RS - Lecture 7 - FGLS

Lecture 7-d
GLS & FGLS

Brooks (4™ edition): Chapter 5

1
© R. Susmel, 2023 (for private use, not to be posted/shared online).

Review - Generalized Regression Model (GRM)

* Assumptions behind the generalized regression model (GRM): (Al)
DGP:y =X +¢& is correctly specified.

(A2) E[e|X] =0
(A%) Var[g | X] =X (sometimes written Var[e | X] = 6%Q))
0f o1 ** O1r
2 e
x=|%21 02 " Oor -a (TxT) symmetric matrix
Gr1 Orz ‘v Of

(A4) X has full column rank — rank(X) = k —, where T = k.

¢ OLS is still unbiased (& consistent). Can we still use OLS?
Yes! But, we need to make inferences based on White or NW SE.
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Review — Generalized Least Squares (GLS)

¢ If we know the specific form of (A3’), we can do better that OLS
with White/NE SE. We can gain efficiency using GLS.

* We transform (A1) using P = Q'1/2 =PP=Q")
Py = PXP + P& or
v =X"B+ e~

Then,

Ele*e*' | X" = c?P QP' = %1,

Back to CLLM with modified model:
bgrs = b* = (X7 X)X y*
= X'P'PX)'X'P'Py (PP=Q7"
= X'QX)! X'Qly

* Key assumption: Q is known, and, thus, P is also known.

Review — Generalized Least Squares (GLS)

* The GLS estimator is:
bgs = X'QIX) T X'Q1y
Note I: by, s # b. b, is BLUE by construction, b is not.

Note II: Both unbiased & consistent. In practice, both estimators will
be different, but not that different. If they are very different, worry.

* Steps for GLS:

Step 1. Find transformation matrix P = (/2
Step 2. Transform the model: X* = PX & y* = Py.

Step 3. Do GLS; that is, OLS with the transformed variables.

* Key step to do GLS: Step 1, getting P = Q1/2,
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Review — GLS: Pure Heteroscedasticity

* Find the transformation matrix P = Q-1/2,

wy 0 ... 0
0 w, ... O
’ — Y — 20 — A2 2
(A3) Var[e] =2 =0"Q =0 0 0 0
0 0 .. wr
1/\/wq 0 . 0
_ 0 1/\Jw, ... 0
012 —p= 2
0 0 0
0 0 . 1/Jor
* Now, transform y & X:
1/yo; 0 Y1/yer
y* = Py = 8 1/\(/)(0_2 * ‘ Iyz/@
0 0o .. 1/\/(1)_T yr/\or

Review — GLS: Pure Heteroscedasticity

* Each observation of Y, y;, is divided by /w;. Similar
transformation occurs with X:

1/\/(01 0 x21

* 0 1/w; X22
X" =PX= .
0 0 0 : :

0 0 .. 1/Jor] 11 xp7

1/\o1  x21/\/@01 ... Xpa/Jo1
— 1/\_/0)_2 xzz/_\/w_z xkz/'\/w_z

VNGT %o /T .. X /NOT

* Now, we can do OLS with the transformed variables:
bais = b* = (XXX y = (XQX) X'y

XK1
Xk2

XkT
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Review — GLS: Pure Heteroscedasticity

* Note: In the heteroscedasticity case, GLS is also called Weighted
Least Squares (WLS). Each observation receives a 1/,/@; weigth
inverse to the SD of the error &;.

ol

More precise observations (lower y/@; ), more weight!

Example: Last Lecture, we assumed: (A3) 67 = (e — 17)>

Then, yi = (rj;— "'f)/("'m,t - rf)z-
Xi=[1/(rme — "'f)z» ("m,e —77)/ (rmye — rf)Z,
SMB; /(tm,e — 17)% HML¢/ (T e — 77)]

And we did OLS with transformed data: y; & X;.

Problem: Who knows (A3’) ? In general, we have a model for X,
which we estimate X. Then, we do FGLS.

Review — GLS: AR(1) Case — Autocovariances

* We assume an AR(1) process for the €.
Et= P &—1 T Uy, Uy uncorrelated error (WN) ~ D(0, Gi)

* We need to find the transformation matrix P = Q1/2 for:

2

o G12 ** O1r
2
G O' cee G
(A®) Var[g] =2 =721~ : T,
Or1 OT2 o?

which we will decompose into & = © 20 (our goal: get P = Q172
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Review — GLS: First-order Autocorrelation Case

Notation: We use Y; to denote a (auto-) covariance between two
obsetrvations separated by [ periods. For example, when :

l=1: y; =061 =032~ ... =0r(r-1) = Covle, &-1] = E[&r &-4]

[ =2 y; =031 = 0C42= ... = Op(r—2) = Covle, &3] = Eler &7]

Y; measures how two errors separated in time by [ periods covary

¢ Let g = 62 = E[g; &]. Then, we can write (A3) as:

2
o G12 = O1r Yo Y1 Yr-1
2
z: 621 o GZT — y‘l Y.O . YT‘—Z .
2
Gri1 Oy =+ O Yr-1 YT-2 Yo

Remark: Eventually, decompose £ = 62Q, since we need P = Q1/2,

Review — GLS: AR(1) Case

* Steps for GLS:

Step 1. Find the transformation matrix P.

We need to derive X, based on the AR(1) process for &:

(1) Find diagonal elements of :

Yo = Var[g] = Gg

Using the AR(1) model: E =P &1 T U

We take variances on both sides —i.e., E[¢Z]:
Var[g] = p* Var[er_q] + Var[u,] (Varleg] = Varle;_4] = 67)

= o= o
£ (1-p?

—we need to assume |p|<1.

Now, we have all the diagonal elements of X.
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Review — GLS: AR(1) Case

ind oii-diagonal elements o :
2) Find off-diag 1 el fQ
vi = Covle, &] = Ele; &) [=i-j

Y1 =Covle, &-1] =p Yo
Y2 = Covle, &3] = PZYO

y1 = Covle, g1 = pyo

Then,
Yo Yr ot Y- Yo = Ty
=| T eV AT
Yr-1 Y12 Yo Yo

Note: We take Yo out of the matrix. It becomes o2 in the X into 62 Q

Review — GLS: AR(1) Case — Matrix X

2
* We defined yg = 62 = (1?;2). Then, decompose X into 62 Q.
1 p p? pT-1
p 1 P p’”
o7 _
(A3) Z=020= (1p) 02 p 1 o7
pT-1 pT=2 pT-3 .. 1

* Now, we get the transformation matrix P = Q1/%

1-p2 0 0 0
—» 1 0 .. 0
ar=| o —p 1 .. 0
0 0 0 —p 0
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Review — GLS: AR(1) Case — y* & X*

Step 2. With P = Q/2 we transform the data to do GLS.

1-p2 0 O 0] M
—p 1 0 0 Y2
Py=1 o0 -p 1 0[*|73
0 0 0 —p of br
( 1- pz)yl
Yy — P Y1 = GLS: Transformed y*.
V'EPY=| yi-py,
Yr—=PYVr-1

Review — GLS: AR(1) Case — y* & X*

Step 2 (continuation). Transformed Xj (k column of matrix X) is:

1-p%2 0 0 0 Xk1
—p 1 0 0 Xk2
ka = 0 —p 1 0|* Xk3
0 0 0 —p ol Lur
(V 1- PZ) Xk1
Xkz — P X1 = GLS: Transformed X*.
X =P =\ xy3—px
Xt — P Xr-1

Step 3. Do GLS: OLS with transformed data. (Q: Is p known?).
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Review — GLS: The AR Transformation

¢ Fasier derivation for AR models. For example, for the AR(1) model,
we multiply the DGP by p and subtract it from it:

Ve = x/'B+ &, & = PE—1 T Ut
PYt-1 = pXt—1 B+ per—1
Ve = PYe-1 = (X — pxe—1)'B + (& — pEe—1)
Vi =x;' B+ u

Now, the errors, U, are uncorrelated. We can do OLS with the
pseudo differences.

Note: Vi = Y — pYr—1 & X; = Xy — PX¢_q ate pseudo differences.

Review — FGLS: Unknown

* Problem with GLS:  is unknown. For example, in the AR(1) case,
£ is unknown.

* Solution: Estimate Q. = Feasible GLS (FGLS).

* To do the estimation, £ must be specified first. Usually, as a
function Q = Q(0), for some small parameter vector 0.

* In general, two approaches for GLS estimation:
(1) Two-step, or Feasible estimation: - First, estimate QQ first.
- Second, do GLS.

(2) ML estimation of B, 6%, and Q at the same time (joint estimation
of all parameters). With some exceptions, rare in practice.
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FGLS: Specification of (2

Examples:

(1) Var[g; | X] = o? f(y'%). Variance a function of y and some
variable Z; (say, market volatility, firm size, industry dummy, etc). In
general, f(.) is an exponential to make sure the variance is positive.

(2) &; with AR(1) process. We have already derived 6> Q as a

function of p.

Technical note: Two-step estimation has nice asymptotic properties
for FGLS estimator. But, FGLS is no longer BLUE.

Review — FGLS: Estimation — Steps

* Steps for FGLS:
1. Estimate the model proposed in (A3). Get 57 & G; i

2. Find transformation matrix, P, using the estimated 81-2 & Gyj.

3. Using P from Step 2, transform model: X"=PX
y'=Py.
4. Do FGLS, that is, OLS with X* & y".

Example: In the pure heteroscedasticity case (P is diagonal):
1. Estimate the model proposed in (A3). Get G7.
2. Find transformation matrix, P, with i diagonal element: 1/6;
3. Transform model (each y; and x; is divided (“weighted”) by 6;):
Vi =Yi/0i
X} = Xi,i/0;
4. Do FGLS, that is, OLS with transformed variables.
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FGLS: Estimation — Heteroscedasticity

Example: Last lecture, we found that (73, — 77)* & (SMBy)*are

drivers of the heteroscedasticity in DIS returns: Suppose we assume:
(A3) G% =0 v Fmye — rf)z + v, (SMB)?

* Steps for FGLS:

1. Use OLS squared residuals to estimate (A3):

fit_dis_ff3 <-Im(dis_x ~ Mkt RF + SMB + HML)

e_dis <- fit_dis_ff3$residuals

e_dis2 <- e_dis"2

fit_dis2 <- Im(e_dis2 ~ Mkt_RF2 + SMB2)

summary(fit_dis2)

var_dis2 <- fit_dis2$fitted # Estimated variance vector, with elements GL-Z.

2. Find transformation matrix, P, with " diagonal element: 1/3;

w_fgls <- sqrt(var_dis2) #1/6;

3. Transform model: Each y, and x; is “weighted” by 1/6;.
y_fw <- dis_x/w_{gls # transformed y
xx_fw <- cbind(x0, Mkt_RF, SMB, HML) /w_fgls # transformed X

FGLS: Estimation — Heteroscedasticity

Example (continuation):

4. Do GLS, that is, OLS with transformed variables.
fit_dis_fgls <- Im(y_fw ~ xx_fw - 1)
> summary(fit_dis_fgls)

Coefficients:
Estimate  Std. Error t value Pr(>|t|)
xx_fw -0.003097 0.002696 -1.149 0.251
xx_fwMkt_RF 1.208067 0.073344 16.471 <2e-16 **+*
xx_fwSMB -0.043761 0.105280 -0.416 0.678
xx_fwHML  0.125125 0.100853 1.241 0.215 = not longer significant at 10%.

Signif. codes: 0 “***(0.001 *** 0.01 **0.05 7 0.1 “* 1

Residual standard error: 0.9998 on 566 degrees of freedom
Multiple R-squared: 0.3413, Adjusted R-squared: 0.3366
F-statistic: 73.31 on 4 and 566 DF, p-value: < 2.2¢-16
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FGLS: Estimation — Heteroscedasticity

Example (continuation): Comparing OLS, GLS & FGLS results:

bors SE bers SE brers SE

Intercept | 0.00417 | 0.00279 | -0.00661 |[0.00159 |-0.00310 | 0.00270
Mkt_RF | 1.26056 | 0.06380 |1.58806 |0.33477 |1.20807 | 0.07334
SMB -0.02899 | 0.09461 | -0.20042 | 0.06750 |-0.04376 | 0.10528
HML 0.17455 | 0.09444 | -0.04203 |0.07282 |0.12513 | 0.10085

¢ Comments:

- The GLS estimates are quite different than OLS estimates
(remember OLS is unbiased and consistent). Very likely the assumed
functional form in (A3’) was not a good one.

- The FGLS results are similar to the OLS, as expected, if model is
OK. FGLS is likely a more precise estimator (HML is not longer
significant at 10%.

FGLS Estimation: AR(1) Case — Cochrane-Orcutt

¢ AR(1) case: It is easier to estimate the model in pseudo differences:
Ve =X Bru
Ve = PYVe-1= Xe = pXe-1)' B+ & - p &1

=V =pYVe—1 T Xe' B—Xe1' P+ ue

* OLS cannot estimate p & B. We need a non-linear estimation, like
Cochrane—Orcutt’s (1949) iterative procedure.

Note: We can do a regression:
—_ li !
Ve =01 Vi1t X¢ 62 —Xi_q' 83 T u;

OLS will estimate 81, 85, & J3. To get p & B, we need a restriction:
61 * 62 = - 63
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FGLS Estimation: AR(1) Case — Cochrane-Orcutt

¢ Steps for Cochrane-Orcutt:
(0) Do OLS in (A1) model: y =X B + & Get residuals, e, & RSS,.
(1) Estimate p with a regression of €; against €,_; =>getp (the
estimator of p).
(2) FGLS Step. Use p transform the model to get ¥y and X™.
Do OLS with y* and X* = get b to estimate .
Get residuals, €% =y — X b, and new RSS;. Go back to (1).

(3) Iterate until convergence, usually achieved when the difference in
RSS of two consecutive iterations is lower than some tolerance level,
say .0001. Then, stop when RSS; — RSS;_; < .0001.

FGLS Estimation: Cochrane-Orcutt in R
Example: Cochrane-Orcutt in R
# C.O. function requires Y, X (with constant), OLS b.
c.o.proc <- function(Y,X,b_0,tol) {
T <- length(Y)
e <-Y - X%*%b_0 # OLS residuals
rss <- sum(e”2) # Initial RSS of model, RSS,
rss_1 <-1ss # RSS_1 will be used to reset RSS after each iteration
d_rss = rss # initialize d_rss: difference between RSS; & RSS;
e2 <-¢[-1] # adjust sample size for e,
e3 <-¢[-T] # adjust sample size for e,
ols_e0 <-Im(e2 ~e3 - 1) # OLS to estimate rtho
rho <- ols_e0$coeff[1] # initial value for rho, p,
i<-1
while (d_tss > tol) { # tolerance of do loop. Stop when diff in RSS < tol
rss <-rss_1 # RSS at iter (i-1)
YY <-Y[2T] - tho * Y[1:(T-1)] # pseudo-diff Y
XX <- X[2:T, ] - tho * X[1:(T-1), ] # pseudo-diff X
ols_yx <-Im(YY ~ XX - 1) # adjust if constant included in X
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FGLS Estimation: Cochrane-Orcutt in R

Example (continuation):

b <- ols_yx$coef # updated OLS b at iteration i
# b[1] <- b[1]/(1-tho) # If constant not pseudo-differenced remove tag
#
el <-Y - X%*%b # updated residuals at iteration i
e2 <-el[-1] # adjust sample size for updated e,
e3 <-el[-T] # adjust sample size for updated e_t-1 (lagged e,
ols_el <-Im(e2~e3-1) # updated regression to value for rho at iteration i
rho <- ols_el$coeff[1] # updated value of rho at iteration i, P,
rss_1 <- sum(e1"2) # updated value of RSS at iteration i, RSS;
d_rss <- abs(rss_1 - rss) # diff in RSS (RSS, - RSS, ;)
i<-it+l
¥

result <-list()

result$Cochrane_Orc.Proc <- summary(ols_yx)
result$rho.regression <- summary(ols_e1)

# result$Corrected.b_1 <- b[1]
result$Iterations < -i-1

return(result)

}

FGLS Estimation: Cochrane-Orcutt — i

Example: In the model for Mexican interest rates (i), We suspect
an AR(1) in the residuals:

iMX,t = BO + Bl iUS,t + BZ € + BB mX—It + B4 mX_y, + St
E = PEr—1 T Ut

* OLS estimation.

y <-mx_i_1

T_mx <-length(mx_i_1)

xx_i <- cbind(us_i_1, e_mx, mx_I, mx_y)
x0 <- matrix(1,T_mx,1)

X <- cbind(x0,xx_i) # X matrix

fit i <-lm(mx_i_1 ~us_i_1 + e_mx + mx_I + mx_y)

b_i <-fit_i$coefficients # extract coefficients from Im
> summary(fit_i)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.02712  0.01265 2.144 0.03337 *
us_i_1  0.68262 0.24955 2.735 0.00687 **
e_mx -0.01399  0.01851 -0.756 0.45078
mx_I 3.66118 0.15950 22.955 < 2e-16 ***
mx_y 0.04659  0.22505 0.207 0.83623
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FGLS Estimation: Cochrane-Orcutt — iy

Example (continuation): Cochrane-Orcutt estimation, with
orcutt package (should give same results as c.o.proc(y, X, b_i, .0001).

library(orcutt)

coch_i <- cochrane.orcutt(fit_i, convergence = 8, max.iter=100)

t_coch_i <- coch_i$t.value # Extract t-values from coch_i

>coch_i

number of interaction: 18

rho 0.88476

coefficients:

(Intercept) us_i_1 e_mx mx_I mx_y
0.133528 0.819452 -0.008638 1.261720 0.026916

> t_coch_i

(Intercept) us_i_1 e_mx mx_I mx_y

2.3040067 1.3425452 -0.9794369 5.7474954 0.2145424

FGLS Estimation: Cochrane-Orcutt — i

Example (continuation):

Residual standard error: 0.09678 on 160 degrees of freedom
Multiple R-squared: 0.1082, Adjusted R-squared: 0.08038
F-statistic: 3.884 on 5 and 160 DF, p-value: 0.002381

$rho
e3

0.8830857 = very high autocorrelation.

$Corrected.b_1

XX
0.1663884 = Constant corrected if X does not include a constant
$Number.Iteractions
[1] 10 = algorithm converged in 10 iterations.
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GLS: General Remarks

* GLS is great (BLUE) if we know Q. Very rare situation.

* It needs the specification of  —i.e., the functional form of
autocorrelation and heteroscedasticity.

¢ If the specification is bad ~ => estimates are bad (biased!).

* Feasible GLS is not BLUE (unlike GLS); but, it is consistent and
asymptotically more efficient than OLS.

* We use GLS for inference and/or efficiency. OLS is still unbiased
and consistent.

* OLS and GLS estimates will be different due to sampling error. But,
if they are very different, then it is likely that some other CLM
assumption is violated.
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