$
$>$ pacf(sim_ma1)

Partial ACF - ARMA(p,q)

- For an ARMA processes, we will see exponential decay ("tails off") in the partial correlogram.

Example: We simulate an ARMA(1) process with $\phi_{1}=0.4 \& \theta_{1}=0.5$. sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), $\mathrm{n}=200$) $>$ pacf(sim_arma11)

PACF - Example: U.S. Stock Returns

Example: US Monthly Returns (1871-2020, $T=1,795$)
pacf_p $<-$ acf($\left(\operatorname{lr} _p\right) \quad \#$ pacf: R function that estimates the PACF
$>$ pacf_p

Partial autocorrelations of series 'lr_p', by lag

1	2	3	4	5	6	7	8	9	10	11	
0.278	-0.081	-0.026	0.041	0.058	0.002	0.038	0.032	0.016	0.022	0.009	
12	13	14	15	16	17	18	19	20	21	22	23
-0.023	-0.057	-0.032	-0.045	0.027	0.017	0.037	-0.059	-0.051	-0.050	0.005	24
23	24	25	26	27	28	29	30	31	32		
0.006	0.004	-0.005	-0.051	0.014	-0.007	0.037	0.008	0.018	0.023		
SE $\left(\mathbf{r}_{k}\right)$	$=1 / \operatorname{sqrt}(1,795)$	$=.0236$.			$\Rightarrow 95 \%$	C.I.: $\pm 2^{*}$	0.0236				

PACF - Example: U.S. Stock Returns

Example (continuation): Correlogram for US Monthly Returns (1871-2020)
> pacf(lr_p)

Note: With the exception of the first partial correlation, partial correlations are small, though, again, some are significant.

PACF - Example: U.S. Stock Dividends

Example: US Monthly Stock Dividends (1871-2020, $T=1,795$)

```
pacf_d <- pacf(lr_d)
> pacf_d
Partial autocorrelations of series 'lr_d', by lag
\begin{tabular}{cccccccccccl}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \\
0.462 & 0.385 & 0.160 & 0.150 & -0.033 & 0.189 & -0.054 & -0.056 & 0.027 & -0.082 & -0.019 & \\
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
-0.063 & -0.035 & 0.067 & 0.043 & 0.010 & -0.057 & -0.046 & -0.043 & -0.008 & -0.031 & -0.039 & \\
24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & & \\
-0.041 & 0.050 & -0.036 & -0.030 & 0.091 & 0.006 & -0.017 & 0.044 & -0.002 & -0.042 &
\end{tabular}
```

Higher partial correlations than for stock returns.

ARIMA Models: Identification - Correlations

- Correlation approach.

Basic tools: sample ACF and sample PACF.

- ACF identifies order of MA: Non-zero at lag q; zero for lags $>q$.
- PACF identifies order of AR: Non-zero at lag p; zero for lags $>p$.
- All other cases, try $\operatorname{ARMA}(p, q)$ with $p>0$ and $q>0$.

Summary: For $p>0$ and $q>0$.

	$\operatorname{AR}(\mathrm{p})$	$\operatorname{MA}(\mathrm{q})$	$\operatorname{ARMA}(p, q)$
ACF	Tails off	0 after lag q	Tails off
PACF	0 after lag p	Tails off	Tails off

Note: Ideally, "Tails off" is exponential decay. In practice, in these cases, we may see a lot of non-zero values for the ACF and PACF.

ARMA Models: Identification - AR(1)

