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Lecture 8-al
Time Series: Introduction

Brooks (4™ edition): Chapter 6
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Time Series: Introduction

* A time series Y is a process observed in sequence over time,

t:l,....,T :Yt:{Y1ay23y3a'”>yT}‘

Examples: IBM monthly stock prices from 1973:January till
2025:September (plot below); or USD/GBP daily exchange rates
from February 15, 1923 to March 19, 1938.

Time Series: IBM Monthly Price
Period - 1ava - oz

200 -

Bl Prce
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Time Series: Introduction

Examples (continuation): Different ways to do the plot in R:

* Using plot.ts, creating a timeseries object in R:

# the function ts creates a timeseries object, start = 1973,1 (start of sample), frequency =
12(=monthly)

ts_ibm <- ts(x_ibm, start=c(1973,1), frequency=12)

plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")

* Using R package ggplot2
x_ibm <- SFX_da$IBM
x_date <- as.Date(SFX_da$Date, "%m/%d/%Y")
df <- data.frame(x_date, x_ibm)
goplot(df, aes(x = x_date, y = x_ibm)) +
geom_line(color="blue") +
labs(x = "Date", y = "IBM Price", col = "blue", title = "Time Series: IBM Monthly Price",
subtitle = "Period: 1973 - 2024")

Time Series: Introduction — Categories

* Usually, time series models are separated into two categories:

— Univariate (y; € R, it is a scalar)

Example: We are interested in the behavior of IBM stock
prices as function of its past.

=> Primary model: Autoregressions (ARs).

— Multivariate (y; € R™, it is a vector-valued)

Example: We are interested in the joint behavior of IBM

returns, Tgy, & bond yields, by, as function of their past
_ TIBM,t]
Ve bIBM,t

= Primary model: Vector autoregressions (VARs).
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Time Series: Introduction — Dependence

* Given the sequential nature of y;, we expect ¥y & Y¢_1 to be
dependent. This is the main feature of time series: dependence. It
creates statistical problems.

* In classical statistics, we usually assume we observe several zz.4.
realizations of y¢. We use ¥ to estimate the mean.

* With several independent realizations we are able to sample over the
entire probability space and obtain a “good” —i.e., consistent or close
to the population mean— estimator of the mean.

* But, if the samples are highly dependent, then it is likely that Yy is
concentrated over a small part of the probability space. Then, the
sample mean will not converge to the mean as the sample size grows.

Time Series: Introduction — Dependence

Technical note: With dependent observations, the classical results
(based on LLN & CLT) are not to valid.

* We need new conditions in the DGP to make sure the sample
moments (mean, variance, etc.) are good estimators population
moments. The new assumptions and tools are needed: stationarity,
ergodicity, CLT for martingale difference sequences (MDS CLT).

Roughly speaking, stationarity requires constant moments for Y;
ergodicity requires that the dependence is short-lived, eventually Y,
has only a small influence on Y4k, when K is relatively large.

Ergodicity describes a situation where the expectation of a random
variable can be replaced by the time series expectation.
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Time Series: Introduction — Dependence

An MDS is a discrete-time martingale with mean zero. In particular,
its increments, €;’s, are uncorrelated with any function of the available
dataset at time t. To these &;’s we will apply a CLT.

* The amount of dependence in y; determines the ‘quality’ of the
estimator. There are several ways to measure the dependence. The
most common measure: Covariance.

Cov(ye, Yk ) = E[(Ve, D) Dare— W]
Note: When p = 0, then Cov(y, Ve4x ) = E[Ye Vel

Time Series: Introduction — Forecasting

* In a time series model, we describe how y; depends on past y;’s.
That is, the information set is Iy = {Y¢_1, Ve—2, Ve—3, -}

* The purpose of building a time series model: Forecasting.

* We estimate time series models to forecast out-of-sample. For
example, the 1-step ahead forecast: Y7y = E¢[Vesr | 1¢]-

Historical Note: In the 1970s it was found that very simple time series

models out-forecasted very sophisticated (big) economic models.

This finding represented a big shock to the big multivariate models
that were very popular then. It forced a re-evaluation of these big

models.
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Time Series: Introduction — White Noise

¢ In general, we assume the error term, &, is uncorrelated with
everything, with mean 0 and constant variance, o?. We call a process
like this a white noise (WN) process.

* We denote a WN process as
g ~WN(0,0?)

* White noise is the basic building block of all time series. It can be
written as simple function of a WN (0, 1) process:

Zt =0 ut’ ut ~ Z..Z..d. ~ WN(O, 1) = Zt ~ WN(O, 0-2)

¢ The z,’s are random shocks, with no dependence over time,
representing unpredictable events. It represents a model of news.

Time Series: Introduction — Conditionality

* We make a key distinction: Conditional & Unconditional moments. In
time series we model the conditional mean as a function of its past,
for example in an AR(1) process, we have:

Ye=a+BYiq TE.

Then, the conditional mean forecast at time ¢, conditioning on
information at time I;_q, is:

Ee[ye [ le-1] = E¢[ye | Vel =a + B yea

Notice that the unconditional mean, |, is given by
By =a + B E[y;4] = ﬁ = U = constant B#£1

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.
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Time Series: Introduction — AR and MA models

* Two popular models for E¢[y; | 1], that have & ~ WN(O, 1):

— An autoregressive (AR) process models E, [y, | I[;—1] with lagged
dependent variables:

Ee[Velle] = f Vi1, Yi—2> V=35 v yt—p)

An AR process is indexed by the number of lags; an AR(p) model
involves p lags. In this class, f(.) will be linear.

Example: AR(1) process, Ye=a+ L Y1 t+ g

The general AR(p) process is given by:
Ve=U+P1Yi1t Gyt Ppyep + &, & ~WN.

Time Series: Introduction — AR and MA models

— A moving average (MA) process models E[y,|];] with lagged
errors, &

Ee[ye|le] = f(€-1, €t=2, E¢—35 - » 8t—q)

Like AR models, an MA process is indexed by the number of lags; an
MA(q) model involves q lags. In this class, f(.) will be linear.

Example: MA(1) process, YVe=pH+0,&_1+8

The general MA(Q) process is given by:
Vi =M+€t+91 St_1+ez Et—2 +...+9q €t—q Et ~WN.

* There is a third model, ARMA, that combines lagged dependent
variables and lagged errors.
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Time Series: Introduction — Forecasting (again)

* We want to select an appropriate time series model to forecast .
In this class, we will use linear models, with choices: AR(p), MA(q)
or ARMA(p, q).

¢ Steps for forecasting:

(1) Identify the appropriate model. That is, determine p, q.
(2) Estimate the model.

(3) Test the model.

(4) Forecast.

¢ In this lecture, we go over the statistical theory (stationarity,
ergodicity), the main models (AR, MA & ARMA) and tools that will
help us describe and identify a proper model.

CLM Revisited: Time Series Implications

* With autocorrelated data, we get dependent observations. For
example, with autocorrelated errors:

€& = PE-1 T U

the independence assumption is violated. The LLN and the CLT
cannot be easily applied in this context. We need new tools.

* We introduce the concepts of stationarity and ergodicity. The
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent
variables, using new technical concepts: mixing and stationarity. Or

we can rely on a new CLT: The martingale difference sequence C1.T.

* We will not cover these technical points in detail.
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Time Series — Stationarity

* Consider the joint probability distribution of the collection of RVs:
F()’tl'YtZ' ---»YtT) = F(Ytl S Ve Yo, S Vepoor Yop S }’tT)

To do statistical analysis with dependent observations, we need extra
assumptions. We need some form of invariance on the structure of
the time series.

If the distribution F is changing with every observation, estimation
and inference become very difficult.

e Stationarity is an invariant property: The statistical characteristics of
the time series do not change over time.

* There different definitions of stationarity, they differ in how strong is
the invariance of the distribution over time.

Time Series — Stationarity

* We say that a process is stationary of

1 order it F(ytl) = F(}’t1+k) forany t, k

2 order if F(ytl, Ve, ) = F(yt1+k, yt2+k) forany t,, t, k
N"-order if F(ytl, e Vg ) = F(yf1+k' e Verek ) forany t, .., tp k
* N”-order stationatity is a strong assumption (& difficult to verify in

practice). 2" order (weak) stationarity is weaker. Weak stationarity only
considers means & covariances (easier to verify in practice).

* Moments describe a distribution. We calculate moments as usual:
E[Y;] =n
Var(y,) = o? = E[(¥; — 7]

Cov(Ye,, Y, ) = E[(Ye, —w)(Ye,— W] =v(t; — t3)
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Time Series — Stationarity & Autocovariances

* Cov(Y:,, Y, ) = y(t; — t3) is called the auto-covariance function. It
measures how y;, measured at time t1, and y;, measured at time &5,
covary.

Notes: y(t; — t,) is a function of kK =t; — t;
Y(0) is the variance.

¢ The autocovariance function is symmetric. That is,
y(t, = t,) = Cov(Yy,, Yy, ) = Cov(Yy,, Yy, ) = y(&2 — ¢))
=vy(k) =vy(=k)

* Autocovariances are unit dependent. We have different values if we
calculate the autocovariance for IBM returns in % or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between
two Y;’s separated by k periods.

Time Series — Stationarity & Autocorrelations

* From the autocovariances, we derive the autocorrelations:

Corr(Y,, Y, ) = p(Ye, Vi, ) = Yt~ ta) _ y(t‘% )tz)

tho'tz

the last step takes assumes: 0, = 0, = 1/Y(0)

. Cor‘r(Yt oY, ) = p(Yt oY, ) is called the auto-correlation function
(ACF), —think of it as a function of k =t, — t;. The ACF is also
symmetric.

* Unlike autocovoriances, autocorrelations are not unit dependent. It is
easier to compare dependencies across different time series.

* Stationarity requires all these moments to be independent of time. If
the moments are time dependent, we say the series is non-stationary.
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Time Series — Stationarity & Constant Moments

* For a strictly stationary process (constant moments), we need:

He = 1
O =0
because F(Ytl) = F(yt1+k) = Me, = Mgy = B
Ot; =0t14 =0

Then,
F(yf1'yt2 ) = F(yf1+k'yt2+k) = Cov(yf1’ytz): Cov(yt1+k'yt2+k)

Lett]_:t_k &tzzt

= p(ty, t2) = p(tisks ta4k)

=p(ty, ty) =pt —k,t) =p(t,t — k) =pk) = pg

The correlation between any two RVs depends on the time difference.

Given the symmetry, we have p(k) = p(—k).

Time Series — Stationarity & Constant Moments

Example: Informally, we check if in any two petiods separated by k
observations, we have similar means, variances and covariances. That is,

utl = I"l‘t1+k = IJ'

Oty =0ty =0
Cov(yt1' ytz): CoV(:Yt1+k' yf2+k)

IBM Monthly Returns

Feriod: 1973 - 2023

Bl Retums

© R. Susmel, 2025 — Do not share/post online without written authotization

10



RS — FEc - Lecture 8-al

Time Series — Stationarity & Constant Moments

Example: Informally, we check if in any two petiods separated by k
observations, we have similar means, variances and covariances. That is,

utl = I"l‘t1+k = IJ'

Oty =0ty =0
Cov(yt1' ytz): COV(:Yt1+k' yf2+k)

Time Series: IBM Monthly Stock Price

Period: 1973 - 2023

Time Series — Covariance (Weak) Stationary

* A Covariance stationary process (ot 2nd -order weakly stationary) has:

- constant mean,
- constant variance, 0’2

- covariance depends on time difference, k, between two RVs, y(k)
That is, Z; is covariance stationary if:
E(Z;) = constant =

Var(Z;) = constant = @
Cov(Ztl,th) =vyk=t; - t;)

2

Remark: Covariance stationarity is only concerned with the covariance
of a process, only the mean, variance and covariance are time-invariant.
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Time Series — Stationarity: Example

Example: Assume y; follows an AR(1) process:
Ve = Vi1 + &, with & ~ WN(0,5?).

e Mean
Taking expectations on both side:
E[y:] = ¢ E[ye—1] + Elg¢]
L=¢pto
Ely;]=u=0 (assuming ¢ 7 1)
e Variance
Applying the variance on both side:
Var[y;] = y(0) = ¢p? Var[y,_4] + Var[e,]
¥(0) = ¢* v(0) + o?
Y0 =1 (assuming [¢ |< 1)

Time Series — Stationarity: Example

Example (continuation): y; = ¢ y;_1 + &, & ~WN(0,0%)
e Covariance
Y(1) = Covl[ye, Ye-1] = B[Ye Ye-1] = BI(@ Vi1 + &) Vi-1]
= ¢ E[Ye-1 Ye-1] + B[ & Yi-1]
= ¢ E[yr-17]
= ¢ Var[y;_4]
=¢v(0)

Y(2) = Cov[ye, Ye-2] = B[Vt Ye—2] = E[(@ Vi1 + &) Ye-2]
=@ E[yt—1 ye-2]
= ¢ Cov[ye, Ve-1]
=¢y()
= ¢*v(0)

y(k) = Cov|ys, Ye—i] = ¢k y(0)
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Time Series — Stationarity: Example

Example (continuation): y; = ¢ y;_1 + &, g ~ WN(, 02)

e Covariance

Y(k) = Cov[ye, Ye—kl = ¢k v(0)

= If |@|<1,y; process is covariance stationary: mean, variance,
and covariance are constant.

Remark: To establish stationarity, we need to impose conditions on
the AR parameters. (Conditions are not needed for MA processes.)

Note: From the autocovariance function, we derive ACF:

_Y® kv _ Lk
K =J0=70 - ¢

If |¢ | <1, autocovatiance function & ACF show exponential decay.

Time Series — Non-Stationarity: Example

Example: Assume y; follows a Random Walk with drift process:
yt = ,u + yt—l + St, Wlth St ~ WN(O, 0-2).

Doing backward substitution:
Ve=ut+ @t YVeat e tE
=2xpt (Wt Y3t Eg) T et Eg
= 3 * I,l,+ yt—3 + £t + St_1+ St_z
_ t-1
=Yt =UL+ Li—0&—j T Yo

e Mean & Variance
Elye] =ut +y
Varlye] = y(0) = ¥jZp 0” = 0%t

= the process Y; is non-stationary: moments are time dependent.
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Stationary Series: Examples

Examples: Assume g, ~ WN(0, 62).
Ye=0.08+¢& +04¢e_1 -MA(1) process
Ve =013y, 4 + & - AR(1) process

SEK/USD: Monthly Log Changes (1973 - 2025)

00
\

005

time

Non-Stationary Series: Examples

Examples: Assume g, ~ WN(0, 62).
Ve =Ut+ D1 Y1+ Py yep + & -AR(2) with deterministic trend
Ve=p+ Y +e - Random Walk wih drift

Time Series: Monthly SEK/USD FX Rate
Period: 1973 - 2025

SEKIUSD Price

1980 1990 2000 2010 2020
Date
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Time Series — Stationarity: Remarks
* Main characteristic of time series: Observations are dependent.

* If we have non-stationary series (say, mean or variance are changing
with each observation), it is not possible to make inferences.

e Stationarity is an invariant property: the statistical characteristics of
the time series do not vary over time.

e If IBM is weak stationary, then, the returns of IBM may change
month to month or year to year, but the average return and the variance
in two equal-length time intervals will be more or less the same.

Time Series — Stationarity (Again)

¢ In the long run, say 100-200 years, the stationarity assumption may
not be realistic. After all, technological change has affected the return
of IBM over the long run. But, in the short-run, stationarity seems
likely to hold.

* In general, time series analysis is done under the stationarity
assumption.
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Ergodicity

* We want to estimate the mean of the process {Z;}, u(Z;). But, we
need to distinguishing between ensemble average (with m
observations) and time average (with T observations):

= _ Xt Zi . .
- Ensemble Average: z = % (all possible states at one time)
. . —_ ZZ:l Zt - 113 . >y
- Time Series Average: Z = ==— (onec history, or “trajectory”)

QQ: Which estimator is the most appropriate?
A: Ensemble Average. But, it is impossible to calculate for a time series.
We only observe one Z;, with dependent observations.

* Q: Under which circumstances we can use the time average (with only
one realization of {Z;})? Is the time average an unbiased and consistent
estimator of the mean? The Ergodic Theorem gives us the answer.

Time Series — Ergodicity

¢ Intuition behind Ergodicity:

We want to know the probability of face 5 in an die. We get m
participants to throw a die once and we record the number of times 5
shows up, say k. This is the ensemble scenario. With an increasing
number of participants, increasing m , the randomness gets more and
more removed. Then,:

lim £ P(X =5)

m—oco m

We can do the same experiment with only one participant, throwing the
die many times, say, T. This is the time series scenario. As T increases,

ok _
%I_I)EOF_)P(X_S)

Result: The probability computed from m subjects (ensemble scenario)
applies to the one computed from one person (time series scenario).
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Time Series — Ergodicity

¢ Intuition behind Ergodicity:

We go to a casino to play a game with 20% return, but on average, one
gambler out of 100 goes bankrupt. If 100 gamblers play the game,
there is a 99% chance of winning and getting a 20% return. This is the
ensemble scenario. Suppose that gambler 35 is the one that goes
bankrupt. Gambler 306 is not affected by the bankruptcy of gamble 35.

Suppose now that you play the game 100 times. This is the time series
scenario. You win 20% every day until day 35 when you go bankrupt.
There is no day 36 for you (dependence at workl!).

Result: The probability of success from the group (ensemble scenario)
does not apply to one person (time series scenario).

Ergodicity describes a situation where the ensemble scenario outcome
applies to the time series scenario.

Ergodicity

* With dependent observation, we cannot use the LLLN as we have done
before with z..d. observations. The ergodicity theorem plays the role
of the LLN with dependent observations.

The formal definition of ergodicity is complex and is seldom used in
time series analysis. One consequence of ergodicity is the ergodic
theorem, which is extremely useful in time series.

It states that if Z; is an ergodic stochastic process, then

1 a.s.
;Zt=1 9(Zy) — E[g(Zo)]
for any function g(.). And, for any time shift k

1 a.s.
T 2t=19Ze,+io Zeyrier s Zeyrk) = BlG(Zey, Zeys e s Ze))]

where a.s. means almost sure convergence, a strong form of convergence.

© R. Susmel, 2025 — Do not share/post online without written authotization.

17



RS — FEc - Lecture 8-al

Ergodicity of the Mean

* Definition: A covariance-stationary process is ergodic for the mean
if

_p

z— E[Zd=u

Theorem: A sufficient condition for ergodicity for the mean:
pk—>0 as k=ti—tj—>00
We need the correlation between (V¢ ytj) to decrease as they grow

further apart in time.

* If the conditions of the Ergodic Theorem are met, we can use Z
instead of Z.

Remark: Under ergodicity, just one history (trajectory) is enough to
learn about the behavior of the system generating Z;.

Time Series — Lag Operator

* Define the operator L as
k _
L* zy = z4_y.

e It is usually called Lag operator. But it can produce lagged or
forward variables (for negative values of k). For example:
L73 2, = 743,

¢ Also note that if ¢ is a constant =Lc=c.
¢ Important application: Differencing

AZt = (1 - L) Zt = Zt — Zt—1-
AZ Zt = (1 — L)Z Zt = Zy — ZZt—l + Zi_»p.
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18



RS — FEc - Lecture 8-al

Time Series — Useful Result: Geometric Series

¢ The function f(x) = (1 — x)~! can be written as an infinite
geometric series (use a Maclaurin series around ¢ =0):

fx) = —:x =1+x+x2+x3+x*+... =32 x"

* If we multiply f(x) by a constant, a:

) n__2@a o0 n_— 1
Yn=o@X" =—= XYpojax" = a( —1)

- 1—x

Example: In Finance we have many applications of the above results.
- A stock price, P, equals the discounted some of all futures dividends.
Assume dividends are constant, d, and the discount rate is 7. Then:
. d 1 _ 1 _d
Pe=Yigrm = A=~V =dlz==-D =

1-—
1+7r 1+r

where X =
1+7r

Time Series — Useful Result: Application

* We will use this result when, under certain conditions, we invert a lag
polynomial (say, 0(L)) to convert an AR (MA) process into an infinite
MA (AR) process.

Example: Suppose we have an MA(1) process:
Ye= U+ 018t e =p+6(L) ¢ -0(0) =Q1+6,0)
Recall,
-1 _ 2 3 4 — Vo .n
f(x)—:—1+x+x +x+xt =Y 0x

Let x = —0, L. Then, assuming that O(L) ™1 is well defined,

o(L) 1= =1+ (-0,0) + (—0,0)%+ (-0,0)% + (-6,1)* + ...

_r
1-(=6,0)
= Z?}?:O(fellz)n = 1 - 91L+ 912L2 —_ 613[,3 + 614L4' +
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Time Series — Useful Result: Application

Example (continuation):
Q(L)_l = Z?}?:O(_e1 L)Tl =1- 61L+ 912[,2 — 913[,3 + 914L4 + ..

Now, we multiply 0(L) on both sides of the MA process

ye=p +0(L) &.
Then,

O(L) 7y, =0L)tu+0(L)TO(L) & = pux+ g

OL) 'y =ye—01 Yeo1+ 05y — 63 ye 3+ 0T Yyt
= Pt t e

Then, solving for y;:
Ve=x+ 01y 1 =07 Yo + 03 Y3 — 0 Yt + g

That is, we get an AR(%0)!

Time Series — Useful Result: Invertibility

Example (continuation):

Now, we get an AR(®) for y;:
Ve=px+01Ye 1 =07y 2 +07 Y 3— 0T yeat - te

=pF Y1 T 2Ye—2+ T3 Vi3t Ty Ye—at "+ &
Thatis, r; = (—1) * (—8,)’
* Now, Ve = px+ X521 Ve &
We express V; as infinite AR process. We have an infinite sum of
m;Y¢—i! To be useful for forecasting purposes, we need to make sure

that this infinite sum is finite.

Restriction: Make sure the 7;’s do not explode —i.e., 81| < 1. Under
this condition, we will call the polynomial 8(L) invertible.
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Moving Average Process

* An MA process models E;[y; | [;—1] with lagged error terms. An
MA(q) model involves q lags.

* We keep the white noise assumption for &: g ~WN(0,02)

Example: A linear MA(q) model:
yt = |J_ + 61 gt—l + 92 gt—_z + ...+ eq gt—q + Et = l,l + 9([,) £t3

where
OL)=1+0,L+0, 2 +0, 2 +..+0, [

¢ In time series, the constant does not affect the properties of AR and
MA process. It is usually removed (think of the data analyzed as
demeaned). Thus, in this situation we say “without loss of
generalization” (WLOG), we assume y = 0.

MA Process — MA(1): Stationarity

Example: MA(1) process (WLOG, p = 0), with & ~ WN (0, 52):
Ye=Uu+01& 1+ =pu+0(L) e, with6(L)=(1+0640)
e Mean
Ely]= 0
e Variance
Vat[y,] = y(0) = 0%+ 82 62 = 6%(1 + 02)

e Covariance

Covl[ye, ¥e-1]1 = Y(1) = E[yt Yi-1]
= E[(0,6¢—1 + £)*(01&—2 + &-1)] = 8507

Cov|ye, Ye-2] = Y(2) = E[yt Yi—2]
=E[0&-1 + &) * 01 €31 &) =0
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MA Process — MA(1): Stationarity

Example (continuation): MA(1) process:

e Covariance
Y(1) = E[yt ye—1] = E[(0,&—1 + &)*(O16¢—2 + £-1)] = 010°

Y(2) = B[yt Ye-a] = E[O8c-1 + &) * (01 &3+ &-5)] = 0
Y(k) = B[Vt Ye—i] = E[(0,6-1F&) * (016¢—(k+1)TEc—k)] = 0 (for k>1)
That is, for |k| >1, y(k)=0.
= MA(1) is always stationary —i.e., independent of values of 0.
Remark: The MA(q=1) process has y(q) = 0, for ¢ > 1. This result

generalizes to MA(q) process: after lag g, the autocovatiances are 0.
Also, the always stationary result for MA(1) generalizes to MA(Q).

MA(1) Process — ACF

Example (continuation): To get the ACF, we divide the
autocovariances by Y(0). Then, the autocorrelation function (ACF):

p(0) =v(0)/y(0) =1
0,02 0,

p(1) =y(1)/y(0) = o2(1+ 67) - 1+ 62

p(k) =y(k)/¥(0) =0 (for k > 1)

Remark: The autocovariance function is zero after lag 1. Similarly, the
ACF is also zero after lag 1, that is, y; is correlated with itself (y;) and
Y1, but not Y¢_o, ¥¢—3, ... Contrast this with the AR(1) model,
where the correlation between y; and y¢_j is never zero.

The ACF is usually shown in a plot, the autocorrelogram. When we
plot p(k) against k, we plot also p(0) which is 1.
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MA(1) Process — ACF

Example (continuation):
__ 8
p(1) = (1+62)

Note that [p(1)]| < 0.5.

When 6, =0.5 = p(1) =04.
0,=-09 = p(1) = -0.497238.
8,=2  =p)=-04
0,=2 = p(1) =0.4. (same p(1) for 6; & GL)
1
Note: Both MA(1) processes, with 81 = 0.5 and 0; = 2, have the same

ACE. That is, ACFs are not unique. This is a problem: we deduce the
order and the coefficients through the ACF, which is what we observe.

MA Process — MA(q): Stationarity

* Q: Is MA(q) stationary?

MA(q): Ve=& + 0161 +06 5+ .. +0;&_4
* Mean (u = 0). Ely:] =0
e Variance Var[y,] = (1 + 912 + 922 + ..+ Oqz) a?.

For Var[y,] > 0, we require (1 + 0.%+0,% + .. + qu) > 0.

* Covariance
y(k) = GZZj-Lk 0, 0;_ for | k | £ g (where 8y =1)
y(k) =0 for | k| >q

Remark: After lag g, the autocovariances are 0.

e It is easy to verify that the sums Z?: x 0j 0j_ are finite. Then, mean,

variance & covariance are constant = MA(g) is always stationary!
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MA Process — Invertibility

* As mentioned above, the autocovariances are non-unique.

Example: Two MA(1) processes that produce the same y(k):
Yt = &t + 0.2 Et-1> &~ i.i.d. N(O, 25)
Zy =V + 5044, U ~ 2id. N(O; 1)

We only observe the time series, Y; or Z;, and not the noise, & or Uy.
We cannot distinguish between the models using the autocovariances.

We want to select one process to forecast: We select the model with an
AR(®) representation that does not explode: That is, we select the
process that is invertible.

* Assuming O(L) # 1, we invert 6 (L):

ye=u+ 0L e = 0@y =) ye =k + &
=V = Ut X T Ve &

MA Process — Invertibility

* We convert an MA(g) into an AR(%):
Ve = px+ X501 Ve + &

We need to make sure that II(L) = 8(L) ™! is defined: We require
0(L)#0. When this condition is met, we can write & as a causal
function of y;. We say the MA is znvertible. For this to hold, we require:

Lizolmj(L)] < co.

Technical note: An invertible MA(g) is typically required to have roots
of the lag polynomial equation 8(z) = 0 greater than one in absolute
value (outside the unit circle). In the MA(1) case,

0(2)=(1+6,2)=0  =rootz=—5 (= [0,]<1)
1

In the previous example, we select the model with 8, = 0.2.
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MA(1) Process: Simulations

Simulated Example: We simulate with R function arima.sim (& plot)

three MA(1) processes, with standard normal & -ie, 4 =0& o= 1:

Ye= &+ 0564
Ye=¢& —09¢&_4
V=& —2&

R script to plot yy = & + 0.5 &4 with 200 simulations

> plot(arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200), ylab="ACF",
main=(expression(MA(1)~~~theta==+.5)))

mMac1) o 2 —o.s

- P A A

SO =0 100

I
A

Time

MA(1) Process: Simulations

Simulated Example (continuation):

MAC1T) 88— o8

ACF
M
T

B

4

W

4101
[
§

o s0 100 150 zo0

Note: The process 0, > 0 is smoother than the ones with 8, < 0.
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A
[

MA(1) Process: Simulations (ACF)

Simulated Example (continuation): Below, we compute and plot the
ACF for the 3 simulated process.

1) Ve=&+0.58_4

sim_mal_5 <- arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200)

acf_mal_5 <- acf(sim_mal_5, main=(expression(MA(1)~~~theta==+.5)))

> acf_mal_5

Autocorrelations of series ‘sim_mal_5’, by lag

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1.000 0.438 0.069 0.014 0.103 0.173 0.107 0.015 -0.080 -0.054 0.011 -0.006 0.041 0.000
14 15 16 17 18 19 20 21 22 23
-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021 0.110

MAaC1) e— . o.s

MA(1) Process: Simulations (ACF)

Simulated Example (continuation):

2) Ve =& -0.9 &4

sim_mal_9 <- arima.sim(list(order=c(0,0,1), ma = -0.9), n = 200)
acf_mal_9 <- acf(sim_mal_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_mal_9

Autocorrelations of series ‘sim_mal_9’, by lag

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1.000 -0.584 0.093 0.061 -0.132 0.147 -0.181 0.122 -0.013 -0.023 0.014 -0.012 0.092 -0.199
14 15 16 17 18 19 20 21 22 23
0.193 -0.155 0.143 -0.107 0.014 0.174 -0.244 0.196 -0.154 0.105

4§
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MA(1) Process: Simulations (ACF)

Simulated Example (continuation):

3) Ve =& -2 &4

sim_mal_2 <- arima.sim(list(order=c(0,0,1), ma = -2), n = 200)
acf_mal_2 <- acf(sim_mal_2, main=(expression(MA(1)~~~theta==-2)))
> acf_mal_2

Autocorrelations of series ‘sim_mal_2’, by lag

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1.000 -0.524 0.150 -0.064 0.006 -0.014 0.022 -0.070 0.068 -0.015 -0.002 0.054 -0.121 0.055
14 15 16 17 18 19 20 21 22 23

-0.029 0.026 -0.054 0.121 -0.156 0.106 -0.009 0.037 -0.080 0.104

mMac1y e — =

i

MA Process — Example: MA(1)

Simulated Example (continuation):

— Invertibility: If |04 |< 1, we can write (1 + 0,L) 1y, + u* = &

=(1-0,L+0,° =0 B+ +0JL+ )y, +ux=
=Yi2om (L) ye = &

That s, T; = 61‘.

The simulated process with 8= -2 is non-invertible, the infinite sum
of m; would explode. We would select the MA(1) with 8; = -.5.
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MA Process — Estimation

* MA processes are complicated to estimate. Consider an MA(1):
Ve =& T84

We cannot do OLS,; since we do not observe & _4. But, based on the
ACF, we estimate 0.

e The auto-correlation of order one is:

p(1) = 6;/(1+6,%)

Then, we can use the Method of Moments (MM), which sets the
theoretical moment equal to the estimated sample moment p(1), 77.
Then, we solve for the parameter of interest, 04:

H 5 141 —4r?
= = = @ -
n 1 2

—~ 2
(1+91)

¢ A nonlinear solution and difficult to solve.

MA Process — Estimation

* Alternatively, if |0, |< 1, we can invert the MA(1) process. Then,
based on the AR representation, we can try finding a €(-1; 1):

_ 2 3
gl@=y+tay1+ay,+a’y._3+ ...

and look (numerically) for the least-square estimator

~

8 = arg min, {S(¥; 6) = X1=y £:(a)")

where at=0,".
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Autoregressive (AR) Process

* We model the conditional expectation of Yy, E¢[V¢ | I¢—1], as a
function of its past history. We assume & ~ WN(0,02).

* The most common models are AR models. An AR(1) model
involves a single lag, while an AR(p) model involves p lags. Then, the
AR(p) process is given by:

Ve=p+ 1Ye1t Pyt Gy Ve pt &, &~WN

Using the lag operator we write the AR(p) process: (L) ¥y = &
with L) =1 — 1L — ¢ L2 — = IP

* We can look at an AR(p) process as a stochastic (linear)
difference equation (SDE). We want to work with a stable y;
process (not explosive).

AR(1) Process — Stationarity & ACF

* An AR(1) model:
Ve =$1Ye-1 T &, E&~WN
Recall that in a previous example, under the stationarity condition

| $1 ] <1, we derived the mean, variance and auto-covariance function:

Ey:]=u=0 (assuming ¢ # 1)

g2

Varly,] =v(0) = =D (assuming | ¢ [< 1)
y(k) = ¢1 v(0)

e We also derived the autocorrelations:

_ Y _ ik
p(k) = v o1

Remark: When | ¢ | < 1, the autocorrelations do not explode as k
increases. There is an exponential decay towards zero.
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AR(1) Process — Stationarity & ACF

* ACF for an AR(1) process:

_Y® _ Lk
pll) = T4 = #1
Then, the autocorrelogram —i.e., plot of p(k) against k— shows
—when 0<¢;<1 = All autocorrelations are positive.
—when =1 <¢1<0 = The sign of p(k) shows an alternating
pattern beginning with a negative value.
—when ¢p; =1 = AR(1) is non-stationary, p(k) = 1, for all k.
Present & past are always correlated!

Note: The results for AR(1) can be generalized for AR(p), but the

generalization is not straightforward like in the MA case. For example,

to get stationarity for an AR(2), we require: o1+ P, £ 1.
P2 + P2 <1.
|2 | < 1.

AR Process — Stationarity and Ergodicity

Theorem: The linear AR(p) process is strictly stationary and ergodic
if and only if the roots of ¢(L) are |zj|>1 for all j, where |Zz;| is the
modulus of the complex number 7;.

Note: If one of the z;’s equals 1, ¢(L) (& y;) has a unit root —i.e.,

¢ (1)=0. This is a special case of non-stationarity.

* Recall ¢p(L)71 produces an infinite sum on the &_;’s. If this sum
does not explode, we say the process is stable.

* For the AR(1) case
PO =1-¢2=0 = |z|=ri7>1

That is, the AR(1) process is stable if the root of ¢(z) is greater than
one (also said as “the roots lie outside the unit circle”).
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AR Process — AR(1): Stability

* We analyze the stability of an AR(p) process from the point of view
of the roots of the lag polynomial. For the AR(1) process
@ =1-¢,2=0 = |z|=—7>1
| ¢4 ]
That is, the AR(1) process is stable if the root of ¢ (z) is greater than
one (also said as “the roots lie outside the unit circle”).

This result generalizes to AR(p) process:

Theorem

A necessary and sufficient condition for global asymptotical stability
of a p™ order deterministic difference equation with constant
coefficients is that all roots of the associated lag polynomial equation
¢(2)=0 have moduli strictly more than 1.

—_ ¢

(For the case of real roots, moduli = “absolute values.”)

AR(1) Process — Stationarity & ACF: Simulations

Simulated Example: We simulate (& plot) three AR(1) processes, with
standard normal & -i.e., 0 = 1:

YVe=05yi-1+ &

Ve=-09ye1 + &

Ye=2YVe-1+ &

R script to plot y; = 0.5y;_1 +&  with 200 simulations

> plot(arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200), ylab="ACF",
main=(expression(AR(1)~~~phi==+.5)))

ARCT)Y b= O.5

o so oo 150 zoo

Time

Sinuleted Seres

© R. Susmel, 2025 — Do not share/post online without written authotization.

31



RS — FEc - Lecture 8-al

AR(1) Process — Stationarity & ACF: Simulations

Simulated Example (continuation):

ARCTY o ——

' '
o so

o =o ao So =0

=
&

o.o
' ' '
100 150 =oo

Limne:

ARCTY ==

Sl

15l

el

|||||

Note: The process ¢p1 > 0 is smoother than the ones with ¢ < 0.
The process with |¢1| > 1, explodes!

AR(1) Process — Stationarity & ACF: Simulations

Simulated Example (continuation): Below, we compute and plot the
ACF for the two stable simulated process.

1) Ye=05Ye1 T &
sim_arl_5 <- arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200)
acf_arl_5 <- acf(sim_arl_5, main=(expression(AR(1)~~~phi==+.5)))
acf_arl 5
Autocorrelations of series ‘sim_mal_5’, by lag
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1.000 0.351 0.055 -0.005 -0.054 0.002 -0.036 -0.119 -0.008 -0.099 -0.125 -0.066 -0.036 -0.023
14 15 16 17 18 19 20 21 22 23
-0.042 0.062 0.119 0.102 0.087 0.099 0.065 0.056 0.047 0.044

ARCT) & — 1 O.5
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AR(1) Process — Stationarity & ACF: Simulations

Simulated Example (continuation):

2) Ye=-09y1 + &

sim_at]_9 <- arima.sim(list(order=c(1,0,0), ar = -0.9), n = 200) acf_arl_9 <-
acf(sim_arl_9, main=(expression(AR(1)~~~phi==-.9)))

>acf_arl_9

Autocorrelations of series ‘sim_mal_9’, by lag

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1.000 -0.584 0.093 0.061 -0.132 0.147 -0.181 0.122 -0.013 -0.023 0.014 -0.012 0.092 -0.199
14 15 16 17 18 19 20 21 2223
0.193 -0.155 0.143 -0.107 0.014 0.174 -0.244 0.196 -0.154 0.105

KF
LU S
[ 1

AR(1) Process — Stationarity & ACF: Examples

Example: A process with | ¢, | <1 (actually, 0.065) is the monthly
changes in the USD/GBP exchange rate. Below we plot its
corresponding ACE:

USD/GBP Exchange Rate: Monthly Changes Rates (1971-2020)

ACF
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AR(1) Process — Stationarity & ACF: Examples

Example: Below we plot the monthly changes in the USD/GBP
exchange rate. Stationary series do not look smooth:

USD/GBP Exchange Rate: Monthly Changes Rates (1971-2020)

005

<005
|

T T T T T T
1970 1980 1990 2000 2010 2020

Date

AR(1) Process — Stationarity & ACF: Examples

Example: A process with ¢p; = 1 (actually, 0.99) is the nominal
USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the
time, but its decay is very slow (after 30 months, it is still .40
correlated!):

USD/GBP Exchange Rate: Monthly Rates (1971-2020)

08
|

02
|

ACF
00 4 08
|
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FXRate

AR(1) Process — Stationarity & ACF: Examples

Example: Below we plot the nominal USD/GBP exchange rate.
Non-stationary series look smooth, smooth enough that you can
clearly spot trends:

USD/GBP Exchange Rate: Monthly Rates (1971-2020)

20

T T T T T T
1970 1980 1990 2000 2010 2020

Date

AR Process — Stationarity and Ergodicity

Theorem: The linear AR(p) process is strictly stationary and ergodic
if and only if the roots of ¢(L) are |z |> 1 for all j, where |z;| is
the modulus of the complex number 7;.

Note: If one of the z;’s equals 1, ¢(L) (& y;) has a unit root —i.e.,
¢ (1) = 0. This is a special case of non-stationarity.

* Recall ¢p(L)71 produces an infinite sum on the &_;’s. If this sum
does not explode, we say the process is stable.

* If the process is stable, the ¢ (L) polynomial can be inverted. It is
possible to transform the AR(p) into an MA(00). Then, we say the
process Y is causal (strictly speaking, a causal function of {€;}).
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