

Review - Generalized Regression Model (GRM) • Assumptions behind the generalized regression model (GRM): (A1) DGP: $\mathbf{y} = \mathbf{X} \ \mathbf{\beta} + \mathbf{\epsilon}$ is correctly specified. (A2) $\mathbf{E}[\mathbf{\epsilon} | \mathbf{X}] = \mathbf{0}$ (sometimes written $\operatorname{Var}[\mathbf{\epsilon} | \mathbf{X}] = \sigma^2 \mathbf{\Omega}$) $\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1T} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2T} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{T1} & \sigma_{T2} & \cdots & \sigma_T^2 \end{bmatrix}$ -a (*T*x*T*) symmetric matrix (A4) **X** has full column rank – rank(**X**) = *k* –, where $T \ge k$. • OLS is still unbiased (& consistent). Can we still use OLS? Yes! But, we need to make inferences based on White or NW SE.

Review – Generalized Least Squares (GLS)

• If we know the specific form of (A3'), we can do better that OLS with White/NE SE. We can gain efficiency using GLS.

• We transform (A1) using $\mathbf{P} = \mathbf{\Omega}^{-1/2}$ ($\Rightarrow \mathbf{P'P} = \mathbf{\Omega}^{-1}$) $\mathbf{Py} = \mathbf{PX\beta} + \mathbf{P\varepsilon}$ or $\mathbf{y}^* = \mathbf{X}^*\mathbf{\beta} + \mathbf{\varepsilon}^*$.

Then,

 $E[\boldsymbol{\varepsilon}^*\boldsymbol{\varepsilon}^{*'} | \boldsymbol{X}^*] = \sigma^2 \mathbf{P} \, \boldsymbol{\Omega} \, \mathbf{P}' = \sigma^2 \mathbf{I}_{\mathrm{T}}$

Back to CLM with modified model:

$$b_{GLS} = b^* = (X^{*'} X^{*})^{-1} X^{*'} y^*$$

= (X'P' PX)^{-1} X'P' Py (P'P = \Omega^{-1})
= (X'\Omega^{-1}X)^{-1} X'\Omega^{-1}y

• Key assumption: Ω is known, and, thus, **P** is also known.

Review – Generalized Least Squares (GLS)

The GLS estimator is: b_{GLS} = (X'Ω⁻¹X)⁻¹ X'Ω⁻¹ y

<u>Note I</u>: b_{GLS} ≠ b. b_{GLS} is BLUE by construction, b is not.

<u>Note II</u>: Both unbiased & consistent. In practice, both estimators will be different, but not that different. If they are very different, worry.

Steps for GLS:

Step 1. Find transformation matrix P = Ω^{-1/2}

Step 2. Transform the model: X* = PX & y* = Py.

Step 3. Do GLS; that is, OLS with the transformed variables.

<u>Key step to do GLS</u>: Step 1, getting P = Ω^{-1/2}.

$\begin{aligned} & \textbf{Review} - \textbf{GLS: Pure Heteroscedasticity} \\ \bullet \text{ Each observation of } y, y_i, \text{ is divided by } \sqrt{\omega_i}. \text{ Similar transformation occurs with } \textbf{X} \\ & \textbf{X}^* = \textbf{P}\textbf{X} = \begin{bmatrix} 1/\sqrt{\omega_1} & 0 & \cdots & 0 \\ 0 & 1/\sqrt{\omega_2} & \cdots & 0 \\ 0 & 0 & \cdots & 1/\sqrt{\omega_T} \end{bmatrix} * \begin{bmatrix} 1 & x_{21} & \cdots & x_{k1} \\ 1 & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{2T} & \cdots & x_{kT} \end{bmatrix} = \\ & = \begin{bmatrix} 1/\sqrt{\omega_1} & x_{21}/\sqrt{\omega_1} & \cdots & x_{k1}/\sqrt{\omega_1} \\ 1/\sqrt{\omega_2} & x_{22}/\sqrt{\omega_2} & \cdots & x_{k2}/\sqrt{\omega_2} \\ \vdots & \vdots & \cdots & \vdots \\ 1/\sqrt{\omega_T} & x_{2T}/\sqrt{\omega_T} & \cdots & x_{kT}/\sqrt{\omega_T} \end{bmatrix} \end{aligned}$ $\bullet \text{ Now, we can do OLS with the transformed variables:} \\ & \textbf{b}_{\text{GLS}} = \textbf{b}^* = (\textbf{X}^* \textbf{X}^*)^{-1} \textbf{X}^* \textbf{y}^* = (\textbf{X}^* \boldsymbol{\Omega}^{-1} \textbf{X})^{-1} \textbf{X}^* \boldsymbol{\Omega}^{-1} \textbf{y} \end{aligned}$

Review – GLS: Pure Heteroscedasticity

• <u>Note</u>: In the heteroscedasticity case, GLS is also called **Weighted** Least Squares (WLS). Each observation receives a $1/\sqrt{\omega_i}$ weight, inverse to the SD of the error ε_i .

More precise observations (lower $\sqrt{\omega_i}$), more weight!

Example: Last Lecture, we assumed: (A3') $\sigma_i^2 = (r_{m,t} - r_f)^2$.

Then,
$$y_t^* = (r_{i,t} - r_f)/(r_{m,t} - r_f)^2$$
.
 $X_t^* = [1/(r_{m,t} - r_f)^2, (r_{m,t} - r_f)/(r_{m,t} - r_f)^2, SMB_t / (r_{m,t} - r_f)^2, HML_t / (r_{m,t} - r_f)^2]$

And we did OLS with transformed data: $y_t^* \& X_t^*$.

<u>Problem</u>: Who knows (A3') ? In general, we have a model for Σ , which we estimate Σ . Then, we do **FGLS**.

Review – GLS: AR(1) Case – Autocovariances

- We assume an AR(1) process for the ε_t : $\varepsilon_t = \rho \ \varepsilon_{t-1} + u_t, \qquad u_t$: *uncorrelated error* (WN) ~ D(0, σ_u^2)
- We need to find the transformation matrix $\mathbf{P} = \mathbf{\Omega}^{-1/2}$ for:

(A3')
$$Var[\boldsymbol{\varepsilon}] = \boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & \sigma_{12} & \cdots & \sigma_{1T} \\ \sigma_{21} & \sigma^2 & \cdots & \sigma_{2T} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{T1} & \sigma_{T2} & \cdots & \sigma^2 \end{bmatrix},$$

which we will decompose into $\Sigma = \sigma^2 \Omega$ (our goal: get $\mathbf{P} = \Omega^{-1/2}$)

Review – GLS: First-order Autocorrelation Case <u>Notation</u>: We use γ_l to denote a (auto-) *covariance* between two observations separated by l periods. For example, when : l = 1: $\gamma_1 = \sigma_{21} = \sigma_{32} = ... = \sigma_{T(T-1)} = \text{Cov}[\varepsilon_t, \varepsilon_{t-1}] = \text{E}[\varepsilon_t \varepsilon_{t-1}]$ l = 2: $\gamma_2 = \sigma_{31} = \sigma_{42} = ... = \sigma_{T(T-2)} = \text{Cov}[\varepsilon_t, \varepsilon_{t-2}] = \text{E}[\varepsilon_t \varepsilon_{t-2}]$ γ_l measures how two errors separated in time by l *periods* covary • Let $\gamma_0 = \sigma_{\varepsilon}^2 = \text{E}[\varepsilon_t \varepsilon_t]$. Then, we can write (A3') as: $\Sigma = \begin{bmatrix} \sigma^2 & \sigma_{12} & \cdots & \sigma_{1T} \\ \sigma_{21} & \sigma^2 & \cdots & \sigma_{2T} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{T1} & \sigma_{T2} & \cdots & \sigma^2 \end{bmatrix} = \begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_{T-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{T-2} \\ \vdots & \vdots & \vdots & \vdots \\ \gamma_{T-1} & \gamma_{T-2} & \cdots & \gamma_0 \end{bmatrix}$. <u>Remark</u>: Eventually, decompose $\Sigma = \sigma^2 \Omega$, since we need $P = \Omega^{-1/2}$.

Review – GLS: AR(1) Case • Steps for GLS: **Step 1**. Find the transformation matrix **P**. We need to derive **\Sigma**, based on the AR(1) process for ε_t : (1) Find diagonal elements of Ω : $\gamma_0 = \operatorname{Var}[\varepsilon_t] = \sigma_{\varepsilon}^2$ Using the AR(1) model: $\varepsilon_t = \rho \ \varepsilon_{t-1} + u_t$. We take variances on both sides –i.e., $\operatorname{E}[\varepsilon_t^2]$: $\operatorname{Var}[\varepsilon_t] = \rho^2 \operatorname{Var}[\varepsilon_{t-1}] + \operatorname{Var}[u_t]$ ($\operatorname{Var}[\varepsilon_t] = \operatorname{Var}[\varepsilon_{t-1}] = \sigma_{\varepsilon}^2$) $\Rightarrow \ \sigma_{\varepsilon}^2 = \frac{\sigma_u^2}{(1-\rho^2)}$ –we need to assume $|\rho| < 1$. Now, we have all the diagonal elements of **\Sigma**.

Review – GLS: AR(1) Case
(2) Find off-diagonal elements of Ω : $\gamma_l = \operatorname{Cov}[\varepsilon_i, \varepsilon_j] = \operatorname{E}[\varepsilon_i \ \varepsilon_j]$ $l = i - j$ $\gamma_1 = Cov[\varepsilon_t, \varepsilon_{t-1}] = \rho \gamma_0$ $\gamma_2 = Cov[\varepsilon_t, \varepsilon_{t-2}] = \rho^2 \gamma_0$: $\gamma_l = Cov[\varepsilon_t, \varepsilon_{t-l}] = \rho^l \gamma_0$
Then, $\boldsymbol{\Sigma} = \begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_{T-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{T-2} \\ \vdots & \vdots & \vdots & \vdots \\ \gamma_{T-1} & \gamma_{T-2} & \cdots & \gamma_0 \end{bmatrix} = \begin{bmatrix} \gamma_0 & \rho \gamma_0 & \cdots & \rho^{T-1} \gamma_0 \\ \rho \gamma_0 & \gamma_0 & \cdots & \rho^{T-2} \gamma_0 \\ \vdots & \vdots & \vdots & \vdots \\ \rho^{T-1} \gamma_0 & \rho^{T-2} \gamma_0 & \cdots & \gamma_0 \end{bmatrix}$
<u>Note</u> : We take γ_0 out of the matrix. It becomes σ^2 in the Σ into $\sigma^2 \Omega$

Review – GLS: AR(1) Case – Matrix Σ • We defined $\gamma_0 = \sigma_{\varepsilon}^2 = \frac{\sigma_u^2}{(1-\rho^2)}$. Then, decompose Σ into $\sigma^2 \Omega$. (A3') $\Sigma = \sigma^2 \Omega = \left(\frac{\sigma_u^2}{1-\rho^2}\right) \begin{bmatrix} 1 & \rho & \rho^2 & \cdots & \rho^{T-1} \\ \rho & 1 & \rho & \cdots & \rho^{T-2} \\ \rho^2 & \rho & 1 & \cdots & \rho^{T-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1 \end{bmatrix}$ • Now, we get the transformation matrix $\mathbf{P} = \mathbf{\Omega}^{-1/2}$: $\Omega^{-1/2} = \begin{bmatrix} \sqrt{1-\rho^2} & 0 & 0 & \cdots & 0 \\ -\rho & 1 & 0 & \cdots & 0 \\ 0 & -\rho & 1 & \cdots & 0 \\ 0 & 0 & 0 & -\rho & 0 \end{bmatrix}$

Review – GLS: AR(1) Case – y^* & X* Step 2 (continuation). Transformed x_k (k column of matrix X) is: $P x_k = \begin{bmatrix} \sqrt{1-\rho^2} & 0 & 0 & \dots & 0 \\ -\rho & 1 & 0 & \dots & 0 \\ 0 & -\rho & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & -\rho & 0 \end{bmatrix}^* \begin{bmatrix} x_{k1} \\ x_{k2} \\ x_{k3} \\ \vdots \\ x_{kT} \end{bmatrix}$ $x_k^* = P x_k = \begin{pmatrix} (\sqrt{1-\rho^2}) x_{k1} \\ x_{k2} - \rho x_{k1} \\ x_{k3} - \rho x_{k2} \\ \dots \\ x_T - \rho x_{T-1} \end{pmatrix} \Rightarrow \text{GLS: Transformed } X^*.$ Step 3. Do GLS: OLS with transformed data. (Q: Is ρ known?).

Review - GLS: The AR Transformation

• Easier derivation for AR models. For example, for the AR(1) model, we multiply the DGP by ρ and subtract it from it:

 $y_{t} = \mathbf{x}_{t}'\mathbf{\beta} + \varepsilon_{t}, \qquad \varepsilon_{t} = \rho\varepsilon_{t-1} + u_{t}$ $\rho y_{t-1} = \rho \mathbf{x}_{t-1}'\mathbf{\beta} + \rho\varepsilon_{t-1}$ $y_{t} - \rho y_{t-1} = (\mathbf{x}_{t} - \rho \mathbf{x}_{t-1})'\mathbf{\beta} + (\varepsilon_{t} - \rho\varepsilon_{t-1})$ $y_{t}^{*} = \mathbf{x}_{t}^{*'}\mathbf{\beta} + u_{t}$

Now, the errors, u_t , are uncorrelated. We can do OLS with the pseudo differences.

Note: $y_t^* = y_t - \rho y_{t-1} \& x_t^* = x_t - \rho x_{t-1}$ are pseudo differences.

Review – FGLS: Unknown Ω

• <u>Problem with GLS</u>: Ω is unknown. For example, in the AR(1) case, ρ is unknown.

• <u>Solution</u>: Estimate Ω . \Rightarrow Feasible GLS (FGLS).

• To do the estimation, Ω must be specified first. Usually, as a function $\Omega = \Omega(\theta)$, for some small parameter vector θ .

• In general, two approaches for GLS estimation:

(1) Two-step, or *Feasible estimation*: - First, estimate Ω first. - Second, do GLS.

(2) ML estimation of β , σ^2 , and Ω at the same time (joint estimation of all parameters). With some exceptions, rare in practice.

FGLS: Specification of Ω

Examples:

(1) $\operatorname{Var}[\varepsilon_i | \mathbf{X}] = \sigma^2 f(\gamma'^{z_i})$. Variance a function of γ and some variable \mathbf{z}_i (say, market volatility, firm size, industry dummy, etc). In general, f(.) is an exponential to make sure the variance is positive.

(2) ε_i with AR(1) process. We have already derived $\sigma^2 \Omega$ as a function of ρ .

<u>Technical note</u>: Two-step estimation has nice asymptotic properties for FGLS estimator. But, FGLS is no longer BLUE.

Review – FGLS: Estimation – Steps

• Steps for FGLS:

1. Estimate the model proposed in (A3'). Get $\hat{\sigma}_i^2 \& \hat{\sigma}_{ij}$.

2. Find transformation matrix, **P**, using the estimated $\hat{\sigma}_i^2 \& \hat{\sigma}_{ij}$.

3. Using **P** from Step 2, transform model: $X^* = PX$

$$\boldsymbol{y}^* = \mathbf{P}\boldsymbol{y}.$$

4. Do FGLS, that is, OLS with $X^* \& y^*$.

Example: In the pure heteroscedasticity case (**P** is diagonal):

- 1. Estimate the model proposed in (A3'). Get $\hat{\sigma}_i^2$.
- **2**. Find transformation matrix, **P**, with i^{th} diagonal element: $1/\hat{\sigma}_i$
- **3**. Transform model (each y_i and x_i is divided ("weighted") by $\hat{\sigma}_i$):

$$\mathbf{y}_i = y_i / \sigma_i$$

$$\mathbf{x}_{\mathbf{k},\mathbf{i}}^* = \mathbf{x}_{\mathbf{k},\mathbf{i}}/\widehat{\sigma}_{\mathbf{i}}$$

4. Do FGLS, that is, OLS with transformed variables.

FGLS: Estimation - Heteroscedasticity

Example (continuation): Comparing OLS, GLS & FGLS results:

	b _{OLS}	SE	b _{GLS}	SE	b _{FGLS}	SE
Intercept	0.00417	0.00279	-0.00661	0.00159	-0.00310	0.00270
Mkt_RF	1.26056	0.06380	1.58806	0.33477	1.20807	0.07334
SMB	-0.02899	0.09461	-0.20042	0.06750	-0.04376	0.10528
HML	0.17455	0.09444	-0.04203	0.07282	0.12513	0.10085

• Comments:

- The GLS estimates are quite different than OLS estimates (remember OLS is unbiased and consistent). Very likely the assumed functional form in (A3') was not a good one.

- The FGLS results are similar to the OLS, as expected, if model is OK. FGLS is likely a more precise estimator (HML is not longer significant at 10%.

FGLS Estimation: AR(1) Case – Cochrane-Orcutt

• Steps for Cochrane-Orcutt:

- (0) Do OLS in (A1) model: $\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$. Get residuals, \boldsymbol{e} , & RSS_0 .
- (1) Estimate ρ with a regression of \boldsymbol{e}_t against $\boldsymbol{e}_{t-1} \implies \text{get } \hat{\rho}$ (the estimator of ρ).

(2) FGLS Step. Use $\hat{\rho}$ transform the model to get y^* and X^* .

Do OLS with y^* and $X^* \implies \text{get } \mathbf{b}$ to estimate β .

Get residuals, $e^* = y - X b$, and new RSS_1 . Go back to (1).

(3) Iterate until convergence, usually achieved when the difference in RSS of two consecutive iterations is lower than some tolerance level, say .0001. Then, stop when $RSS_i - RSS_{i-1} < .0001$.

FGLS Estimation: Cochrane-Orcutt - i_{MX}

Example (continuation): Cochrane-Orcutt estimation, with

orcutt package (should give same results as c.o.proc(y, X, b_i, .0001).

library(orcutt) coch_i <- cochrane.orcutt(fit_i, convergence = 8, max.iter=100) t_coch_i <- coch_i\$t.value # Extract t-values from coch_i >coch_i number of interaction: 18 rho 0.88476 coefficients: (Intercept) us_i_1 e_mx mx_I mx_y 0.133528 0.819452 -0.008638 1.261720 0.026916 > t_coch_i (Intercept) us_i_1 mx_I e_mx mx_y 2.3040067 1.3425452 -0.9794369 5.7474954 0.2145424

GLS: General Remarks

• GLS is great (BLUE) if we know Ω . Very rare situation.

• It needs the specification of Ω –i.e., the functional form of autocorrelation and heteroscedasticity.

- If the specification is bad \Rightarrow estimates are bad (biased!).
- Feasible GLS is not BLUE (unlike GLS); but, it is consistent and asymptotically more efficient than OLS.
- We use GLS for inference and/or efficiency. OLS is still unbiased and consistent.

• OLS and GLS estimates will be different due to sampling error. But, if they are very different, then it is likely that some other CLM assumption is violated.