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Lecture 7-c
GLS & FGLS

Brooks (4th edition): Chapter 5

© R. Susmel, 2020 (for private use, not to be posted/shared online).

• Now, we go back to the CLM Assumptions:

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0 

(A3’) Var[|X] = Σ (sometimes written Var[|X] = 2)

Σ = 

σ  ⋯ 
 σ ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ σ

-a (TxT) symmetric matrix

(A4) X has full column rank – rank(X) = 𝑘 –, where T ≥ 𝑘.

• This is the generalized regression model (GRM). 

• OLS is still unbiased (& consistent). Can we still use OLS?

Review – Generalized Regression Model
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Review – GRM: True Variance for b

• Now, we have (A3’) Var[|X] = Σ

• The true variance of  b under (A3’) should be:
VarT[b|X]  = (X’X)-1 XΣX (X’X)-1

Example: We compute the true variance for the simplest case, a 
regression with only one explanatory variable and heteroscedastic :

𝒚 = X  + , 𝜀 ~ D(0, σ )

 VarT[b|X] = 
∑ ̅

∑ σ 𝑥 �̅� .

If  we compute the OLS variance, we see how both estimators differ:

Var[b|X] = 
∑ ̅

≠ VarT[b|X]. 

Review – GRM: True Variance for b

• Under (A3’), the OLS estimator of  Var[b|X] = 𝑠 (XX)-1 is biased. 

• If  we want to use OLS for inferences (say, with t-test or F-test), we 
need to estimate VarT[b|X]. 

• That is, we need to estimate the unknown Σ. But, it has T*(T+1)/2 
parameters. Too many parameters to estimate with T observations! 

• We will not be estimating Σ. Impossible with T data points. 

• We will estimate XΣX = ∑ ∑   𝒙  𝒙 ′, a (𝑘x𝑘) matrix. That 
is, we are estimating [𝑘*(𝑘+1)]/2 elements.
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• This distinction is very important in modern applied econometrics: 

– The White estimator

– The Newey-West estimator

• Both estimators produce a consistent estimator of VarT[b|X]:

VarT[b|X] = (X’X)-1 XΣX (X’X)-1

Since b consistently estimates , the OLS residuals, 𝒆, are also 
consistent estimators of . We use e to consistently estimate XΣX. 

In practice, we use 𝑤  (= 𝑥  𝑒 to estimate XΣX .

Review – GRM: Robust Covariance Matrix

• The White estimator simplifies the estimation since it only assumes 
heteroscedasticity. Then, Σ is a diagonal matrix, with elements 𝜎 . 

Σ = 

σ 0 ⋯ 0
0 σ ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ

-a (TxT) matrix

Thus, we need to estimate: Q* = (1/T) XΣX  -a (kxk) matrix

• We use 𝑒 to estimate σ . That is, 

we estimate Q* = (1/T)∑ σ  𝒙 𝒙 
with S0 = (1/T) ∑ 𝑒  𝒙 𝒙 

Review – GRM: The Newey-West Estimator
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• Newey-West allow for both heteroscedasticy and autocorrelation. 

(A3’) Var[|X] = Σ

Σ = 

σ  ⋯ 
 σ ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ σ

-a (𝑇x𝑇) matrix

Now, we need to estimate 
Q* = (1/T) XΣX  = (1/T) ∑ ∑   𝒙  𝒙  

= (1/T) ∑   𝒙  𝒙    𝒙  𝒙 ⋯   𝒙  𝒙

• Newey and West (1987) follow White (1980) to produce a HAC 
(Heteroscedasticity and Autocorrelation Consistent) estimator of  Q*:

ST = (1/T) ∑ ∑  𝑒 𝑒  𝒙  𝒙 

Review – GRM: The Newey-West Estimator

• Newey and West (1987) estimator of  Q*:
ST = (1/T) ∑ ∑  𝑒 𝑒  𝒙  𝒙 

Then,
Est. Var[b] = (1/T) (X’X/T)-1 ST (X’X/T)-1

Example: Back to the simplest case, a regression with only one 
explanatory variable, but now with a heteroscedastic and 
autocorrelated error term. We estimate the “true” variance of  b with:

VarT[b|X] = 
∑ ̅

∑ 𝑒 𝑥 �̅� + 

+ ∑ ∑  𝑥 �̅�  𝑒   𝑒 𝑥 �̅� }

We add the sum of  the autocovariances of  𝑤  (= 𝑥  𝑒 to the White 
estimator of  XΣX. If  (auto-) covar(𝑤 , 𝑤 ) are positive, the NW 
estimator will be bigger than the White one. A common case.

Review – GRM: The Newey-West Estimator



RS - Lecture 7 – GLS & FGLS

5© R. Susmel, 2023 – Do not post/share online without written authorization

• Two components for the NW HAC estimator:
(1) Start with Heteroscedasticity Component:

S0 = (1/T) ∑ 𝑒 𝒙 𝒙  – the White estimator.

(2) Add the Autocorrelation Component, cutting sum short with 𝐿.

ST = S0 + ∑ 𝑘 𝑙  ∑ 𝒙 𝑒 𝑒 𝒙  + 𝒙 𝑒 𝑒 𝒙 )
where

𝑘  | |
–decaying weights (Bartlett kernel)

𝐿 is the  cut-off  lag, which is a function of  T. (More data, longer 𝐿).

The weights are linearly decaying, suppose L = 12. Then, 
𝑘(1) = 12/13 = 0.92308
𝑘(2) = 11/13 = 0.84615
𝑘(3) = 10/13 = 0.76923

𝑘
𝑗

𝐿 𝑇
13 |𝑗|

13

Review – GRM: The Newey-West Estimator

• ST = S0 + (1/T)∑ 𝑘 𝑙 ∑ 𝒙 𝑒 𝑒 𝒙  + 𝒙 𝑒 𝑒 𝒙 )
Then,
Est. VarT[b|X] = (1/T) (X’X/T)-1 ST (X’X/T)-1 –NW’s HAC Var.

• Asymptotic inferences can be based on OLS b & Est. VarT[b|X].
We can use the usual tests and distributions. 

Example: Back to the simplest case, a regression with only one 
explanatory variable, but with a heteroscedastic and autocorrelated
error term. Suppose we set 𝐿 = 12, then:

VarT[b|X] = 
∑ ̅

∑ 𝑒 𝑥 �̅� + 

+ ∑   ∑  𝑥 �̅�  𝑒   𝑒 𝑥 �̅�𝟏𝟐 }

To compute ST, we only add 12 autocovariances of  𝑤  (= 𝑥  𝑒 to 
the White estimator, S0.

Review – GRM: The Newey-West Estimator
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• NW SEs are used almost universally in academia. However:
- NW SEs perform poorly in Monte Carlo simulations: 
- NW SEs tend to be downward biased –i.e., too small. 
- The finite-sample performance of  tests using NW SE is not well 

approximated by the asymptotic theory. 
- Tests have size distortions.

• Q: What happens if  we know the specific form of  (A3’)? 
We can do much better than using OLS with NW SEs. In this case, 
we can do Generalized LS (GLS), a method that delivers the most 
efficient estimators.

Review – GRM: The Newey-West Estimator

Generalized Least Squares (GLS)

• GRM: Assumptions (A1), (A2), (A3’) & (A4) hold. That is,
(A1) DGP: 𝒚 = X  +  is correctly specified. 
(A2) E[|X] = 0
(A3’) Var[|X] = Σ = σ  ( is symmetric  TT = )

(A4) X has full column rank –i.e., rank(X) = 𝑘–, where T ≥ 𝑘.

• Suppose we know the form of (A3’)? We can use this information 
to gain efficiency.

• When we know (A3’), we transform 𝒚 & X, in such a way, that we 
can do again OLS with the transformed data.

To do this transformation, we exploit a property of symmetric 
matrices, like the variance-covariance matrix, :

 is symmetric  exists T ∋ TT =   T-1  T-1= I 
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Generalized Least Squares (GLS)

Note:  can be decomposed as 
 = T T (think of T as 1/2)  T-1  T-1= I 

• We transform the linear model in (A1) using P = -1/2 (= T-1).
P =  -1/2  PP = -1    

P𝒚 = PX + P or  
𝒚* = 𝑿∗ + *.
E[**’|𝑿∗] = E[P P|𝑿∗] = P E[|X] P = σ2 P  P

= σ2 -1/2  -1/2 = σ2 IT  back to (A3)

• The transformed model is homoscedastic: We have the CLM 
framework back  we can use OLS! 

bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚*

= (XP PX)-1 XP P𝒚 ( PP = -1)
= (XΩ-1X)-1 XΩ-1𝒚

Remarks: 

– The transformed model is homoscedastic:

Var[*|𝑿∗] = E[**|𝑿∗] = PE[|X]P = σ2 PP = σ2 IT

– We have the CLM framework back: We do OLS with the 
transformed model, we call this OLS estimator, the GLS 
estimator:

bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚* = (XP PX)-1 XP P𝒚
= (XΩ-1X)-1 XΩ-1𝒚

– Key assumption:  is known, and, thus, P is also known; 
otherwise we cannot transformed the model.

• Big Question: Is  known?

Generalized Least Squares (GLS)

Alexander C. Aitken (1895 –1967, NZ)
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• The GLS estimator is: 

bGLS = (XΩ-1X)-1 XΩ-1 𝒚
Note I: bGLS ≠ b.  bGLS is BLUE by construction, b is not.

• Check unbiasedness:
bGLS = (XΩ-1X)-1 XΩ-1 𝒚 = (XΩ-1X)-1 XΩ-1 (X  + )

=  + (XΩ-1X)-1 XΩ-1 
E[bGLS |X] = 

• Efficient Variance
bGLS is BLUE. The “best” variance can be derived  from 

Var[bGLS|X] = σ (X*X*)-1 = σ (XΩ-1X)-1

Then, the usual OLS variance for b is biased and inefficient!

Generalized Least Squares (GLS)

Note II: Both unbiased and consistent. In practice, both estimators 
will be different, but not that different. If they are very different, 
something is not kosher.

• Steps for GLS:

Step 1. Find transformation matrix P = -1/2 (in the case of 
heteroscedasticity, P is a diagonal matrix).

Step 2. Transform the model: 𝑿∗ = PX  & 𝒚* = P𝒚.

Step 3. Do GLS; that is, OLS with the transformed variables.

• Key step to do GLS: Step 1, getting the transformation matrix: 
P = -1/2. 

Generalized Least Squares (GLS) - Properties
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Technical detail: If we relax the CLM assumptions (A2) and (A4), as 
we did in Lecture 7-a, we only have asymptotic properties for GLS:

– Consistency - “well behaved data.”

– Asymptotic distribution under usual assumptions. 

(easy for heteroscedasticity, complicated for autocorrelation.)

– Wald tests and F-tests with usual asymptotic χ2 distributions. 

GLS – Relaxing Assumptions (A2) & (A4)

(Weighted) GLS: Pure Heteroscedasticity 

(A3’)  𝑉𝑎𝑟 𝜀 𝚺 𝜎 𝛀 𝜎

𝜔 0 . . . 0
0 𝜔 . . . 0
0 0  0
0 0 . . . 𝜔

𝛀 / 𝐏

1/ 𝜔 0 . . . 0
0 1/ 𝜔 . . . 0
0 0 . . . 0
0 0 . . . 1/ 𝜔

• Now, transform 𝒚 & X:

𝒚∗ 𝐏𝒚

1/ ω 0 . . . 0
0 1/ ω . . . 0
0 0 . . . 0
0 0 . . . 1/ ω

∗

𝑦
𝑦
⋮
𝑦

𝑦 /
𝑦 /

⋮
𝑦 / ω

• Find the transformation matrix P = -1/2.
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(Weighted) GLS: Pure Heteroscedasticity 

• Each observation of  𝑦, 𝑦 , is divided by 𝜔 . Similar 
transformation occurs with X:

𝑿∗ 𝐏𝐗

1/ 𝜔 0 . . . 0
0 1/ 𝜔 . . . 0
0 0 . . . 0
0 0 . . . 1/ 𝜔

∗

1 𝑥 ⋯ 𝑥
1 𝑥 ⋯ 𝑥
⋮ ⋮ ⋯ ⋮
1 𝑥 ⋯ 𝑥

1/ 𝜔 𝑥 / 𝜔 . . . 𝑥 / 𝜔
1/ 𝜔 𝑥 / 𝜔 . . . 𝑥 / 𝜔

⋮ ⋮ . . . ⋮
1/ 𝜔 𝑥 / 𝜔 . . . 𝑥 / 𝜔

• Now, we can do OLS with the transformed variables:

bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚* = (XΩ-1X)-1 XΩ-1 𝒚

(Weighted) GLS: Pure Heteroscedasticity 

• In the case of  heteroscedasticity, GLS is also called Weighted Least 
Squares (WLS): Think of  1/ 𝜔 as weights. The GLS estimator is:

𝐛 (XΩ−1X)−1 XΩ−1𝒚 = ∑ 𝒙 𝒙 ∑ 𝒙 𝑦

Observations with lower (bigger) variances –i.e., lower (bigger) 𝜔 –
are given higher (lower) weights in the sums: 

More precise observations, more weight!

• The GLS variance is given by:

𝜎
∑

𝑦 𝒙  𝐛
𝜔

𝑇 𝑘
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(Weighted) GLS: Pure Heteroscedasticity 

Example: Last Lecture, we found that squared market returns 
(Mkt_RF^2) influence the heteroscedasticity in DIS returns. Suppose 
we assume: (A3’)  = (𝑟 , – 𝑟 )2.

Steps for GLS:

1. Find transformation matrix, P, with 𝑖th diagonal element: 1/ 

2. Transform model: Each 𝑦 and 𝑥 is divided (“weighted”) by 
  sqrt[(𝑟 , – 𝑟 )2]. 

3. Do GLS, that is, OLS with transformed variables.

T <- length(dis_x)
Mkt_RF2 <- Mkt_RF^2 # (A3’)
y_w <- dis_x/sqrt(Mkt_RF2) # transformed 𝒚 = 𝒚*
x0 <- matrix(1,T,1)
xx_w <- cbind(x0, Mkt_RF, SMB, HML)/sqrt(Mkt_RF2) # transformed X = X*
fit_dis_wls <- lm(y_w ~ xx_w - 1) # GLS

(Weighted) GLS: Pure Heteroscedasticity 

Example (continue): 
> summary(fit_dis_wls)

Call:
lm(formula = y_w ~ xx_w)

Residuals:
Min      1Q  Median      3Q     Max 

-59.399  -0.891   0.316   1.503  77.434 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

xx_w      -0.006607 0.001586  -4.165 3.59e-05 ***
xx_wMkt_RF 1.588057 0.334771   4.744 2.66e-06 ***  OLS b: 1.26056
xx_wSMB -0.200423 0.067498  -2.969  0.00311 **  OLS b: -0.028993 
xx_wHML -0.042032 0.072821  -0.577  0.56404  OLS b: 0.174545
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.984 on 566 degrees of  freedom
Multiple R-squared:  0.09078,   Adjusted R-squared:  0.08435 
F-statistic: 14.13 on 4 and 566 DF,  p-value: 5.366e-11
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GLS: First-order Autocorrelation Case

• We assume an AR(1) process for the t:
𝜀 = 𝜌 𝜀 𝑢 , 𝑢 : uncorrelated error (WN) ~ D(0,  )

• We need to find the transformation matrix P = -1/2 for:

(A3’)  𝑉𝑎𝑟 𝜺 𝚺 σ 𝛀 σ

𝜔 𝜔 . . . 𝜔
𝜔 𝜔 . . . 𝜔
⁞ ⁞  ⁞

𝜔 𝜔 . . . 𝜔

,

where σ 𝜔 =  = E[𝜀 𝜀 ] = 𝜎 𝜔 . (= γ ) 

σ 𝜔 =  = Var[𝜀 ] (homoscedasticity, constant for all i.)

Notation: We use γ to denote a (auto-) covariance between two 
observations separated by 𝑙 periods. For example, when 𝑙 =1:

γ =  =  = … =  = Cov[𝜀 , 𝜀 ] = E[𝜀  𝜀 ]

GLS: First-order Autocorrelation Case

• Steps for GLS:
1. To find the transformation matrix P, we need to derive the implied 
(A3’) based on the AR(1) process for 𝜀 :

(1) Find diagonal elements of : Var[𝜀 ] =   = 
𝜀 = 𝜌 𝜀 𝑢 -autoregressive AR(1) form.

We take variances on both sides –i.e., E[ ]:

Var[𝜀 ] =  2 Var[𝜀 ] + Var[𝑢 ] (Var[𝜀 ] = Var[𝜀 ] =  )

   = –we need to assume  ||< 1. 

Notation: Using the γ time series notation for (auto-) covariances:
γ =   = E[𝜀 𝜀 ] = Var[𝜀 ] =  /(1- 2).
γ =  = Cov[𝜀 , 𝜀 ] = E[𝜀 𝜀 ] 𝑙 = 𝑖 𝑗
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GLS: AR(1) Case – Autocovariances

(2) Find off-diagonal elements  =  γ (autocovariance γ at lag 𝑙 = 𝑗 –
𝑖). It measures how two errors separated in time by 𝑙 periods covary:

 = γ = Cov[𝜀 , 𝜀 ] = E[𝜀 𝜀 ] 𝑙 = 𝑖 - 𝑗

γ  = 𝐶𝑜𝑣 𝜀 , 𝜀   𝐸 𝜌𝜀 𝑢  𝜀
 𝜌 𝐸 𝜀  𝜀 𝐸 𝑢  𝜀
 𝜌 Var 𝜀 𝜌   

 𝜌 γ

γ  = 𝐶𝑜𝑣 𝜀 , 𝜀    𝐸 𝜌𝜀 𝑢  𝜀  
 𝜌 𝐸 𝜀  𝜀 𝐸 𝑢  𝜀
 𝜌 𝐶𝑜𝑣 𝜀 , 𝜀  
 𝜌 γ
 𝜌 γ

GLS: AR(1) Case – Autocovariances

γ = 𝜌 γ   𝜌 γ

γ = 𝐶𝑜𝑣 𝜀 , 𝜀   𝐸 𝜌𝜀 𝑢  𝜀
 𝜌 𝐸 𝜀  𝜀 𝐸 𝑢  𝜀
 𝜌 𝐶𝑜𝑣 𝜀 ,  𝜀  𝜌 γ
 𝜌 γ
 𝜌 γ

⋮
γ   𝐶𝑜𝑣 𝜀 , 𝜀   𝜌  γ (γ  𝜌 γ )

 𝜌  γ

• We defined: γ  =  = , 

 γ  𝜌
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GLS: AR(1) Case – Autocorrelation Matrix Σ

(A3’) 𝜎 Ω

1 𝜌 𝜌 ⋯ 𝜌
𝜌 1 𝜌 ⋯ 𝜌
𝜌 𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋮ ⋱ ⋮

𝜌 𝜌 𝜌 ⋯ 1

• Then, we can get the transformation matrix P = -1/2:

Ω /

1 𝜌 0 0 . . . 0
𝜌 1 0 . . . 0

0 𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 𝜌 0

• Now, we get (A3’) Σ = σ2 .

𝐏 𝛀 /

1 𝜌 0 0 . . . 0
𝜌 1 0 . . . 0

0 𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 𝜌 0

∗

y
y
y
⋮

y

𝒚* 𝐏 𝒚

1 𝜌 𝑦
𝑦 𝜌 𝑦
𝑦 𝜌 𝑦

. . .
𝑦 𝜌 𝑦

2. With P = -1/2, we transform the data to do GLS.

 GLS: Transformed 𝒚*. 

:

GLS: AR(1) Case – Transformed 𝒚 & X: 𝒚* & X*
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𝐏 𝛀 /

1 𝜌 0 0 . . . 0
𝜌 1 0 . . . 0

0 𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 𝜌 0

∗

 𝑥
 𝑥
 𝑥
⋮

 𝑥

𝒙∗ 𝐏 𝒙

1 𝜌  𝑥
𝑥 𝜌 𝑥
𝑥 𝜌 𝑥

. . .
𝑥 𝜌 𝑥

2. Transformed  𝒙 column (independent variable 𝑘) of  matrix X is:

3. GLS is done with transformed data. In (A3’) we assume 𝜌 known. 

 GLS: Transformed 𝑿∗. 

GLS: AR(1) Case – Transformed 𝒚 & X: 𝒚* & X*

GLS: The Autoregressive Transformation

• With AR models, sometimes it is easier to transform the data by 
taking pseudo differences. 

• For the AR(1) model, we multiply the DGP by ρ and subtract it 
from it. That is, 

𝑦    𝒙 ′𝛃  𝜀 , 𝜀 𝜌𝜀 𝑢
𝜌𝑦 𝜌𝒙 ′𝛃 𝜌𝜀

𝑦 𝜌𝑦 𝒙 𝜌𝒙 ′𝛃  𝜀 𝜌𝜀
𝑦∗ 𝒙∗′𝛃  𝑢

Now, we have the errors, 𝑢 , which are uncorrelated. We can do OLS 
with the pseudo differences.

Note: 𝑦∗ 𝑦 𝜌𝑦 &  𝒙∗ 𝒙 𝜌𝒙 are pseudo differences.
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FGLS: Unknown 

• The problem with GLS is that  is unknown. For example, in the 
AR(1) case,  is unknown.  

• Solution: Estimate .  Feasible GLS (FGLS).

• In general, there are two approaches for GLS:

(1) Two-step, or Feasible estimation: - First, estimate  first. 

- Second, do GLS. 

Technical note: Nice asymptotic properties for FGLS estimator. Not 
longer BLUE.

(2) ML estimation of , 2, and  at the same time (joint estimation 
of all parameters). With some exceptions, rare in practice.

FGLS: Specification of 

•  must be specified first.

• In general,  is specified in terms of a few parameters. Thus,  = 
() for some small parameter vector . Then, we need to estimate .

Examples: 

(1) Var[𝜀 |X]  =  2 f(zi). Variance a function of  and some 
variable zi (say, market volatility, firm size, industry dummy, etc). In 
general, f(.) is an exponential to make sure the variance is positive.

(2) 𝜀 with AR(1) process. We have already derived 2  as a 
function of .

Technical note: To achieve full efficiency, we do not need an efficient
estimate of the parameters in , only a consistent one.  
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FGLS: Estimation – Steps

• Steps for FGLS:
1. Estimate the model proposed in (A3’). Get  &  .

2. Find transformation matrix, P, using the estimated  &  .

3. Using P from Step 2, transform model: 𝑿∗= PX
𝒚∗= P𝒚.

4. Do FGLS, that is, OLS with 𝑿∗ &  𝒚∗.

Example: In the pure heteroscedasticity case (P is diagonal):
1. Estimate the model proposed in (A3’). Get  .
2. Find transformation matrix, P, with 𝑖th diagonal element: 1/𝜎
3. Transform model (each 𝑦 and 𝑥 is divided (“weighted”) by 𝜎 ):

𝒚𝒊
∗ 𝑦 /𝜎
𝒙𝒌,𝒊
∗ 𝑥 , /𝜎

4. Do FGLS, that is, OLS with transformed variables.

Example: Last lecture, we found that 𝑟 , 𝑟 2 & (𝑆𝑀𝐵 )2 are 
drivers of  the heteroscedasticity in DIS returns: Suppose we assume: 
(A3’)  = γ0 + γ1 𝑟 , 𝑟 2 + γ3 (𝑆𝑀𝐵 )2 

• Steps for FGLS:
1. Use OLS squared residuals to estimate (A3’):
fit_dis_ff3 <- lm(dis_x ~ Mkt_RF + SMB + HML)
e_dis <- fit_dis_ff3$residuals
e_dis2 <- e_dis^2
fit_dis2 <- lm(e_dis2 ~ Mkt_RF2 + SMB2)
summary(fit_dis2)
var_dis2 <- fit_dis2$fitted # Estimated variance vector, with elements  .

2. Find transformation matrix, P, with ith diagonal element: 1/𝜎
w_fgls <- sqrt(var_dis2) # 1/𝜎

3. Transform model: Each yi and xi is “weighted” by 1/𝜎 .
y_fw <- dis_x/w_fgls # transformed y
xx_fw <- cbind(x0, Mkt_RF, SMB, HML)/w_fgls # transformed X

FGLS: Estimation – Heteroscedasticity
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Example (continuation):
4. Do GLS, that is, OLS with transformed variables.
fit_dis_fgls <- lm(y_fw ~ xx_fw - 1)
> summary(fit_dis_fgls)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

xx_fw -0.003097 0.002696  -1.149    0.251    
xx_fwMkt_RF 1.208067 0.073344  16.471 <2e-16 ***
xx_fwSMB -0.043761 0.105280  -0.416    0.678    
xx_fwHML 0.125125 0.100853   1.241 0.215  not longer significant at 10%.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9998 on 566 degrees of  freedom
Multiple R-squared:  0.3413,    Adjusted R-squared:  0.3366 
F-statistic: 73.31 on 4 and 566 DF,  p-value: < 2.2e-16

FGLS: Estimation – Heteroscedasticity

Example (continuation): Comparing OLS, GLS & FGLS results:

• Comments:
- The GLS estimates are quite different than OLS estimates 
(remember OLS is unbiased and consistent). Very likely the assumed 
functional form in (A3’) was not a good one.
- The FGLS results are similar to the OLS, as expected, if  model is 
OK. FGLS is likely a more precise estimator (HML is not longer 
significant at 10%.

bOLS SE bGLS SE bFGLS SE

Intercept 0.00417 0.00279 -0.00661 0.00159 -0.00310 0.00270 

Mkt_RF 1.26056 0.06380 1.58806 0.33477 1.20807 0.07334

SMB -0.02899 0.09461 -0.20042 0.06750 -0.04376 0.10528 

HML 0.17455 0.09444 -0.04203 0.07282 0.12513 0.10085

FGLS: Estimation – Heteroscedasticity
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FGLS Estimation: AR(1) Case – Cochrane-Orcutt

• In the AR(1) case, it is easier to estimate the model in pseudo 
differences:

𝑦∗ = X∗  + 𝑢
𝑦 – 𝑦  = (X – X )’  +  -  

 𝑦  = 𝑦 + X ′  – X ′  + 𝑢

• We have a linear model, but it is nonlinear in parameters. OLS is not 
possible, but non-linear estimation is possible. 

• Before today’s computer power, Cochrane–Orcutt’s (1949) iterative 
procedure was an ingenious way to do this estimation.  

• Steps for Cochrane-Orcutt:

(0) Do OLS in (A1) model: 𝒚 = X  + . Get residuals, 𝒆, & 𝑅𝑆𝑆 . 

(1) Estimate  with a regression of  𝒆 against 𝒆  get  (the 
estimator of  ). 

(2) FGLS Step. Use  transform the model to get 𝒚* and X*. 

Do OLS with 𝒚∗ and 𝑿∗  get b to estimate . 

Get residuals, 𝒆* = 𝒚 – X b, and new 𝑅𝑆𝑆 . Go back to (1).

(3) Iterate until convergence, usually achieved when the difference in 
RSS of  two consecutive iterations is lower than some tolerance level, 
say .0001. Then, stop when 𝑅𝑆𝑆 – 𝑅𝑆𝑆 < .0001.

FGLS Estimation: AR(1) Case – Cochrane-Orcutt
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Example: Cochrane-Orcutt in R

# C.O. function requires Y, X (with constant), OLS b.

c.o.proc <- function(Y,X,b_0,tol){

T <- length(Y)

e <- Y - X%*%b_0 # OLS residuals

rss <- sum(e^2) # Initial RSS of  model, RSS9

rss_1 <- rss # RSS_1 will be used to reset RSS after each iteration

d_rss = rss # initialize d_rss: difference between RSSi & RSSi-1

e2 <- e[-1] # adjust sample size for et

e3 <- e[-T] # adjust sample size for et-1

ols_e0 <- lm(e2 ~ e3 - 1) # OLS to estimate rho

rho <- ols_e0$coeff[1] # initial value for rho, 0

i<-1

while (d_rss > tol) { # tolerance of  do loop. Stop when diff  in RSS < tol

rss <- rss_1 # RSS at iter (i-1)

YY <- Y[2:T] - rho * Y[1:(T-1)] # pseudo-diff  Y

XX <- X[2:T, ] - rho * X[1:(T-1), ] # pseudo-diff  X

ols_yx <- lm(YY ~ XX - 1) # adjust if  constant included in X

FGLS Estimation: Cochrane-Orcutt in R

Example (continuation): 

b <- ols_yx$coef # updated OLS b at iteration i

#  b[1] <- b[1]/(1-rho) # If  constant not pseudo-differenced remove tag #

e1 <- Y - X%*%b # updated residuals at iteration i
e2 <- e1[-1] # adjust sample size for updated et

e3 <- e1[-T] # adjust sample size for updated e_t-1 (lagged et)
ols_e1 <- lm(e2~e3-1) # updated regression to value for rho at iteration i
rho <- ols_e1$coeff[1] # updated value of  rho at iteration i, i

rss_1 <- sum(e1^2) # updated value of  RSS at iteration i, RSSi

d_rss <- abs(rss_1 - rss) # diff  in RSS (RSSi - RSSi-1)
i <- i+1

}

result <-list()
result$Cochrane_Orc.Proc <- summary(ols_yx)
result$rho.regression <- summary(ols_e1)
#  result$Corrected.b_1 <- b[1]
result$Iterations < -i-1
return(result)
}

FGLS Estimation: Cochrane-Orcutt in R
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Example: In the model for Mexican interest rates (iMX), we suspect 
an AR(1) in the residuals: 

iMX,t = 0 + 1 iUS,t + 2 et + 3 mx_It + 4 mx_yt + t

𝜀 𝜌𝜀 𝑢

• OLS estimation. 
y <- mx_i_1
T_mx <- length(mx_i_1)
x0 <- matrix(1,T_mx,1)
X <- cbind(x0, us_i_1, e_mx, mx_I, mx_y) # X matrix
fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y)
b_i <- fit_i$coefficients # extract coefficients from lm
> summary(fit_i)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.04022    0.01506   2.671  0.00834 ** 
us_i_1  0.85886    0.31211  2.752  0.00661 ** 
e_mx -0.01064    0.02130  -0.499  0.61812    
mx_I 3.34581    0.19439  17.212 < 2e-16 ***
mx_y -0.49851    0.73717  -0.676  0.49985

FGLS Estimation: Cochrane-Orcutt – iMX

Example (continuation): Now, we use Cochrane-Orcutt:
> c.o.proc(y, X, b_i, .0001)

$Cochrane.Orcutt.Proc

Call:

lm(formula = YY ~ XX - 1)

Residuals:

Min       1Q   Median       3Q      Max 

-0.69251 -0.02118 -0.01099  0.00538  0.49403 

Coefficients:

Estimate Std. Error t value Pr(>|t|)  

XX     0.16639    0.07289   2.283   0.0238 *

XXus_i_1 1.23038    0.76520   1.608  0.1098   not longer significant at 5% level.

XXe_mx -0.00535    0.01073  -0.499   0.6187  

XXmx_I 0.41608    0.27260   1.526   0.1289   not longer significant at 5% level.

XXmx_y -0.44990    0.53096  -0.847   0.3981  

---

FGLS Estimation: Cochrane-Orcutt – iMX
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Example (continuation): 
Residual standard error: 0.09678 on 160 degrees of  freedom

Multiple R-squared:  0.1082,    Adjusted R-squared:  0.08038 

F-statistic: 3.884 on 5 and 160 DF,  p-value: 0.002381

$rho

e3 

0.8830857  very high autocorrelation. 

$Corrected.b_1

XX 

0.1663884  Constant corrected if  X does not include a constant

$Number.Iteractions

[1] 10  algorithm converged in 10 iterations. 

Note: The R package “orcutt” computes the Cochrane-Orcutt algorithm: 
library(orcutt)

cochrane.orcutt(fit_i, convergence = 8, max.iter=100)

FGLS Estimation: Cochrane-Orcutt – iMX

GLS: General Remarks

• GLS is great (BLUE) if we know . Very rare situation.

• It needs the specification of  –i.e., the functional form of 
autocorrelation and heteroscedasticity.

• If the specification is bad  estimates are biased.

• Feasible GLS is not BLUE (unlike GLS); but, it is consistent and 
asymptotically more efficient than OLS.

• We use GLS for inference and/or efficiency.  OLS is still unbiased 
and consistent.

• OLS and GLS estimates will be different due to sampling error. But, 
if they are very different, then it is likely that some other CLM 
assumption is violated.


