Lecture 8-a1 Time Series: Introduction

Brooks (4th edition): Chapter 6

© R. Susmel, 2025 (for private use, not to be posted/shared online).

Time Series: Introduction

• A time series y_t is a process observed in sequence over time, t = 1, ..., T $\Rightarrow Y_t = \{y_1, y_2, y_3, ..., y_T\}.$

Examples: IBM monthly stock prices from 1973:January till 2025:September (plot below); or USD/GBP daily exchange rates from February 15, 1923 to March 19, 1938.



Time Series: Introduction

Examples (continuation): Different ways to do the plot in R:

• Using plot.ts, creating a timeseries object in R:

```
# the function ts creates a timeseries object, start = 1973,1 (start of sample), frequency = 12(=monthly)
```

```
ts_ibm \le ts(x_ibm, start = c(1973,1), frequency = 12)
```

plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")

Using R package ggplot2

```
x_ibm <- SFX_da$IBM
x_date <- as.Date(SFX_da$Date, "%m/%d/%Y")
df <- data.frame(x_date, x_ibm)
ggplot(df, aes(x = x_date, y = x_ibm)) +
geom_line(color="blue") +
labs(x = "Date", y = "IBM Price", col = "blue", title = "Time Series: IBM Monthly Price",
subtitle = "Period: 1973 - 2024")</pre>
```

Time Series: Introduction – Categories

- Usually, time series models are separated into two categories:
 - Univariate (y_t ∈ R, it is a scalar)

Example: We are interested in the behavior of IBM stock prices as function of its past.

- ⇒ <u>Primary model</u>: Autoregressions (ARs).
- Multivariate (y_t ∈ R^m , it is a vector-valued)

Example: We are interested in the joint behavior of IBM returns, r_{IBM} , & bond yields, b_{IBM} , as function of their past

$$y_t = \begin{bmatrix} r_{IBM,t} \\ b_{IBM,t} \end{bmatrix}$$

⇒ <u>Primary model</u>: Vector autoregressions (VARs).

Time Series: Introduction – Dependence

- Given the sequential nature of y_t , we expect $y_t \& y_{t-1}$ to be dependent. This is the main feature of time series: **dependence**. It creates statistical problems.
- In classical statistics, we usually assume we observe several *i.i.d.* realizations of y_t . We use \bar{y} to estimate the mean.
- With several independent realizations we are able to sample over the entire probability space and obtain a "good" –i.e., consistent or close to the population mean– estimator of the mean.
- But, if the samples are highly dependent, then it is likely that y_t is concentrated over a small part of the probability space. Then, the sample mean will not converge to the mean as the sample size grows.

Time Series: Introduction - Dependence

<u>Technical note</u>: With dependent observations, the classical results (based on LLN & CLT) are not to valid.

• We need new conditions in the DGP to make sure the sample moments (mean, variance, etc.) are good estimators population moments. The new assumptions and tools are needed: **stationarity**, **ergodicity**, CLT for martingale difference sequences (**MDS CLT**).

Roughly speaking, **stationarity** requires constant moments for y_t ; **ergodicity** requires that the dependence is short-lived, eventually y_t has only a small influence on y_{t+k} , when k is relatively large.

Ergodicity describes a situation where the expectation of a random variable can be replaced by the time series expectation.

Time Series: Introduction – Dependence

An **MDS** is a discrete-time martingale with mean zero. In particular, its increments, ε_t 's, are uncorrelated with any function of the available dataset at time t. To these ε_t 's we will apply a CLT.

• The amount of dependence in y_t determines the 'quality' of the estimator. There are several ways to measure the dependence. The most common measure: **Covariance**.

$$Cov(y_t, y_{t+k}) = E[(y_{t_t} - \mu)(y_{t+k} - \mu)]$$

Note: When $\mu = 0$, then $Cov(y_t, y_{t+k}) = E[y_t \ y_{t+k}]$

Time Series: Introduction – Forecasting

- In a time series model, we describe how y_t depends on past y_t 's. That is, the information set is $I_t = \{y_{t-1}, y_{t-2}, y_{t-3},\}$
- The purpose of building a time series model: Forecasting.
- We estimate time series models to forecast out-of-sample. For example, the **l-step ahead** forecast: $\hat{y}_{T+l} = \mathbb{E}_t[y_{t+l} | I_t]$.

<u>Historical Note</u>: In the 1970s it was found that very simple time series models out-forecasted very sophisticated (big) economic models.

This finding represented a big shock to the big multivariate models that were very popular then. It forced a re-evaluation of these big models.

Time Series: Introduction - White Noise

- In general, we assume the error term, ε_t , is uncorrelated with everything, with mean 0 and constant variance, σ^2 . We call a process like this a white noise (WN) process.
- We denote a WN process as

$$\varepsilon_t \sim WN(0, \sigma^2)$$

• White noise is the basic building block of all time series. It can be written as simple function of a WN(0,1) process:

$$z_t = \sigma u_t$$
, $u_t \sim i.i.d. \sim WN(0, 1) \Rightarrow z_t \sim WN(0, \sigma^2)$

• The z_t 's are random shocks, with no dependence over time, representing unpredictable events. It represents a model of news.

Time Series: Introduction – Conditionality

• We make a key distinction: *Conditional & Unconditional* moments. In time series we model the conditional mean as a function of its past, for example in an AR(1) process, we have:

$$y_t = \alpha + \beta y_{t-1} + \varepsilon_t$$
.

Then, the **conditional mean** forecast at time t, conditioning on information at time I_{t-1} , is:

$$E_t[y_t | I_{t-1}] = E_t[y_t | y_{t-1}] = \alpha + \beta y_{t-1}$$

Notice that the **unconditional mean**, μ , is given by:

$$E[y_t] = \alpha + \beta E[y_{t-1}] = \frac{\alpha}{1-\beta} = \mu = \text{constant}$$
 $(\beta \neq 1)$

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.

Time Series: Introduction – AR and MA models

- Two popular models for $E_t[y_t | I_t]$, that have $\varepsilon_t \sim WN(0, 1)$:
- An **autoregressive** (**AR**) **process** models $E_t[y_t | I_{t-1}]$ with lagged dependent variables:

$$E_t[y_t|I_t] = f(y_{t-1}, y_{t-2}, y_{t-3}, \dots, y_{t-p})$$

An AR process is indexed by the number of lags; an AR(p) model involves p lags. In this class, f(.) will be linear.

Example: AR(1) process, $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$.

The general AR(p) process is given by:

$$y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + ... + \phi_p y_{t-p} + \varepsilon_t, \quad \varepsilon_t \sim WN.$$

Time Series: Introduction – AR and MA models

– A moving average (MA) process models $E_t[y_t|I_t]$ with lagged errors, ε_t :

$$\mathbf{E}_t[y_t \,|\, I_t] = f(\varepsilon_{t-1}, \varepsilon_{t-2}, \varepsilon_{t-3}, \dots, \varepsilon_{t-q})$$

Like AR models, an MA process is indexed by the number of lags; an MA(q) model involves q lags. In this class, f(.) will be linear.

Example: MA(1) process, $y_t = \mu + \theta_1 \epsilon_{t-1} + \epsilon_t$

The general MA(q) process is given by:

$$y_t = \mu + \varepsilon_t + \theta_1 \ \varepsilon_{t-1} + \theta_2 \ \varepsilon_{t-2} + \dots + \theta_q \ \varepsilon_{t-q} \qquad \varepsilon_t \sim WN.$$

• There is a third model, **ARMA**, that combines lagged dependent variables and lagged errors.

Time Series: Introduction – Forecasting (again)

- We want to select an appropriate time series model to forecast y_t . In this class, we will use linear models, with choices: AR(p), MA(q) or ARMA(p, q).
- Steps for forecasting:
- (1) Identify the appropriate model. That is, determine p, q.
- (2) Estimate the model.
- (3) Test the model.
- (4) Forecast.
- In this lecture, we go over the statistical theory (stationarity, ergodicity), the main models (AR, MA & ARMA) and tools that will help us describe and identify a proper model.

CLM Revisited: Time Series Implications

• With autocorrelated data, we get dependent observations. For example, with autocorrelated errors:

$$\varepsilon_t = \rho \, \varepsilon_{t-1} + \, u_t$$

the independence assumption is violated. The LLN and the CLT cannot be easily applied in this context. We need new tools.

• We introduce the concepts of **stationarity** and **ergodicity**. The ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent variables, using new technical concepts: mixing and stationarity. Or we can rely on a new CLT: The *martingale difference sequence CLT*.

• We will not cover these technical points in detail.

Time Series – Stationarity

• Consider the joint probability distribution of the collection of RVs:

$$F(y_{t_1}, y_{t_2}, \dots, y_{t_T}) = F(Y_{t_1} \le y_{t_1}, Y_{t_2} \le y_{t_2}, \dots, Y_{t_T} \le y_{t_T})$$

To do statistical analysis with dependent observations, we need extra assumptions. We need some form of invariance on the structure of the time series.

If the distribution F is changing with every observation, estimation and inference become very difficult.

- Stationarity is an invariant property: The statistical characteristics of the time series do not change over time.
- There different definitions of stationarity, they differ in how strong is the invariance of the distribution over time.

Time Series – Stationarity

• We say that a process is **stationary** of

$$\begin{array}{ll} \textit{1st order if} & F\big(y_{t_1}\big) = F\big(y_{t_{1+k}}\big) & \text{for any } t_1, \, k \\ \\ \textit{2nd order if} & F\big(y_{t_1}, y_{t_2}\big) = F\big(y_{t_{1+k}}, y_{t_{2+k}}\big) & \text{for any } t_1, \, t_2, \, k \\ \\ N^{th}\text{-order if} & F\big(y_{t_1}, \dots, y_{t_T}\big) = F\big(y_{t_{1+k}}, \dots, y_{t_{T+k}}\big) & \text{for any } t_1, \dots, t_T, \, k \end{array}$$

- N^{th} -order stationarity is a strong assumption (& difficult to verify in practice). 2^{nd} order (weak) stationarity is weaker. **Weak stationarity** only considers means & covariances (easier to verify in practice).
- Moments describe a distribution. We calculate moments as usual:

$$E[Y_t] = \mu$$

$$Var(Y_t) = \sigma^2 = E[(Y_t - \mu)^2]$$

$$Cov(Y_{t_1}, Y_{t_2}) = E[(Y_{t_1} - \mu)(Y_{t_2} - \mu)] = \gamma(t_1 - t_2)$$

Time Series – Stationarity & Autocovariances

• Cov $(Y_{t_1}, Y_{t_2}) = \gamma(t_1 - t_2)$ is called the **auto-covariance function**. It measures how y_t , measured at time t_1 , and y_t , measured at time t_2 ,

Notes: $\gamma(t_1 - t_2)$ is a function of $k = t_1 - t_2$ v(0) is the variance.

• The autocovariance function is symmetric. That is,

$$\gamma(t_1 - t_2) = \text{Cov}(Y_{t_1}, Y_{t_2}) = \text{Cov}(Y_{t_2}, Y_{t_1}) = \gamma(t_2 - t_1)$$

 $\Rightarrow \gamma(k) = \gamma(-k)$

• Autocovariances are unit dependent. We have different values if we calculate the autocovariance for IBM returns in % or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between two Y_t 's separated by k periods.

Time Series – Stationarity & Autocorrelations

• From the autocovariances, we derive the **autocorrelations**:
$$\operatorname{Corr}(Y_{t_1}, Y_{t_2}) = \rho(Y_{t_1}, Y_{t_2}) = \frac{\gamma(t_1 - t_2)}{\sigma_{t_1} \sigma_{t_2}} = \frac{\gamma(t_1 - t_2)}{\gamma(0)}$$

the last step takes assumes: $\sigma_{t_1} = \sigma_{t_2} = \sqrt{\gamma(0)}$

- $Corr(Y_{t_1}, Y_{t_2}) = \rho(Y_{t_1}, Y_{t_2})$ is called the **auto-correlation function** (ACF), –think of it as a function of $k = t_2 - t_1$. The ACF is also symmetric.
- Unlike autocovoriances, autocorrelations are not unit dependent. It is easier to compare dependencies across different time series.
- Stationarity requires all these moments to be independent of time. If the moments are time dependent, we say the series is non-stationary.

Time Series – Stationarity & Constant Moments

• For a strictly stationary process (constant moments), we need:

$$\mu_{t} = \mu$$

$$\sigma_{t} = \sigma$$
because $F(y_{t_{1}}) = F(y_{t_{1+k}}) \Rightarrow \mu_{t_{1}} = \mu_{t_{1+k}} = \mu$

$$\sigma_{t_{1}} = \sigma_{t_{1+k}} = \sigma$$

Then,

$$F(y_{t_1}, y_{t_2}) = F(y_{t_{1+k}}, y_{t_{2+k}}) \Rightarrow Cov(y_{t_1}, y_{t_2}) = Cov(y_{t_{1+k}}, y_{t_{2+k}})$$
$$\Rightarrow \rho(t_1, t_2) = \rho(t_{1+k}, t_{2+k})$$

Let
$$t_1 = t - k \& t_2 = t$$

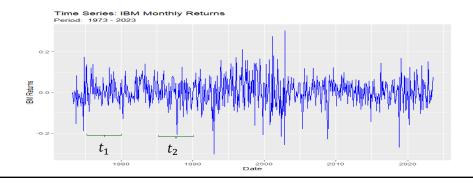
 $\Rightarrow \rho(t_1, t_2) = \rho(t - k, t) = \rho(t, t - k) = \rho(k) = \rho_k$

The correlation between any two RVs depends on the time difference. Given the symmetry, we have $\rho(k) = \rho(-k)$.

Time Series – Stationarity & Constant Moments

Example: Informally, we check if in any two periods separated by k observations, we have similar means, variances and covariances. That is,

$$\begin{split} & \mu_{t_1} = \mu_{t_{1+k}} = \mu \\ & \sigma_{t_1} = \sigma_{t_{1+k}} = \sigma \\ & \operatorname{Cov}(y_{t_1}, y_{t_2}) = \operatorname{Cov}(y_{t_{1+k}}, y_{t_{2+k}}) \end{split}$$



Time Series – Stationarity & Constant Moments

Example: Informally, we check if in any two periods separated by k observations, we have similar means, variances and covariances. That is,

$$\begin{split} & \mu_{t_1} = \mu_{t_{1+k}} = \mu \\ & \sigma_{t_1} = \sigma_{t_{1+k}} = \sigma \\ & \operatorname{Cov}(y_{t_1}, y_{t_2}) = \operatorname{Cov}(y_{t_{1+k}}, y_{t_{2+k}}) \end{split}$$

Time Series - Covariance (Weak) Stationary

- A Covariance stationary process (or 2nd -order weakly stationary) has:
 - constant mean, μ
 - constant variance, σ^2
 - covariance depends on time difference, k, between two RVs, $\gamma(k)$

That is, Z_t is covariance stationary if:

$$E(Z_t) = constant = \mu$$

$$Var(Z_t) = constant = \sigma^2$$

$$\operatorname{Cov}(Z_{t_1}, Z_{t_2}) = \gamma(k = t_1 - t_2)$$

<u>Remark</u>: Covariance stationarity is only concerned with the covariance of a process, only the mean, variance and covariance are time-invariant.

Time Series – Stationarity: Example

Example: Assume y_t follows an AR(1) process:

$$y_t = \phi \; y_{t-1} + \varepsilon_t, \quad \text{with } \varepsilon_t \sim WN(0, \sigma^2).$$

• Mean

Taking expectations on both side:

$$E[y_t] = \phi E[y_{t-1}] + E[\varepsilon_t]$$

$$\mu = \phi \mu + 0$$

$$E[y_t] = \mu = 0 \qquad \text{(assuming } \phi \neq 1\text{)}$$

Variance

Applying the variance on both side:

$$\begin{aligned} \operatorname{Var}[y_t] &= \gamma(0) = \phi^2 \operatorname{Var}[y_{t-1}] + \operatorname{Var}[\varepsilon_t] \\ \gamma(0) &= \phi^2 \gamma(0) + \sigma^2 \\ \gamma(0) &= \frac{\sigma^2}{1 - \phi^2} \end{aligned} \quad (assuming |\phi| < 1)$$

Time Series – Stationarity: Example

Example (continuation): $y_t = \phi y_{t-1} + \varepsilon_t$, $\varepsilon_t \sim WN(0, \sigma^2)$

Covariance

$$\begin{split} \gamma(1) &= \text{Cov}[y_t, y_{t-1}] = \text{E}[y_t \ y_{t-1}] = \text{E}[(\phi \ y_{t-1} + \varepsilon_t) \ y_{t-1}] \\ &= \phi \ \text{E}[y_{t-1} \ y_{t-1}] + \text{E}[\ \varepsilon_t \ y_{t-1}] \\ &= \phi \ \text{E}[y_{t-1}^2] \\ &= \phi \ \text{Var}[y_{t-1}] \\ &= \phi \ \gamma(0) \\ \gamma(2) &= \text{Cov}[y_t, y_{t-2}] = \text{E}[y_t \ y_{t-2}] = \text{E}[(\phi \ y_{t-1} + \varepsilon_t) \ y_{t-2}] \\ &= \phi \ \text{E}[y_{t-1} \ y_{t-2}] \\ &= \phi \ \text{Cov}[y_t, y_{t-1}] \\ &= \phi \ \gamma(1) \\ &= \phi^2 \ \gamma(0) \\ \vdots \\ \gamma(k) &= \text{Cov}[y_t, y_{t-k}] = \phi^k \ \gamma(0) \end{split}$$

Time Series – Stationarity: Example

Example (continuation): $y_t = \phi \ y_{t-1} + \varepsilon_t$, $\varepsilon_t \sim WN(0, \sigma^2)$

Covariance

$$\gamma(k) = \text{Cov}[y_t, y_{t-k}] = \phi^k \gamma(0)$$

 \Rightarrow If $|\phi| < 1$, y_t process is covariance stationary: mean, variance, and covariance are constant.

<u>Remark</u>: To establish stationarity, we need to impose conditions on the AR parameters. (Conditions are not needed for MA processes.)

Note: From the autocovariance function, we derive ACF:

$$\rho(k) = \frac{\gamma(k)}{\gamma(0)} = \frac{\phi^k \ \gamma(0)}{\gamma(0)} = \phi^k$$

If $|\phi| < 1$, autocovariance function & ACF show exponential decay.

Time Series – Non-Stationarity: Example

Example: Assume y_t follows a Random Walk with drift process:

$$y_t = \mu + y_{t-1} + \varepsilon_t$$
, with $\varepsilon_t \sim WN(0, \sigma^2)$.

Doing backward substitution:

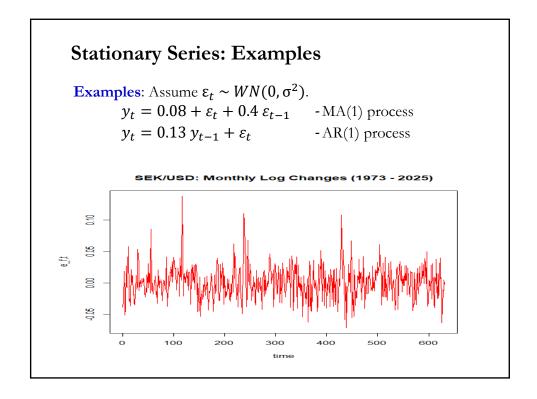
$$\begin{aligned} y_t &= \mu + (\mu + y_{t-2} + \varepsilon_{t-1}) + \varepsilon_t \\ &= 2 * \mu + y_{t-2} + \varepsilon_t + \varepsilon_{t-1} \\ &= 2 * \mu + (\mu + y_{t-3} + \varepsilon_{t-2}) + \varepsilon_t + \varepsilon_{t-1} \\ &= 3 * \mu + y_{t-3} + \varepsilon_t + \varepsilon_{t-1} + \varepsilon_{t-2} \\ \Rightarrow y_t &= \mu \ t + \sum_{j=0}^{t-1} \varepsilon_{t-j} + y_0 \end{aligned}$$

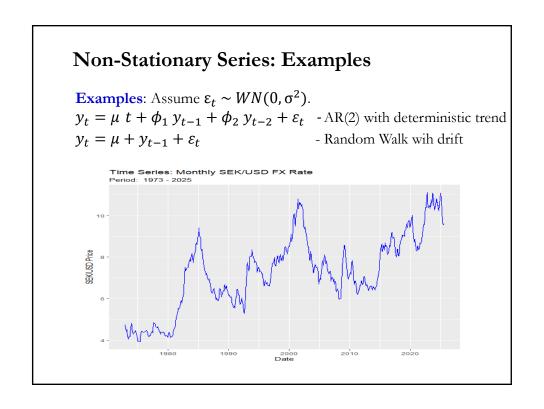
Mean & Variance

$$E[y_t] = \mu t + y_0$$

 $Var[y_t] = \gamma(0) = \sum_{j=0}^{t-1} \sigma^2 = \sigma^2 t$

 \Rightarrow the process y_t is non-stationary: moments are time dependent.





Time Series – Stationarity: Remarks

- Main characteristic of time series: Observations are dependent.
- If we have non-stationary series (say, mean or variance are changing with each observation), it is not possible to make inferences.
- Stationarity is an invariant property: the statistical characteristics of the time series do not vary over time.
- If IBM is weak stationary, then, the returns of IBM may change month to month or year to year, but the average return and the variance in two equal-length time intervals will be more or less the same.

Time Series – Stationarity (Again)

- In the long run, say 100-200 years, the stationarity assumption may not be realistic. After all, technological change has affected the return of IBM over the long run. But, in the short-run, stationarity seems likely to hold.
- In general, time series analysis is done under the stationarity assumption.

Ergodicity

- We want to estimate the mean of the process $\{Z_t\}$, $\mu(Z_t)$. But, we need to distinguishing between **ensemble average** (with m observations) and **time average** (with T observations):
- Ensemble Average: $\bar{\bar{z}} = \frac{\sum_{i=1}^{m} Z_i}{m}$ (all possible states at one time)
- Time Series Average: $\overline{z} = \frac{\sum_{t=1}^{T} z_t}{T}$ (one history, or "trajectory")
- Q: Which estimator is the most appropriate? A: Ensemble Average. But, it is impossible to calculate for a time series. We only observe one Z_t , with dependent observations.
- Q: Under which circumstances we can use the time average (with only one realization of $\{Z_t\}$)? Is the time average an unbiased and consistent estimator of the mean? The **Ergodic Theorem** gives us the answer.

Time Series – Ergodicity

• Intuition behind Ergodicity:

We want to know the probability of face 5 in an die. We get m participants to throw a die once and we record the number of times 5 shows up, say k. This is the **ensemble scenario**. With an increasing number of participants, increasing m, the randomness gets more and more removed. Then,:

$$\lim_{m\to\infty}\,\frac{k}{m}\to P(X=5)$$

We can do the same experiment with only one participant, throwing the die many times, say, T. This is the **time series scenario**. As T increases,

$$\lim_{T \to \infty} \frac{k}{T} \to P(X = 5)$$

Result: The probability computed from m subjects (ensemble scenario) applies to the one computed from one person (time series scenario).

Time Series – Ergodicity

• Intuition behind Ergodicity:

We go to a casino to play a game with 20% return, but on average, one gambler out of 100 goes bankrupt. If 100 gamblers play the game, there is a 99% chance of winning and getting a 20% return. This is the **ensemble scenario**. Suppose that **gambler 35** is the one that goes bankrupt. Gambler 36 is not affected by the bankruptcy of gamble 35.

Suppose now that you play the game 100 times. This is the **time series** scenario. You win 20% every day until **day 35** when you go bankrupt. There is no day 36 for you (dependence at work!).

<u>Result</u>: The probability of success from the group (ensemble scenario) does not apply to one person (time series scenario).

Ergodicity describes a situation where the ensemble scenario outcome applies to the time series scenario.

Ergodicity

• With dependent observation, we cannot use the LLN as we have done before with *i.i.d.* observations. The **ergodicity theorem** plays the role of the LLN with dependent observations.

The formal definition of ergodicity is complex and is seldom used in time series analysis. One consequence of ergodicity is the ergodic theorem, which is extremely useful in time series.

It states that if Z_t is an ergodic stochastic process, then

$$\frac{1}{T}\sum_{t=1}g(Z_t)\stackrel{a.s.}{\longrightarrow} \mathrm{E}[g(Z_t)]$$

for any function g(.). And, for any time shift k

$$\frac{1}{T}\sum_{t=1}g(Z_{t_1+k},Z_{t_2+k},\ldots,Z_{t_{\tau}+k})\stackrel{a.s.}{\longrightarrow} \mathbb{E}[g(Z_{t_1},Z_{t_2},\ldots,Z_{t_{\tau}}))]$$

where a.s. means almost sure convergence, a strong form of convergence.

Ergodicity of the Mean

• **Definition**: A covariance-stationary process is **ergodic** for the mean if

$$\bar{z} \xrightarrow{p} \mathrm{E}[Z_t] = \mu$$

Theorem: A sufficient condition for ergodicity for the mean:

$$\rho_k \to 0$$
 as $k = t_i - t_j \to \infty$

We need the correlation between (y_{t_i}, y_{t_j}) to decrease as they grow further apart in time.

• If the conditions of the **Ergodic Theorem** are met, we can use \overline{z} instead of $\overline{\overline{z}}$.

Remark: Under ergodicity, just one history (trajectory) is enough to learn about the behavior of the system generating Z_t .

Time Series - Lag Operator

ullet Define the operator L as

$$L^k z_t = z_{t-k}.$$

• It is usually called **Lag operator**. But it can produce lagged or forward variables (for negative values of k). For example:

$$L^{-3} z_t = z_{t+3}.$$

- Also note that if c is a constant $\Rightarrow Lc = c$.
- Important application: Differencing

$$\Delta z_t = (1 - L) z_t = z_t - z_{t-1}.$$

$$\Delta^2 z_t = (1 - L)^2 z_t = z_t - 2z_{t-1} + z_{t-2}.$$

Time Series – Useful Result: Geometric Series

• The function $f(x) = (1 - x)^{-1}$ can be written as an infinite **geometric series** (use a Maclaurin series around c = 0):

$$f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots = \sum_{n=0}^{\infty} x^n$$

• If we multiply f(x) by a constant, a:

$$\sum_{n=0}^{\infty} ax^n = \frac{a}{1-x} \rightarrow \sum_{n=1}^{\infty} ax^n = a\left(\frac{1}{1-x} - 1\right)$$

Example: In Finance we have many applications of the above results. - A stock price, *P*, equals the discounted some of all futures dividends. Assume dividends are constant, *d*, and the discount rate is *r*. Then:

$$P_t = \sum_{t=1}^{\infty} \frac{d}{(1+r)^t} = d(\frac{1}{1-\frac{1}{1+r}}-1) = d(\frac{1}{\frac{1+r-1}{1+r}}-1) = \frac{d}{r}$$
 where $x = \frac{1}{1+r}$

Time Series - Useful Result: Application

• We will use this result when, under certain conditions, we invert a lag polynomial (say, $\theta(L)$) to convert an AR (MA) process into an infinite MA (AR) process.

Example: Suppose we have an MA(1) process:

$$y_t = \mu + \theta_1 \varepsilon_{t-1} + \varepsilon_t = \mu + \theta(L) \varepsilon_t$$
 $-\theta(L) = (1 + \theta_1 L)$

Recall,

$$f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots = \sum_{n=0}^{\infty} x^n$$

Let $x = -\theta_1 L$. Then, assuming that $\theta(L)^{-1}$ is well defined,

$$\theta(L)^{-1} = \frac{1}{1 - (-\theta_1 L)} = 1 + (-\theta_1 L) + (-\theta_1 L)^2 + (-\theta_1 L)^3 + (-\theta_1 L)^4 + \dots$$
$$= \sum_{n=0}^{\infty} (-\theta_1 L)^n = 1 - \theta_1 L + \theta_1^2 L^2 - \theta_1^3 L^3 + \theta_1^4 L^4 + \dots$$

Time Series – Useful Result: Application

Example (continuation):

$$\theta(L)^{-1} = \sum_{n=0}^{\infty} (-\theta_1 L)^n = 1 - \theta_1 L + \theta_1^2 L^2 - \theta_1^3 L^3 + \theta_1^4 L^4 + \cdots$$

Now, we multiply $\theta(L)^{-1}$ on both sides of the MA process $y_t = \mu + \theta(L) \varepsilon_t$.

Then,

$$\theta(L)^{-1} y_t = \theta(L)^{-1} \mu + \theta(L)^{-1} \theta(L) \varepsilon_t = \mu^* + \varepsilon_t$$

$$\begin{array}{ll} \theta(L)^{-1} \; y_t &= y_t - \theta_1 \; y_{t-1} + \; \theta_1^2 \; y_{t-2} - \; \theta_1^3 \; y_{t-3} + \; \theta_1^4 \; y_{t-4} + \cdots \\ &= \; \mu^* + \; \varepsilon_t \end{array}$$

Then, solving for y_t :

$$y_t = \mu * + \theta_1 y_{t-1} - \theta_1^2 y_{t-2} + \theta_1^3 y_{t-3} - \theta_1^4 y_{t-4} + \dots + \varepsilon_t$$

That is, we get an $AR(\infty)$!

Time Series – Useful Result: Invertibility

Example (continuation):

Now, we get an AR(∞) for y_t :

$$y_{t} = \mu * + \theta_{1} y_{t-1} - \theta_{1}^{2} y_{t-2} + \theta_{1}^{3} y_{t-3} - \theta_{1}^{4} y_{t-4} + \dots + \varepsilon_{t}$$

$$= \mu * + \pi_{1} y_{t-1} + \pi_{2} y_{t-2} + \pi_{3} y_{t-3} + \pi_{4} y_{t-4} + \dots + \varepsilon_{t}$$

That is, $\pi_i = (-1) * (-\theta_1)^j$

• Now,
$$y_t = \mu * + \sum_{i=1}^{\infty} \pi_i y_{t-i} + \varepsilon_t$$

We express y_t as infinite AR process. We have an infinite sum of $\pi_i y_{t-i}$! To be useful for forecasting purposes, we need to make sure that this infinite sum is finite.

Restriction: Make sure the π_i 's do not explode –i.e., $|\theta_1| < 1$. Under this condition, we will call the polynomial $\theta(L)$ invertible.

Moving Average Process

- An MA process models $\mathbf{E}_t[y_t | I_{t-1}]$ with lagged error terms. An MA(q) model involves q lags.
- We keep the white noise assumption for ε_t : $\varepsilon_t \sim WN(0, \sigma^2)$

Example: A linear MA(q) model:

$$y_t = \mu + \theta_1 \, \varepsilon_{t-1} + \theta_2 \, \varepsilon_{t-2} + \dots + \theta_q \, \varepsilon_{t-q} + \varepsilon_t = \mu + \theta(L) \, \varepsilon_t,$$

where

$$\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \theta_2 L^3 + ... + \theta_a L^q$$

• In time series, the constant does not affect the properties of AR and MA process. It is usually removed (think of the data analyzed as demeaned). Thus, in this situation we say "without loss of generalization" (WLOG), we assume $\mu = 0$.

MA Process – MA(1): Stationarity

Example: MA(1) process (WLOG, $\mu = 0$), with $\varepsilon_t \sim WN(0, \sigma^2)$:

$$y_t = \mu + \theta_1 \ \varepsilon_{t-1} + \varepsilon_t = \mu + \theta(L) \ \varepsilon_t$$
, with $\theta(L) = (1 + \theta_1 L)$

• Mean

$$\mathbf{E}[y_t] = 0$$

• Variance

$$Var[y_t] = \gamma(0) = \sigma^2 + \theta_1^2 \ \sigma^2 = \sigma^2(1 + \theta_1^2)$$

Covariance

$$\begin{aligned} \text{Cov}[y_{t}, y_{t-1}] &= \gamma(1) = \text{E}[y_{t} \ y_{t-1}] \\ &= \text{E}[(\theta_{1} \varepsilon_{t-1} + \varepsilon_{t}) * (\theta_{1} \varepsilon_{t-2} + \varepsilon_{t-1})] = \theta_{1} \sigma^{2} \\ \text{Cov}[y_{t}, y_{t-2}] &= \gamma(2) = \text{E}[y_{t} \ y_{t-2}] \\ &= \text{E}[(\theta_{1} \varepsilon_{t-1} + \varepsilon_{t}) * (\theta_{1} \ \varepsilon_{t-3} + \varepsilon_{t-2})] = 0 \end{aligned}$$

MA Process – MA(1): Stationarity

Example (continuation): MA(1) process:

Covariance

$$\begin{split} \gamma(1) &= \mathrm{E}[\boldsymbol{y}_t \ \boldsymbol{y}_{t-1}] = \mathrm{E}[(\boldsymbol{\theta}_1 \boldsymbol{\varepsilon}_{t-1} + \boldsymbol{\varepsilon}_t)^* (\boldsymbol{\theta}_1 \boldsymbol{\varepsilon}_{t-2} + \boldsymbol{\varepsilon}_{t-1})] = \boldsymbol{\theta}_1 \sigma^2 \\ \gamma(2) &= \mathrm{E}[\boldsymbol{y}_t \ \boldsymbol{y}_{t-2}] = \mathrm{E}[(\boldsymbol{\theta}_1 \boldsymbol{\varepsilon}_{t-1} + \boldsymbol{\varepsilon}_t)^* (\boldsymbol{\theta}_1 \ \boldsymbol{\varepsilon}_{t-3} + \boldsymbol{\varepsilon}_{t-2})] = 0 \\ \vdots \end{split}$$

$$\gamma(k) = \mathrm{E}[\mathbf{y}_t \ \mathbf{y}_{t-k}] = \mathrm{E}[(\mathbf{\theta}_1 \mathbf{\varepsilon}_{t-1} + \mathbf{\varepsilon}_t) * (\mathbf{\theta}_1 \mathbf{\varepsilon}_{t-(k+1)} + \mathbf{\varepsilon}_{t-k})] = \mathbf{0} \quad (\text{for } k > 1)$$

That is, for |k| > 1, $\gamma(k) = 0$.

 \Rightarrow MA(1) is always stationary –i.e., independent of values of θ_1 .

Remark: The MA(q=1) process has $\gamma(q)=0$, for q>1. This result generalizes to MA(q) process: after lag q, the autocovariances are 0. Also, the always stationary result for MA(1) generalizes to MA(q).

MA(1) Process – ACF

Example (continuation): To get the ACF, we divide the autocovariances by $\gamma(0)$. Then, the autocorrelation function (ACF):

$$\rho(0) = \gamma(0)/\gamma(0) = 1$$

$$\rho(1) = \gamma(1)/\gamma(0) = \frac{\theta_1 \sigma^2}{\sigma^2 (1 + \theta_1^2)} = \frac{\theta_1}{(1 + \theta_1^2)}$$

$$\vdots$$

$$\rho(k) = \gamma(k)/\gamma(0) = 0 \quad (\text{for } k > 1)$$

Remark: The autocovariance function is **zero** after lag 1. Similarly, the ACF is also **zero** after lag 1, that is, y_t is correlated with itself (y_t) and y_{t-1} , but not y_{t-2} , y_{t-3} , ... Contrast this with the AR(1) model, where the correlation between y_t and y_{t-k} is never zero.

The ACF is usually shown in a plot, the **autocorrelogram**. When we plot $\rho(k)$ against k, we plot also $\rho(0)$ which is 1.

MA(1) Process – ACF

Example (continuation):

$$\rho(1) = \frac{\theta_1}{(1+\theta_1^2)}$$

Note that $|\rho(1)| \le 0.5$.

When
$$\theta_1 = 0.5$$
 $\Rightarrow \rho(1) = 0.4$.
 $\theta_1 = -0.9$ $\Rightarrow \rho(1) = -0.497238$.
 $\theta_1 = -2$ $\Rightarrow \rho(1) = -0.4$.
 $\theta_1 = 2$ $\Rightarrow \rho(1) = 0.4$. (same $\rho(1)$ for $\theta_1 & \frac{1}{\theta_1}$.)

Note: Both MA(1) processes, with $\theta_1 = 0.5$ and $\theta_1 = 2$, have the same ACF. That is, ACFs are not unique. This is a problem: we deduce the order and the coefficients through the ACF, which is what we observe.

MA Process – MA(q): Stationarity

• Q: Is MA(q) stationary?

$$\mathrm{MA}(q) \colon \qquad \quad y_t = \varepsilon_t + \theta_1 \ \varepsilon_{t-1} + \theta_2 \ \varepsilon_{t-2} + \ldots + \theta_q \ \varepsilon_{t-q}$$

• Mean $(\mu = 0)$. $E[y_t] = 0$

• Variance
$$Var[y_t] = (1 + \theta_1^2 + \theta_2^2 + ... + \theta_q^2) \sigma^2$$
.

For $Var[y_t] > 0$, we require $(1 + \theta_1^2 + \theta_2^2 + ... + \theta_q^2) > 0$.

Covariance

riance
$$\gamma(k) = \sigma^2 \sum_{j=k}^{q} \theta_j \ \theta_{j-k} \qquad \text{for } | k | \le q \text{ (where } \theta_0 = 1)$$

$$\gamma(k) = 0 \qquad \text{for } | k | > q$$

Remark: After lag q, the autocovariances are 0.

• It is easy to verify that the sums $\sum_{j=k}^{q} \theta_j \ \theta_{j-k}$ are finite. Then, mean, variance & covariance are constant $\Rightarrow \text{MA}(q)$ is always stationary!

MA Process – Invertibility

• As mentioned above, the autocovariances are non-unique.

Example: Two MA(1) processes that produce the same $\gamma(k)$:

$$y_t = \varepsilon_t + 0.2 \ \varepsilon_{t-1}, \quad \varepsilon_t \sim i.i.d. \ N(0, 25)$$

 $z_t = \upsilon_t + 5 \ \upsilon_{t-1}, \quad \upsilon_t \sim i.i.d. \ N(0; 1)$

We only observe the time series, y_t or z_t , and not the noise, ε_t or υ_t . We cannot distinguish between the models using the autocovariances.

We want to select one process to forecast: We select the model with an $AR(\infty)$ representation that does not explode: That is, we select the process that is **invertible**.

• Assuming $\theta(L) \neq 1$, we invert $\theta(L)$:

$$\begin{aligned} y_t &= \mu + \ \theta(L) \ \varepsilon_t \\ &\Rightarrow \theta(L)^{-1} \ y_t = \Pi(L) \ y_t = \mu^* + \ \varepsilon_t. \\ &\Rightarrow y_t = \mu^* + \sum_{j=1}^\infty \pi_j \ y_{t-j} \ + \varepsilon_t \end{aligned}$$

MA Process – Invertibility

• We convert an MA(q) into an $AR(\infty)$:

$$y_t = \mu * + \sum_{j=1}^{\infty} \pi_j \ y_{t-j} + \varepsilon_t$$

We need to make sure that $\Pi(L) = \theta(L)^{-1}$ is defined: We require $\theta(L)\neq 0$. When this condition is met, we can write ε_t as a causal function of y_t . We say the MA is *invertible*. For this to hold, we require:

$$\sum_{j=0}^{\infty} |\pi_j(L)| < \infty.$$

<u>Technical note</u>: An invertible MA(q) is typically required to have roots of the lag polynomial equation $\theta(z) = 0$ greater than one in absolute value (**outside the unit circle**). In the MA(1) case,

$$\theta(z) = (1 + \theta_1 z) = 0$$
 \Rightarrow root: $z = -\frac{1}{\theta_1} (\Rightarrow |\theta_1| < 1)$

In the previous example, we select the model with $\theta_1 = 0.2$.

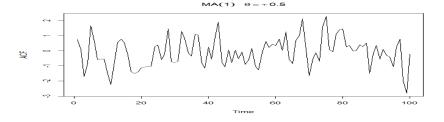
MA(1) Process: Simulations

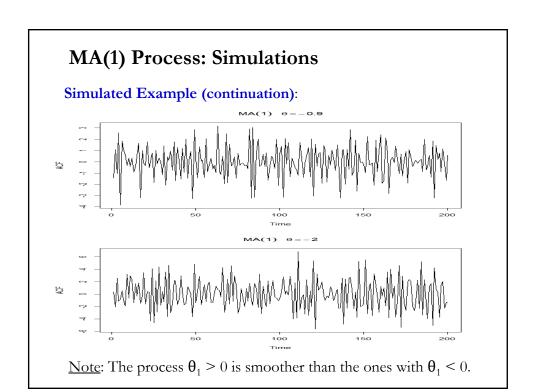
Simulated Example: We simulate with R function *arima.sim* (& plot) three MA(1) processes, with standard normal ε_t -i.e., $\mu = 0$ & $\sigma = 1$:

$$y_t = \varepsilon_t + 0.5 \,\varepsilon_{t-1}$$
$$y_t = \varepsilon_t - 0.9 \,\varepsilon_{t-1}$$

$$y_t = \varepsilon_t - 2\,\varepsilon_{t-1}$$

R script to plot $y_t = \varepsilon_t + 0.5 \ \varepsilon_{t-1}$ with 200 simulations > plot(arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200), ylab="ACF", main=(expression(MA(1)~~~theta==+.5)))





MA(1) Process: Simulations (ACF)

Simulated Example (continuation): Below, we compute and plot the ACF for the 3 simulated process.

1)
$$y_t = \varepsilon_t + 0.5 \varepsilon_{t-1}$$

 $sim_ma1_5 < -arima.sim(list(order=c(0,0,1), ma = 0.5), n = 200)$
 $acf_ma1_5 < -acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))$
 $>acf_ma1_5$

Autocorrelations of series 'sim_ma1_5', by lag

1.000 **0.438** 0.069 0.014 0.103 0.173 0.107 0.015 -0.080 -0.054 0.011 -0.006 0.041 0.000 14 15 $-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021 \ \ 0.110$

MA(1) Process: Simulations (ACF)

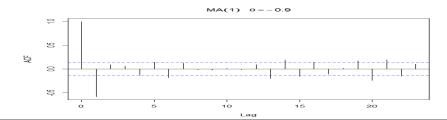
Simulated Example (continuation):

2)
$$y_t = \varepsilon_t - 0.9 \ \varepsilon_{t-1}$$

 $sim_ma1_9 < -arima.sim(list(order=c(0,0,1), ma = -0.9), n = 200)$
 $acf_ma1_9 < -acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))$
 $>acf_ma1_9$

Autocorrelations of series 'sim_ma1_9', by lag

10 11 1.000 -0.584 0.093 0.061 -0.132 0.147 -0.181 0.122 -0.013 -0.023 0.014 -0.012 0.092 -0.199



MA(1) Process: Simulations (ACF)

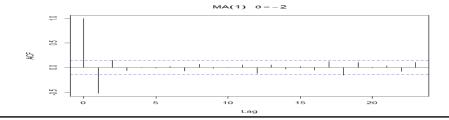
Simulated Example (continuation):

3)
$$y_t = \varepsilon_t - 2 \varepsilon_{t-1}$$

 $sim_ma1_2 < - arima.sim(list(order=c(0,0,1), ma = -2), n = 200)$
 $acf_ma1_2 < - acf(sim_ma1_2, main=(expression(MA(1) \sim \sim \sim theta = = -2)))$
 $> acf_ma1_2$

Autocorrelations of series 'sim_ma1_2', by lag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1.000 -0.524 0.150 -0.064 0.006 -0.014 0.022 -0.070 0.068 -0.015 -0.002 0.054 -0.121 0.055 14 15 16 17 18 19 20 21 22 23 -0.029 0.026 -0.054 0.121 -0.156 0.106 -0.009 0.037 -0.080 0.104



MA Process – Example: MA(1)

Simulated Example (continuation):

– Invertibility: If $|\theta_1| < 1$, we can write $(1 + \theta_1 L)^{-1} y_t + \mu^* = \varepsilon_t$

$$\Rightarrow \left(1 - \theta_1 L + \theta_1^2 L^2 - \theta_1^3 L^3 + \dots + \theta_1^j L^j + \dots\right) y_t + \mu * = \sum_{i=0}^{\infty} \pi_i(L) \ y_t = \varepsilon_t$$

That is, $\pi_i = \theta_1^i$.

The simulated process with θ_1 = -2 is non-invertible, the infinite sum of π_i would explode. We would select the MA(1) with θ_1 = -.5.

MA Process – Estimation

• MA processes are complicated to estimate. Consider an MA(1): $y_t = \varepsilon_t + \theta_1 \ \varepsilon_{t-1}$

We cannot do OLS, since we do not observe ε_{t-1} . But, based on the ACF, we estimate θ_1 .

• The auto-correlation of order one is:

$$\rho(1) = \theta_1 / (1 + \theta_1^2)$$

Then, we can use the **Method of Moments** (MM), which sets the theoretical moment equal to the estimated sample moment $\rho(1)$, r_1 . Then, we solve for the parameter of interest, θ_1 :

$$r_1 = \frac{\hat{\theta}_1}{(1+\hat{\theta}_1^2)} \quad \Rightarrow \qquad \hat{\theta}_1 = \frac{1 \pm \sqrt{1-4r_1^2}}{2r_1}$$

• A nonlinear solution and difficult to solve.

MA Process – Estimation

• Alternatively, if $|\theta_1| < 1$, we can invert the MA(1) process. Then, based on the AR representation, we can try finding $a \in (-1; 1)$:

$$\varepsilon_t(a) = y_t + a y_{t-1} + a^2 y_{t-2} + a^3 y_{t-3} + \dots$$

and look (numerically) for the least-square estimator

$$\hat{\boldsymbol{\theta}} = \arg\min_{\theta} \left\{ S(\boldsymbol{y}; \boldsymbol{\theta}) = \sum_{t=1}^{T} \varepsilon_t(a)^2 \right\}$$

where $a^t = \theta_1^t$.

Autoregressive (AR) Process

- We model the conditional expectation of y_t , $E_t[y_t | I_{t-1}]$, as a function of its past history. We assume $\varepsilon_t \sim WN(0, \sigma^2)$.
- The most common models are AR models. An AR(1) model involves a single lag, while an AR(p) model involves p lags. Then, the AR(p) process is given by:

$$y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + ... + \phi_p y_{t-p} + \varepsilon_t, \quad \varepsilon_t \sim WN$$

Using the lag operator we write the AR(p) process: $\phi(L)$ $y_t = \varepsilon_t$ with $\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p$

• We can look at an AR(p) process as a **stochastic (linear) difference equation (SDE**). We want to work with a stable y_t process (not explosive).

AR(1) Process – Stationarity & ACF

• An AR(1) model:

$$y_t = \phi_1 y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim WN$$

Recall that in a previous example, under the stationarity condition $|\phi_1| \le 1$, we derived the mean, variance and auto-covariance function:

$$E[y_t] = \mu = 0 \qquad \text{(assuming } \phi_1 \neq 1)$$

$$Var[y_t] = \gamma(0) = \frac{\sigma^2}{(1 - \phi_1^2)} \qquad \text{(assuming } |\phi_1| < 1)$$

$$\gamma(k) = \phi_1^k \gamma(0)$$

• We also derived the autocorrelations:

$$\rho(k) = \frac{\gamma(k)}{\gamma(0)} = \phi_1^k$$

Remark: When $|\phi_1| < 1$, the autocorrelations do not explode as k increases. There is an exponential decay towards zero.

AR(1) Process – Stationarity & ACF

• ACF for an AR(1) process:

$$\rho(k) = \frac{\gamma(k)}{\gamma(0)} = \phi_1^k$$

Then, the autocorrelogram –i.e., plot of $\rho(k)$ against k– shows

- when $0 < \phi_1 < 1 \implies$ All autocorrelations are positive.
- when $-1 < \phi_1 < 0 \implies$ The sign of $\rho(k)$ shows an alternating pattern beginning with a negative value.
- when $\phi_1 = 1$ \Rightarrow AR(1) is non-stationary, $\rho(k) = 1$, for all k.

 Present & past are always correlated!

Note: The results for AR(1) can be generalized for AR(p), but the generalization is not straightforward like in the MA case. For example, to get stationarity for an AR(2), we require: $\phi_1 + \phi_2 \neq 1$. $\phi_1^2 + \phi_2^2 < 1$.

 $|\phi_1 + \phi_2| < 1.$

AR Process – Stationarity and Ergodicity

Theorem: The linear AR(p) process is strictly stationary and ergodic if and only if the roots of $\phi(L)$ are $|z_j| > 1$ for all j, where $|z_j|$ is the modulus of the complex number r_j .

Note: If one of the z_j 's equals 1, $\phi(L)$ (& y_t) has a unit root –i.e., $\phi(1)=0$. This is a special case of *non-stationarity*.

- Recall $\phi(L)^{-1}$ produces an infinite sum on the ε_{t-j} 's. If this sum does not explode, we say the process is **stable**.
- For the AR(1) case

$$\phi(\mathbf{z}) = 1 - \phi_1 \mathbf{z} = 0 \implies |\mathbf{z}| = \frac{1}{|\phi_1|} > 1$$

That is, the AR(1) process is stable if the root of $\phi(z)$ is greater than one (also said as "the roots lie outside the unit circle").

AR Process – AR(1): Stability

• We analyze the stability of an AR(p) process from the point of view of the roots of the lag polynomial. For the AR(1) process

$$\phi(z) = 1 - \phi_1 z = 0 \implies |z| = \frac{1}{|\phi_1|} > 1$$

That is, the AR(1) process is stable if the root of $\phi(z)$ is greater than one (also said as "the roots lie outside the unit circle").

This result generalizes to AR(p) process:

Theorem

A necessary and sufficient condition for global asymptotical stability of a p^{th} order deterministic difference equation with constant coefficients is that **all roots** of the associated lag polynomial equation $\phi(\mathbf{z})=0$ have **moduli** strictly more than 1.

(For the case of real roots, moduli = "absolute values.")

AR(1) Process – Stationarity & ACF: Simulations

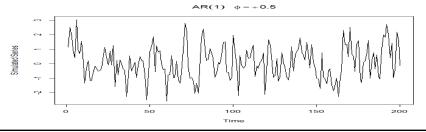
Simulated Example: We simulate (& plot) three AR(1) processes, with standard normal ε_t -i.e., $\sigma = 1$:

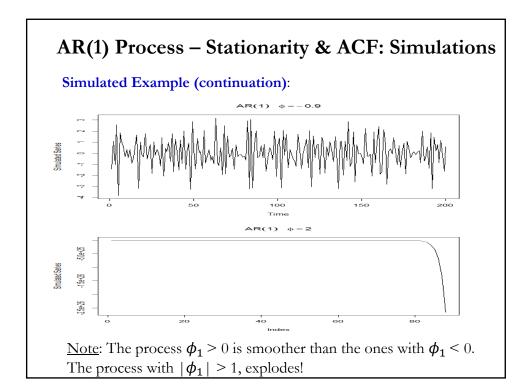
$$y_t = 0.5 y_{t-1} + \varepsilon_t$$
$$y_t = -0.9 y_{t-1} + \varepsilon_t$$

$$y_t = 2 y_{t-1} + \varepsilon_t$$

R script to plot $y_t = 0.5 y_{t-1} + \varepsilon_t$ with 200 simulations

> plot(arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200), ylab="ACF", main=(expression(AR(1)~~~phi==+.5)))





AR(1) Process – Stationarity & ACF: Simulations

Simulated Example (continuation): Below, we compute and plot the ACF for the two stable simulated process.

1)
$$y_t = 0.5 \ y_{t-1} + \varepsilon_t$$
 sim_ar1_5 <- arima.sim(list(order=c(1,0,0), ar = 0.5), n = 200) acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5))) acf_ar1_5 Autocorrelations of series 'sim_ma1_5', by lag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1.000 0.351 0.055 -0.005 -0.054 0.002 -0.036 -0.119 -0.008 -0.099 -0.125 -0.066 -0.036 -0.023 14 15 16 17 18 19 20 21 22 23 -0.042 0.062 0.119 0.102 0.087 0.099 0.065 0.056 0.047 0.044

AR(1) Process – Stationarity & ACF: Simulations

Simulated Example (continuation):

2)
$$y_t = -0.9 y_{t-1} + \varepsilon_t$$

 $sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar = -0.9), n = 200) acf_ar1_9 <- acf(sim_ar1_9, main=(expression(AR(1) \sim \sim phi==-.9))) > acf_ar1_9$

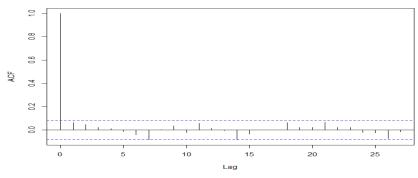
Autocorrelations of series 'sim_ma1_9', by lag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1.000 -0.584 0.093 0.061 -0.132 0.147 -0.181 0.122 -0.013 -0.023 0.014 -0.012 0.092 -0.199 14 15 16 17 18 19 20 21 22 23 0.193 -0.155 0.143 -0.107 0.014 0.174 -0.244 0.196 -0.154 0.105



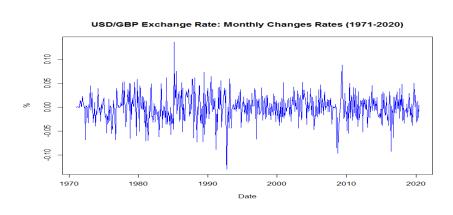
AR(1) Process – Stationarity & ACF: Examples

Example: A process with $|\phi_1| < 1$ (actually, **0.065**) is the monthly changes in the USD/GBP exchange rate. Below we plot its corresponding ACF:



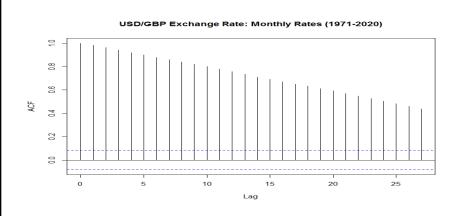
AR(1) Process – Stationarity & ACF: Examples

Example: Below we plot the monthly changes in the USD/GBP exchange rate. Stationary series do not look smooth:



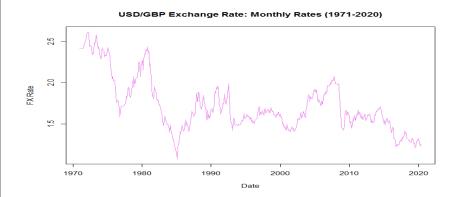
AR(1) Process – Stationarity & ACF: Examples

Example: A process with $\phi_1 \approx 1$ (actually, **0.99**) is the nominal USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the time, but its decay is very slow (after 30 months, it is still .40 correlated!):



AR(1) Process – Stationarity & ACF: Examples

Example: Below we plot the nominal USD/GBP exchange rate. Non-stationary series look smooth, smooth enough that you can clearly spot trends:



AR Process – Stationarity and Ergodicity

Theorem: The linear AR(p) process is strictly stationary and ergodic if and only if the roots of $\phi(L)$ are $|z_j| > 1$ for all j, where $|z_j|$ is the modulus of the complex number r_j .

Note: If one of the z_j 's equals 1, $\phi(L)$ (& y_t) has a unit root –i.e., $\phi(1) = 0$. This is a special case of *non-stationarity*.

- Recall $\phi(L)^{-1}$ produces an infinite sum on the ε_{t-j} 's. If this sum does not explode, we say the process is **stable**.
- If the process is stable, the $\phi(L)$ polynomial can be inverted. It is possible to transform the AR(p) into an MA(∞). Then, we say the process y_t is **causal** (strictly speaking, a *causal function of* $\{\varepsilon_t\}$).