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Lecture 7-c
GLS & FGLS

Brooks (4th edition): Chapter 5
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• Now, we go back to the CLM Assumptions:

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0 

(A3’) Var[|X] = Σ (sometimes written Var[|X] = 2)

Σ = 

σଵ
ଶ ଵଶ ⋯ ଵ்

ଶଵ σଶ
ଶ ⋯ ଶ்

⋮ ⋮ ⋮ ⋮
்ଵ ்ଶ ⋯ σ்

ଶ

-a (𝑇x𝑇) symmetric matrix

(A4) X has full column rank – rank(X) = 𝑘 –, where 𝑇 ≥ 𝑘.

• This is the Generalized Regression Model (GRM). 

• OLS is still unbiased (& consistent). Can we still use OLS?

Review – Generalized Regression Model
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Review – GRM: True Variance for b

• Now, we have (A3’) Var[|X] = Σ

• The true variance of  b under (A3’) should be:
VarT[b|X]  = (X’X)-1 XΣX (X’X)-1

Example: We compute the true variance for the simplest case, a 
regression with only one explanatory variable and heteroscedastic :

𝒚 = X  + , 𝜀௜ ~ D(0, σ௜
ଶ)

 VarT[b|X] = ଵ

∑ ሺ௫೔ି௫̅ሻమ
೅
೔

ଶ
∑ σ௜

ଶሺ𝑥௜ െ 𝑥̅ሻଶ்
௜ୀଵ .

If  we compute the OLS variance, we see how both estimators differ:

Var[b|X] = 
஢మ

∑ ሺ௫೔ି௫̅ሻమ
೅
೔

≠ VarT[b|X]. 

Review – GRM: True Variance for b

• Under (A3’), the OLS estimator of  Var[b|X] = 𝑠ଶ (XX)-1 is biased. 

• If  we want to use OLS for inferences (say, with t-test or F-test), we 
need to estimate VarT[b|X]. 

• That is, we need to estimate the unknown Σ. But, it has 𝑇*(𝑇+1)/2 
parameters. Too many parameters to estimate with 𝑇 observations! 

• We will not be estimating Σ. Impossible with 𝑇 data points. 

• We will estimate XΣX = ∑ ∑ ௜௝  𝒙௜  𝒙௝′
்
௝ୀଵ

்
௜ୀଵ , a (𝑘x𝑘) matrix. That 

is, we are estimating [𝑘*(𝑘+1)]/2 elements.
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• This distinction is very important in modern applied econometrics: 

– The White estimator

– The Newey-West estimator

• Both estimators produce a consistent estimator of VarT[b|X]:

VarT[b|X] = (X’X)-1 XΣX (X’X)-1

Since b consistently estimates , the OLS residuals, 𝒆, are also 
consistent estimators of . We use e to consistently estimate XΣX. 

In practice, we use 𝑤௜ (= 𝑥௜  𝑒௜ሻ to estimate XΣX .

Review – GRM: Robust Covariance Matrix

White estimator: It simplifies the estimation since it only assumes 
heteroscedasticity. Then, Σ is a diagonal matrix, with elements 𝜎௜

ଶ. 

Σ = 

σଵ
ଶ 0 ⋯ 0

0 σଶ
ଶ ⋯ 0

⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ்

ଶ

-a (TxT) matrix

• We do not estimate Σ, which cannot be done with 𝑇 observations. 
We estimate: Q* = (1/T) XΣX  -a (𝑘x𝑘) matrix

• We use 𝑒௜
ଶto estimate σ௜

ଶ. That is, 

we estimate Q* = (1/T)∑ σ௜
ଶ 𝒙௜

்
௜ୀଵ 𝒙௜

with S0 = (1/T) ∑ 𝑒௜
ଶ 𝒙௜

்
௜ୀଵ 𝒙௜

Review – GRM: The White Estimator
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Newey-West  estimator: It allow for both heteroscedasticy and 
autocorrelation. We have a general Σ:

Σ = 

σଵ
ଶ ଵଶ ⋯ ଵ்

ଶଵ σଶ
ଶ ⋯ ଶ்

⋮ ⋮ ⋮ ⋮
்ଵ ்ଶ ⋯ σ்

ଶ

-a (𝑇x𝑇) matrix

• We need to estimate 
Q* = (1/T) XΣX  = (1/T) ∑ ∑ ௜௝  𝒙௜  𝒙௝ ்

௝ୀଵ
்
௜ୀଵ

= (1/T) ∑ ሼ௜ଵ 𝒙௜  𝒙ଵ ൅  ௜ଶ 𝒙௜ 𝒙ଶ ൅⋯൅ ௜் 𝒙௜  𝒙்ሽ
்
௜ୀଵ

• Newey and West (1987) follow White (1980) to produce a HAC 
(Heteroscedasticity and Autocorrelation Consistent) estimator of  Q*:

ST = (1/T) ∑ ∑  𝑒௜𝑒௝  𝒙௜  𝒙௝்
௝ୀଵ

்
௜ୀଵ

Review – GRM: The Newey-West Estimator

• Two components for the NW HAC estimator:
(1) Start with Heteroscedasticity Component:

S0 = (1/T) ∑ 𝑒௜
ଶ𝒙௜𝒙௜ ்

௜ୀଵ – the White estimator.

(2) Add the Autocorrelation Component, cutting sum short with 𝐿.

ST = S0 + ଵ
்
∑ 𝑘ሺ𝑙ሻ  ∑ ሺ𝒙௧ି௟𝑒௧ି௟𝑒௧𝒙௧ + 𝒙௧𝑒௧𝑒௧ି௟𝒙௧ି௟்

௧ୀ௟ାଵ
௅
௟ୀଵ )

where

𝑘ሺ ௝

௅ሺ்ሻ
ሻ ൌ ௅ାଵ ି|௝|

௅ାଵ
–decaying weights (Bartlett kernel)

𝐿 is the  cut-off  lag, which is a function of  T. (More data, longer 𝐿).

The weights are linearly decaying, suppose L = 12. Then, 
𝑘(1) = 12/13 = 0.92308
𝑘(2) = 11/13 = 0.84615
𝑘(3) = 10/13 = 0.76923

𝑘ሺ
𝑗

𝐿ሺ𝑇ሻ
ሻ ൌ

13 െ |𝑗|
13

Review – GRM: The Newey-West Estimator
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• ST = S0 + (1/T)∑ 𝑘ሺ𝑙ሻ∑ ሺ𝒙௧ି௟𝑒௧ି௟𝑒௧𝒙௧ + 𝒙௧𝑒௧𝑒௧ି௟𝒙௧ି௟்
௧ୀ௟ାଵ

௅
௟ୀଵ )

Then,
Est. VarT[b|X] = (1/T) (X’X/T)-1 ST (X’X/T)-1 –NW’s HAC Var.

• Asymptotic inferences can be based on OLS b & Est. VarT[b|X].
We can use the usual tests and distributions. 

Example: Back to the simplest case, a regression with only one 
explanatory variable, but with a heteroscedastic and autocorrelated
error term. Suppose we set 𝐿 = 12, then:

VarT[b|X] = ଵ

∑ ሺ௫೔ି௫̅ሻమ
೅
೔

ଶ
ሼ∑ 𝑒௧

ଶሺ𝑥௧ െ 𝑥̅ሻଶ்
௧ୀଵ + 

+ ∑ ଵଷ ି ௟

ଵଷ
 ∑  𝑥௧ െ 𝑥̅  𝑒௧  𝑒௧ି௟ሺ𝑥௧ି௟ െ 𝑥̅ሻ்

௧ୀ௟ାଵ
௅ୀ𝟏𝟐
௟ୀଵ }

To compute ST, we only add 12 autocovariances of  𝑤௧ (= 𝑥௧ 𝑒௧ሻ, 
with decaying weights, to the White estimator, S0.

Review – GRM: The Newey-West Estimator

• NW SEs are used almost universally in academia. However, NW 
SEs perform poorly in Monte Carlo simulations: 

- NW SEs tend to be downward biased –i.e., too small. 
- The finite-sample performance of  tests using NW SE is not 

well approximated by the asymptotic theory. 

• Q: What happens if  we know the specific form of  (A3’)? 
We can do much better than using OLS with NW SEs. In this case, 
we can do Generalized LS (GLS), a method that delivers the most 
efficient estimators.

How much better? Depending on the data, but, with highly 
correlated data, the efficiency gains can be big. Not unusual to have 
GLS SE bigger than OLS SE by a factor of  3.

Review – GRM: The Newey-West Estimator
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Generalized Least Squares (GLS)

• GRM: Assumptions (A1), (A2), (A3’) & (A4) hold. That is,
(A1) DGP: 𝒚 = X  +  is correctly specified. 
(A2) E[|X] = 0
(A3’) Var[|X] = Σ = σଶ ( is symmetric  TT = )

(A4) X has full column rank –i.e., rank(X) = 𝑘–, where T ≥ 𝑘.

• Suppose we know the form of (A3’). Then, we can use this 
information to gain efficiency.

• When we know (A3’), we transform 𝒚 & X, in such a way, that we 
can do again OLS with the transformed data.

To do this transformation, we exploit a property of symmetric 
matrices, like the variance-covariance matrix, :

 is symmetric  exists T ∋ TT =   T-1  T-1= I 

Generalized Least Squares (GLS)

Note:  can be decomposed as 
 = T T (think of T as 1/2)  T-1  T-1= I 

• We transform the linear model in (A1) using P = -1/2 (= T-1).
P =  -1/2  PP = -1    

P𝒚 = PX + P or  
𝒚* = 𝑿∗ + *.
E[* *|𝑿∗] = E[P P|𝑿∗] = P E[|X] P = σ2 P  P

= σ2 -1/2  -1/2 = σ2 IT  back to (A3)

• The transformed model is homoscedastic. We are back to the CLM 
 we can use OLS! 

bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚*

= (XP PX)-1 XP P𝒚 (PP = -1)
= (XΩ-1X)-1 XΩ-1𝒚
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Remarks: 

– The transformed model is homoscedastic:

Var[*|𝑿∗] = E[**|𝑿∗] = PE[|X]P = σ2 PP = σ2 IT

– We have the CLM back. Now, we do OLS with the transformed 
model: we call this OLS estimator, the GLS estimator:

bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚*

= (XΩ-1X)-1 XΩ-1𝒚

– Key assumption:  is known, and, thus, P is also known; 
otherwise we cannot transformed the model.

• Big Question: Is  known?

Generalized Least Squares (GLS)

Alexander C. Aitken (1895 –1967, NZ)

• GLS estimator is unbiased: 
bGLS = (XΩ-1X)-1 XΩ-1 𝒚 = (XΩ-1X)-1 XΩ-1 (X  + )

=  + (XΩ-1X)-1 XΩ-1 
E[bGLS |X] = 

• GLS estimator is efficient. 
bGLS is BLUE. The “best” variance can be derived  from 

Var[bGLS|X] = σଶ (𝑿∗𝑿∗)-1 = σଶ (XΩ-1X)-1

Then, the usual OLS variance for b is biased and inefficient!

Note I: bGLS ≠ b.  bGLS is BLUE by construction, b is not.

Note II: Both unbiased and consistent. In practice, both estimators 
will be different, but not that different. If they are very different, 
something is not OK.

Generalized Least Squares (GLS): Properties
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• Steps for GLS:

Step 1. Find transformation matrix P = -1/2 (in the case of 
heteroscedasticity, P is a diagonal matrix).

Step 2. Transform the model: 𝑿∗ = PX  &  𝒚* = P𝒚.

Step 3. Do GLS; that is, OLS with the transformed variables.

• Key step to do GLS: Step 1, getting the transformation matrix: 
P = -1/2. 

Generalized Least Squares (GLS) - Properties

Technical detail: If we relax the CLM assumptions (A2) and (A4), as 
we did in Lecture 7-a, we only have asymptotic properties for GLS:

– Consistency - “well behaved data.”

– Asymptotic distribution under usual assumptions. 

(easy for heteroscedasticity, complicated for autocorrelation.)

– Wald tests and F-tests with usual asymptotic χ2 distributions. 

GLS – Relaxing Assumptions (A2) & (A4)
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(Weighted) GLS: Pure Heteroscedasticity 

• Step 1. Find the transformation matrix P = -1/2.

(A3’)  𝑉𝑎𝑟 𝜀 ൌ 𝚺 ൌ 𝜎ଶ𝛀 ൌ 𝜎ଶ

𝜔ଵ 0 . . . 0
0 𝜔ଶ . . . 0
0 0  0
0 0 . . . 𝜔்

𝛀ିଵ/ଶ ൌ 𝐏 ൌ

1/ 𝜔ଵ 0 . . . 0
0 1/ 𝜔ଶ . . . 0
0 0 . . . 0
0 0 . . . 1/ 𝜔்

• Step 2. Now, transform 𝒚 & X:

𝒚∗ ൌ 𝐏𝒚 ൌ

1/ ωଵ 0 . . . 0
0 1/ ωଶ . . . 0
0 0 . . . 0
0 0 . . . 1/ ω୘

∗

𝑦ଵ
𝑦ଶ
⋮
𝑦்

ൌ

𝑦ଵ/ னభ
𝑦ଶ/ னమ

⋮
𝑦୘/ ω୘

(Weighted) GLS: Pure Heteroscedasticity 

• Step 2 (continuation). Each observation of  𝒚, 𝑦௜, is divided by 
𝜔௜. Similar transformation occurs with X:

𝑿∗ ൌ 𝐏𝐗 ൌ

1/ 𝜔ଵ 0 . . . 0
0 1/ 𝜔ଶ . . . 0
0 0 . . . 0
0 0 . . . 1/ 𝜔்

∗

1 𝑥ଶଵ ⋯ 𝑥௞ଵ
1 𝑥ଶଶ ⋯ 𝑥௞ଶ
⋮ ⋮ ⋯ ⋮
1 𝑥ଶ் ⋯ 𝑥௞்

ൌ

ൌ

1/ 𝜔ଵ 𝑥ଶଵ/ 𝜔ଵ . . . 𝑥௞ଵ/ 𝜔ଵ
1/ 𝜔ଶ 𝑥ଶଶ/ 𝜔ଶ . . . 𝑥௞ଶ/ 𝜔ଶ

⋮ ⋮ . . . ⋮
1/ 𝜔் 𝑥ଶ்/ 𝜔் . . . 𝑥௞்/ 𝜔்

• Step 3. We do GLS (OLS with the transformed variables):

bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚* = (XΩ-1X)-1 XΩ-1 𝒚
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(Weighted) GLS: Pure Heteroscedasticity 

• In the case of  heteroscedasticity, GLS is also called Weighted Least 
Squares (WLS): Think of  1/ 𝜔௜ as weights. The GLS estimator is:

𝐛ୋ୐ୗ ൌ (XΩ−1X)−1 XΩ−1𝒚 = ∑ ଵ

ఠ೔
𝒙୧𝒙௜

ᇱ்
௜ୀଵ

ିଵ
∑ ଵ

ఠ೔
𝒙୧𝑦௜

்
௜ୀଵ

Observations with lower (bigger) variances –i.e., lower (bigger) 𝜔௜–
are given higher (lower) weights in the sums: 

More precise observations, more weight!

• The GLS variance is given by:

𝜎ොீ௅ௌ
ଶ ൌ

∑
𝑦௜ െ 𝒙௜

ᇱ 𝐛ୋ୐ୗ
𝜔௜

்
௜ୀଵ

ଶ

𝑇 െ 𝑘

(Weighted) GLS: Pure Heteroscedasticity 

Example: Last Lecture, we found that (𝑟௠,௧ – 𝑟௙)2 influence 
heteroscedasticity for DIS returns. Suppose we assume: 
(A3’) ௜

ଶ = (𝑟௠,௧ – 𝑟௙)2.

Steps for GLS:

1. Find transformation matrix, P, with 𝑖th diagonal element: 1/ ௜
ଶ

2. Transform model: Each 𝑦௜ and 𝑥୧ is divided (“weighted”) by 
௜ ൌ sqrt[(𝑟௠,௧ – 𝑟௙)2]. 

3. Do GLS, that is, OLS with transformed variables.

T <- length(dis_x)
Mkt_RF2 <- Mkt_RF^2 # (A3’)
y_w <- dis_x/sqrt(Mkt_RF2) # transformed 𝒚 = 𝒚*
x0 <- matrix(1,T,1)
xx_w <- cbind(x0, Mkt_RF, SMB, HML)/sqrt(Mkt_RF2) # transformed X = X*
fit_dis_wls <- lm(y_w ~ xx_w - 1) # GLS
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(Weighted) GLS: Pure Heteroscedasticity 

Example (continue): 
> summary(fit_dis_wls)

Call:
lm(formula = y_w ~ xx_w)

Residuals:
Min      1Q  Median      3Q     Max 

-59.399  -0.891   0.316   1.503  77.434 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

xx_w      -0.006607 0.001586  -4.165 3.59e-05 ***
xx_wMkt_RF 1.588057 0.334771   4.744 2.66e-06 ***  OLS b: 1.26056
xx_wSMB -0.200423 0.067498  -2.969  0.00311 **  OLS b: -0.028993 
xx_wHML -0.042032 0.072821  -0.577  0.56404  OLS b: 0.174545
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.984 on 566 degrees of  freedom
Multiple R-squared:  0.09078,   Adjusted R-squared:  0.08435 
F-statistic: 14.13 on 4 and 566 DF,  p-value: 5.366e-11

GLS: First-order Autocorrelation Case

• We assume an AR(1) process for the t:
𝜀௧ = 𝜌 𝜀௧ିଵ ൅ 𝑢௧, 𝑢௧: uncorrelated error (WN) ~ D(0, ௨ଶ )

• We need to find the transformation matrix P = -1/2 for:

(A3’)  𝑉𝑎𝑟 𝜺 ൌ 𝚺 ൌ

𝜎ଶ ଵଶ ⋯ ଵ்
ଶଵ 𝜎ଶ ⋯ ଶ்
⋮ ⋮ ⋮ ⋮

்ଵ ்ଶ ⋯ 𝜎ଶ

,

which we will decompose into 𝚺 ൌ σଶ𝛀 (our goal: get P = -1/2)
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GLS: First-order Autocorrelation Case

Notation: We use γ௟ to denote a (auto-) covariance between two 
observations separated by 𝑙 periods. For example, when :
𝑙 = 1: γଵ = ଶଵ = ଷଶ= … = ்ሺ்ିଵሻ = Cov[𝜀௧, 𝜀௧ିଵ] = E[𝜀௧ 𝜀௧ିଵ]

𝑙 = 2: γଶ = ଷଵ = ସଶ= … = ்ሺ்ିଶሻ = Cov[𝜀௧, 𝜀௧ିଶ] = E[𝜀௧ 𝜀௧ିଶ]

γ௟ measures how two errors separated in time by 𝑙 periods covary.

• Let γ଴ = ఌଶ = E[𝜀௧ 𝜀௧]. Then, we can write (A3’) as:

𝚺 ൌ

𝜎ଶ ଵଶ ⋯ ଵ்
ଶଵ 𝜎ଶ ⋯ ଶ்
⋮ ⋮ ⋮ ⋮

்ଵ ்ଶ ⋯ 𝜎ଶ

ൌ

γ଴ γଵ ⋯ γ்ିଵ
γଵ γ଴ ⋯ γ்ିଶ
⋮ ⋮ ⋮ ⋮

γ்ିଵ γ்ିଶ ⋯ γ଴

.

Remark: Eventually decompose 𝚺 ൌ σଶ𝛀, since we need P = -1/2)

GLS: First-order Autocorrelation Case

• Steps for GLS:

1. To find the transformation matrix P, we need to derive 𝚺, based 
on the AR(1) process for 𝜀௧:

(1) Find diagonal elements of :   γ଴ = Var[𝜀௧] = ఌଶ

𝜀௧ = 𝜌 𝜀௧ିଵ ൅ 𝑢௧ -autoregressive AR(1) form.

We take variances on both sides –i.e., E[௧ଶ]:

Var[𝜀௧] =  2 Var[𝜀௧ିଵ] + Var[𝑢௧] (Var[𝜀௧] = Var[𝜀௧ିଵ] = ఌଶ)

  ఌଶ = 
ఙೠమ

ሺଵିఘమሻ
–we need to assume  ||< 1. 

Now, we have all the diagonal elements of 𝚺.



RS - Lecture 7 – GLS & FGLS

13© R. Susmel, 2023 – Do not post/share online without written authorization

GLS: AR(1) Case – Autocovariances

(2) Find off-diagonal elements of  : γ௟ = E[𝜀௜ 𝜀௝], where 𝑙 = 𝑖 - 𝑗 :

௜௝ = γ௟ = Cov[𝜀௜, 𝜀௝] = E[𝜀௜ 𝜀௝] 𝑙 = 𝑖 - 𝑗

γଵ = 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିଵሿ ൌ 𝐸ሾሺ𝜌𝜀௧ିଵ ൅ 𝑢௧ሻ 𝜀௧ିଵሿ
ൌ 𝜌 𝐸ሾ𝜀௧ିଵ 𝜀௧ିଵሿ ൅ 𝐸ሾ𝑢௧ 𝜀௧ିଵሿ
ൌ 𝜌𝐸ሾ𝜀௧ିଵ 𝜀௧ିଵሿ
ൌ 𝜌 Varሾ𝜀௧ିଵሿ ൌ 𝜌 ఌଶ 
ൌ 𝜌 γ଴

γଶ = 𝐶𝑜𝑣 𝜀௧ , 𝜀௧ିଶ   ൌ 𝐸 ሺ𝜌𝜀௧ିଵ ൅ 𝑢௧  𝜀௧ିଶሿ 
ൌ 𝜌 𝐸ሾ𝜀௧ିଵ 𝜀௧ିଶሿ ൅ 𝐸ሾ𝑢௧ 𝜀௧ିଶሿ
ൌ 𝜌 𝐶𝑜𝑣ሾ𝜀௧, 𝜀௧ିଵሿ 
ൌ 𝜌 γଵ
ൌ 𝜌ଶγ଴

GLS: AR(1) Case – Autocovariances

γଷ= 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିଷሿ ൌ 𝐸ሾ 𝜌𝜀௧ିଵ ൅ 𝑢௧  𝜀௧ିଷሿ
ൌ 𝜌 𝐸 𝜀௧ିଵ 𝜀௧ିଷ ൅ 𝐸 𝑢௧ 𝜀௧ିଷ
ൌ 𝜌 𝐶𝑜𝑣ሾ𝜀௧ ,  𝜀௧ିଶ ሿ ൌ 𝜌 γଶ
ൌ 𝜌ଶγଵ
ൌ  𝜌ଷ γ଴

⋮
γ௟ ൌ𝐶𝑜𝑣 𝜀௧ , 𝜀௧ି௟ ൌ 𝜌௟ γ଴

Then,

𝚺 ൌ

γ଴ 𝜌γ଴ ⋯  𝜌்ିଵ γ଴
𝜌γ଴ γ଴ ⋯  𝜌்ିଶ γ଴
⋮ ⋮ ⋮ ⋮

 𝜌்ିଵ γ଴  𝜌்ିଶ γ଴ ⋯ γ଴

.

Note: We take γ଴ out of  the matrix. It becomes σ2 in the Σ into σ2.
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GLS: AR(1) Case – Autocorrelation Matrix Σ

• We defined γ଴ = ఌଶ = 
ఙೠమ

ሺଵିఘమሻ
. Then, decompose Σ into σ2 .

(A3’) Σ = 𝜎ଶΩ ൌ ఙೠమ

ଵିఘమ

1 𝜌 𝜌ଶ ⋯ 𝜌்ିଵ

𝜌 1 𝜌 ⋯ 𝜌்ିଶ

𝜌ଶ 𝜌 1 ⋯ 𝜌்ିଷ

⋮ ⋮ ⋮ ⋱ ⋮
𝜌்ିଵ 𝜌்ିଶ 𝜌்ିଷ ⋯ 1

• Now, we get the transformation matrix P = -1/2:

Ωିଵ/ଶ ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

𝐏 𝒚 ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

∗

𝑦ଵ
𝑦ଶ
𝑦ଷ
⋮
𝑦୘

𝒚* ൌ 𝐏 𝒚 ൌ

1 െ 𝜌ଶ 𝑦ଵ
𝑦ଶ െ 𝜌 𝑦ଵ
𝑦ଷ െ 𝜌 𝑦ଶ

. . .
𝑦் െ 𝜌 𝑦்ିଵ

2. With P = -1/2, we transform the data to do GLS.

 GLS: Transformed 𝒚*. 

:

GLS: AR(1) Case – Transformed 𝒚 & X: 𝒚* & X*
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𝐏 𝒙௞ ൌ

1 െ 𝜌ଶ 0 0 . . . 0
െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0

∗

 𝑥௞ଵ
 𝑥௞ଶ
 𝑥௞ଷ
⋮

 𝑥௞்

𝒙௞
∗ ൌ 𝐏 𝒙௞ ൌ

1 െ 𝜌ଶ  𝑥௞ଵ
𝑥௞ଶ െ 𝜌 𝑥௞ଵ
𝑥௞ଷ െ 𝜌 𝑥௞ଶ

. . .
𝑥் െ 𝜌 𝑥்ିଵ

2. Transformed  𝒙௞ column (independent variable 𝑘) of  matrix X is:

3. GLS is done with transformed data. In (A3’) we assume 𝜌 known. 

 GLS: Transformed 𝑿∗. 

GLS: AR(1) Case – Transformed 𝒚 & X: 𝒚* & X*

GLS: The Autoregressive Transformation

• With AR models, sometimes it is easier to transform the data by 
taking pseudo differences. 

• For the AR(1) model, we multiply the DGP by ρ and subtract it 
from it. That is, 

𝑦௧ ൌ   𝒙୲′𝛃 ൅  𝜀௧, 𝜀୲ ൌ 𝜌𝜀௧ିଵ ൅ 𝑢௧
𝜌𝑦௧ିଵ ൌ 𝜌𝒙୲ିଵ′𝛃 ൅ 𝜌𝜀௧ିଵ

െെെെെെെെെെെെെെെെെെെെെെെ
𝑦௧ െ 𝜌𝑦௧ିଵ ൌ ሺ𝒙୲ െ 𝜌𝒙୲ିଵሻ′𝛃 ൅ ሺ𝜀௧ െ 𝜌𝜀௧ିଵሻ

𝑦௧
∗ ൌ 𝒙௧

∗′𝛃 ൅ 𝑢௧
Now, we have the errors, 𝑢௧, which are uncorrelated. We can do OLS 
with the pseudo differences.

Note: 𝑦௧
∗ ൌ 𝑦௧ െ 𝜌𝑦௧ିଵ &  𝒙௧

∗ ൌ 𝒙୲ െ 𝜌𝒙୲ିଵ are pseudo differences.



RS - Lecture 7 – GLS & FGLS

16© R. Susmel, 2023 – Do not post/share online without written authorization

FGLS: Unknown 

• The problem with GLS is that  is unknown. For example, in the 
AR(1) case,  is unknown.  

• Solution: Estimate .  Feasible GLS (FGLS).

• In general, there are two approaches for GLS:

(1) Two-step, or Feasible estimation: - First, estimate  first. 

- Second, do GLS. 

Technical note: Nice asymptotic properties for FGLS estimator. Not 
longer BLUE.

(2) ML estimation of , 2, and  at the same time (joint estimation 
of all parameters). With some exceptions, rare in practice.

FGLS: Specification of 

•  must be specified first.

• In general,  is specified in terms of a few parameters. Thus,  = 
() for some small parameter vector . Then, we need to estimate .

Examples: 

(1) Var[𝜀௧|X]  = ௧ଶ = γ0 + γ1 ሺ𝑟௠,௧ െ 𝑟௙ሻ2 + γ3 (𝑆𝑀𝐵௧)2 

Or, more general, Var[𝜀௜|X] =  2 𝑓ሺ𝒛௜). Variance a function of 
and some variable 𝒛௜ (say, market volatility, firm size, industry 
dummy, seasonal dummies, etc). In general, 𝑓ሺ. ሻ is an exponential 
to make sure the variance is positive.

(2) 𝜀௜ with AR(1) process. We have already derived 2  as a 
function of .
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FGLS: Estimation – Steps

• Steps for FGLS:
1. Estimate the model proposed in (A3’). Get ෝ௜

ଶ & ෝ௜௝ .

2. Find transformation matrix, P, using the estimated ෝ௜
ଶ & ෝ௜௝ .

3. Using P from Step 2, transform model: 𝑿∗= PX
𝒚∗= P𝒚.

4. Do FGLS, that is, OLS with 𝑿∗ &  𝒚∗.

Example: In the pure heteroscedasticity case (P is diagonal):
1. Estimate the model proposed in (A3’). Get ෝ௜

ଶ.
2. Find transformation matrix, P, with 𝑖th diagonal element: 1/𝜎ො௜
3. Transform model (each 𝑦௜ and 𝑥௜ is divided (“weighted”) by 𝜎ො௜):

𝒚𝒊
∗ ൌ 𝑦௜/𝜎ො௜
𝒙𝒌,𝒊
∗ ൌ 𝑥௞,௜/𝜎ො௜

4. Do FGLS, that is, OLS with transformed variables.

Example: Last lecture, we found that ሺ𝑟௠,௧ െ 𝑟௙ሻ2 & (𝑆𝑀𝐵௧)2 are 
drivers of  the heteroscedasticity in DIS returns: Suppose we assume: 
(A3’) ௧ଶ = γ0 + γ1 ሺ𝑟௠,௧ െ 𝑟௙ሻ2 + γ3 (𝑆𝑀𝐵௧)2 

• Steps for FGLS:
1. Use OLS squared residuals to estimate (A3’):
fit_dis_ff3 <- lm(dis_x ~ Mkt_RF + SMB + HML)
e_dis <- fit_dis_ff3$residuals
e_dis2 <- e_dis^2
fit_dis2 <- lm(e_dis2 ~ Mkt_RF2 + SMB2)
summary(fit_dis2)
var_dis2 <- fit_dis2$fitted # Estimated variance vector, with elements ෝ௜

ଶ.

2. Find transformation matrix, P, with ith diagonal element: 1/𝜎ො௜
w_fgls <- sqrt(var_dis2) # 1/𝜎ො௜

3. Transform model: Each yi and xi is “weighted” by 1/𝜎ො௜ .
y_fw <- dis_x/w_fgls # transformed y
xx_fw <- cbind(x0, Mkt_RF, SMB, HML)/w_fgls # transformed X

FGLS: Estimation – Heteroscedasticity
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Example (continuation):
4. Do GLS, that is, OLS with transformed variables.
fit_dis_fgls <- lm(y_fw ~ xx_fw - 1)
> summary(fit_dis_fgls)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

xx_fw -0.003097 0.002696  -1.149    0.251    
xx_fwMkt_RF 1.208067 0.073344  16.471 <2e-16 ***
xx_fwSMB -0.043761 0.105280  -0.416    0.678    
xx_fwHML 0.125125 0.100853   1.241 0.215  not longer significant at 10%.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9998 on 566 degrees of  freedom
Multiple R-squared:  0.3413,    Adjusted R-squared:  0.3366 
F-statistic: 73.31 on 4 and 566 DF,  p-value: < 2.2e-16

FGLS: Estimation – Heteroscedasticity

Example (continuation): Comparing OLS, GLS & FGLS results:

• Comments:
- The GLS estimates are quite different than OLS estimates 
(remember OLS is unbiased and consistent). Very likely the assumed 
functional form in (A3’) was not a good one.
- The FGLS results are similar to the OLS, as expected, if  model is 
OK. FGLS is likely a more precise estimator (HML is not longer 
significant at 10%.

bOLS SE bGLS SE bFGLS SE

Intercept 0.00417 0.00279 -0.00661 0.00159 -0.00310 0.00270 

Mkt_RF 1.26056 0.06380 1.58806 0.33477 1.20807 0.07334

SMB -0.02899 0.09461 -0.20042 0.06750 -0.04376 0.10528 

HML 0.17455 0.09444 -0.04203 0.07282 0.12513 0.10085

FGLS: Estimation – Heteroscedasticity



RS - Lecture 7 – GLS & FGLS

19© R. Susmel, 2023 – Do not post/share online without written authorization

FGLS Estimation: AR(1) Case – Cochrane-Orcutt

• In the AR(1) case, it is easier to estimate the model in pseudo 
differences:

𝑦௧
∗ = X௧

∗  + 𝑢௧
𝑦௧ – 𝑦௧ିଵ = (X௧ – X௧ିଵ)’  + ௧ -  ௧ିଵ

 𝑦௧ = 𝑦௧ିଵ + X௧′  – X௧ିଵ′  + 𝑢௧

• We have a linear model, but it is nonlinear in parameters. OLS is not 
possible, but non-linear estimation is possible. 

• Before today’s computer power, Cochrane–Orcutt’s (1949) iterative 
procedure was an ingenious way to do this estimation.  

• Steps for Cochrane-Orcutt:

(0) Do OLS in (A1) model: 𝒚 = X  + . Get residuals, 𝒆, & 𝑅𝑆𝑆଴. 

(1) Estimate  with a regression of  𝒆௧ against 𝒆௧ିଵ:

𝑒௧ =  𝑒௧ିଵ + 𝑢௧  get ො. 

(2) FGLS Step. Use ො to transform the model to get 𝒚∗ and 𝑿∗:

𝑦௧
∗ ൌ 𝑦௧ െ ො 𝑦௧ିଵ &  𝒙௧

∗ ൌ 𝒙୲ െ ො 𝒙୲ିଵ

Do OLS with 𝒚∗ and 𝑿∗  get b to estimate . 

Get residuals, 𝒆* = 𝒚 – X b, and new 𝑅𝑆𝑆ଵ. Go back to (1).

(3) Iterate until convergence. Stop at iteration 𝑖 when (𝑅𝑆𝑆௜ – 𝑅𝑆𝑆௜ିଵ) 
is lower than some tolerance level, say .0001. 

FGLS Estimation: AR(1) Case – Cochrane-Orcutt
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Example: Cochrane-Orcutt in R

# C.O. function requires Y, X (with constant), OLS b.

c.o.proc <- function(Y,X,b_0,tol){

T <- length(Y)

e <- Y - X%*%b_0 # OLS residuals

rss <- sum(e^2) # Initial RSS of  model, RSS9

rss_1 <- rss # RSS_1 will be used to reset RSS after each iteration

d_rss = rss # initialize d_rss: difference between RSSi & RSSi-1

e2 <- e[-1] # adjust sample size for et

e3 <- e[-T] # adjust sample size for et-1

ols_e0 <- lm(e2 ~ e3 - 1) # OLS to estimate rho

rho <- ols_e0$coeff[1] # initial value for rho, 0

i<-1

while (d_rss > tol) { # tolerance of  do loop. Stop when diff  in RSS < tol

rss <- rss_1 # RSS at iter (i-1)

YY <- Y[2:T] - rho * Y[1:(T-1)] # pseudo-diff  Y

XX <- X[2:T, ] - rho * X[1:(T-1), ] # pseudo-diff  X

ols_yx <- lm(YY ~ XX - 1) # adjust if  constant included in X

FGLS Estimation: Cochrane-Orcutt in R

Example (continuation): 

b <- ols_yx$coef # updated OLS b at iteration i

#  b[1] <- b[1]/(1-rho) # If  constant not pseudo-differenced remove tag #

e1 <- Y - X%*%b # updated residuals at iteration i
e2 <- e1[-1] # adjust sample size for updated et

e3 <- e1[-T] # adjust sample size for updated e_t-1 (lagged et)
ols_e1 <- lm(e2~e3-1) # updated regression to value for rho at iteration i
rho <- ols_e1$coeff[1] # updated value of  rho at iteration i, i

rss_1 <- sum(e1^2) # updated value of  RSS at iteration i, RSSi

d_rss <- abs(rss_1 - rss) # diff  in RSS (RSSi - RSSi-1)
i <- i+1

}

result <-list()
result$Cochrane_Orc.Proc <- summary(ols_yx)
result$rho.regression <- summary(ols_e1)
#  result$Corrected.b_1 <- b[1]
result$Iterations < -i-1
return(result)
}

FGLS Estimation: Cochrane-Orcutt in R
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Example: In the model for Mexican interest rates (𝑖ெ௑,௧), we suspect 
an AR(1) in the residuals: 

𝑖ெ௑,௧ = 0 + 1 𝑖௎ௌ,௧ + 2 𝑒ெ௑,௧ + 3 𝐼ெ௑,௧+ 4 𝑦ெ௑,௧ + ௧
௧ ൌ 𝜌𝜀௧ିଵ ൅ 𝑢௧

• OLS estimation. 
y <- mx_i_1
T_mx <- length(mx_i_1)
x0 <- matrix(1,T_mx,1)
X <- cbind(x0, us_i_1, e_mx, mx_I, mx_y) # X matrix
fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y)
b_i <- fit_i$coefficients # extract coefficients from lm
> summary(fit_i)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.04022    0.01506   2.671  0.00834 ** 
us_i_1  0.85886    0.31211  2.752  0.00661 ** 
e_mx -0.01064    0.02130  -0.499  0.61812    
mx_I 3.34581    0.19439  17.212 < 2e-16 ***
mx_y -0.49851    0.73717  -0.676  0.49985

FGLS Estimation: Cochrane-Orcutt – iMX

Example (continuation): Now, we use Cochrane-Orcutt:
> c.o.proc(y, X, b_i, .0001)

$Cochrane.Orcutt.Proc

Call:

lm(formula = YY ~ XX - 1)

Residuals:

Min       1Q   Median       3Q      Max 

-0.69251 -0.02118 -0.01099  0.00538  0.49403 

Coefficients:

Estimate Std. Error t value Pr(>|t|)  

XX     0.16639    0.07289   2.283   0.0238 *

XXus_i_1 1.23038    0.76520   1.608  0.1098   not longer significant at 5% level.

XXe_mx -0.00535    0.01073  -0.499   0.6187  

XXmx_I 0.41608    0.27260   1.526   0.1289   not longer significant at 5% level.

XXmx_y -0.44990    0.53096  -0.847   0.3981  

---

FGLS Estimation: Cochrane-Orcutt – iMX
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Example (continuation): 
Residual standard error: 0.09678 on 160 degrees of  freedom

Multiple R-squared:  0.1082,    Adjusted R-squared:  0.08038 

F-statistic: 3.884 on 5 and 160 DF,  p-value: 0.002381

$rho

e3 

0.8830857  very high autocorrelation. 

$Corrected.b_1

XX 

0.1663884  Constant corrected if  X does not include a constant

$Number.Iteractions

[1] 10  algorithm converged in 10 iterations. 

Note: The R package “orcutt” computes the Cochrane-Orcutt algorithm: 
library(orcutt)

cochrane.orcutt(fit_i, convergence = 8, max.iter=100)

FGLS Estimation: Cochrane-Orcutt – iMX

GLS: General Remarks

• GLS is great (BLUE) if we know . Very rare situation.

• It needs the specification of  –i.e., the functional form of 
autocorrelation and heteroscedasticity.

• If the specification is bad  estimates are biased.

• Feasible GLS is not BLUE (unlike GLS); but, it is consistent and 
asymptotically more efficient than OLS.

• We use GLS for inference and/or efficiency.  OLS is still unbiased 
and consistent.

• OLS and GLS estimates will be different due to sampling error. But, 
if they are very different, then it is likely that some other CLM 
assumption is violated.
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45

Time Series: Introduction

Time Series: Introduction

• A time series 𝑦௧ is a process observed in sequence over time, 

𝑡 = 1, ...., 𝑇  𝑌௧ = {𝑦ଵ, 𝑦ଶ , 𝑦ଷ, ..., 𝑦்}.

Examples: IBM monthly stock prices from 1973:January till 
2024:September (plot below); or USD/GBP daily exchange rates 
from February 15, 1923 to March 19, 1938.
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Time Series: Introduction

Examples (continuation): Different ways to do the plot in R:

• Using plot.ts, creating a timeseries object in R:
# the function ts creates a timeseries object, start = 1973,1 (start of sample), frequency = 
12(=monthly) 

ts_ibm <- ts(x_ibm, start=c(1973,1), frequency=12) 

plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")

• Using R package ggplot2
x_ibm <- SFX_da$IBM

x_date <- as.Date(SFX_da$Date, "%m/%d/%Y")

df <- data.frame(x_date, x_ibm)

ggplot(df, aes(x = x_date, y = x_ibm)) +

geom_line(color="blue") +

labs(x = "Date", y = "IBM Price", col = "blue", title = "Time Series: IBM Monthly Price",

subtitle = "Period:  1973 - 2024")

Time Series: Introduction – Categories

• Usually, time series models are separated into two categories: 

– Univariate (𝑦௧ ∊ R, it is a scalar)

Example: We are interested in the behavior of IBM stock 
prices as function of its past.

 Primary model: Autoregressions (ARs).

– Multivariate (𝑦௧ ∊ Rm, it is a vector-valued)

Example: We are interested in the joint behavior of IBM 
returns, 𝑟ூ஻ெ, & bond yields, 𝑏ூ஻ெ, as function of their past 

𝑦௧= 
𝑟ூ஻ெ,௧

𝑏ூ஻ெ,௧

 Primary model: Vector autoregressions (VARs). 
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Time Series: Introduction – Dependence

• Given the sequential nature of 𝑦௧, we expect 𝑦௧ & 𝑦௧ିଵ to be 
dependent. This is the main feature of time series: dependence. It 
creates statistical problems.

• In classical statistics, we usually assume we observe several i.i.d. 
realizations of 𝑦௧. We use 𝑦ത to estimate the mean. 

• With several independent realizations we are able to sample over the 
entire probability space and obtain a “good” –i.e., consistent or close 
to the population mean– estimator of the mean. 

• But, if the samples are highly dependent, then it is likely that 𝑦௧ is 
concentrated over a small part of the probability space. Then, the 
sample mean will not converge to the mean as the sample size grows. 

Time Series: Introduction – Dependence

Technical note: With dependent observations, the classical results 
(based on LLN & CLT) are not to valid. 

• We need new conditions in the DGP to make sure the sample 
moments (mean, variance, etc.) are good estimators population 
moments. The new assumptions and tools are needed: stationarity, 
ergodicity, CLT for martingale difference sequences (MDS CLT).

Roughly speaking, stationarity requires constant moments for 𝑦௧; 
ergodicity requires that the dependence is short-lived, eventually 𝑦௧
has only a small influence on 𝑦௧ା௞, when 𝑘 is relatively large.

Ergodicity describes a situation where the expectation of a random 
variable can be replaced by the time series expectation.
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Time Series: Introduction – Dependence

An MDS is a discrete-time martingale with mean zero. In particular, 
its increments, ε௧’s, are uncorrelated with any function of the available 
dataset at time 𝑡. To these ε௧’s we will apply a CLT.

• The amount of dependence in 𝑦௧ determines the ‘quality’ of the 
estimator. There are several ways to measure the dependence. The 
most common measure: Covariance.

Cov 𝑦௧,𝑦௧ା௞ ൌ  𝐸ሾሺ𝑦௧௧ െμሻሺ𝑦௧ା௞െ μሻሿ

Note: When μ = 0, then Cov 𝑦𝑡,𝑦௧ା௞ ൌ 𝐸ሾ𝑦௧ 𝑦௧ା௞ሿ

Time Series: Introduction – Forecasting

• In a time series model, we describe how 𝑦௧ depends on past 𝑦௧’s. 
That is, the information set is 𝐼௧ = {𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, ....}

• The purpose of building a time series model: Forecasting.

• We estimate time series models to forecast out-of-sample. For 
example, the l-step ahead forecast: 𝑦ො்ା௟ = E௧[𝑦௧ା௟|𝐼௧]. 

Historical Note: In the 1970s it was found that very simple time series 
models out-forecasted very sophisticated (big) economic models. 

This finding represented a big shock to the big multivariate models 
that were very popular then. It forced a re-evaluation of these big 
models.
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• In general, we assume the error term, ε௧, is uncorrelated with 
everything, with mean 0 and constant variance, σ2. We call a process 
like this a white noise (WN) process. 

• We denote a WN process as

ε௧ ~ WN(0, σ2)

• White noise is the basic building block of all time series. It can be 
written as simple function of a WN(0, 1) process:

𝑧௧ = σ 𝑢௧, 𝑢௧ ~ i.i.d. WN(0, 1)  𝑧௧ ~ WN(0, σ2)

• The 𝑧௧’s are random shocks, with no dependence over time, 
representing unpredictable events. It represents a model of news.

Time Series: Introduction – White Noise

• We make a key distinction: Conditional & Unconditional moments. In
time series we model the conditional mean as a function of its past,
for example in an AR(1) process, we have:

𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

Then, the conditional mean forecast at time 𝑡, conditioning on 
information at time 𝐼௧ିଵ, is:

E௧[𝑦௧|𝐼௧ିଵ] = E௧[𝑦௧] = 𝛼 + 𝛽 𝑦௧ିଵ

Notice that the unconditional mean, μ, is given by: 
E[𝑦௧] = 𝛼 + 𝛽 E[𝑦௧ିଵ] =

ఈ

1 − ఉ
= μ = constant (𝛽 ≠ 1)

The conditional mean is time varying; the unconditional mean is not!

Key distinction: Conditional vs. Unconditional moments.

Time Series: Introduction – Conditionality 
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• Two popular models for E௧[𝑦௧|𝐼௧]:
– An autoregressive (AR) process models Et[𝑦௧|𝐼௧ିଵ] with lagged 
dependent variables:

E௧[𝑦௧|𝐼௧] = 𝑓ሺ𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, .... , 𝑦௧ି௣)

Example: AR(1) process, 𝑦௧ = 𝛼 + 𝛽 𝑦௧ିଵ + ε௧.

– A moving average (MA) process models E௧[𝑦௧|𝐼௧] with lagged 
errors, ε௧:

E௧[𝑦௧|𝐼௧] = 𝑓ሺε௧ିଵ, ε௧ିଶ, ε௧ିଷ, .... , ε௧ି௤)

Example: MA(1) process, 𝑦௧ = μ + θ1 ε௧ିଵ + ε௧

• There is a third model, ARMA, that combines lagged dependent 
variables and lagged errors.

Time Series: Introduction – AR and MA models

• We want to select an appropriate time series model to forecast 𝑦௧. 
In this class, we will use linear models, with choices: AR(𝑝), MA(𝑞) 
or ARMA(𝑝, 𝑞). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine 𝑝, 𝑞.

(2) Estimate the model.

(3) Test the model.

(4) Forecast.

• In this lecture, we go over the statistical theory (stationarity, 
ergodicity), the main models (AR, MA & ARMA) and tools that will 
help us describe and identify a proper model.

Time Series: Introduction – Forecasting (again)
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CLM Revisited: Time Series Implications

• With autocorrelated data, we get dependent observations. For 
example, with autocorrelated errors:  

ε௧ =   ε௧ିଵ +  𝑢௧ ,

the independence assumption is violated. The LLN and the CLT 
cannot be easily applied in this context. We need new tools.

• We introduce the concepts of stationarity and ergodicity. The 
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent 
variables, using new technical concepts: mixing and stationarity. Or 
we can rely on a new CLT: The martingale difference sequence CLT. 

• We will not cover these technical points in detail.

• Consider the joint probability distribution of  the collection of  RVs:

𝐹 𝑦௧భ ,𝑦௧మ , … ,𝑦௧೅ ൌ 𝐹 𝑌௧భ ൑ 𝑦௧భ ,𝑌௧మ ൑ 𝑦௧మ , … ,𝑌௧೅ ൑ 𝑦௧೅

To do statistical analysis with dependent observations, we need extra 
assumptions. We need some form of  invariance on the structure of  
the time series. 

If  the distribution 𝐹 is changing with every observation, estimation 
and inference become very difficult. 

• Stationarity is an invariant property: The statistical characteristics of  
the time series do not change over time. 

• There different definitions of  stationarity, they differ in how strong is 
the invariance of  the distribution over time.

Time Series – Stationarity 
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• We say that a process is stationary of    

1st order if  𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ for any 𝑡1, 𝑘

2nd order if 𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ for any 𝑡1, 𝑡2, 𝑘

Nth-order if 𝐹 𝑦௧భ , … ,𝑦௧೅ ൌ 𝐹 𝑦௧భశೖ , … ,𝑦௧೅శೖ for any 𝑡1, ..., 𝑡T, 𝑘

• Nth-order stationarity is a strong assumption (& difficult to verify in 
practice). 2nd order (weak) stationarity is weaker. Weak stationarity only 
considers means & covariances (easier to verify in practice).  

• Moments describe a distribution. We calculate moments as usual:  
Eሾ𝑌௧ሿ ൌ μ

Var 𝑌௧ ൌ σଶ ൌ 𝐸ሾሺ𝑌௧ െ μሻଶሿ

Covሺ𝑌௧భ ,𝑌௧మ ሻ ൌ  𝐸ሾሺ𝑌௧భ െ μሻሺ𝑌௧మെ μሻሿ = γሺ𝑡1 
−𝑡2ሻ

Time Series – Stationarity 

• Covሺ𝑌௧భ ,𝑌௧మ ሻ = γ 𝑡1 
−𝑡2 is called the auto-covariance function. It 

measures how 𝑦௧, measured at time 𝑡1, and 𝑦௧, measured at time 𝑡2, 
covary. 

Notes: γ 𝑡1 
− 𝑡2 is a function of  𝑘 = 𝑡1 

− 𝑡2

γሺ0ሻ is the variance.

• The autocovariance function is symmetric. That is, 
γ 𝑡1 

− 𝑡2 ൌ Covሺ𝑌௧భ ,𝑌௧మ ሻ = Covሺ𝑌௧మ ,𝑌௧భ ሻ = γ 𝑡2 
− 𝑡1

 γ 𝑘 ൌ γ െ𝑘

• Autocovariances are unit dependent. We have different values if  we 
calculate the autocovariance for IBM returns in % or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between 
two 𝑌௧ ’s separated by 𝑘 periods.

Time Series – Stationarity & Autocovariances
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• From the autocovariances, we derive the autocorrelations:

Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ ൌ ஓሺ௧1 
−௧2ሻ 

஢೟భ஢೟మ
ൌ ஓሺ௧1 

−௧2ሻ 
ஓ(0)

the last step takes assumes: σ௧భ ൌ σ௧మൌ γሺ0ሻ

• Corr 𝑌௧భ ,𝑌௧మ ൌ ρ 𝑌௧భ ,𝑌௧మ is called the auto-correlation function 
(ACF), –think of  it as a function of  𝑘 = 𝑡2 

− 𝑡1. The ACF is also 
symmetric.

• Unlike autocovoriances, autocorrelations are not unit dependent. It is 
easier to compare dependencies across different time series.

• Stationarity requires all these moments to be independent of  time. If  
the moments are time dependent, we say the series is non-stationary.

Time Series – Stationarity & Autocorrelations 

Time Series – Stationarity & Constant Moments 

• For a strictly stationary process (constant moments), we need:
μ௧ ൌ μ
σ௧ ൌ σ

because 𝐹 𝑦௧భ ൌ 𝐹 𝑦௧భశೖ  μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ

Then, 
𝐹 𝑦௧భ ,𝑦௧మ ൌ 𝐹 𝑦௧భశೖ ,𝑦௧మశೖ  Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡ଵ ൅ 𝑘, 𝑡ଶ ൅ 𝑘

Let 𝑡ଵ ൌ 𝑡 െ 𝑘  & 𝑡ଶ ൌ 𝑡 
 ρ 𝑡ଵ, 𝑡ଶ ൌ ρ 𝑡 െ 𝑘, 𝑡 ൌ ρ 𝑡, 𝑡 െ 𝑘 = ρ 𝑘  = ρ௞

The correlation between any two RVs depends on the time difference. 
Given the symmetry, we have ρ 𝑘 = ρ െ𝑘 .
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Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ

Time Series – Stationarity & Constant Moments 

Example: Informally, we check if  in any two periods separated by 𝑘
observations, we have similar means, variances and covariances. That is,

μ௧భ ൌ μ௧భశೖ ൌ μ
σ௧భ ൌ σ௧భశೖ ൌ σ
Cov 𝑦௧భ ,𝑦௧మ = Cov 𝑦௧భశೖ ,𝑦௧మశೖ

𝑡ଵ 𝑡ଶ



RS - Lecture 7 – GLS & FGLS

33© R. Susmel, 2023 – Do not post/share online without written authorization

Time Series – Weak Stationary 

• A Covariance stationary process (or 2nd -order weakly stationary) has:
- constant mean, μ
- constant variance, 𝜎ଶ

- covariance depends on time difference, 𝑘, between two RVs, γ 𝑘

That is, 𝑍௧ is covariance stationary if:

E 𝑍௧ = constant = μ 

Var 𝑍௧ = constant = 𝜎ଶ 

Cov 𝑍௧భ ,𝑍௧మ ൌ E[(𝑍௧భ െ μ௧భ)(𝑍௧మ െ  μ௧మ)] = γሺ𝑘 ൌ 𝑡ଵെ 𝑡ଶሻ

Remark: Covariance stationarity is only concerned with the covariance 
of  a process, only the mean, variance and covariance are time-invariant. 

Example: Assume 𝑦௧ follows an AR(1) process:

𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, with ε௧ ~ WN(0, 𝜎ଶ).

•  Mean
Taking expectations on both side:

E[ 𝑦௧] = 𝜙 E[𝑦௧ିଵ] + E[ε௧] 
μ = 𝜙 μ + 0
E[ 𝑦௧ ] = μ = 0 (assuming 𝜙 ≠ 1)

•  Variance
Applying the variance on both side:

Var[𝑦௧] = γ 0 ൌ 𝜙ଶ Var[𝑦௧ିଵ] + Var[𝜀௧] 

γሺ0ሻ = 𝜙ଶ γሺ0ሻ + 𝜎ଶ

γሺ0ሻ =
ఙమ

ଵ ି థమ
(assuming |𝜙 |< 1)

Time Series – Stationarity: Example 
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Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, ε௧ ~ WN(0, 𝜎ଶሻ

•  Covariance
γሺ1ሻ = Cov[𝑦௧, 𝑦௧ିଵ] = E[𝑦௧ 𝑦௧ିଵ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଵ] 

= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଵ] + E[ ε௧ 𝑦௧ିଵ] 
= 𝜙 E[𝑦௧ିଵ2] 
= 𝜙 Var[𝑦௧ିଵ2] 
= 𝜙 γሺ0ሻ

γሺ2ሻ = Cov[𝑦௧, 𝑦௧ିଶ] = E[𝑦௧ 𝑦௧ିଶ] = E[(𝜙 𝑦௧ିଵ + ε௧) 𝑦௧ିଶ] 
= 𝜙 E[𝑦௧ିଵ 𝑦௧ିଶ] 
= 𝜙 Cov[𝑦௧, 𝑦௧ିଵ] 
= 𝜙 γሺ1ሻ
= 𝜙2 γሺ0ሻ

⋮

γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

Time Series – Stationarity: Example 

Example (continuation):  𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧, ε௧ ~ WN(0, 𝜎ଶሻ

•  Covariance
γሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି௞] = 𝜙௞ γሺ0ሻ

 If  |𝜙|< 1, 𝑦௧ process is covariance stationary: mean, variance, 
and covariance are constant.

Remark: To establish stationarity, we need to impose conditions on 
the AR parameters. (Conditions are not needed for MA processes.) 

Note: From the autocovariance function, we derive ACF:

ρ 𝑘 ൌ ஓሺ௞ሻ 
ஓ(0) ൌ

థೖ ஓሺ଴ሻ
ஓ(0) ൌ 𝜙௞

If  |𝜙 |< 1, autocovariance function & ACF show exponential decay.

Time Series – Stationarity: Example 
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Example: Assume 𝑦௧ follows a Random Walk with drift process:

𝑦௧ = 𝜇 ൅  𝑦௧ିଵ + ε௧, with ε௧ ~ WN(0, σ2).

Doing backward substitution:
𝑦௧ = 𝜇 + (μ + 𝑦௧ିଶ + ε௧ିଵ) + ε௧

= 2 * μ + 𝑦௧ିଶ + ε௧ + ε௧ିଵ
= 2 * μ + (μ + 𝑦௧ିଷ + ε௧ିଶ) + ε௧ + ε௧ିଵ
= 3 * μ + 𝑦௧ିଷ + ε௧ + ε௧ିଵ+ ε௧ିଶ

 𝑦௧ = μ  𝑡 + ∑ ε௧ି௝
௧ିଵ
௝ୀ଴ + 𝑦଴

•  Mean & Variance
E[𝑦௧] = μ  𝑡 + 𝑦଴
Var[𝑦௧] = γሺ0ሻ = ∑ σ2௧ିଵ

௝ୀ଴ = σ2 𝑡

 the process 𝑦௧ is non-stationary: moments are time dependent.

Time Series – Non-Stationarity: Example 

Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2). 
𝑦௧ ൌ 0.08 ൅ 𝜀௧ ൅ 0.4 𝜀௧ିଵ - MA(1) process
𝑦௧ ൌ 0.13 𝑦௧ିଵ ൅ 𝜀௧  - AR(1) process
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Non-Stationary Series: Examples

Examples: Assume ε௧ ~ WN(0, σ2).

𝑦௧ ൌ 𝜇 𝑡 ൅ 𝜙ଵ 𝑦௧ିଵ ൅ 𝜙ଶ 𝑦௧ିଶ ൅ 𝜀௧ - AR(2) with deterministic trend
𝑦௧ ൌ 𝜇 ൅ 𝑦௧ିଵ ൅ 𝜀௧     - Random Walk with drift

• Main characteristic of  time series: Observations are dependent.

• To analyze time series, however, we need to assume that some features 
of  the series are not changing. If  we have non-stationary series (say, 
mean or variance are changing with each observation), it is not possible 
to make inferences.  

• Stationarity is an invariant property: the statistical characteristics of  
the time series do not vary over time.

• If  IBM is weak stationary, then, the returns of  IBM may change 
month to month or year to year, but the average return and the variance 
in two equal-length time intervals will be more or less the same.

Time Series – Stationarity: Remarks


