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Lecture 7-d
GLS & FGLS

Brooks (4th edition): Chapter 5

© R. Susmel, 2023 (for private use, not to be posted/shared online).

• Assumptions behind the  generalized regression model (GRM): (A1) 
DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0 

(A3’) Var[|X] = Σ (sometimes written Var[|X] = 2)

Σ = 

σ  ⋯ 
 σ ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ σ

-a (TxT) symmetric matrix

(A4) X has full column rank – rank(X) = 𝑘 –, where T ≥ 𝑘.

• OLS is still unbiased (& consistent). Can we still use OLS?

Yes! But, we need to make inferences based on White or NW SE.

Review - Generalized Regression Model (GRM)
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Review – Generalized Least Squares (GLS)

• If we know the specific form of (A3’), we can do better that OLS 
with White/NE SE. We can gain efficiency using GLS.

• We transform (A1) using P = -1/2 ( PP = -1 )
P𝒚 = PX + P or  
𝒚* = 𝑿∗ + *.

Then,
E[**|𝑿∗] = σ2 P  P = σ2 IT 

Back to CLM with modified model:

bGLS = b* = (𝑿∗ 𝑿∗)-1𝑿∗ 𝒚*

= (XP PX)-1 XP P𝒚 ( PP = -1)
= (XΩ-1X)-1 XΩ-1𝒚

• Key assumption:  is known, and, thus, P is also known.

• The GLS estimator is: 

bGLS = (XΩ-1X)-1 XΩ-1 𝒚
Note I: bGLS ≠ b.  bGLS is BLUE by construction, b is not.

Note II: Both unbiased & consistent. In practice, both estimators will 
be different, but not that different. If they are very different, worry.

• Steps for GLS:

Step 1. Find transformation matrix P = -1/2

Step 2. Transform the model: 𝑿∗ = PX  &  𝒚* = P𝒚.

Step 3. Do GLS; that is, OLS with the transformed variables.

• Key step to do GLS: Step 1, getting P = -1/2. 

Review – Generalized Least Squares (GLS)
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Review – GLS: Pure Heteroscedasticity 

• Find the transformation matrix P = -1/2.

(A3’)  𝑉𝑎𝑟 𝜀 𝚺 𝜎 𝛀 𝜎

𝜔 0 . . . 0
0 𝜔 . . . 0
0 0  0
0 0 . . . 𝜔

𝛀 / 𝐏

1/ 𝜔 0 . . . 0
0 1/ 𝜔 . . . 0
0 0 . . . 0
0 0 . . . 1/ 𝜔

• Now, transform 𝒚 & X:

𝒚∗ 𝐏𝒚

1/ ω 0 . . . 0
0 1/ ω . . . 0
0 0 . . . 0
0 0 . . . 1/ ω

∗

𝑦
𝑦
⋮
𝑦

𝑦 /
𝑦 /

⋮
𝑦 / ω

• Each observation of  𝑦, 𝑦 , is divided by 𝜔 . Similar 
transformation occurs with X:

𝑿∗ 𝐏𝐗

1/ 𝜔 0 . . . 0
0 1/ 𝜔 . . . 0
0 0 . . . 0
0 0 . . . 1/ 𝜔

∗

1 𝑥 ⋯ 𝑥
1 𝑥 ⋯ 𝑥
⋮ ⋮ ⋯ ⋮
1 𝑥 ⋯ 𝑥

1/ 𝜔 𝑥 / 𝜔 . . . 𝑥 / 𝜔
1/ 𝜔 𝑥 / 𝜔 . . . 𝑥 / 𝜔

⋮ ⋮ . . . ⋮
1/ 𝜔 𝑥 / 𝜔 . . . 𝑥 / 𝜔

• Now, we can do OLS with the transformed variables:

bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚* = (XΩ-1X)-1 XΩ-1 𝒚

Review – GLS: Pure Heteroscedasticity 



RS - Lecture 7 - FGLS

4© R. Susmel, 2023. Not be posted/shared online without written authorization.

• Note: In the heteroscedasticity case, GLS is also called Weighted 
Least Squares (WLS). Each observation receives a 1/ 𝜔 weigth, 
inverse to the SD of  the error 𝜀 . 

More precise observations (lower 𝜔 ), more weight!

Example: Last Lecture, we assumed: (A3’)  = (𝑟 , – 𝑟 )2.

Then, 𝑦∗ = (𝑟 , – 𝑟 )/(𝑟 , – 𝑟 )2.
𝑿∗ = [1/(𝑟 , – 𝑟 )2, 𝑟 , – 𝑟 /(𝑟 ,  – 𝑟 )2, 

𝑆𝑀𝐵 /(𝑟 , – 𝑟 )2, 𝐻𝑀𝐿 /(𝑟 ,  – 𝑟 )2]

And we did OLS with transformed data: 𝑦∗ & 𝑿∗.

Problem: Who knows (A3’) ? In general, we have a model for 𝚺, 
which we estimate 𝚺. Then, we do FGLS.

Review – GLS: Pure Heteroscedasticity 

• We assume an AR(1) process for the t:
𝜀 = 𝜌 𝜀 𝑢 , 𝑢 : uncorrelated error (WN) ~ D(0,  )

• We need to find the transformation matrix P = -1/2 for:

(A3’)  𝑉𝑎𝑟 𝜺 𝚺

𝜎  ⋯ 
 𝜎 ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ 𝜎

,

which we will decompose into 𝚺 σ 𝛀 (our goal: get P = -1/2)

Review – GLS: AR(1) Case – Autocovariances
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Review – GLS: First-order Autocorrelation Case

Notation: We use γ to denote a (auto-) covariance between two 
observations separated by 𝑙 periods. For example, when :
𝑙 = 1: γ =  =  = … =  = Cov[𝜀 , 𝜀 ] = E[𝜀  𝜀 ]

𝑙 = 2: γ =  =  = … =  = Cov[𝜀 , 𝜀 ] = E[𝜀  𝜀 ]

γ measures how two errors separated in time by 𝑙 periods covary

• Let γ =  = E[𝜀 𝜀 ]. Then, we can write (A3’) as:

𝚺

𝜎  ⋯ 
 𝜎 ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ 𝜎

γ γ ⋯ γ
γ γ ⋯ γ
⋮ ⋮ ⋮ ⋮

γ γ ⋯ γ

.

Remark: Eventually, decompose 𝚺 σ 𝛀, since we need P = -1/2.

Review – GLS: AR(1) Case

• Steps for GLS:
Step 1. Find the transformation matrix P. 

We need to derive 𝚺, based on the AR(1) process for 𝜀 :

(1) Find diagonal elements of : 
γ = Var[𝜀 ] = 

Using the AR(1) model: 𝜀 = 𝜌 𝜀 𝑢 .

We take variances on both sides –i.e., E[ ]:

Var[𝜀 ] =  2 Var[𝜀 ] + Var[𝑢 ] (Var[𝜀 ] = Var[𝜀 ] =  )

   = –we need to assume  ||< 1. 

Now, we have all the diagonal elements of 𝚺.
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(2) Find off-diagonal elements of  :

γ = Cov[𝜀 , 𝜀 ] = E[𝜀 𝜀 ] 𝑙 = 𝑖 - 𝑗

γ  = 𝐶𝑜𝑣 𝜀 , 𝜀  𝜌 γ

γ  = 𝐶𝑜𝑣 𝜀 , 𝜀   𝜌 γ
⋮
γ   𝐶𝑜𝑣 𝜀 , 𝜀   𝜌  γ

Then,

𝚺

γ γ ⋯ γ
γ γ ⋯ γ
⋮ ⋮ ⋮ ⋮

γ γ ⋯ γ

γ 𝜌γ ⋯  𝜌  γ
𝜌γ γ ⋯  𝜌  γ
⋮ ⋮ ⋮ ⋮

 𝜌  γ  𝜌  γ ⋯ γ

Note: We take γ out of  the matrix. It becomes σ2 in the Σ into σ2

Review – GLS: AR(1) Case

Review – GLS: AR(1) Case – Matrix Σ

• We defined γ  =  = . Then, decompose Σ into σ2 .

(A3’) Σ = 𝜎 Ω

1 𝜌 𝜌 ⋯ 𝜌
𝜌 1 𝜌 ⋯ 𝜌
𝜌 𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋮ ⋱ ⋮

𝜌 𝜌 𝜌 ⋯ 1

• Now, we get the transformation matrix P = -1/2:

Ω /

1 𝜌 0 0 . . . 0
𝜌 1 0 . . . 0

0 𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 𝜌 0
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𝐏 𝒚

1 𝜌 0 0 . . . 0
𝜌 1 0 . . . 0

0 𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 𝜌 0

∗

𝑦
𝑦
𝑦
⋮
𝑦

𝒚* 𝐏 𝒚

1 𝜌 𝑦
𝑦 𝜌 𝑦
𝑦 𝜌 𝑦

. . .
𝑦 𝜌 𝑦

Step 2. With P = -1/2, we transform the data to do GLS.

 GLS: Transformed 𝒚*. 

:

Review – GLS: AR(1) Case – 𝒚* & X*

𝐏 𝒙

1 𝜌 0 0 . . . 0
𝜌 1 0 . . . 0

0 𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 𝜌 0

∗

 𝑥
 𝑥
 𝑥
⋮

 𝑥

𝒙∗ 𝐏 𝒙

1 𝜌  𝑥
𝑥 𝜌 𝑥
𝑥 𝜌 𝑥

. . .
𝑥 𝜌 𝑥

Step 3. Do GLS: OLS with transformed data. (Q: Is 𝜌 known?).

Step 2 (continuation). Transformed  𝒙 (𝑘 column of  matrix X) is:

 GLS: Transformed 𝑿∗. 

Review – GLS: AR(1) Case – 𝒚* & X*
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Review – GLS: The AR Transformation

• Easier derivation for AR models. For example, for the AR(1) model, 
we multiply the DGP by ρ and subtract it from it: 

𝑦    𝒙 ′𝛃  𝜀 , 𝜀 𝜌𝜀 𝑢
𝜌𝑦 𝜌𝒙 ′𝛃 𝜌𝜀

𝑦 𝜌𝑦 𝒙 𝜌𝒙 ′𝛃  𝜀 𝜌𝜀

𝑦∗ 𝒙∗′𝛃  𝑢

Now, the errors, 𝑢 , are uncorrelated. We can do OLS with the 
pseudo differences.

Note: 𝑦∗ 𝑦 𝜌𝑦 &  𝒙∗ 𝒙 𝜌𝒙 are pseudo differences.

Review – FGLS: Unknown 

• Problem with GLS:  is unknown. For example, in the AR(1) case, 
 is unknown.  

• Solution: Estimate .  Feasible GLS (FGLS).

• To do the estimation,  must be specified first. Usually, as a 
function  = (), for some small parameter vector . 

• In general, two approaches for GLS estimation:

(1) Two-step, or Feasible estimation: - First, estimate  first. 

- Second, do GLS. 

(2) ML estimation of , 2, and  at the same time (joint estimation 
of all parameters). With some exceptions, rare in practice.
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FGLS: Specification of 

Examples: 

(1) Var[𝜀 |X]  = 2 𝑓  𝒛 . Variance a function of  and some 
variable 𝒛 (say, market volatility, firm size, industry dummy, etc). In 
general, 𝑓 . is an exponential to make sure the variance is positive.

(2) 𝜀 with AR(1) process. We have already derived 2  as a 
function of .

Technical note: Two-step estimation has nice asymptotic properties 
for FGLS estimator. But, FGLS is no longer BLUE.

Review – FGLS: Estimation – Steps

• Steps for FGLS:
1. Estimate the model proposed in (A3’). Get  &  .

2. Find transformation matrix, P, using the estimated  &  .

3. Using P from Step 2, transform model: 𝑿∗= PX
𝒚∗= P𝒚.

4. Do FGLS, that is, OLS with 𝑿∗ &  𝒚∗.

Example: In the pure heteroscedasticity case (P is diagonal):
1. Estimate the model proposed in (A3’). Get  .
2. Find transformation matrix, P, with 𝑖th diagonal element: 1/𝜎
3. Transform model (each 𝑦 and 𝑥 is divided (“weighted”) by 𝜎 ):

𝒚𝒊
∗ 𝑦 /𝜎
𝒙𝒌,𝒊
∗ 𝑥 , /𝜎

4. Do FGLS, that is, OLS with transformed variables.
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Example: Last lecture, we found that 𝑟 , 𝑟 2 & (𝑆𝑀𝐵 )2 are 
drivers of  the heteroscedasticity in DIS returns: Suppose we assume: 
(A3’)  = γ0 + γ1 𝑟 , 𝑟 2 + γ2 (𝑆𝑀𝐵 )2 

• Steps for FGLS:
1. Use OLS squared residuals to estimate (A3’):
fit_dis_ff3 <- lm(dis_x ~ Mkt_RF + SMB + HML)
e_dis <- fit_dis_ff3$residuals
e_dis2 <- e_dis^2
fit_dis2 <- lm(e_dis2 ~ Mkt_RF2 + SMB2)
summary(fit_dis2)
var_dis2 <- fit_dis2$fitted # Estimated variance vector, with elements  .

2. Find transformation matrix, P, with ith diagonal element: 1/𝜎
w_fgls <- sqrt(var_dis2) # 1/𝜎

3. Transform model: Each yi and xi is “weighted” by 1/𝜎 .
y_fw <- dis_x/w_fgls # transformed y
xx_fw <- cbind(x0, Mkt_RF, SMB, HML)/w_fgls # transformed X

FGLS: Estimation – Heteroscedasticity

Example (continuation):
4. Do GLS, that is, OLS with transformed variables.
fit_dis_fgls <- lm(y_fw ~ xx_fw - 1)
> summary(fit_dis_fgls)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

xx_fw -0.003097 0.002696  -1.149    0.251    
xx_fwMkt_RF 1.208067 0.073344  16.471 <2e-16 ***
xx_fwSMB -0.043761 0.105280  -0.416    0.678    
xx_fwHML 0.125125 0.100853   1.241 0.215  not longer significant at 10%.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9998 on 566 degrees of  freedom
Multiple R-squared:  0.3413,    Adjusted R-squared:  0.3366 
F-statistic: 73.31 on 4 and 566 DF,  p-value: < 2.2e-16

FGLS: Estimation – Heteroscedasticity
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Example (continuation): Comparing OLS, GLS & FGLS results:

• Comments:
- The GLS estimates are quite different than OLS estimates 
(remember OLS is unbiased and consistent). Very likely the assumed 
functional form in (A3’) was not a good one.
- The FGLS results are similar to the OLS, as expected, if  model is 
OK. FGLS is likely a more precise estimator (HML is not longer 
significant at 10%.

bOLS SE bGLS SE bFGLS SE

Intercept 0.00417 0.00279 -0.00661 0.00159 -0.00310 0.00270 

Mkt_RF 1.26056 0.06380 1.58806 0.33477 1.20807 0.07334

SMB -0.02899 0.09461 -0.20042 0.06750 -0.04376 0.10528 

HML 0.17455 0.09444 -0.04203 0.07282 0.12513 0.10085

FGLS: Estimation – Heteroscedasticity

FGLS Estimation: AR(1) Case – Cochrane-Orcutt

• AR(1) case: It is easier to estimate the model in pseudo differences:

𝑦∗ = X∗  + 𝑢
𝑦 – 𝑦  = (X – X )′  +  -  

 𝑦  = 𝑦 + X ′  – X ′  + 𝑢

• OLS cannot estimate  & . We need a non-linear estimation, like 
Cochrane–Orcutt’s (1949) iterative procedure. 

Note: We can do a regression:

𝑦 = 𝛿 𝑦 + X ′ 𝜹𝟐 – X ′ 𝜹𝟑 + 𝑢

OLS will estimate 𝛿 ,  𝛿 , &  𝛿 . To get  & , we need a restriction:
 𝛿  ∗ 𝜹𝟐 =  𝜹𝟑
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• Steps for Cochrane-Orcutt:

(0) Do OLS in (A1) model: 𝒚 = X  + . Get residuals, 𝒆, & 𝑅𝑆𝑆 . 

(1) Estimate  with a regression of  𝒆 against 𝒆  get  (the 
estimator of  ). 

(2) FGLS Step. Use  transform the model to get 𝒚∗ and 𝑿∗.

Do OLS with 𝒚∗ and 𝑿∗  get b to estimate . 

Get residuals, 𝒆* = 𝒚 – X b, and new 𝑅𝑆𝑆 . Go back to (1).

(3) Iterate until convergence, usually achieved when the difference in 
RSS of  two consecutive iterations is lower than some tolerance level, 
say .0001. Then, stop when 𝑅𝑆𝑆 – 𝑅𝑆𝑆 < .0001.

FGLS Estimation: AR(1) Case – Cochrane-Orcutt

Example: Cochrane-Orcutt in R

# C.O. function requires Y, X (with constant), OLS b.

c.o.proc <- function(Y,X,b_0,tol){

T <- length(Y)

e <- Y - X%*%b_0 # OLS residuals

rss <- sum(e^2) # Initial RSS of  model, RSS9

rss_1 <- rss # RSS_1 will be used to reset RSS after each iteration

d_rss = rss # initialize d_rss: difference between RSSi & RSSi-1

e2 <- e[-1] # adjust sample size for et

e3 <- e[-T] # adjust sample size for et-1

ols_e0 <- lm(e2 ~ e3 - 1) # OLS to estimate rho

rho <- ols_e0$coeff[1] # initial value for rho, 0

i<-1

while (d_rss > tol) { # tolerance of  do loop. Stop when diff  in RSS < tol

rss <- rss_1 # RSS at iter (i-1)

YY <- Y[2:T] - rho * Y[1:(T-1)] # pseudo-diff  Y

XX <- X[2:T, ] - rho * X[1:(T-1), ] # pseudo-diff  X

ols_yx <- lm(YY ~ XX - 1) # adjust if  constant included in X

FGLS Estimation: Cochrane-Orcutt in R
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Example (continuation): 
b <- ols_yx$coef # updated OLS b at iteration i

#  b[1] <- b[1]/(1-rho) # If  constant not pseudo-differenced remove tag 
#

e1 <- Y - X%*%b # updated residuals at iteration i
e2 <- e1[-1] # adjust sample size for updated et

e3 <- e1[-T] # adjust sample size for updated e_t-1 (lagged et)
ols_e1 <- lm(e2~e3-1) # updated regression to value for rho at iteration i
rho <- ols_e1$coeff[1] # updated value of  rho at iteration i, i

rss_1 <- sum(e1^2) # updated value of  RSS at iteration i, RSSi

d_rss <- abs(rss_1 - rss) # diff  in RSS (RSSi - RSSi-1)
i <- i+1

}

result <-list()
result$Cochrane_Orc.Proc <- summary(ols_yx)
result$rho.regression <- summary(ols_e1)
#  result$Corrected.b_1 <- b[1]
result$Iterations < -i-1
return(result)
}

FGLS Estimation: Cochrane-Orcutt in R

Example: In the model for Mexican interest rates (iMX), we suspect 
an AR(1) in the residuals: 

iMX,t = 0 + 1 iUS,t + 2 et + 3 mx_It + 4 mx_yt + t

𝜀 𝜌𝜀 𝑢

• OLS estimation. 
y <- mx_i_1
T_mx <- length(mx_i_1)
xx_i <- cbind(us_i_1, e_mx, mx_I, mx_y)
x0 <- matrix(1,T_mx,1)
X <- cbind(x0,xx_i) # X matrix
fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y)
b_i <-fit_i$coefficients # extract coefficients from lm
> summary(fit_i)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.02712    0.01265   2.144  0.03337 *  
us_i_1       0.68262    0.24955   2.735 0.00687 ** 
e_mx -0.01399    0.01851  -0.756  0.45078    
mx_I 3.66118 0.15950  22.955 < 2e-16 ***
mx_y 0.04659    0.22505   0.207  0.83623 

FGLS Estimation: Cochrane-Orcutt – iMX
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Example (continuation): Cochrane-Orcutt estimation, with 
orcutt package (should give same results as c.o.proc(y, X, b_i, .0001).

library(orcutt)

coch_i <- cochrane.orcutt(fit_i, convergence = 8, max.iter=100)

t_coch_i <- coch_i$t.value # Extract t-values from coch_i

>coch_i

number of  interaction: 18

rho 0.88476

coefficients: 

(Intercept)      us_i_1        e_mx mx_I mx_y

0.133528    0.819452   -0.008638    1.261720  0.026916

> t_coch_i

(Intercept)      us_i_1        e_mx mx_I mx_y

2.3040067   1.3425452 -0.9794369   5.7474954 0.2145424  

FGLS Estimation: Cochrane-Orcutt – iMX

Example (continuation): 
Residual standard error: 0.09678 on 160 degrees of  freedom

Multiple R-squared:  0.1082,    Adjusted R-squared:  0.08038 

F-statistic: 3.884 on 5 and 160 DF,  p-value: 0.002381

$rho

e3 

0.8830857  very high autocorrelation. 

$Corrected.b_1

XX 

0.1663884  Constant corrected if  X does not include a constant

$Number.Iteractions

[1] 10  algorithm converged in 10 iterations. 

FGLS Estimation: Cochrane-Orcutt – iMX
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GLS: General Remarks

• GLS is great (BLUE) if we know . Very rare situation.

• It needs the specification of  –i.e., the functional form of 
autocorrelation and heteroscedasticity.

• If the specification is bad  estimates are bad (biased!).

• Feasible GLS is not BLUE (unlike GLS); but, it is consistent and 
asymptotically more efficient than OLS.

• We use GLS for inference and/or efficiency.  OLS is still unbiased 
and consistent.

• OLS and GLS estimates will be different due to sampling error. But, 
if they are very different, then it is likely that some other CLM 
assumption is violated.


