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Lecture 8-a
Time Series: 

Stationarity, AR(p) & MA(q)

Brooks (4th edition): Chapter 6

© R. Susmel, 2020 (for private use, not to be posted/shared online).

Time Series: Introduction

• A time series 𝑦 is a process observed in sequence over time, 

𝑡 = 1, ...., 𝑇  𝑌 = {𝑦 , 𝑦 , 𝑦 , ..., 𝑦 }.

Examples: IBM monthly stock prices from 1973:January till 
2020:September (plot below); or USD/GBP daily exchange rates 
from February 15, 1923 to March 19, 1938.
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Time Series: Introduction

Examples (continuation): Different ways to do the plot in R:

• Using plot.ts, creating a timeseries object in R:
# the function ts creates a timeseries object, start = 1973,1 (start of sample), frequency = 
12(=monthly) 

ts_ibm <- ts(x_ibm, start=c(1973,1), frequency=12) 

plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")

• Using R package ggplot2
x_ibm <- SFX_da$IBM

x_date <- as.Date(SFX_da$Date, "%m/%d/%Y")

df <- data.frame(x_date, x_ibm)

ggplot(df, aes(x = x_date, y = x_ibm)) +

geom_line(color="blue") +

labs(x = "Date", y = "IBM Price", col = "blue", title = "Time Series: IBM Monthly Price",

subtitle = "Period:  1973 - 2023")

Time Series: Introduction – Categories

• Usually, time series models are separated into two categories:   

– Univariate (𝑦 ∊ R, it is a scalar)

Example: We are interested in the behavior of IBM stock 
prices as function of its past.

 Primary model: Autoregressions (ARs).

– Multivariate (𝑦 ∊ Rm, it is a vector-valued)

Example: We are interested in the joint behavior of IBM 
stock and IBM bond prices as function of their joint past.

 Primary model: Vector autoregressions (VARs). 
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Time Series: Introduction – Dependence

• Given the sequential nature of 𝑦 , we expect 𝑦 & 𝑦 to be 
dependent. This is the main feature of time series: dependence. It 
creates statistical problems.

• In classical statistics, we usually assume we observe several i.i.d. 
realizations of 𝑦 . We use 𝑦 to estimate the mean. 

• With several independent realizations we are able to sample over the 
entire probability space and obtain a “good” –i.e., consistent or close 
to the population mean– estimator of the mean. 

• But, if the samples are highly dependent, then it is likely that 𝑦 is 
concentrated over a small part of the probability space. Then, the 
sample mean will not converge to the mean as the sample size grows. 

Time Series: Introduction – Dependence

Technical note: With dependent observations, the classical results 
(based on LLN & CLT) are not to valid. New assumptions and tools 
are needed: stationarity, ergodicity, CLT for martingale difference 
sequences (MDS CLT).

Roughly speaking, stationarity requires constant moments for 𝑦 ; 
ergodicity requires that the dependence is short-lived, eventually 𝑦
has only a small influence on 𝑦 , when 𝑘 is relatively large.

• The amount of dependence in 𝑦 determines the ‘quality’ of the 
estimator. There are several ways to measure the dependence. The 
most common measure: Covariance.

Cov 𝑦 ,𝑦  𝐸 𝑦 μ 𝑦  μ

Note: When μ =0, then Cov 𝑦𝑡,𝑦  𝐸 𝑦  𝑦
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Time Series: Introduction – Forecasting

• In a time series model, we describe how 𝑦 depends on past 𝑦 ’s. 
That is, the information set is 𝐼 = {𝑦 , 𝑦 , 𝑦 , ....}

• The purpose of building a time series model: Forecasting.

• We estimate time series models to forecast out-of-sample. For 
example, the l-step ahead forecast: 𝑦 = Et[𝑦 |𝐼 ]. 

• In the 1970s it was found that very simple time series models out-
forecasted very sophisticated (big) economic models. 

• This finding represented a big shock to the big multivariate models 
that were very popular then. It forced a re-evaluation of these big 
models.

• In general, we assume the error term, ε , is uncorrelated with 
everything, with mean 0 and constant variance, σ2. We call a process 
like this a white noise (WN) process. 

• We denote a WN process as

ε ~ WN(0, σ2)

• White noise is the basic building block of all time series. It can be 
written as:

𝑧 = σ 𝑢 , 𝑢 ~ i.i.d WN (0, 1)  𝑧 ~ WN(0, σ2)

• The 𝑧 ’s are random shocks, with no dependence over time, 
representing unpredictable events. It represents a model of news.

Time Series: Introduction – White Noise



RS – EC2 - Lecture 13

5

• We make a key distinction: Conditional vs Unconditional moments. In
time series we model the conditional mean as a function of its past,
for example in an AR(1) process, we have:

𝑦 = 𝛼 + 𝛽 𝑦 + ε .

Then, the conditional mean forecast at time 𝑡, conditioning on 
information at time 𝐼 , is:

Et[𝑦 |𝐼 ] = Et[𝑦 ] = 𝛼 + 𝛽 𝑦

Notice that the unconditional mean, μ, is given by: 
E[𝑦 ] = 𝛼 + 𝛽 E[𝑦 ] = 1 − 

=  μ = constant (β≠1)

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.

Time Series: Introduction – Conditionality 

• Two popular models for Et[𝑦 |𝐼 ] :

– An autoregressive (AR) process models Et[𝑦 |𝐼 ] with lagged 
dependent variables:

Et[𝑦 |𝐼 ] = 𝑓 𝑦 , 𝑦 , 𝑦 , .... , 𝑦 )

Example: AR(1) process, 𝑦 = 𝛼 + 𝛽 𝑦 + ε .

– A moving average (MA) process models Et[𝑦 |𝐼 ] with lagged 
errors, ε :

Et[𝑦 |𝐼 ] = 𝑓 ε , ε , ε , .... , ε )

Example: MA(1) process, 𝑦 = μ + θ1 ε  + ε

• There is a third model, ARMA, that combines lagged dependent 
variables and lagged errors.

Time Series: Introduction – AR and MA models
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• We want to select an appropriate time series model to forecast 𝑦 . 
In this class, we will use linear models, with choices: AR(𝑝), MA(𝑞) 
or ARMA(𝑝, 𝑞). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine 𝑝, 𝑞.

(2) Estimate the model.

(3) Test the model.

(4) Forecast.

• In this lecture, we go over the statistical theory (stationarity, 
ergodicity), the main models (AR, MA & ARMA) and tools that will 
help us describe and identify a proper model.

Time Series: Introduction – Forecasting (again)

CLM Revisited: Time Series Implications

• With autocorrelated data, we get dependent observations. For 
example, with autocorrelated errors:  

ε =   ε  +  𝑢 ,

the independence assumption is violated. The LLN and the CLT 
cannot be easily applied in this context. We need new tools.

• We introduce the concepts of stationarity and ergodicity. The 
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent 
variables, using new technical concepts: mixing and stationarity. Or 
we can rely on a new CLT: The martingale difference sequence CLT. 

• We will not cover these technical points in detail.
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• Consider the joint probability distribution of  the collection of  RVs:

𝐹 𝑦 ,𝑦 , … ,𝑦 𝐹 𝑌 𝑦 ,𝑌 𝑦 , … ,𝑌 𝑦

To do statistical analysis with dependent observations, we need extra 
assumptions. We need some form of  invariance on the structure of  
the time series. 

If  the distribution 𝐹 is changing with every observation, estimation 
and inference become very difficult. 

• Stationarity is an invariant property: the statistical characteristics of  
the time series do not change over time. 

• There different definitions of  stationarity, they differ in how strong is 
the invariance of  the distribution over time.

Time Series – Stationarity 

• We say that a process is stationary of    

1st order if  𝐹 𝑦 𝐹 𝑦 for any 𝑡1, k

2nd order if 𝐹 𝑦 ,𝑦 𝐹 𝑦 ,𝑦 for any 𝑡1, 𝑡2, k

Nth-order if 𝐹 𝑦 , … ,𝑦 𝐹 𝑦 , … ,𝑦 for any 𝑡1, ..., 𝑡T, k

• Nth-order stationarity is a strong assumption (& difficult to verify in 
practice). 2nd order stationarity is weaker: only consider mean and 
covariance (easier to verify in practice). 

• Moments describe a distribution. We calculate moments as usual:  
E 𝑌 μ

Var 𝑌 σ 𝐸 𝑌   μ

Cov 𝑌 ,𝑌  𝐸 𝑌 μ 𝑌  μ = γ 𝑡1 
−𝑡2

Time Series – Stationarity 
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• Cov 𝑌 ,𝑌 = γ 𝑡1 
−𝑡2 is called the auto-covariance function.

Notes: γ 𝑡1 
− 𝑡2 is a function of  𝑘 = 𝑡1 

− 𝑡2

γ(0) is the variance.

• The autocovariance function is symmetric. That is, 
γ 𝑡1 

− 𝑡2 Cov 𝑌 ,𝑌 = Cov 𝑌 ,𝑌 = γ 𝑡2 
− 𝑡1

 γ 𝑘  γ 𝑘

• Autocovariances are unit dependent. We will have different values if  
we calculate the autocovariance for IBM returns in % terms or in 
decimal terms.

Remark: The autocovariance measures the (linear) dependence between 
two 𝑌 ’s separated by 𝑘 periods.

Time Series – Stationarity & Autocovariances

• From the autocovariances, we derive the autocorrelations:

Corr 𝑌 ,𝑌 ρ 𝑌 ,𝑌 1 
− 2  1 

− 2  
(0)

the last step takes assumes: σ σ γ 0

• Corr 𝑌 ,𝑌 ρ 𝑌 ,𝑌 is called the auto-correlation function 
(ACF), –think of  it as a function of  𝑘 = 𝑡2 

− 𝑡1. The ACF is also 
symmetric.

• Unlike autocovoriances, autocorrelations are not unit dependent. It is 
easier to compare dependencies across different time series.

• Stationarity requires all these moments to be independent of  time. If  
the moments are time dependent, we say the series is non-stationary.

Time Series – Stationarity & Autocorrelations 
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Time Series – Stationarity & Constant Moments 

• For a strictly stationary process (constant moments), we need:
μ μ
σ σ

because 𝐹 𝑦 𝐹 𝑦  μ μ μ
σ σ σ

Then, 
𝐹 𝑦 ,𝑦 𝐹 𝑦 ,𝑦  Cov 𝑦 ,𝑦 = Cov 𝑦 ,𝑦

 ρ 𝑡 , 𝑡 ρ 𝑡 𝑘, 𝑡  𝑘

Let 𝑡 𝑡 𝑘  & 𝑡 𝑡 
 ρ 𝑡 , 𝑡 ρ 𝑡 𝑘, 𝑡 ρ 𝑡, 𝑡 𝑘 = ρ 𝑘  = ρ

The correlation between any two RVs depends on the time difference. 
Given the symmetry, we have ρ 𝑘 = ρ 𝑘 .

Time Series – Weak Stationary 

• A Covariance stationary process (or 2nd -order weakly stationary) has:
- constant mean, μ
- constant variance, 𝜎
- covariance depends on time difference, 𝑘, between two RVs, γ 𝑘

That is, Zt is covariance stationary if:

E 𝑍 = constant = μ 

Var 𝑍 = constant = 𝜎  

Cov 𝑍 ,𝑍  E[(𝑍 μ )(𝑍  μ )] = γ 𝑘 𝑡 𝑡

Remark: Covariance stationarity is only concerned with the covariance 
of  a process, only the mean, variance and covariance are time-invariant. 
Nth-order stationarity is stronger and assumes that the whole distribution 
is invariant over time.
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Example: Assume 𝑦 follows an AR(1) process:

𝑦 = 𝜙 𝑦 + ε , with ε ~ WN(0, 𝜎 ).

•  Mean
Taking expectations on both side:

E[ 𝑦 ] = 𝜙 E[𝑦 ] + E[ε ] 
μ = 𝜙 μ + 0
E[ 𝑦 ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Applying the variance on both side:

Var[𝑦 ] = γ 0 𝜙 Var[𝑦 ] + Var[ε ] 

γ 0 = 𝜙  γ 0 + 𝜎

γ 0 =
  

(assuming |𝜙 |< 1)

Time Series – Stationarity: Example 

Example (continuation):  𝑦 = 𝜙 𝑦 + ε , ε ~ WN(0, 𝜎

•  Covariance
γ 1 = Cov[𝑦 , 𝑦 ] = E[𝑦 𝑦 ] = E[(𝜙 𝑦 + ε ) 𝑦 ] 

= 𝜙 E[𝑦 𝑦 ] + E[ ε 𝑦 ] 
= 𝜙 E[𝑦 2] 
= 𝜙 Var[𝑦 2] 
= 𝜙 γ 0

γ 2 = Cov[𝑦 , 𝑦 ] = E[𝑦 𝑦 ] = E[(𝜙 𝑦 + ε ) 𝑦 ] 
= 𝜙 E[𝑦  𝑦 ] 
= 𝜙 Cov[𝑦 , 𝑦 ] 
= 𝜙 γ 1
= 𝜙2 γ 0

⋮

γ 𝑘 = Cov[𝑦 , 𝑦 ] = 𝜙  γ 0

Time Series – Stationarity: Example 



RS – EC2 - Lecture 13

11

Example (continuation):  𝑦 = 𝜙 𝑦 + ε , ε ~ WN(0, 𝜎

•  Covariance
γ 𝑘 = Cov[𝑦 , 𝑦 ] = 𝜙  γ 0

 If  |𝜙 |< 1, 𝑦 process is covariance stationary: mean, variance 
and covariance are constant.

Note: From the autocovariance function, we can derive the auto-
correlation function (ACF):

ρ 𝑘  
(0)

 
(0) 𝜙

If  |𝜙 |< 1, both autocovariance function and ACF show 
exponential decay.

Time Series – Stationarity: Example 

Example: Assume 𝑦 follows a Random Walk with drift process:

𝑦 = μ  𝑦 + ε , with ε ~ WN(0, σ2).

Doing backward substitution:
𝑦 = μ + (μ + 𝑦 + ε ) + ε

= 2 * μ + 𝑦 + ε + ε
= 2 * μ + (μ + 𝑦 + ε ) + ε + ε
= 3 * μ + 𝑦 + ε + ε + ε

 𝑦 = μ  𝑡 + ∑ ε + 𝑦

•  Mean & Variance
E[𝑦 ] = μ  𝑡 + 𝑦
Var[𝑦 ] = γ 0 = ∑ σ2 = σ2 𝑡

 the process 𝑦 is non-stationary: moments are time dependent.

Time Series – Non-Stationarity: Example 
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Stationary Series: Examples

Examples: Assume ε ~ WN(0, σ2). 
𝑦 0.08 𝜀 0.4 𝜀 - MA(1) process
𝑦 0.13 𝑦 𝜀   - AR(1) process

Non-Stationary Series: Examples

Examples: Assume ε ~ WN(0, σ2).

𝑦 𝜇 𝑡 𝜙  𝑦 𝜙  𝑦 𝜀 - AR(2) with deterministic trend
𝑦 𝜇 𝑦 𝜀      - Random Walk with drift
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• The main characteristic of  time series is that observations are 
dependent.

• To analyze time series, however, we need to assume that some features 
of  the series are not changing. If  we have non-stationary series (say, 
mean or variance are changing with each observation), it is not possible 
to make inferences.  

• Stationarity is an invariant property: the statistical characteristics of  
the time series do not vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the variance 
in two equal lengths time intervals will be more or less the same.

Time Series – Stationarity: Remarks

• In the long run, say 100-200 years, the stationarity assumption may 
not be realistic. After all, technological change has affected the return 
of  IBM over the long run. But, in the short-run, stationarity seems 
likely to hold.

• In general, time series analysis is done under the stationarity 
assumption.

Time Series – Stationarity (Again)
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• We want to estimate the mean of  the process {𝑍 }, μ(𝑍 ). But, we 
need to distinguishing between ensemble average (with 𝑚 observations) 
and time average (with 𝑇 observations):

- Ensemble Average:  𝑧̿
∑

- Time Series Average:  𝑧
∑

Q: Which estimator is the most appropriate? 
A: Ensemble Average. But, it is impossible to calculate. We only observe 
one 𝑍 , with dependent observations.

• Q: Under which circumstances we can use the time average (with only 
one realization of  {𝑍 })? Is the time average an unbiased and consistent 
estimator of  the mean? The Ergodic Theorem gives us the answer.

Ergodicity

• Intuition behind Ergodicity:
We go to a casino to play a game with 20% return, but on average, one 
gambler out of  100 goes bankrupt. If  100 gamblers play the game, 
there is a 99% chance of  winning and getting a 20% return. This is the 
ensemble scenario. Suppose that gambler 35 is the one that goes bankrupt. 
Gambler 36 is not affected by the bankruptcy of  gamble 35.

Suppose now that instead of  100 gamblers you play the game 100 times. 
This is the time series scenario. You win 20% every day until day 35 when 
you go bankrupt. There is no day 36 for you (dependence at work!).

Result: The probability of  success from the group (ensemble scenario) 
does not apply to one person (time series scenario). 

Ergodicity describes a situation where the ensemble scenario outcome 
applies to the time series scenario.

Time Series – Ergodicity
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• With dependent observation, we cannot use the LLN used before. 
The ergodicity theorem plays the role of  the LLN with dependent 
observations.

The formal definition of  ergodicity is complex and is seldom used in 
time series analysis. One consequence of  ergodicity is the ergodic 
theorem, which is extremely useful in time series. 

It states that if  𝑍 is an ergodic stochastic process then

∑ 𝑔 𝑍  
.

E[𝑔 𝑍 ]

for any function g(.). And, for any time shift 𝑘

∑ 𝑔 𝑍 ,𝑍 , … ,𝑍  
.

E[𝑔 𝑍 ,𝑍 , … ,𝑍 ]

where a.s. means almost sure convergence, a strong form of  convergence.

Ergodicity

• Definition: A covariance-stationary process is ergodic for the mean if

 𝑧̅
     

E[𝑍 ] = 𝜇

• This result needs the variance of  𝑧̅ to collapse to 0. It can be shown 
that the var[𝑧] can be written as a function of  the autocorrelations, ρ :

var 𝑧 var 𝑧  𝑧 ⋯ 𝑧 /𝑇  ∑ 1 𝜌

Theorem: A sufficient condition for ergodicity for the mean is that the 
autocorrelations 𝜌 between two observations, say (𝑦 ,𝑦 ), ρ 𝑡 , 𝑡
= ρ , go to zero as 𝑡  & 𝑡 grow further apart.

Condition for ergodicity: ρ → 0, as 𝑘→ ∞

Ergodicity of  the Mean 
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• Define the operator L as
L 𝑧 = 𝑧 .

• It is usually called Lag operator. But it can produce lagged or forward 
variables (for negative values of  𝑘). For example:

L 𝑧 = 𝑧 .

• Also note that if  𝑐 is a constant L 𝑐 = 𝑐.

• Sometimes the notation for L when working as a lag operator is B 
(backshift operator), and when working as a forward operator is F.

• Important application: Differencing
Δ 𝑧 = (1 L) 𝑧 = 𝑧 𝑧 .
Δ 𝑧 = (1 L) 𝑧 = 𝑧 2𝑧 𝑧 .

Time Series – Lag Operator

• The function  𝑓 𝑥 1 𝑥 can be written as an infinite 
geometric series (use a Maclaurin series around 𝑐 =0):

𝑓 𝑥 1 𝑥 𝑥 𝑥 𝑥 . . . ∑ 𝑥

• If  we multiply 𝑓 𝑥 by a constant, 𝑎:

∑ 𝑎𝑥 →  ∑ 𝑎𝑥 𝑎 1

Example: In Finance we have many applications of  the above results.
- A stock price, 𝑃, equals the discounted some of  all futures dividends. 
Assume dividends are constant, 𝑑, and the discount rate is 𝑟. Then:

𝑃 = ∑
  

𝑑
  

  

1) = 𝑑     
  

1) = 

where 𝑥  
  

Time Series – Useful Result: Geometric Series
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• We will use this result when, under certain conditions, we invert a lag 
polynomial (say, θ L ) to convert an AR (MA) process into an infinite 
MA (AR) process.

Example: Suppose we have an MA(1) process:

𝑦 =  𝜇 + θ1 ε + ε = 𝜇 + θ L  ε – θ L = (1 θ1L)

Recall,

𝑓 𝑥
  

1 𝑥 𝑥 𝑥 𝑥  . . . ∑ 𝑥

Let 𝑥 = −θ1L. Then, assuming that 𝜃 𝐿 is well defined,

𝜃 𝐿 = 
 −θ1L

1 −θ1L −θ1L  −θ1L   −θ1L   ...

∑ θ1L = 1 θ1L θ1 L θ1 L θ1 L ⋯ 

Time Series – Useful Result: Geometric Series

Example (continuation):

𝜃 𝐿 ∑ θ1 
𝐿 = 1 θ1 

L θ1 L θ1 L θ1 L ⋯ 

Now, we multiply 𝜃 𝐿 on both sides of  the MA process
𝑦 = 𝜇 + θ L 𝜀 .

Then,

𝜃 𝐿 𝑦 = 𝜃 𝐿 𝜇 + 𝜀 = 𝜇* + 𝜀

𝜃 𝐿  𝑦 = 𝑦 θ1𝑦  θ  𝑦  θ  𝑦  θ  𝑦 ⋯
=  𝜇* + 𝜀

Then, solving for 𝑦 :
𝑦 𝜇∗  θ1𝑦  θ 𝑦  θ  𝑦  θ  𝑦 ⋯ 𝜀

That is, we get an AR(∞)!

Time Series – Useful Result: Geometric Series
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• An MA process models Et[𝑦 |𝐼 ] with lagged error terms. An 
MA(𝑞) model involves 𝑞 lags. 

• We keep the white noise assumption for 𝜀 : 𝜀 ~ WN(0, σ2)

Example: A linear MA(𝑞) model: 
𝑦 μ + θ  𝜀  + θ  𝜀 + ... + θ  𝜀  + 𝜀 = 𝜇 + θ L 𝜀 ,

where
𝜃 𝐿 = 1 θ  L θ  L θ  L … θ  L

• In time series, the constant does not affect the properties of  AR and 
MA process. It is usually removed (think of  the data analyze as 
demeaned). Thus, in this situation we say “without loss of  
generalization”, we assume 𝜇 = 0.

Moving Average Process  

• Q: Is MA(𝑞) stationary? Check the moments (assume 𝜇 = 0).
𝑦 = 𝜀  θ 𝜀  + θ 𝜀 + ... + θ 𝜀

•  Mean
E[𝑦 ] = E[𝜀 ] + θ E[𝜀 ] + θ2 E[𝜀 ] + ... + θ E[𝜀 ] = 0

•  Variance
Var[𝑦 ] = Var[𝜀 ] + θ 2 Var[𝜀 ] + θ 2 Var[𝜀 ] + ... + θq

2Var[𝜀 ] 
= (1 + θ 2 + θ 2 + ... + θ 2) σ2.

To get a positive variance, we require
(1 + θ 2 + θ2

2 + ... + θ 2) > 0,
which is always positive. 

Moving Average Process – Stationarity  
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• Covariance
𝑦 = 𝜀  θ1 𝜀  + θ  𝜀 + ... + θ  𝜀
𝑦 = 𝜀 + θ1 𝜀 + θ  𝜀 + ... + θ 𝜀 + θ  𝜀

• First, we compute γ 1 :
γ 1 = Cov[𝑦 , 𝑦 ] = E[𝑦 𝑦 ] 

= E[(𝜀 + θ1 𝜀 + θ  𝜀 + θ3 𝜀 + ... + θ  𝜀 )
* (𝜀 + θ1 𝜀 + θ  𝜀 + ... + θ 𝜀 )]

= E[𝜀  𝜀 ] + θ1 E[𝜀  𝜀 ] + θ2 E[𝜀  𝜀 ] + .... 
+ θ1 E[𝜀  𝜀 ] + θ1

2 E[𝜀  𝜀 ] + θ1θ2 E[𝜀  𝜀 ] + ...
+ θ2 E[𝜀  𝜀 ] + θ2θ1 E[𝜀  𝜀 ] + θ2θ1 E[𝜀 𝜀 ] + ... 
... 
+ θq E[𝜀 𝜀 ] + θqθ1 E[𝜀 𝜀 ] +...+ θq θq-1 E[𝜀 𝜀 ]
+ θ 2 E[𝜀  𝜀 ] 

= θ1 σ2 + θ  θ1 σ2 + θ3 θ σ2 + ... + θ θ σ2 + 0

Moving Average Process – Stationarity  

• Covariance
𝑦 = 𝜀  θ1 𝜀  + θ  𝜀 + θ3 𝜀 + ... + θ  𝜀
𝑦 = 𝜀 + θ1 𝜀 + θ 𝜀 + ... + θ 𝜀 + θ  𝜀

• We can also derive γ 1 without computing the expectation of  the 
cross products of  errors. It is easier to look at the sum of  E[𝑦 𝜀 ]’s:

γ 1 = E[𝑦 𝑦 ] 

= E[𝑦 * (𝜀 + θ1 𝜀 + θ2 𝜀 + ... + θq-1 𝜀 + θq 𝜀 )]

= E[𝑦 𝜀 ] + θ1 E[𝑦 𝜀 ] + θ2 E[𝑦 𝜀 ] + ... + θq E[𝑦 𝜀

= θ1 σ2 + θ θ1 σ2 + θ3 θ  σ2 + ... + θ θ  σ2 + 0

• We continue with the derivation of  γ 𝑘 , for 𝑘 = 2, 3, …., using the 
sums of  E[𝑦 𝜀 ]’s. 

Moving Average Process – Stationarity  
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• For γ 2 , we have:
𝑦 = 𝜀  θ1 𝜀  + θ 𝜀 + ... + θq 𝜀
𝑦 = 𝜀 + θ1 𝜀 + θ 𝜀 + θ3 𝜀  + ... + θ  𝜀

γ 2 = Cov[𝑦 , 𝑦 ] = E[𝑦 𝑦 ] 

= E[𝑦  * (𝜀 + θ1 𝜀 + θ 𝜀 + ... + θ  𝜀 )]

= E[𝑦 𝜀 ] + θ1 E[𝑦 𝜀 ] + θ E[𝑦 𝜀 ] + ... + θ E[𝑦 𝜀 ]

= θ σ2 + θ3 θ1 σ2 + θ4 θ σ2 + ... + θ θ  σ2 + 0 

• Similarly, for γ 𝑞
𝑦 = 𝜀 + θ1 𝜀 + θ  𝜀 + ... + θ  𝜀

γ 𝑞 = E[𝑦 𝑦 ] = 
= E[𝜀 𝑦 ] + θ1 E[ 𝜀 𝑦 ] + θ2 E[𝜀 𝑦 ] +...+ θ E[𝜀 𝑦 ]
= θ  σ2 

Moving Average Process – Stationarity  

Now, we have γ 𝑘 for all 𝑘:

γ 1 = θ  σ2 + θ θ  σ2 + θ3 θ  σ2 + ... + θ  θ σ2

= σ2 ∑ θ  θ (where θ0=1)

γ 2 = θ  σ2 + θ3 θ  σ2 + θ4 θ  σ2 + ... + θ  θ σ2 
σ2 ∑ θ  θ (where θ0=1)

⋮

γ 𝑞 = θq σ2 

= σ2 ∑ θ  θ (where θ0 = 1)

• In general, for the 𝑘 autocovariance:
γ 𝑘 = σ2 ∑ θ  θ for | 𝑘 |  q
γ 𝑘 = 0 for | 𝑘 |  q

Remark: After lag q, the autocovariances (& ACFs) are 0.

Moving Average Process – Stationarity  
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• In general, for the 𝑘 autocovariance:
γ 𝑘 = σ2 ∑ θ  θ for | 𝑘 | q
γ 𝑘 = 0 for | 𝑘 |  q

Remark: After lag q, the autocovariances are 0.

• It is easy to verify that the sums ∑ θ  θ are finite. Then, mean, 
variance and covariance are constant. 

 MA(q) is always stationary.

• It can be shown that for 𝜀 with same distribution (say, normal) the 
autocovariances are non-unique. 

Moving Average Process – Stationarity  

Example: Two MA(1) processes that produce the same γ 𝑘 :
𝑦 = 𝜀 + .2 𝜀 , 𝜀 ~ i.i.d. N(0, 25)
𝑧 = υ + 5 υ , υ ~ i.i.d. N(0; 1)

We only observe the time series, 𝑦 or 𝑧 , and not the noise, 𝜀 or υ ,
thus, we cannot distinguish between the models using the 
autocovariances. Suppose you want to select one process to forecast. 
Which one? We select the model with an AR(∞) representation.

• Assuming 𝜃 𝐿 ≠ 1, we can invert 𝜃 𝐿 . Then, by inverting 𝜃 𝐿 , an 
MA(q) process generates an AR process:

𝑦 = μ  𝜃 𝐿  𝜀  𝜃 𝐿  𝑦 = Π(L) 𝑦 = μ* + 𝜀 .

Then, we have an infinite sum polynomial on 𝜃𝐿. (Recall the 
geometric series result.) That is, we convert an MA(q) into an AR(∞).

MA Process – Invertibility  
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• We convert an MA(q) into an AR(∞):
∑ 𝜋 𝐿  𝑦  = 𝜇∗ 𝜀

We need to make sure that Π(L) = 𝜃 𝐿 is defined: We require 
𝜃 𝐿 ≠0. When this condition is met, we can write 𝜀 as a causal 
function of 𝑦 . We say the MA is invertible. For this to hold, we require:

∑ |𝜋 𝐿 | ∞

Technical note: An invertible MA(q) is typically required to have roots 
of  the lag polynomial equation 𝜃 𝑧 = 0 greater than one in absolute 
value (outside the unit circle). In the MA(1) case, we require|θ1|< 1.

In the previous example, we select the model with θ1 = .2. 

MA Process – Invertibility  

Example: MA(1) process:

𝑦 = θ  𝜀 + 𝜀 = 𝜇 + θ L 𝜀 , with 𝜃 𝐿 = (1 + θ L)

• Moments
E[𝑦 ] = 0

Var[𝑦 ] = γ 0  = σ2 + θ 2 σ2 = σ2 (1+ θ 2)

Cov[𝑦 , 𝑦 ] = γ 1  = E[𝑦 𝑦 ] 
= E[(θ1𝜀 + 𝜀 )*(θ 𝜀 + 𝜀 )] = θ σ2 

Cov[𝑦 , 𝑦 ] = γ 2  = E[𝑦 𝑦 ] 
= E[(θ1𝜀 + 𝜀 ) * (θ  𝜀 + 𝜀 )] = 0

⋮

γ 𝑘  = E[𝑦 𝑦 ] = E[(θ1𝜀 +𝜀 ) * (θ 𝜀 +𝜀 )] = 0 (for 𝑘>1)

That is, for |𝑘| > 1, γ 𝑘  = 0.

MA Process – MA(1)
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Example (continuation): MA(1) process:

𝑦 = θ  𝜀 + 𝜀

Check derivations with formula for autocovariances
γ 𝑘 = σ2 ∑ θ  θ for | 𝑘 | q (where θ0 = 1)
γ 𝑘 = 0 for | 𝑘 |  q

• γ 𝑘  
𝑘 = 0 γ 0  = σ2 ∑ θ  θ σ2 (1 + θ 2)
𝑘 = 1 γ 1  = σ2 ∑ θ  θ σ2 (θ )
𝑘  1 γ 𝑘  = 0 

MA Process – MA(1)

Example (continuation): To get the ACF, we divide the 
autocovariances by γ 0 . Then, the autocorrelation function (ACF):

ρ 0 γ 0 /γ 0 = 1 

ρ 1 γ 1 /γ 0 = 
θ  σ2

σ2 
(1 + θ 2) = 

θ  

 (1 + θ 2)
⋮
ρ 𝑘  γ 𝑘 /γ 0 = 0 (for 𝑘 > 1)

Remark: The autocovariance function is zero after lag 1. Similarly, the 
ACF is also zero after lag 1, that is, 𝑦 is correlated with itself  (𝑦 ) and 
𝑦 , but not 𝑦 , 𝑦 , ... Contrast this with the AR(1) model, 
where the correlation between 𝑦 and 𝑦 is never zero.

The ACF is usually shown in a plot. When we plot ρ 𝑘 against 𝑘, we 
plot also ρ 0 which is 1.

MA(1) Process – ACF
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Example (continuation): 

ρ 1 = 
θ  

 (1 + θ 2)
 

Note that |ρ 1 | ≤ 0.5. 

When θ1 = 0.5  ρ 1 = 0.4.
θ1 = -0.9  ρ 1 = -0.497238. 
θ1 = -2  ρ 1 = -0.4.
θ1 = 2  ρ 1 = 0.4. (same ρ 1 for θ  & 1/θ )

Thus, the two MA processes, with θ  = 0.5 and θ  = 2, have the same 
ACF.

MA(1) Process – ACF

Example: We simulate and plot three MA(1) processes, with standard 
normal 𝜀 -i.e., 𝜇 = 0 & σ= 1: 

𝑦 = 𝜀  + 0.5 𝜀
𝑦 = 𝜀  0.9 𝜀
𝑦 = 𝜀  2 𝜀

R script to plot yt = 𝜀  + 0.5 𝜀  with 200 simulations
> plot(arima.sim(list(order=c(0,0,1), ma=0.5), n=200), ylab="ACF",
main=(expression(MA(1)~~~theta==+.5)))

MA(1) Process – ACF: Simulations 
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Example (continuation): 

Note: The process θ1 > 0 is smoother than the ones with θ1 < 0. 

MA(1) Process – ACF: Simulations 

Example (continuation): Below, we compute and plot the ACF for the 
3 simulated process.
1) 𝑦 = 𝜀  + 0.5 𝜀
sim_ma1_5 <- arima.sim(list(order=c(0,0,1), ma=0.5), n=100) 
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_5

Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.438  0.069  0.014  0.103  0.173  0.107  0.015 -0.080 -0.054  0.011 -0.006  0.041  0.000 

14 15 16 17 18 19  20 21 22 23 
-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021  0.110 

MA(1) Process – ACF: Simulations 
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Example (continuation): 
2) 𝑦 = 𝜀 - 0.9 𝜀
sim_ma1_9 <- arima.sim(list(order=c(0,0,1), ma=-0.9), n=100) 
acf_ma1_9 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
> acf_ma1_9

Autocorrelations of  series ‘sim_ma1_9’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14 15 16 17 18 19  20 21 22 23 
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105

MA(1) Process – ACF: Simulations 

Example (continuation):
3) 𝑦 = 𝜀 - 2 𝜀
sim_ma1_2 <- arima.sim(list(order=c(0,0,1), ma=-2), n=100) 
acf_ma1_2 <- acf(sim_ma1_2, main=(expression(MA(1)~~~theta==-2)))
> acf_ma1_2

Autocorrelations of  series ‘sim_ma1_2’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.524  0.150 -0.064  0.006 -0.014  0.022 -0.070  0.068 -0.015 -0.002  0.054 -0.121  0.055 
14 15 16 17 18 19  20 21 22 23 
-0.029  0.026 -0.054  0.121 -0.156  0.106 -0.009  0.037 -0.080  0.104 

MA(1) Process – ACF: Simulations 
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Example (continuation):

– Invertibility: If  |θ1|< 1, we can write  (1 + θ1 L)-1  𝑦 + 𝜇* = 𝜀



That is, 𝜋 = θ1 .

The simulated process with θ = -2 is non-invertible, the infinite sum 
of 𝜋 would explode. We would select the MA(1) with θ = -.5.

MA Process – Example: MA(1)
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Example: MA(2) process:

𝑦 =  𝜇 + θ2 𝜀 + θ  𝜀  + 𝜀 = 𝜇 + θ L 𝜀 ,

with θ(L) = (1 + θ L + θ2 L2).

• Moments

Remark: The autocovariance function is zero after lag 2. Similarly, the 
ACF is also zero after lag 2.

MA Process – MA(2)

 
 

 

























2,0

2,

1,1

0,1

2
2

2
2

1

2
2

2
1

2

k

k

k

k

YE

k

t













RS – EC2 - Lecture 13

28

– Invertibility: The roots of  𝜆 - θ1 𝜆 - θ2 = 0 all lie inside the unit 
circle. It can be shown the invertibility condition for an MA(2) process 
is: 

θ1 + θ2 < 1
θ1 - θ2 < 1
-1 < θ2 <1.

MA Process – Example: MA(2)

• MA processes are more complicated to estimate. Consider an MA(1): 
𝑦 = 𝜀  + θ 𝜀  

We cannot do OLS, since we do not observe 𝜀  . But, based on the 
ACF, we estimate θ .

• The auto-correlation of  order one is:
ρ 1  θ1/(1+ θ1

2) 

Then, we can use the method of  moments (MM), which sets the 
theoretical moment equal to the estimated sample moment ρ1, 𝑟 . 
Then, we solve for the parameter of  interest, θ:

• A nonlinear solution and difficult to solve.

MA Process – Estimation 

𝑟
𝜃

1 𝜃
 ⇒   𝜃

1 1 4𝑟
2𝑟
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• Alternatively, if  |θ|< 1, we can invert the MA(1) process. Then, 
based on the AR representation, we can try finding 𝑎 ∈(-1; 1),

𝜀 𝑎  = 𝑦 + 𝑎 𝑦 + a  𝑦  + a  𝑦 + ….

and look (numerically) for the least-square estimator

θ = arg minθ {S(𝒚; θ) = ∑ ε 𝑎

where a = θ1 .

MA Process – Estimation 

Autoregressive (AR) Process

• We model the conditional expectation of 𝑦 , E[𝑦 |𝐼 ], as a 
function of its past history. We assume 𝜀  follows a WN(0, σ2).

• The most common models are AR models. An AR(1) model 
involves a single lag, while an AR(p) model involves p lags. Then, the 
AR(p) process is given by:

𝑦 = μ + 𝜙1 𝑦 + 𝜙2 𝑦 +... +𝜙p 𝑦 + 𝜀 , 𝜀  ~ WN.

Using the lag operator we write the AR(p) process: 𝜙(L) 𝑦 = 𝜀

with 𝜙(L) = 1 𝜙1 L 𝜙2 L2 … 𝜙p 
L
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AR Process: SDE

• We can look at an AR(p) process:

𝑦 = μ + 𝜙1 𝑦 + 𝜙2 𝑦 +... +𝜙p 𝑦 + 𝜀 , 

as a stochastic (linear) difference equation (SDE). With difference equations 
we try to get a solution –i.e., given some initial conditions/history, we 
know the value of 𝑦 for any 𝑡– and, then, we study its characteristics 
(stability, long-run value, etc.).

The solution to a DE can be written as a sum of two solutions:

1) Homogeneous equation (the part that only depends on the 𝑦 ’s): 

𝑦 = 𝜙1 𝑦 + 𝜙2 𝑦 +... +𝜙p 𝑦 (set μ + 𝜀 = 0)

2) A particular solution to the equation. 

• Once we get a solution, we study its stability. We want a stable one. 

• We get a solution to the simple case, the AR(1) process.

𝑦 = μ + 𝜙1 𝑦 + 𝜀  , 𝜀  ~ WN.

We use the backward substitution method:

𝑦 = μ + 𝜙1 (μ + 𝜙1 𝑦 + 𝜀 ) + 𝜀  

= μ (1 + 𝜙1) + 𝜙1
2 𝑦 + 𝜀  + 𝜙1 𝜀

= μ (1 + 𝜙1) + 𝜙1
2 (μ + 𝜙1 𝑦 + 𝜀 ) + 𝜀  + 𝜙1 𝜀

= μ (1 + 𝜙1 + 𝜙1
2) + 𝜙1

3 𝑦 + 𝜀  + 𝜙1 𝜀 + 𝜙1
2 𝜀

⋮

 𝑦 = μ (1 + 𝜙1 + 𝜙1
2 +... + 𝜙1

t-1) + ∑ 𝜙 𝜀 + 𝜙  𝑦

The solution is a function of 𝑡, the whole sequence 𝜀 , 𝜀 , ..., 𝜀
and the initial condition 𝑦 . The effect of 𝑦 “dies out” if |𝜙1|< 1.

AR Process – AR(1): Solution
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• The stability of the solution is crucial. With a stable solution, Yt

does not explode. This is good: We need well defined moments.

It turns out that the stability of the equation depends on the solution 
to the homogenous equation. In the AR(1) case:

𝑦 = 𝜙1 𝑦
with solution 𝑦 = 𝜙  𝑦

If|𝜙1|< 1, 𝑦 never explodes, as 𝑡→ ∞. In this case, in the solution 
to the AR(1) process, the effect of 𝑦 “dies out” as 𝑡→ ∞.

We can analyze the stability from the point of view of the roots of 
the characteristic equation of the process or the lag polynomial.

AR Process – AR(1): Solution & Stability

• We can analyze the stability from the point of view of the roots of 
the lag polynomial. For the AR(1) process

𝜙(z) = 1 - 𝜙1 z = 0  |z| = | 1|
> 1 

That is, the AR(1) process is stable if the root of 𝜙(z) is greater than 
one (also said as “the roots lie outside the unit circle”).

This result generalizes to AR(𝑝) process: 

Theorem

A necessary and sufficient condition for global asymptotical stability 
of a 𝑝th order deterministic difference equation with constant 
coefficients is that all roots of the associated lag polynomial equation 
𝜙(z)=0 have moduli strictly more than 1.

(For the case of real roots, moduli means “absolute values.”)

AR Process – AR(1): Solution & Stability
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• An AR(1) model: 
𝑦 = 𝜙1 𝑦 + 𝜀 , 𝜀 ~ WN.

Recall that in a previous example, under the stationarity condition 
|𝜙1|< 1, we derived the moments:

E[𝑦 ] = μ = 0 (assuming 𝜙1 ≠ 1)

Var[𝑦 ] = γ 0  = σ2/(1 - 𝜙1
2) (assuming |𝜙1|< 1)

γ 1  = 𝜙1 γ 0  

γ 2  = 𝜙1
2 γ 0  

γ 3  = 𝜙1
3 γ 0  

⋮
γ 𝑘  = 𝜙1

𝑘 γ 0  

AR(1) Process – Stationarity & ACF

• We want to derive the autocorrelation: ρ 𝑡 , 𝑡 1 
− 2  

If  the process is stationary (σ σ γ 0

ρ 1 ρ 𝑡, 𝑡 1    
= 𝜙

ρ 2    𝜙

⋮

ρ 𝑘    𝜙

Remark: The ACF decays with 𝑘. 

When we plot ρ 𝑘 against 𝑘, we plot also ρ 0 which is 1.

• Note that when 𝜙 = 1, the AR(1) is non-stationary, ρ 𝑘  1, for 
all 𝑘. The present and the past are always correlated!

AR(1) Process – Stationarity & ACF
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ρ 𝑘  
γ 𝑘  

γ 0
 𝜙

• Again, when |𝜙 |< 1, the autocorrelations do not explode as 𝑘
increases. There is an exponential decay towards zero.

Note:
– when    0 < 𝜙 < 1  All autocorrelations are positive.
– when  1 < 𝜙 < 0  The sign of  ρ 𝑘 shows an alternating 

pattern beginning a negative value.

AR(1) Process – Stationarity & ACF

Example: We simulate and plot three MA(1) processes, with standard 
normal 𝜀  -i.e., σ=1: 

𝑦 = 0.5𝑦 + 𝜀
𝑦 = -0.9𝑦 + 𝜀
𝑦 = 2𝑦 + 𝜀

R script to plot 𝑦 = 0.5 yt-1 + 𝜀 with 200 simulations
> plot(arima.sim(list(order=c(1,0,0), ar=0.5), n=200), ylab="ACF",
main=(expression(AR(1)~~~phi==+.5)))

AR(1) Process – Stationarity & ACF: Simulations 
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Example (continuation): 

Note: The process θ1 > 0 is smoother than the ones with θ1 < 0. The 
process with |θ1| > 1, explodes!

AR(1) Process – Stationarity & ACF: Simulations 

Example (continuation): Below, we compute and plot the ACF for the 
the two stable simulated process.
1) 𝑦 = 0.5 𝑦 + 𝜀
sim_ar1_5 <- arima.sim(list(order=c(1,0,0), ar=0.5), n=200) 
acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5)))
acf_ar1_5
Autocorrelations of  series ‘sim_ma1_5’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000  0.351  0.055 -0.005 -0.054  0.002 -0.036 -0.119 -0.008 -0.099 -0.125 -0.066 -0.036 -0.023 
14 15 16 17 18 19  20 21 22 23 
-0.042  0.062  0.119  0.102  0.087  0.099  0.065  0.056  0.047  0.044 

AR(1) Process – Stationarity & ACF: Simulations 
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Example (continuation): 
2) 𝑦 = - 0.9𝑦 + 𝜀
sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar=-0.9), n=200) acf_ar1_9 <-
acf(sim_ar1_9, main=(expression(AR(1)~~~phi==-.9)))
> acf_ar1_9
Autocorrelations of  series ‘sim_ma1_9’, by lag

0   1 2 3 4  5 6 7 8 9 10 11 12  13 
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14 15 16 17 18 19  20 21 22 23 
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105

AR(1) Process – Stationarity & ACF: Simulations 

Example: A process with |𝜙1|< 1 (actually, 0.065) is the monthly 
changes in the USD/GBP exchange rate. Below we plot its 
corresponding ACF:

AR(1) Process – Stationarity & ACF: Examples
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Example: Below we plot the monthly changes in the USD/GBP 
exchange rate. Stationary series do not look smooth:

AR(1) Process – Stationarity & ACF

Example: A process with 𝜙1 ≈ 1 (actually, 0.99) is the nominal 
USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the 
time, but its decay is very slow (after 30 months, it is still .40 
correlated!): 

AR(1) Process – Stationarity & ACF
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Example: Below we plot the nominal USD/GBP exchange rate.  
Stationary series look smooth, smooth enough that you can clearly 
spot trends: 

AR(1) Process – Stationarity & ACF


