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Lecture 8-a1
Time Series: Introduction

Brooks (4th edition): Chapter 6
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Time Series: Introduction

• A time series 𝑦௧ is a process observed in sequence over time, 

𝑡 = 1, ...., 𝑇  𝑌௧ = {𝑦ଵ, 𝑦ଶ , 𝑦ଷ, ..., 𝑦்}.

Examples: IBM monthly stock prices from 1973:January till 
2025:September (plot below); or USD/GBP daily exchange rates 
from February 15, 1923 to March 19, 1938.



RS – FEc - Lecture 8-a1

2© R. Susmel, 2025 – Do not share/post online without written authorization.

Time Series: Introduction

Examples (continuation): Different ways to do the plot in R:

• Using plot.ts, creating a timeseries object in R:
# the function ts creates a timeseries object, start = 1973,1 (start of sample), frequency = 
12(=monthly) 

ts_ibm <- ts(x_ibm, start=c(1973,1), frequency=12) 

plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")

• Using R package ggplot2
x_ibm <- SFX_da$IBM

x_date <- as.Date(SFX_da$Date, "%m/%d/%Y")

df <- data.frame(x_date, x_ibm)

ggplot(df, aes(x = x_date, y = x_ibm)) +

geom_line(color="blue") +

labs(x = "Date", y = "IBM Price", col = "blue", title = "Time Series: IBM Monthly Price",

subtitle = "Period:  1973 - 2024")

Time Series: Introduction – Categories

• Usually, time series models are separated into two categories: 

– Univariate (𝑦௧ ∊ 𝑅, it is a scalar)

Example: We are interested in the behavior of IBM stock 
prices as function of its past.

 Primary model: Autoregressions (ARs).

– Multivariate (𝑦௧ ∊ 𝑅௠, it is a vector-valued)

Example: We are interested in the joint behavior of IBM 
returns, 𝑟ூ஻ெ, & bond yields, 𝑏ூ஻ெ, as function of their past 

𝑦௧= 
𝑟ூ஻ெ,௧

𝑏ூ஻ெ,௧

 Primary model: Vector autoregressions (VARs). 
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Time Series: Introduction – Dependence

• Given the sequential nature of 𝑦௧, we expect 𝑦௧ & 𝑦௧ିଵ to be 
dependent. This is the main feature of time series: dependence. It 
creates statistical problems.

• In classical statistics, we usually assume we observe several i.i.d. 
realizations of 𝑦௧. We use 𝑦ത to estimate the mean. 

• With several independent realizations we are able to sample over the 
entire probability space and obtain a “good” –i.e., consistent or close 
to the population mean– estimator of the mean. 

• But, if the samples are highly dependent, then it is likely that 𝑦௧ is 
concentrated over a small part of the probability space. Then, the 
sample mean will not converge to the mean as the sample size grows. 

Time Series: Introduction – Dependence

Technical note: With dependent observations, the classical results 
(based on LLN & CLT) are not to valid. 

• We need new conditions in the DGP to make sure the sample 
moments (mean, variance, etc.) are good estimators population 
moments. The new assumptions and tools are needed: stationarity, 
ergodicity, CLT for martingale difference sequences (MDS CLT).

Roughly speaking, stationarity requires constant moments for 𝑦௧; 
ergodicity requires that the dependence is short-lived, eventually 𝑦௧
has only a small influence on 𝑦௧ା௞, when 𝑘 is relatively large.

Ergodicity describes a situation where the expectation of a random 
variable can be replaced by the time series expectation.
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Time Series: Introduction – Dependence

An MDS is a discrete-time martingale with mean zero. In particular, 
its increments, ε௧’s, are uncorrelated with any function of the available 
dataset at time 𝑡. To these ε௧’s we will apply a CLT.

• The amount of dependence in 𝑦௧ determines the ‘quality’ of the 
estimator. There are several ways to measure the dependence. The 
most common measure: Covariance.

Cov 𝑦௧,𝑦௧ା௞ ൌ  𝐸ሾሺ𝑦௧௧ െμሻሺ𝑦௧ା௞െ μሻሿ

Note: When μ = 0, then Cov 𝑦𝑡,𝑦௧ା௞ ൌ 𝐸ሾ𝑦௧ 𝑦௧ା௞ሿ

Time Series: Introduction – Forecasting

• In a time series model, we describe how 𝑦௧ depends on past 𝑦௧’s. 
That is, the information set is 𝐼௧ = {𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, ....}

• The purpose of building a time series model: Forecasting.

• We estimate time series models to forecast out-of-sample. For 
example, the l-step ahead forecast: 𝑦ො்ା௟ = E௧[𝑦௧ା௟|𝐼௧]. 

Historical Note: In the 1970s it was found that very simple time series 
models out-forecasted very sophisticated (big) economic models. 

This finding represented a big shock to the big multivariate models 
that were very popular then. It forced a re-evaluation of these big 
models.
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• In general, we assume the error term, ε௧, is uncorrelated with 
everything, with mean 0 and constant variance, 𝜎ଶ. We call a process 
like this a white noise (𝑾𝑵) process. 

• We denote a WN process as

𝜀௧ ~ 𝑊𝑁ሺ0,𝜎ଶሻ

• White noise is the basic building block of all time series. It can be 
written as simple function of a 𝑊𝑁ሺ0, 1ሻ process:

𝑧௧ = σ 𝑢௧, 𝑢௧ ~ i.i.d. ~ 𝑊𝑁ሺ0, 1ሻ  𝑧௧ ~ 𝑊𝑁ሺ0,𝜎ଶሻ

• The 𝑧௧’s are random shocks, with no dependence over time, 
representing unpredictable events. It represents a model of news.

Time Series: Introduction – White Noise

• We make a key distinction: Conditional & Unconditional moments. In
time series we model the conditional mean as a function of its past,
for example in an AR(1) process, we have:

𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

Then, the conditional mean forecast at time 𝑡, conditioning on 
information at time 𝐼௧ିଵ, is:

E௧[𝑦௧|𝐼௧ିଵ] = E௧[𝑦௧|𝑦௧ିଵ] = 𝛼 + 𝛽 𝑦௧ିଵ

Notice that the unconditional mean, μ, is given by: 
E[𝑦௧] = 𝛼 + 𝛽 E[𝑦௧ିଵ] =

ఈ

1 − ఉ
= μ = constant (𝛽 ≠ 1)

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.

Time Series: Introduction – Conditionality 
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• Two popular models for E௧[𝑦௧|𝐼௧], that have 𝜀௧ ~ 𝑊𝑁ሺ0, 1ሻ:

– An autoregressive (AR) process models Et[𝑦௧|𝐼௧ିଵ] with lagged 
dependent variables:

E௧[𝑦௧|𝐼௧] = 𝑓ሺ𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, .... , 𝑦௧ି௣ሻ

An AR process is indexed by the number of lags; an AR(𝑝) model 
involves 𝑝 lags. In this class, 𝑓ሺ. ሻ will be linear. 

Example: AR(1) process, 𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

The general AR(𝑝) process is given by:

𝑦௧ = 𝜇 + 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ +... + 𝜙௣ 𝑦௧ି௣ + 𝜀௧, 𝜀௧  ~ 𝑊𝑁.

Time Series: Introduction – AR and MA models

– A moving average (MA) process models E௧[𝑦௧|𝐼௧] with lagged 
errors, ε௧:

E௧[𝑦௧|𝐼௧] = 𝑓ሺε௧ିଵ, ε௧ିଶ, ε௧ିଷ, .... , ε௧ି௤ሻ

Like AR models, an MA process is indexed by the number of lags; an 
MA(𝑞) model involves 𝑞 lags. In this class, 𝑓ሺ. ሻ will be linear. 

Example: MA(1) process, 𝑦௧ = μ + θ1 ε௧ିଵ + ε௧

The general MA(𝑞) process is given by:

𝑦௧ ൌ 𝜇 ൅ 𝜀௧ ൅ θଵ 𝜀௧ିଵ + θଶ 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤ 𝜀௧  ~ 𝑊𝑁.

• There is a third model, ARMA, that combines lagged dependent 
variables and lagged errors.

Time Series: Introduction – AR and MA models
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• We want to select an appropriate time series model to forecast 𝑦௧. 
In this class, we will use linear models, with choices: AR(𝑝), MA(𝑞) 
or ARMA(𝑝, 𝑞). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine 𝑝, 𝑞.

(2) Estimate the model.

(3) Test the model.

(4) Forecast.

• In this lecture, we go over the statistical theory (stationarity, 
ergodicity), the main models (AR, MA & ARMA) and tools that will 
help us describe and identify a proper model.

Time Series: Introduction – Forecasting (again)

CLM Revisited: Time Series Implications

• With autocorrelated data, we get dependent observations. For 
example, with autocorrelated errors:  

ε௧ =   ε௧ିଵ +  𝑢௧ ,

the independence assumption is violated. The LLN and the CLT 
cannot be easily applied in this context. We need new tools.

• We introduce the concepts of stationarity and ergodicity. The 
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent 
variables, using new technical concepts: mixing and stationarity. Or 
we can rely on a new CLT: The martingale difference sequence CLT. 

• We will not cover these technical points in detail.
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• Consider the joint probability distribution of  the collection of  RVs:

𝐹 𝑦௧భ ,𝑦௧మ , … ,𝑦௧೅ ൌ 𝐹 𝑌௧భ ൑ 𝑦௧భ ,𝑌௧మ ൑ 𝑦௧మ , … ,𝑌௧೅ ൑ 𝑦௧೅

To do statistical analysis with dependent observations, we need extra 
assumptions. We need some form of  invariance on the structure of  
the time series. 

If  the distribution 𝐹 is changing with every observation, estimation 
and inference become very difficult. 

• Stationarity is an invariant property: The statistical characteristics of  
the time series do not change over time. 

• There different definitions of  stationarity, they differ in how strong is 
the invariance of  the distribution over time.

Time Series – Stationarity 

• We say that a process is stationary of    

1st order if  𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ for any 𝑡1, 𝑘

2nd order if 𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ for any 𝑡1, 𝑡2, 𝑘

Nth-order if 𝐹 𝑦௧భ , … ,𝑦௧೅ ൌ 𝐹 𝑦௧భశೖ , … ,𝑦௧೅శೖ for any 𝑡1, ..., 𝑡T, 𝑘

• Nth-order stationarity is a strong assumption (& difficult to verify in 
practice). 2nd order (weak) stationarity is weaker. Weak stationarity only 
considers means & covariances (easier to verify in practice).  

• Moments describe a distribution. We calculate moments as usual:  
Eሾ𝑌௧ሿ ൌ μ

Var 𝑌௧ ൌ σଶ ൌ 𝐸ሾሺ𝑌௧ െ μሻଶሿ

Covሺ𝑌௧భ ,𝑌௧మ ሻ ൌ  𝐸ሾሺ𝑌௧భ െ μሻሺ𝑌௧మെ μሻሿ ൌ γ 𝑡ଵ − 𝑡ଶ

Time Series – Stationarity 



RS – FEc - Lecture 8-a1

9© R. Susmel, 2025 – Do not share/post online without written authorization.

• Covሺ𝑌௧భ ,𝑌௧మ ሻ = γ 𝑡ଵ − 𝑡ଶ is called the auto-covariance function. It 
measures how 𝑦௧, measured at time 𝑡ଵ, and 𝑦௧, measured at time 𝑡ଶ, 
covary. 

Notes: γ 𝑡ଵ − 𝑡2 is a function of  𝑘 = 𝑡ଵ − 𝑡ଶ
γሺ0ሻ is the variance.

• The autocovariance function is symmetric. That is, 
γ 𝑡1 

− 𝑡2 ൌ Covሺ𝑌௧భ ,𝑌௧మ ሻ = Covሺ𝑌௧మ ,𝑌௧భ ሻ = γ 𝑡ଶ − 𝑡1

 γ 𝑘 ൌ γ െ𝑘

• Autocovariances are unit dependent. We have different values if  we 
calculate the autocovariance for IBM returns in % or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between 
two 𝑌௧ ’s separated by 𝑘 periods.

Time Series – Stationarity & Autocovariances

• From the autocovariances, we derive the autocorrelations:

Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ ൌ ஓሺ௧భ− ௧మሻ 
஢೟భ஢೟మ

ൌ ஓሺ௧భ− ௧మሻ 
ஓ(0)

the last step takes assumes: σ௧భ ൌ σ௧మൌ γሺ0ሻ

• Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ is called the auto-correlation function 
(ACF), –think of  it as a function of  𝑘 = 𝑡ଶ − 𝑡ଵ. The ACF is also 
symmetric.

• Unlike autocovoriances, autocorrelations are not unit dependent. It is 
easier to compare dependencies across different time series.

• Stationarity requires all these moments to be independent of  time. If  
the moments are time dependent, we say the series is non-stationary.

Time Series – Stationarity & Autocorrelations 
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Time Series – Stationarity & Constant Moments 

• For a strictly stationary process (constant moments), we need:
μ௧ ൌ μ
σ௧ ൌ σ

because 𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ  μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ

Then, 
𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ  Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡ଵା௞ , 𝑡ଶା௞

Let 𝑡ଵ ൌ 𝑡 െ 𝑘  & 𝑡ଶ ൌ 𝑡 
 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡 െ 𝑘, 𝑡 ൌ ρ 𝑡, 𝑡 െ 𝑘 = ρ 𝑘  = ρ௞

The correlation between any two RVs depends on the time difference. 
Given the symmetry, we have ρ 𝑘 = ρ െ𝑘 .

Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ
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Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ

Time Series – Covariance (Weak) Stationary 

• A Covariance stationary process (or 2nd -order weakly stationary) has:
- constant mean, μ
- constant variance, 𝜎ଶ

- covariance depends on time difference, 𝑘, between two RVs, γ 𝑘

That is, 𝑍௧ is covariance stationary if:

E 𝑍௧ = constant = μ 

Var 𝑍௧ = constant = 𝜎ଶ 

Cov 𝑍௧భ ,𝑍௧మ ൌ  γሺ𝑘 ൌ 𝑡ଵ − 𝑡ଶሻ

Remark: Covariance stationarity is only concerned with the covariance 
of  a process, only the mean, variance and covariance are time-invariant. 
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Example: Assume 𝑦௧ follows an AR(1) process:

𝑦௧ = 𝜙 𝑦௧ିଵ + 𝜀௧, with 𝜀௧ ~ 𝑊𝑁 0,𝜎ଶ .

•  Mean
Taking expectations on both side:

E[ 𝑦௧] = 𝜙 Eሾ𝑦௧ିଵሿ ൅ E[ε௧] 
μ = 𝜙 μ + 0
E[ 𝑦௧ ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Applying the variance on both side:

Var[𝑦௧] = γ 0 ൌ 𝜙ଶ Var[𝑦௧ିଵ] + Var[𝜀௧] 

γሺ0ሻ = 𝜙ଶ γሺ0ሻ + 𝜎ଶ

γሺ0ሻ =
ఙమ

ଵ ି థమ
(assuming |𝜙 |< 1)

Time Series – Stationarity: Example 

Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + 𝜀௧, 𝜀௧ ~ 𝑊𝑁ሺ0,𝜎ଶሻ

•  Covariance
γሺ1ሻ = Cov[𝑦௧, 𝑦௧ିଵ] = E[𝑦௧ 𝑦௧ିଵ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଵ] 

= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଵ] + E[ ε௧ 𝑦௧ିଵ] 
= 𝜙 E[𝑦௧ିଵଶ]
= 𝜙 Var[𝑦௧ିଵ] 
= 𝜙 γሺ0ሻ

γሺ2ሻ = Cov[𝑦௧, 𝑦௧ିଶ] = E[𝑦௧ 𝑦௧ିଶ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଶ] 
= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଶ] 
= 𝜙 Cov[𝑦௧, 𝑦௧ିଵ] 
= 𝜙 γሺ1ሻ
= 𝜙ଶ γሺ0ሻ

⋮

γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

Time Series – Stationarity: Example 
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Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, ε௧ ~ WN(0, 𝜎ଶሻ

•  Covariance
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

 If  |𝜙|< 1, 𝑦௧ process is covariance stationary: mean, variance, 
and covariance are constant.

Remark: To establish stationarity, we need to impose conditions on 
the AR parameters. (Conditions are not needed for MA processes.) 

Note: From the autocovariance function, we derive ACF:

ρ 𝑘 ൌ ஓሺ௞ሻ 
ஓ(0) ൌ

థೖ ஓሺ଴ሻ
ஓ(0) ൌ 𝜙௞

If  |𝜙 |< 1, autocovariance function & ACF show exponential decay.

Time Series – Stationarity: Example 

Example: Assume 𝑦௧ follows a Random Walk with drift process:

𝑦௧ = 𝜇 ൅  𝑦௧ିଵ + ε௧, with ε௧ ~ 𝑊𝑁ሺ0,σଶሻ.

Doing backward substitution:
𝑦௧ = 𝜇 + (μ + 𝑦௧ିଶ + ε௧ିଵ) + ε௧

= 2 ∗ 𝜇+ 𝑦௧ିଶ + ε௧ + ε௧ିଵ
= 2 ∗ 𝜇+ (μ + 𝑦௧ିଷ + ε௧ିଶ) + ε௧ + ε௧ିଵ
= 3 ∗ 𝜇+ 𝑦௧ିଷ + ε௧ + ε௧ିଵ+ ε௧ିଶ

 𝑦௧ = 𝜇 𝑡 + ∑ ε௧ି௝
௧ିଵ
௝ୀ଴ + 𝑦଴

•  Mean & Variance
E[𝑦௧] = 𝜇 𝑡 + 𝑦଴
Var[𝑦௧] = γሺ0ሻ = ∑ σଶ௧ିଵ

௝ୀ଴ = σଶ𝑡

 the process 𝑦௧ is non-stationary: moments are time dependent.

Time Series – Non-Stationarity: Example 
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Stationary Series: Examples

Examples: Assume ε௧ ~ 𝑊𝑁ሺ0,σଶሻ.
𝑦௧ ൌ 0.08 ൅ 𝜀௧ ൅ 0.4 𝜀௧ିଵ - MA(1) process
𝑦௧ ൌ 0.13 𝑦௧ିଵ ൅ 𝜀௧  - AR(1) process

Non-Stationary Series: Examples

Examples: Assume ε௧ ~ 𝑊𝑁ሺ0,σଶሻ.
𝑦௧ ൌ 𝜇 𝑡 ൅ 𝜙ଵ 𝑦௧ିଵ ൅ 𝜙ଶ 𝑦௧ିଶ ൅ 𝜀௧ - AR(2) with deterministic trend
𝑦௧ ൌ 𝜇 ൅ 𝑦௧ିଵ ൅ 𝜀௧     - Random Walk wih drift
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• Main characteristic of  time series: Observations are dependent.

• If  we have non-stationary series (say, mean or variance are changing 
with each observation), it is not possible to make inferences.  

• Stationarity is an invariant property: the statistical characteristics of  
the time series do not vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the variance 
in two equal-length time intervals will be more or less the same.

Time Series – Stationarity: Remarks

• In the long run, say 100-200 years, the stationarity assumption may 
not be realistic. After all, technological change has affected the return 
of  IBM over the long run. But, in the short-run, stationarity seems 
likely to hold.

• In general, time series analysis is done under the stationarity 
assumption.

Time Series – Stationarity (Again)
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• We want to estimate the mean of  the process {𝑍௧}, 𝜇ሺ𝑍௧ሻ. But, we 
need to distinguishing between ensemble average (with 𝑚
observations) and time average (with 𝑇 observations):

- Ensemble Average:  𝑧̿ ൌ
∑ ௓೔
೘
೔సభ

௠
(all possible states at one time)

- Time Series Average:  𝑧 ൌ
∑ ௓೟
೅
೟సభ

்
(one history, or “trajectory”)

Q: Which estimator is the most appropriate? 
A: Ensemble Average. But, it is impossible to calculate for a time series. 
We only observe one 𝑍௧ , with dependent observations.

• Q: Under which circumstances we can use the time average (with only 
one realization of  {𝑍௧})? Is the time average an unbiased and consistent 
estimator of  the mean? The Ergodic Theorem gives us the answer.

Ergodicity

• Intuition behind Ergodicity:
We want to know the probability of  face 5 in an die. We get 𝑚
participants to throw a die once and we record the number of  times 5 
shows up, say 𝑘. This is the ensemble scenario. With an increasing 
number of  participants, increasing 𝑚 , the randomness gets more and 
more removed. Then,:

lim
௠→ஶ

 ௞
௠
→ 𝑃ሺ𝑋 ൌ 5ሻ

We can do the same experiment with only one participant, throwing the 
die many times, say, 𝑇. This is the time series scenario. As 𝑇 increases, 

lim
்→ஶ

 ௞
்
→ 𝑃ሺ𝑋 ൌ 5ሻ

Result: The probability computed from 𝑚 subjects (ensemble scenario) 
applies to the one computed from one person (time series scenario). 

Time Series – Ergodicity
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• Intuition behind Ergodicity:
We go to a casino to play a game with 20% return, but on average, one 
gambler out of  100 goes bankrupt. If  100 gamblers play the game, 
there is a 99% chance of  winning and getting a 20% return. This is the 
ensemble scenario. Suppose that gambler 35 is the one that goes 
bankrupt. Gambler 36 is not affected by the bankruptcy of  gamble 35.

Suppose now that you play the game 100 times. This is the time series 
scenario. You win 20% every day until day 35 when you go bankrupt. 
There is no day 36 for you (dependence at work!).

Result: The probability of  success from the group (ensemble scenario) 
does not apply to one person (time series scenario). 

Ergodicity describes a situation where the ensemble scenario outcome 
applies to the time series scenario.

Time Series – Ergodicity

• With dependent observation, we cannot use the LLN as we have done 
before with i.i.d. observations. The ergodicity theorem plays the role 
of  the LLN with dependent observations.

The formal definition of  ergodicity is complex and is seldom used in 
time series analysis. One consequence of  ergodicity is the ergodic 
theorem, which is extremely useful in time series. 

It states that if  𝑍௧ is an ergodic stochastic process, then
ଵ

்
∑ 𝑔ሺ𝑍௧ሻ ௧ୀଵ

௔.௦.
E[𝑔ሺ𝑍௧ሻ]

for any function 𝑔(.). And, for any time shift 𝑘
ଵ

்
∑ 𝑔ሺ𝑍௧భା௞ ,𝑍௧మା௞ , … ,𝑍௧ഓା௞ሻ ௧ୀଵ

௔.௦.
E[𝑔ሺ𝑍௧భ ,𝑍௧మ , … ,𝑍௧ഓሻሻ]

where a.s. means almost sure convergence, a strong form of  convergence.

Ergodicity
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• Definition: A covariance-stationary process is ergodic for the mean 
if

 𝑧̅
   ௣  

E[𝑍௧] = 𝜇

Theorem: A sufficient condition for ergodicity for the mean: 
ρ௞ → 0   as   𝑘 ൌ 𝑡௜ െ 𝑡௝ → ∞

We need the correlation between (𝑦௧೔ ,𝑦௧ೕ) to decrease as they grow 

further apart in time.

• If  the conditions of  the Ergodic Theorem are met, we can use 𝑧
instead of  𝑧̿.

Remark: Under ergodicity, just one history (trajectory) is enough to 
learn about the behavior of  the system generating 𝑍௧ .

Ergodicity of  the Mean 

• Define the operator 𝐿 as
𝐿௞ 𝑧௧ = 𝑧௧ି௞.

• It is usually called Lag operator. But it can produce lagged or 
forward variables (for negative values of  𝑘). For example:

𝐿ିଷ 𝑧௧ = 𝑧௧ାଷ.

• Also note that if  𝑐 is a constant 𝐿𝑐 = 𝑐.

• Important application: Differencing
Δ 𝑧௧ = ሺ1 െ  𝐿) 𝑧௧ = 𝑧௧ െ 𝑧௧ିଵ.
Δଶ 𝑧௧ = ሺ1 െ  𝐿ሻଶ 𝑧௧ = 𝑧௧ െ 2𝑧௧ିଵ ൅ 𝑧௧ିଶ.

Time Series – Lag Operator
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• The function  𝑓ሺ𝑥ሻ ൌ ሺ1 െ 𝑥ሻିଵ can be written as an infinite 
geometric series (use a Maclaurin series around 𝑐 =0):

𝑓 𝑥 ൌ  ଵ

ଵ ି ௫
 ൌ 1 ൅ 𝑥 ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൅ . . .ൌ ∑ 𝑥௡ஶ

௡ୀ଴

• If  we multiply 𝑓ሺ𝑥ሻ by a constant, 𝑎:

∑ 𝑎𝑥௡ஶ
௡ୀ଴ ൌ ௔

ଵ ି ௫
→  ∑ 𝑎𝑥௡ஶ

௡ୀଵ ൌ  𝑎 ଵ

ଵ ି ௫
െ 1

Example: In Finance we have many applications of  the above results.
- A stock price, 𝑃, equals the discounted some of  all futures dividends. 
Assume dividends are constant, 𝑑, and the discount rate is 𝑟. Then:

𝑃௧ = ∑ ௗ

ሺଵ ା ௥ሻ೟
ൌ 𝑑ሺ ଵ

ଵ ି 
భ

భ శ ೝ

ஶ
௧ୀଵ െ 1) = 𝑑ሺ ଵ

భ శ ೝ షభ
భ శ ೝ

െ 1ሻ = 
ௗ

௥

where 𝑥 ൌ  ଵ

ଵ ା ௥

Time Series – Useful Result: Geometric Series

• We will use this result when, under certain conditions, we invert a lag 
polynomial (say, θሺLሻ) to convert an AR (MA) process into an infinite 
MA (AR) process.

Example: Suppose we have an MA(1) process:

𝑦௧ = 𝜇 ൅ θଵε௧ିଵ+ ε௧ = 𝜇 + θሺLሻ ε௧ – θሺLሻ = (1 ൅ θଵL)

Recall,

𝑓 𝑥 ൌ ଵ

ଵ ି ௫
ൌ 1 ൅ 𝑥 ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൅ . . .ൌ ∑ 𝑥௡ஶ

௡ୀ଴

Let 𝑥 = −θ1L. Then, assuming that 𝜃 𝐿 ିଵ is well defined,

𝜃 𝐿 ିଵ = 
ଵ

ଵ ି ሺ−θ1Lሻ
ൌ 1 ൅ ሺ−θ1Lሻ ൅ ሺ−θ1Lሻଶ൅ ሺ−θ1Lሻଷ ൅ ሺ−θ1Lሻସ ൅ ...

ൌ ∑ ሺ−θ1Lሻ௡
ஶ
௡ୀ଴ = 1 െ θଵL ൅ θଵ

ଶLଶ െ θଵ
ଷLଷ ൅ θ1

ସLସ ൅ ⋯ 

Time Series – Useful Result: Application 
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Example (continuation):

𝜃 𝐿 ିଵ ൌ ∑ ሺെθ1 
𝐿ሻ௡ஶ

௡ୀ଴ = 1 െ θଵL ൅ θଵ
ଶLଶ െ θଵ

ଷLଷ ൅ θଵ
ସLସ ൅ ⋯ 

Now, we multiply 𝜃 𝐿 ିଵon both sides of  the MA process
𝑦௧ ൌ 𝜇 ൅ θሺLሻ 𝜀௧.

Then,

𝜃 𝐿 ିଵ 𝑦௧ ൌ 𝜃 𝐿 ିଵ𝜇 + 𝜃 𝐿 ିଵθሺLሻ 𝜀௧ ൌ 𝜇* + 𝜀௧

𝜃 𝐿 ିଵ 𝑦௧ ൌ 𝑦௧ െ θଵ  𝑦௧ିଵ൅  θଵ
ଶ 𝑦௧ିଶെ  θଵ

ଷ 𝑦௧ିଷ൅  θଵ
ସ 𝑦௧ିସ൅⋯

ൌ 𝜇* + 𝜀௧

Then, solving for 𝑦௧:
𝑦௧ ൌ 𝜇∗ ൅ θଵ𝑦௧ିଵ െ θଵ

ଶ 𝑦௧ିଶ ൅ θଵ
ଷ  𝑦௧ିଷെ θଵ

ସ  𝑦௧ିସ൅⋯൅ 𝜀௧

That is, we get an AR(∞)!

Time Series – Useful Result: Application 

Example (continuation):

Now, we get an AR(∞) for 𝑦௧:
𝑦௧ ൌ 𝜇∗ ൅ θଵ𝑦௧ିଵ െ θଵ

ଶ 𝑦௧ିଶ ൅ θଵ
ଷ  𝑦௧ିଷെ θଵ

ସ  𝑦௧ିସ൅⋯൅ 𝜀௧
ൌ 𝜇∗ ൅ ଵ𝑦௧ିଵ ൅ 𝜋ଶ𝑦௧ିଶ ൅  𝜋ଷ  𝑦௧ିଷ൅ 𝜋ସ  𝑦௧ିସ൅⋯൅ 𝜀௧

That is, 𝜋௝  ൌ െ1 ∗ ሺെθଵሻ௝

• Now, 𝑦௧ ൌ 𝜇∗ ൅∑ 𝜋௝  𝑦௧ି௝  ஶ
௝ୀଵ ൅ 𝜀௧

We express 𝑦௧ as infinite AR process. We have an infinite sum of  
𝜋௜𝑦௧ି௜ ! To be useful for forecasting purposes, we need to make sure 
that this infinite sum is finite. 

Restriction: Make sure the 𝜋௜’s do not explode –i.e., θଵ ൏ 1. Under  
this condition, we will call the polynomial θሺLሻ invertible. 

Time Series – Useful Result: Invertibility
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• An MA process models E௧[𝑦௧|𝐼௧ିଵ] with lagged error terms. An 
MA(𝑞) model involves 𝑞 lags. 

• We keep the white noise assumption for 𝜀௧: 𝜀௧ ~ 𝑊𝑁ሺ0,𝜎ଶሻ

Example: A linear MA(𝑞) model: 
𝑦௧ ൌ μ + θଵ 𝜀௧ିଵ + θଶ 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤ + 𝜀௧ = 𝜇 + θሺLሻ 𝜀௧,

where
𝜃 𝐿 = 1 ൅ θଵ L ൅ θଶ Lଶ ൅ θଶ Lଷ ൅ …൅ θ௤  L௤

• In time series, the constant does not affect the properties of  AR and 
MA process. It is usually removed (think of  the data analyzed as 
demeaned). Thus, in this situation we say “without loss of  
generalization” (WLOG), we assume 𝜇 = 0.

Moving Average Process  

Example: MA(1) process (WLOG, 𝜇 = 0), with 𝜀௧ ~ 𝑊𝑁ሺ0,𝜎ଶሻ:

𝑦௧ = 𝜇 ൅ θଵ 𝜀௧ିଵ + 𝜀௧ = 𝜇 + θሺLሻ 𝜀௧, with 𝜃 𝐿 = (1 + θଵL)

•  Mean 
E[𝑦௧] = 0

•  Variance

Var[𝑦௧] = γሺ0ሻ = 𝜎ଶ+ θଵ
ଶ 𝜎ଶ = 𝜎ଶሺ1 ൅  θଵ

ଶ)

•  Covariance
Cov[𝑦௧, 𝑦௧ିଵ] = γሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ] 

= E[(θ1𝜀௧ିଵ + 𝜀௧)*(θଵ𝜀௧ିଶ + 𝜀௧ିଵ)] = θଵσ2 

Cov[𝑦௧, 𝑦௧ିଶ] = γሺ2ሻ = E[𝑦௧ 𝑦௧ିଶ] 
= E[(θ1𝜀௧ିଵ + 𝜀௧) * (θଵ 𝜀௧ିଷ+ 𝜀௧ିଶ)] = 0

MA Process – MA(1): Stationarity
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Example (continuation): MA(1) process:

•  Covariance
γሺ1ሻ ൌ E[𝑦௧ 𝑦௧ିଵ] ൌ E[(θ1𝜀௧ିଵ + 𝜀௧)*(θଵ𝜀௧ିଶ + 𝜀௧ିଵ)] = θଵσ2 

γሺ2ሻ ൌ E[𝑦௧ 𝑦௧ିଶ] ൌ E[(θ1𝜀௧ିଵ + 𝜀௧) * (θଵ 𝜀௧ିଷ+ 𝜀௧ିଶ)] = 0
⋮

γሺ𝑘ሻ = E[𝑦௧ 𝑦௧ି௞] = E[(θ1𝜀௧ିଵ+𝜀௧) * (θଵ𝜀௧ିሺ௞ାଵሻ+𝜀௧ି௞)] = 0 (for 𝑘>1)

That is, for |𝑘| > 1, γሺ𝑘ሻ ൌ 0.

 MA(1) is always stationary –i.e., independent of  values of  θଵ.

Remark: The MA(𝑞=1) process has γሺ𝑞ሻ = 0, for 𝑞 > 1. This result  
generalizes to MA(𝑞) process: after lag q , the autocovariances are 0. 
Also, the always stationary result for MA(1) generalizes to MA(𝑞). 

MA Process – MA(1): Stationarity

Example (continuation): To get the ACF, we divide the 
autocovariances by γ 0 . Then, the autocorrelation function (ACF):

ρ 0 ൌ γሺ0ሻ/γሺ0ሻ ൌ 1 

ρ 1 ൌ γሺ1ሻ/γሺ0ሻ ൌ ஘భఙమ

ఙమሺଵ ା ஘భమ)
= 

஘భ
ሺଵ ା ஘భమ)

⋮
ρሺ𝑘ሻ ൌ γሺ𝑘ሻ/γሺ0ሻ ൌ 0 (for 𝑘 > 1)

Remark: The autocovariance function is zero after lag 1. Similarly, the 
ACF is also zero after lag 1, that is, 𝑦௧ is correlated with itself  (𝑦௧) and 
𝑦௧ିଵ, but not 𝑦௧ିଶ, 𝑦௧ିଷ, ... Contrast this with the AR(1) model, 
where the correlation between 𝑦௧ and 𝑦௧ି௞ is never zero.

The ACF is usually shown in a plot, the autocorrelogram. When we 
plot ρ 𝑘 against 𝑘, we plot also ρ 0 which is 1.

MA(1) Process – ACF
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Example (continuation): 

ρ 1  = ஘భ
ሺଵ ା ஘భమ)

  

Note that |ρ 1 | ≤ 0.5. 

When θ1 = 0.5  ρ 1 = 0.4.

θ1 = -0.9  ρ 1 = -0.497238. 

θ1 = -2  ρ 1 = -0.4.

θ1 = 2  ρ 1 = 0.4. (same ρ 1 for θଵ & 
1

 θభ
.)

Note: Both MA(1) processes, with θଵ = 0.5 and θଵ = 2, have the same 
ACF. That is, ACFs are not unique. This is a problem: we deduce the 
order and the coefficients through the ACF, which is what we observe.

MA(1) Process – ACF

• Q: Is MA(𝑞) stationary? 
MA(𝑞): 𝑦௧ = 𝜀௧ ൅ θଵ 𝜀௧ିଵ + θଶ 𝜀௧ିଶ + ... + θ௤ 𝜀௧ି௤

•  Mean (𝜇 = 0). E[𝑦௧] = 0

•  Variance Var[𝑦௧] ൌ ሺ1 ൅ θଵ
ଶ ൅ θଶ

ଶ ൅ ... ൅ θ௤
ଶሻ 𝜎ଶ.

For Var[𝑦௧] ൐ 0, we require ሺ1 ൅ θଵ
ଶ ൅ θଶ

ଶ ൅ ... ൅ θ௤
ଶሻ ൐ 0.

• Covariance
γሺ𝑘ሻ = σ2 ∑ θ௝  θ௝ି௞

௤
௝ୀ௞ for | 𝑘 | ൑ q (where θ଴ = 1)

γሺ𝑘ሻ = 0 for | 𝑘 | ൐ q

Remark: After lag q, the autocovariances are 0.

• It is easy to verify that the sums ∑ θ௝  θ௝ି௞
௤
௝ୀ௞ are finite. Then, mean, 

variance & covariance are constant  MA(q) is always stationary!

MA Process – MA(𝒒): Stationarity
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• As mentioned above, the autocovariances are non-unique. 

Example: Two MA(1) processes that produce the same γ 𝑘 :
𝑦௧ = 𝜀௧ + 0.2 𝜀௧ିଵ, 𝜀௧ ~ i.i.d. N(0, 25)
𝑧௧ = υ௧ + 5 υ௧ିଵ, υ௧ ~ i.i.d. N(0; 1)

We only observe the time series, 𝑦௧ or 𝑧௧, and not the noise, 𝜀௧ or υ௧.
We cannot distinguish between the models using the autocovariances. 

We want to select one process to forecast: We select the model with an 
AR(∞) representation that does not explode: That is, we select the 
process that is invertible.

• Assuming 𝜃 𝐿 ≠ 1, we invert 𝜃 𝐿 : 

𝑦௧ = μ ൅  𝜃 𝐿  𝜀௧  𝜃 𝐿 ିଵ 𝑦௧ = Πሺ𝐿ሻ 𝑦௧ = μ* + 𝜀௧.
 𝑦௧ = 𝜇∗ ൅∑ 𝜋௝  𝑦௧ି௝  ஶ

௝ୀଵ ൅ 𝜀௧

MA Process – Invertibility  

• We convert an MA(q) into an AR(∞):
𝑦௧ ൌ 𝜇∗ ൅∑ 𝜋௝  𝑦௧ି௝  ஶ

௝ୀଵ ൅ 𝜀௧

We need to make sure that Πሺ𝐿ሻ = 𝜃 𝐿 ିଵ is defined: We require 
𝜃 𝐿 ≠0. When this condition is met, we can write 𝜀௧ as a causal 
function of 𝑦௧. We say the MA is invertible. For this to hold, we require:

∑ |𝜋௝ 𝐿 |ஶ
௝ୀ଴ ൏ ∞.

Technical note: An invertible MA(q) is typically required to have roots 
of  the lag polynomial equation 𝜃 𝑧 = 0 greater than one in absolute 
value (outside the unit circle). In the MA(1) case, 

𝜃 𝑧 = ሺ1 ൅ θ1 𝑧ሻ ൌ 0  root: 𝑧 ൌ െ ଵ

 θభ
( |θ1|< 1)

In the previous example, we select the model with θ1 = 0.2. 

MA Process – Invertibility  
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Simulated Example: We simulate with R function arima.sim (& plot)
three MA(1) processes, with standard normal 𝜀௧ -i.e., 𝜇 = 0 & σ= 1: 

𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ
𝑦௧ = 𝜀௧ െ 0.9 𝜀௧ିଵ
𝑦௧ = 𝜀௧ െ 2 𝜀௧ିଵ

R script to plot 𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ with 200 simulations
> plot(arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200), ylab="ACF",
main=(expression(MA(1)~~~theta==+.5)))

MA(1) Process: Simulations 

Simulated Example (continuation): 

Note: The process θ1 > 0 is smoother than the ones with θ1 < 0. 

MA(1) Process: Simulations 
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Simulated Example (continuation): Below, we compute and plot the 
ACF for the 3 simulated process.
1) 𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ
sim_ma1_5 <- arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200) 
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_5

Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.438 0.069  0.014  0.103  0.173  0.107  0.015 -0.080 -0.054  0.011 -0.006  0.041  0.000 

14 15 16 17 18 19  20 21 22 23 
-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021  0.110 

MA(1) Process: Simulations  (ACF)

Simulated Example (continuation): 
2) 𝑦௧ = 𝜀௧ - 0.9 𝜀௧ିଵ
sim_ma1_9 <- arima.sim(list(order=c(0,0,1), ma = -0.9), n = 200) 
acf_ma1_9 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_9

Autocorrelations of  series ‘sim_ma1_9’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14 15 16 17 18 19  20 21 22 23 
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105

MA(1) Process: Simulations (ACF)
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Simulated Example (continuation):
3) 𝑦௧ = 𝜀௧ - 2 𝜀௧ିଵ
sim_ma1_2 <- arima.sim(list(order=c(0,0,1), ma = -2), n = 200) 
acf_ma1_2 <- acf(sim_ma1_2, main=(expression(MA(1)~~~theta==-2)))
> acf_ma1_2

Autocorrelations of  series ‘sim_ma1_2’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.524  0.150 -0.064  0.006 -0.014  0.022 -0.070  0.068 -0.015 -0.002  0.054 -0.121  0.055 
14 15 16 17 18 19  20 21 22 23 
-0.029  0.026 -0.054  0.121 -0.156  0.106 -0.009  0.037 -0.080  0.104 

MA(1) Process: Simulations (ACF)

Simulated Example (continuation):

– Invertibility: If  |θଵ|< 1, we can write ሺ1 ൅ θଵ𝐿ሻିଵ 𝑦௧ + 𝜇* ൌ 𝜀௧

 1 െ θଵL ൅ θଵ
ଶLଶ െ θଵ

ଷLଷ ൅ ⋯൅ θ1
௝L௝ ൅ ⋯ 𝑦௧ ൅ 𝜇∗ ൌ

ൌ ∑ 𝜋௜
ஶ
௜ୀ଴ ሺ𝐿ሻ 𝑦௧ ൌ 𝜀௧

That is, 𝜋௜ = θ1
௜ .

The simulated process with θଵ= -2 is non-invertible, the infinite sum 
of 𝜋௜ would explode. We would select the MA(1) with θଵ = -.5.

MA Process – Example: MA(1)
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• MA processes are complicated to estimate. Consider an MA(1): 
𝑦௧ = 𝜀௧ + θଵ 𝜀௧ ିଵ

We cannot do OLS, since we do not observe 𝜀௧ ିଵ. But, based on the 
ACF, we estimate θଵ.

• The auto-correlation of  order one is:
ρ 1 ൌ  θଵ/ሺ1 ൅ θଵ

ଶሻ

Then, we can use the Method of  Moments (MM), which sets the 
theoretical moment equal to the estimated sample moment ρ 1 , 𝑟ଵ. 
Then, we solve for the parameter of  interest, θଵ:

• A nonlinear solution and difficult to solve.

MA Process – Estimation 

𝑟ଵ ൌ
θ෠ଵ

ሺ1 ൅ θ෡ଵ
ଶ
ሻ

 ⇒   θ෠ଵ ൌ
1 േ 1 െ 4𝑟ଵ

ଶ

2𝑟ଵ

• Alternatively, if  |θଵ|< 1, we can invert the MA(1) process. Then, 
based on the AR representation, we can try finding 𝑎 ∈(-1; 1):

𝜀௧ 𝑎  = 𝑦௧ + 𝑎 𝑦௧ିଵ + aଶ 𝑦௧ିଶ + aଷ 𝑦௧ିଷ + ….

and look (numerically) for the least-square estimator

θ෠ = arg minθ {S(𝒚; θ) = ∑ ε௧ሺ𝑎ሻ்
௧ୀଵ

ଶ
ሽ

where a௧= θଵ
௧.

MA Process – Estimation 
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Autoregressive (AR) Process

• We model the conditional expectation of 𝑦௧, E௧[𝑦௧|𝐼௧ିଵ], as a 
function of its past history. We assume 𝜀௧ ~ 𝑊𝑁ሺ0,𝜎ଶሻ.

• The most common models are AR models. An AR(1) model 
involves a single lag, while an AR(𝑝) model involves 𝑝 lags. Then, the 
AR(𝑝) process is given by:

𝑦௧ = 𝜇 + 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ +... + 𝜙௣ 𝑦௧ି௣ + 𝜀௧, 𝜀௧ ~ 𝑊𝑁

Using the lag operator we write the AR(𝑝) process: 𝜙(L) 𝑦௧ = 𝜀௧
with 𝜙ሺ𝐿ሻ ൌ 1 െ 𝜙ଵL െ 𝜙ଶLଶ െ ⋯െ 𝜙௣ L௣

• We can look at an AR(𝑝) process as a stochastic (linear) 
difference equation (SDE). We want to work with a stable 𝑦௧
process (not explosive).

• An AR(1) model: 
𝑦௧ = 𝜙ଵ 𝑦௧ିଵ + 𝜀௧, 𝜀௧ ~ 𝑊𝑁

Recall that in a previous example, under the stationarity condition 
|𝜙ଵ|< 1, we derived the mean, variance and auto-covariance function:

E[𝑦௧] = 𝜇 = 0 (assuming 𝜙ଵ ≠ 1)

Var[𝑦௧] = γሺ0ሻ ൌ  ఙమ 
 (1 ି థభమ)

(assuming |𝜙ଵ|< 1)

γሺ𝑘ሻ = 𝜙ଵ
௞ γሺ0ሻ 

• We also derived the autocorrelations: 

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞

Remark: When |𝜙ଵ|< 1, the autocorrelations do not explode as 𝑘
increases. There is an exponential decay towards zero.

AR(1) Process – Stationarity & ACF



RS – FEc - Lecture 8-a1

30© R. Susmel, 2025 – Do not share/post online without written authorization.

• ACF for an AR(1) process: 

ρ 𝑘 ൌ  ஓሺ௞ሻ 
ஓሺ଴ሻ

ൌ  𝜙ଵ
௞

Then, the autocorrelogram –i.e., plot of  ρ 𝑘 against 𝑘– shows
– when    0 < 𝜙ଵ< 1  All autocorrelations are positive.
– when  1 < 𝜙ଵ< 0  The sign of  ρ 𝑘 shows an alternating 

pattern beginning with a negative value.
– when 𝜙ଵ = 1  AR(1) is non-stationary, ρ 𝑘 ൌ 1, for all 𝑘.

Present & past are always correlated!

Note: The results for AR(1) can be generalized for AR(𝑝ሻ, but the 
generalization is not straightforward like in the MA case. For example, 
to get stationarity for an AR(2), we require: 𝜙ଵ+ 𝜙ଶ ≠ 1.

𝜙ଵ
ଶ + 𝜙ଶ

ଶ < 1.
|𝜙ଶ|< 1.

AR(1) Process – Stationarity & ACF

Theorem: The linear AR(𝑝) process is strictly stationary and ergodic 
if  and only if the roots of 𝜙 𝐿 are |𝑧௝|>1 for all 𝑗, where |𝑧௝| is the 
modulus of  the complex number 𝑟௝ .

Note: If  one of  the 𝑧௝ ’s equals 1, 𝜙 𝐿 (& 𝑦௧) has a unit root –i.e., 
𝜙(1)=0. This is a special case of  non-stationarity.

• Recall 𝜙 𝐿 ିଵ produces an infinite sum on the 𝜀௧ି௝ ’s. If  this sum 
does not explode, we say the process is stable. 

• For the AR(1) case

𝜙(z) = 1 െ 𝜙1 z = 0  |z| = 
ଵ

|థ1|
> 1 

That is, the AR(1) process is stable if  the root of  𝜙(z) is greater than 
one (also said as “the roots lie outside the unit circle”).

AR Process – Stationarity and Ergodicity
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• We analyze the stability of an AR(𝑝) process from the point of view 
of the roots of the lag polynomial. For the AR(1) process

𝜙(z) = 1 െ 𝜙1 z = 0  |z| = 
ଵ

|థ1|
> 1 

That is, the AR(1) process is stable if the root of 𝜙(z) is greater than 
one (also said as “the roots lie outside the unit circle”).

This result generalizes to AR(𝑝) process: 

Theorem

A necessary and sufficient condition for global asymptotical stability 
of a 𝑝th order deterministic difference equation with constant 
coefficients is that all roots of the associated lag polynomial equation 
𝜙(z)=0 have moduli strictly more than 1.

(For the case of real roots, moduli = “absolute values.”)

AR Process – AR(1): Stability

Simulated Example: We simulate (& plot) three AR(1) processes, with 
standard normal 𝜀௧ -i.e., 𝜎 = 1: 

𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧
𝑦௧ = -0.9𝑦௧ିଵ + 𝜀௧
𝑦௧ = 2𝑦௧ିଵ + 𝜀௧

R script to plot 𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧ with 200 simulations
> plot(arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200), ylab="ACF",
main=(expression(AR(1)~~~phi==+.5)))

AR(1) Process – Stationarity & ACF: Simulations 
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Simulated Example (continuation): 

Note: The process 𝜙ଵ > 0 is smoother than the ones with 𝜙ଵ < 0. 
The process with |𝜙ଵ| > 1, explodes!

AR(1) Process – Stationarity & ACF: Simulations 

Simulated Example (continuation): Below, we compute and plot the 
ACF for the two stable simulated process.

1) 𝑦௧ = 0.5𝑦௧ିଵ + 𝜀௧
sim_ar1_5 <- arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200) 
acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5)))
acf_ar1_5
Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.351  0.055 -0.005 -0.054  0.002 -0.036 -0.119 -0.008 -0.099 -0.125 -0.066 -0.036 -0.023 
14 15 16 17 18 19  20 21 22 23 
-0.042  0.062  0.119  0.102  0.087  0.099  0.065  0.056  0.047  0.044 

AR(1) Process – Stationarity & ACF: Simulations 
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Simulated Example (continuation): 
2) 𝑦௧ = - 0.9𝑦௧ିଵ + 𝜀௧
sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar = -0.9), n = 200) acf_ar1_9 <-
acf(sim_ar1_9, main=(expression(AR(1)~~~phi==-.9)))
> acf_ar1_9
Autocorrelations of  series ‘sim_ma1_9’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14 15 16 17 18 19  20 21 22 23 
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105

AR(1) Process – Stationarity & ACF: Simulations 

Example: A process with |𝜙1|< 1 (actually, 0.065) is the monthly 
changes in the USD/GBP exchange rate. Below we plot its 
corresponding ACF:

AR(1) Process – Stationarity & ACF: Examples
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Example: Below we plot the monthly changes in the USD/GBP 
exchange rate. Stationary series do not look smooth:

AR(1) Process – Stationarity & ACF: Examples

Example: A process with 𝜙ଵ ≈ 1 (actually, 0.99) is the nominal 
USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the 
time, but its decay is very slow (after 30 months, it is still .40 
correlated!): 

AR(1) Process – Stationarity & ACF: Examples
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Example: Below we plot the nominal USD/GBP exchange rate.  
Non-stationary series look smooth, smooth enough that you can 
clearly spot trends: 

AR(1) Process – Stationarity & ACF: Examples

Theorem: The linear AR(𝑝) process is strictly stationary and ergodic 
if  and only if the roots of 𝜙 𝐿 are |𝑧௝|> 1 for all 𝑗, where |𝑧௝| is 
the modulus of  the complex number 𝑟௝ .

Note: If  one of  the 𝑧௝ ’s equals 1, 𝜙 𝐿 (& 𝑦௧) has a unit root –i.e., 
𝜙 1 ൌ 0. This is a special case of  non-stationarity.

• Recall 𝜙 𝐿 ିଵ produces an infinite sum on the 𝜀௧ି௝ ’s. If  this sum 
does not explode, we say the process is stable. 

• If  the process is stable, the 𝜙 𝐿 polynomial can be inverted. It is 
possible to transform the AR(𝑝) into an MA(∞). Then, we say the 
process 𝑦௧ is causal (strictly speaking, a causal function of {𝜀௧}).

AR Process – Stationarity and Ergodicity


