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Lecture 7-b
Departures from OLS Assumptions

1

Brooks (4th edition): Chapter 5

© R. Susmel, 2020 (for private use, not to be posted/shared online).

• The CLM assumes  

(A3) Var[|X] = 2 IT

Now, we will assume:

(A3’) Var[|X] = Σ (also written as 2, where  ≠ IT)

Σ = 

𝜎  ⋯ 
 𝜎 ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ 𝜎

• Two Leading Cases:

– Pure heteroscedasticity: We model only the diagonal elements. 

– Pure autocorrelation: We model only the off-diagonal elements. 

Review - CLM: Departures from (A3)
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• Pure heteroscedasticity:

E[  |X] =  =  if  𝑖 = 𝑗

= 0 if  𝑖 ≠ 𝑗 
 Var[ |X]  =  

Σ = 

σ 0 ⋯ 0
0 σ ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ

• Common structure in:

- Time series: The variance of  the errors changing over time or subject 
to different regimes (say, bear and bull regimes).

- Cross sections: Firms in different industries have different variances.

Review - CLM: Heteroscedasticity

3

• Pure cross/auto-correlation:

E[  |X]  =  if  𝑖 ≠ 𝑗
= 2 if  𝑖 = 𝑗

Σ = 

𝜎  ⋯ 
 𝜎 ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ 𝜎

• Common structure in:

- Cross sections: Errors of  two firms in the same industry can be 
correlated, since they are subject to common (industry) shocks. 

- Time series: Returns show clustering of  errors (“news”) over time, 
since it takes time to absorb shocks.

Review - CLM: Cross/auto-correlation

4
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Review - Testing for Heteroscedasticity

• Recall that b is unbiased in the presence of heteroscedasticity. We 
test for heteroscedasticity for efficiency and to do proper inference.

• We want to test: H0: E( ) = 2 for all 𝑖.

H1: E( ) =  2 for at least some 𝑖.

• The structure of H1 drives the form (& power) of the test. It depend 
on what we consider the drivers of  : a particular variable, say 𝒙 , a 
regime (before & after some event), or past volatility,  . 

• We went over three tests of heteroscedasticity:

- Goldfeld & Quandt (GQ) -in general, H1 involves regimes

- Breusch & Pagan (BP) -we have a particular H1 in mind

- White -general departure of H0

• GQ tests H0:  = 2

H1:  f𝒙 ) 𝒙 : variable/regime dummy.

• Steps for the GQ test: 

– Step 1. Arrange the data from small to large values of the 
independent variable suspected of causing heteroscedasticity, 𝒙 .

– Step 2. Run two separate regressions, one for small values of 𝒙
and one for large values of 𝒙 , omitting d middle observations (d ≈ 
20%). Get the RSS for each regression: RSS1 for small values of 𝒙
and RSS2 for large 𝒙 ’s.

– Step 3. Calculate the F ratio

GQ = 
RSS2
RSS1

, ~ 𝐹 , , with 𝑑𝑓=[(T – d) – 2(𝑘 +1)]/2   (A5 holds)

22

Review - Heteroscedasticity Test: GQ Test
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• The derivation of the BP test is complicated. The implementation 
of the studentized BP test is simple, based on the squared OLS 
residuals, e , & the specific set of drivers of  , the 𝑧 ’s, under H1.

• Steps for the studentized Breusch-Pagan LM test

- Step 1. Run OLS on DGP:

𝒚 = X  + . –Keep ei

- Step 2. (Auxiliary Regression). Run the regression of 𝑒 on the m 
explanatory variables, z. In our example, 

𝑒 = α + α  𝑧 , + .... + α 𝑧 , + 𝑣 –Keep R2 (𝑅 )

- Step 3. Calculate 

LM = T 𝑅
    

χ .
25

Review - Heteroscedasticity Test: BP Test

• The White test derivation is complicated, but, easy to compute. 

• Steps for the White LM test:

– Step 1. (Same as BP’s Step 1). Run OLS on DGP:

𝒚 = X  + . Keep residuals, 𝑒 .

– Step 2. (Auxiliary Regression). Regress e on all the explanatory 
variables (𝑥 ), their squares (𝑥 2), & all their cross products 𝑥  ∗ 𝑥 . 

For example, with 𝑘 = 2 explanatory variables, the test is based on: 

𝑒 = β0 + β1 𝑥 , + β2 𝑥 , + β3 𝑥 , + β4 𝑥 , + β5 𝑥 , 𝑥 , + 𝑣

Let 𝑚 be the number of regressors in auxiliary regression (in the 
above example, 𝑚 = 5). Keep R2, say 𝑅 .

– Step 3. Compute the statistic: LM = T 𝑅 → χ .
8

Review - Heteroscedasticity Test: White Test
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• We look for autocorrelation in the error structure.  Usually, we 
model autocorrelation using two models: autoregressive (AR) and 
moving averages (MA). 

• In an AR model, the errors, 𝜀 , show a correlation over time. For 
example, AR(𝑝):

𝜀   𝜀   𝜀 ⋯   𝜀 𝑢  𝑢 ~𝐷 0, σ )

• Breusch & Godfrey (1978) use this AR(𝑝) structure as the base of  
H1 & the structure of  the LM test, which is joint test: 

H0 p = 0
H1: at least one  ≠ 0, for i = 1, 2, …, p

Under H0, Breusch & Godfrey use OLS residuals, 𝑒 , to construct an 
LM test (BG test), similar to the BP test.

Review: Finding Auto/cross-correlation

9

• Under the null hypothesis of no AR(𝑝) we have 
H0  = 0.
H1: at least one  ≠ 0, for i = 1, 2, …, p

• Steps for the Breusch–Godfrey (1978) LM test:

– Step 1. (Same as BP’s Step 1). Run OLS on DGP:

𝒚 = X  + . - Keep residuals, 𝑒 .

– Step 2. (Auxiliary Regression). Run the regression of 𝑒 on all 
the explanatory variables, X, and 𝑝 lags of residuals, 𝑒 :

𝑒 = 𝒙 ’ γ + α1 𝑒 + .... + αp 𝑒 + 𝑣 - Keep R2 (𝑅 )

– Step 3. Keep 𝑅 . Then, calculate:

LM = (T - 𝑝) * 𝑅 → χ .
10

Review: LM Test for Autocorrelation
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Example: LM-AR Test for the 3 factor F-F model for IBM returns 
(p = 12 lags):

e_ibm <- fit_ibm_ff3$residuals # OLS residuals

p_lag <- 12 # Select # of lags for test (set p)

e_lag <- matrix(0,T-p_lag,p_lag) # Matrix to collect lagged residuals

a <- 1

while (a<=p_lag) { # loop creates matrix (e_lag) with lagged e

za <- e_ibm[a:(T-p_lag+a-1)]

e_lag[,a] <- za

a <- a+1

}

Mkt_RF_p <- Mkt_RF[(p_lag+1):T] # Adjust for new sample size: T – p_lag

SMB_p <- SMB[(p_lag+1):T]

HML_p <- HML[(p_lag+1):T]

fit_ibm_ar <- lm(e_ibm[(p_lag+1):T] ~ e_lag + Mkt_RF_p + SMB_p + HML_p) # Aux R

r2_e1 <- summary(fit_ibm_ar)$r.squared # get R2 from Auxiliary Regression 11

Review: LM Test for Autocorrelation

Example (continuation):
> r2_e1

[1] 0.0303721 

> (T-p_lag)

[1] 557

lm_t <- (T-p_lag ) * r2_e1 # LM-test with p lags

> lm_t

[1] 16.91726 

df <- ncol(e_lag) # degrees of freedom for the LM Test

> 1-pchisq(lm_t,df)

[1] 0.1560063

LM-AR(12) Test: 16.91726  cannot reject H0 at 5% level (p-value > .05)

• If we  run the test with p = 4 lags, we get
LM-AR(4) Test: 2.9747 (p-value = 0.56)  cannot reject H0 at 5% level

12

Review: LM Test for Autocorrelation
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Example (continuation):
The package lmtest, performs this test, bgtest, (and many others, used in 
this class, encompassing, jtest, waldtest, etc). 
library(lmtest)
> bgtest(ibm_x ~ Mkt_RF + SMB + HML, order=12)

Breusch-Godfrey test for serial correlation of  order up to        12

data:  lr_ibm ~ Mkt_RF + SMB + HML
LM test = 16.259, df = 12, p-value = 0.1797 (minor difference with the previous test, likely due to 

multiplication by T. Results do not change much)

Note: If you do not include in the Auxiliary Regression the original 
regressors (Mkt_RF, SMB, HML) the test do not change much. You 
get LM-AR(12) Test: 16.83253  very similar. Not entirely 

correct, but it works well. 

Review: LM Test for Autocorrelation

13

• Q: How many lags are needed in the test? 
A: Enough to make sure there is no auto-correlation left in the 
residuals. 

• There are some popular rule of thumbs: for daily data, 5 or 20 lags; 
for weekly, 4 or 12 lags; for monthly data, 12 lags; for quarterly data, 4 
lags.

14

Review: LM Test for Autocorrelation
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Testing for Autocorrelation: Durbin-Watson

• The Durbin-Watson (1950) (DW) test for AR(1) autocorrelation:  
H00 against H1≠ 0. Based on simple correlations of 𝒆.

𝑑 = 
∑   

∑

• It is easy to show that when T → ∞, 𝑑  2(1 - ).  

•  is estimated by the sample correlation r.

• Under H0, =0. Then, 𝑑 should be distributed randomly around 2.

• Small values (close to 0) or Big values (close to 4) of 𝑑 lead to 
rejection of H0. The distribution depends on X. Since there are better 
tests, in practice, the DW is used “visually:” Is 𝑑 close to 2? 

The R function dwtest from the lmtest package produces also a p-value. 
15

Example: DW Test for the 3 factor F-F model for IBM returns

RSS <- sum(e_ibm^2) # RSS
DW <- sum((e_ibm[1:(T-1)] - e_ibm[2:T])^2)/RSS # DW stat
> DW
[1] 2.042728  DW statistic ≈ 2  No evidence for autocorrelation of order 1.
> 2 * (1 - cor(e_ibm[1:(T-1)], e_ibm[2:T])) # approximate DW stat
[1] 2.048281

• Similar finding for Disney returns:
> DW

[,1]
[1,] 2.1609  DW statistic ≈ 2  But, DIS suffers from autocorrelation!

 This is why DW are not that informative. They only test for AR(1) in residuals.

Note: The package lmtest performs this test too, dwtest:

> dwtest(fit_ibm_ff3)

DW = 2.0427, p-value = 0.7087

Testing for Autocorrelation: DW Test 

16
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Example: DW Test for the residuals of the encompassing model 
(IFE + PPP) for changes in USD/GBP:

e_gbp <- fit_gbp$residuals
> dwtest(fit_gbp)

Durbin-Watson test

data:  fit_gbp
DW = 1.8588, p-value = 0.08037  not significant at 5% level.
alternative hypothesis: true autocorrelation is greater than 0

Testing for Autocorrelation: DW Test 

17

Testing for Autocorrelation: Portmanteu tests

• Portmanteu tests are tests with a well-defined H0, but not specific 
H1. We will present two: Box-Pierce Q test and the Ljung-Box test.

• Box-Pierce (1970) test (Q test).

It tests H0 p = 0 using the sample correlation, 𝑟 = 

where (using time series notation)

𝛾 = Sample covariance between 𝑦 & 𝑦 = 
∑   

𝛾 = Sample variance.

Then, under H0:

Q = T  ∑ 𝑟 → χ .
18
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Testing for Autocorrelation: Portmanteu tests

• Ljung-Box (1978) test (LB test). 

A variation of the Box-Pierce test. It has a small sample correction.

LB = 𝑇 ∗ (𝑇 2) * ∑  
    

χ .

Technical Note: The asymptotic distribution of both tests is based on 

the fact that, under the null of independent data, 𝑇 𝒓
    

N(0, I). 

Note: When analyzing residuals, 𝑒 , of a regression we compute 𝑟 as: 

𝑟 = = 
∑  

∑

• The LB statistic is widely used. But, the BG (1978) LM tests 
conditions on X. Thus, it is more powerful..  

19

Example: Q and LB tests with p=12 lags for the residuals in the 3-
factor FF model for IBM excess returns:
RSS <- sum(e_ibm^2)

r_sum <- 0

lb_sum <- 0

p_lag <- 12

a <- 1

while (a <= p_lag) {

za <- as.numeric(t(e_ibm[(p_lag+1):T]) %*% e_ibm[a:(T-p_lag+a-1)])

r_sum <- r_sum + (za/RSS)^2 #sum cor(e[(p_lag+1):T], e[a:(T-p_lag+a-1)])^2

lb_sum <- lb_sum + (za/RSS)^2/(T-a) 

a <- a + 1

} 

Q <- T*r_sum

LB <- T*(T-2)*lb_sum

> Q

[1] 16.39559 (p-value = 0.1737815)  cannot reject H0 at 5% level. 

> LB

[1] 16.46854 (p-value = 0.1707059)  cannot reject H0 at 5% level. 

Testing for Autocorrelation: Portmanteu tests

20
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Example (continuation): The Box.test function computes Q & LB:
• Q  test
> Box.test(e_ibm, lag = 12, type="Box-Pierce")

Box-Pierce test

data:  e_ibm

X-squared = 16.304, df = 12, p-value = 0.1777

• LB test
> Box.test(e_ibm, lag = 12, type="Ljung-Box")

Box-Ljung test

data:  e_ibmX-squared = 16.61, df = 12, p-value = 0.1649

Note: There is a minor difference between the previous code and the code 
in Box.test. They are based on how the correlations of e are computed 
(centered around the mean, or assumed zero mean).

Testing for Autocorrelation: Portmanteu tests

21

22

Example (continuation): Same tests (p=12 lags) & same model:
• For DIS (e_dis), we get:
> Q
[1] 25.563 (p-value = 0.01237)  reject H0 at 5% level. 
> LB
[1] 25.879 (p-value = 0.01117)  reject H0 at 5% level. 

• For GE (e_ge), we get:
> Q
[1] 27.087 (p-value = 0.007507)  reject H0 at 5% level. 
> LB
[1] 27.523 (p-value = 0.006493)  reject H0 at 5% level. 

• Autocorrelation in financial asset returns is a usual finding in 
monthly, weekly and daily data.  

Testing for Autocorrelation: Portmanteu tests
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23

Example: Same Q and LB tests (p = 12 lags) for the USD/GBP
residuals in the encompassing (PPP + IFE) model:
e_gbp <- fit_gbp$residuals

>  Box.test(e_gbp, lag = 12, type="Box-Pierce")

Box-Pierce test

data:  e_gbp

X-squared = 19.587, df = 12, p-value = 0.0753    cannot reject H0 at 5% level,
but close. 

>  Box.test(e_gbp, lag = 12, type="Ljung-Box")

Box-Ljung test

data:  e_gbp

X-squared = 20.032, df = 12, p-value = 0.06649    cannot reject H0 at 5% level. 

Testing for Autocorrelation: Portmanteu tests

Testing for Autocorrelation: Portmanteu tests

• Q & LB tests are widely use, but they have two main limitations: 

(1) The test was developed under the independence assumption. 

If 𝑦 shows dependence, such as heteroscedasticity, the asymptotic 
variance of 𝑇 𝒓 is no longer I, but a non-diagonal matrix.

There are several proposals to “robustify” both Q & LB tests, see 
Diebold (1986), Robinson (1991), Lobato et al. (2001). The 
“robustified” Portmanteau statistic uses 𝑟 instead of 𝑟 :

𝑟 =   = 
∑      

∑      

Thus, for Q we have:

Q* = T  ∑ �̃� → χ . 24
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Testing for Autocorrelation: Portmanteu tests

(2) The selection of the number of autocorrelations 𝑝 is arbitrary.

The traditional approach is to try different 𝑝 values, say 3, 6 & 12. 
Another popular approach is to let the data “select” 𝑝, for example, 
using AIC or BIC, an approach sometimes referred as “automatic 
selection.” 

Escanciano and Lobato (2009) propose combining BIC’s and AIC’s 
penalties to select 𝑝 in Q* (BIC for small and AIC for bigger .

• It is possible to reach very different conclusion from Q and Q*. 

25

26

Example: Q* tests with automatic selection of p for the residuals in 
the 3-factor FF model for IBM & DIS excess returns. We use 
Auto.Q funcition in R package vrtest.

- For IBM (e_ibm), we get:

> library(vrtest)

> Auto.Q(e_ibm, 12) #Maximum potential lag = 12

> $Stat

[1] 0.2781782

$Pvalue

[1] 0.5978978

- For DIS (e_dis), we get:

> Auto.Q(e_dis, 12)

$Stat

[1] 2.649553

$Pvalue

[1] 0.103579  Reversal for DIS

Testing for Autocorrelation: Portmanteu tests
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27

• Time-varying volatility is very common in financial time series. We 
can use the Q & LB tests for autocorrelation to check for 
autocorrelation in squared errors, 𝑒 , which based on White’s idea, 
we use to estimate  . 

• We use a Portmanteu test on the squared residuals to check for a 
particular kind of heteroscedasticity: the variance,  , is driven by 
lagged squared errors. 

H0:   = 2

H1:   = f(𝜀 𝜀 , ...., 𝜀 )

• Of course, an LM-BP test can also be used, using lagged squared 
residuals as the drivers of heteroscedasticity (more on this topic in 
Lecture 10). 

Testing for Autocorrelation: Heteroscedasticity

28

Example: Q and LB tests with 𝑝 = 12 lags for the squared residuals 
in the 3-factor FF model for IBM returns:
> e_ibm2 <- e_ibm^2

• Q test
> Box.test(e_ibm2, lag = 12, type="Box-Pierce")

Box-Pierce test

data:  e_ibm2

X-squared = 37.741, df = 12, p-value = 0.0001693

• LB test
> Box.test(e_ibm2, lag = 12, type="Ljung-Box")

Box-Ljung test

data:  e_ibm2

X-squared = 38.435, df = 12, p-value = 0.0001304

Testing for Autocorrelation: Heteroscedasticity
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29

Example (continuation): Q and LB tests with p = 12 lags for the 
squared residuals in the 3-factor FF model for DIS & GE returns:
• For DIS (dis_x), we get
> Box.test(e_dis2, lag = 12, type="Ljung-Box")

Box-Ljung test

data:  e_dis2

X-squared = 73.798, df = 12, p-value = 6.195e-11

• For GE (ge_x), we get
> Box.test(e_ge2, lag = 12, type="Ljung-Box")

Box-Ljung test

data:  e_ge2

X-squared = 115.9, df = 12, p-value < 2.2e-16

• Strong evidence for time-varying heteroscedasticity in the residuals.

Testing for Autocorrelation: Heteroscedasticity

• Now, we go back to the CLM Assumptions:

(A1) DGP: y = X  +  is correctly specified. 

(A2) or (A2’) 

(A3’) Var[|X] = Σ (sometimes written Var[|X] = 2)

Σ = 

𝜎  ⋯ 
 𝜎 ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ 𝜎

-a (TxT) symmetric matrix

(A4) or (A4’)

• This is the generalized regression model (GRM). 

• OLS b is still unbiased (& consistent). Can we still use OLS?

Generalized Regression Model (GRM)
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GR Model: True Variance for b

• From (A3) Var[|X] = σ IT  Var[b|X] = σ  (XX)-1.

• Now, we have (A3’) Var[|X] = Σ

• Recall b =  + (XX)-1 X .

• The true variance of  b under (A3’) should be:
VarT[b|X]  = E[(b – )(b – )|X]

= (XX)-1 E[X X|X] (XX)-1

= (XX)-1 XΣX (XX)-1

Example: We compute the true variance for the simplest case, a 
regression with only one explanatory variable and heteroscedastic :

𝒚 = X  +  ,  ~ D(0, σ )

 VarT[b|X] = 
∑ ̅

∑ σ 𝑥 �̅� .

GR Model: True Variance for b

Example (continuation): 

 VarT[b|X] = 
∑ ̅

∑ σ 𝑥 �̅� .

If  we compute the OLS variance, we see how both estimators differ:

Var[b|X] = 
∑ ̅

≠ VarT[b|X] 

• Under (A3’), the usual OLS estimator of  Var[b|X] –i.e., 𝑠 (XX)-1–
is biased. If  we want to use OLS for inferences (say, with t-test or F-test), 
we need to estimate VarT[b|X]. 

• That is, we need to estimate the unknown Σ. But, it has T*(T+1)/2 
parameters. Too many parameters to estimate with only T 
observations! 
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• We will not be estimating Σ. Impossible with T data points. 

• We will estimate XΣX = ∑ ∑   𝒙  𝒙 , a (𝑘x𝑘) matrix. That 
is, we are estimating [𝑘 * (𝑘 + 1)]/2 elements.

• This distinction is very important in modern applied econometrics: 

– The White estimator

– The Newey-West estimator

• Both estimators produce a consistent estimator of VarT[b|X]:

VarT[b|X] = (X’X)-1 XΣX (X’X)-1

Since b consistently estimates , the OLS residuals, 𝒆, are also 
consistent estimators of . We use e to consistently estimate XΣX. 

GR Model: Robust Covariance Matrix

• The White estimator simplifies the estimation since it only assumes 
heteroscedasticity. Then, Σ is a diagonal matrix, with elements 𝜎 . 

Σ = 

σ 0 ⋯ 0
0 σ ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ

-a (TxT) matrix

Thus, we need to estimate: Q* = (1/T) XΣX  -a (𝑘x𝑘) matrix

where

X’ Σ X 
∑ 𝒙𝟐𝑻
𝒊 𝟏 σ ⋯ ∑ 𝒙 𝒙 σ𝑻

𝒊 𝟏
⋮ ⋱ ⋮

∑ 𝒙 𝒊𝒙
𝑻
𝒊 𝟏 σ ⋯ ∑ 𝒙𝟐 σ𝑻

𝒊 𝟏

 = ∑ σ  𝒙 𝒙 

• Q: How do we estimate σ ? 

Covariance Matrix: The White Estimator
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• We need to estimate: Q* = (1/T) XΣX = (1/T)∑ σ  𝒙 𝒙 

• The OLS residuals, 𝒆, are consistent estimators of  . This suggests 
using 𝑒 to estimate σ . That is, 

we estimate Q* = (1/T)∑ σ  𝒙 𝒙 
with S0 = (1/T) ∑ 𝑒  𝒙 𝒙 

Example: Back to the simplest case, a regression with one 
explanatory variable and heteroscedastic error term, we have:

VarT[b|X] = 
∑ ̅

∑ σ 𝑥 �̅�

which we estimate using OLS residuals, 𝑒 :

Est VarT[b|X] = 
∑ ̅

∑ 𝑒 𝑥 �̅� .

Covariance Matrix: The White Estimator

• White (1980) shows that a consistent estimator of  VarT[b|X] is 
obtained if  𝑒 is used as an estimator of  σ .  Taking the square root, 
we get a heteroscedasticity-consistent (HC) standard errors (HCSE).

• (A3’) was not specified. That is, the White estimator is robust to a 
potential misspecifications of  heteroscedasticity in (A3’). 

• The White estimator allows us to make inferences using the OLS 
estimator b in situations where heteroscedasticity is suspected, but we 
do not know enough to identify its nature. 

Note: The estimator is also called the sandwich estimator or 

the White estimator (also known as Eiker-Huber-White 

estimator).
Halbert White (1950-2012, USA)

Covariance Matrix: The White Estimator
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(1) Since there are many refinements of  the White estimator, the 
White estimator is usually referred as HC0 (or just “HC”):

HC0 = (X’X)-1 X’ Diag[𝑒 ] X (X’X)-1

(2) In large samples, SEs, t-tests and F-tests are asymptotically valid.

(3)  The OLS estimator remains inefficient. But inferences are 
asymptotically correct. 

(4) The HC SEs can be larger or smaller than the OLS SEs (in 
general, HC SEs are larger when positively correlated to xi or xi

2, 
which tends to be the case). It can make a difference to the tests.

(5) It is used, along the Newey-West estimator,  in almost all finance 
applied work. Included in all the packaged software programs. 

The White Estimator: Some Remarks

The White Estimator: Some Remarks

(6) In R, you can use the library “sandwich,” to calculate White SEs. 
They are easy to program:

# White SE in R

White_f <- function(y,X,b) {

T <- length(y)

k <- length(b)

yhat <- X%*%b # fitted values

e <- y-yhat # residuals

hhat <- t(X)*as.vector(t(e)) # xi ei

G <- matrix(0,k,k) # Create empty kxk matrix to place x’e ex

za <- hhat[,1:k]%*%t(hhat[,1:k]) # X’ diag[ei] X

G <- G + za # X’ diag[ei] X

F <- t(X)%*%X # X’X

V <- solve(F)%*%G%*%solve(F) # S0

white_se <- sqrt(diag(V))

ols_se <- sqrt(diag(solve(F)*drop((t(e)%*%e))/(T-k)))

l_se = list(white_se,olse_se)

return(l_se) }
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The White Estimator: Application 1 – IBM

Example: We estimate t-values using OLS and White SE, for the 3 
factor F-F model for IBM returns: 

(𝑟 , – 𝑟 ) = 0 + 1 (𝑟 , – 𝑟 ) + 2 𝑆𝑀𝐵 + 3 𝐻𝑀𝐿 + 

fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML) # OLS Regression with lm

b_ibm <- fit_ibm_ff3$coefficients # Extract OLS coeff’s from fit_ibm_ff3

SE_OLS <- sqrt(diag(vcov(fit_ibm_ff3))) # Extract OLS SE from fit_ibm_ff3

t_OLS <- b_ibm/SE_OLS # Calculate  OLS t-values

> b_ibm

(Intercept)       Mkt_RF SMB          HML 

-0.005191356  0.910379487 -0.221385575 -0.139179020 

> SE_OLS

(Intercept)      Mkt_RF SMB         HML 

0.002482305 0.056784474 0.084213761 0.084060299 

> t_OLS

(Intercept)      Mkt_RF SMB         HML 

-2.091345   16.032190   -2.628853   -1.655705

The White Estimator: Application 1 – IBM

Example (continuation): 
> library(sandwich)
White <- vcovHC(fit_ibm_ff3, type = "HC0")
SE_White <- sqrt(diag(White)) # White SE HC0
t_White <- b_ibm/SE_White

> SE_White
(Intercept)      Mkt_RF SMB         HML 
0.002505978 0.062481080 0.105645459 0.096087035 
> t_White
(Intercept)      Mkt_RF SMB         HML 

-2.071589   14.570482   -2.095552   -1.448468 ⟹ HML not longer significant at 10% level

White3 <- vcovHC(fit_ibm, type = "HC3") # White SE HC3 (refinement)
SE_White3 <- sqrt(diag(White3))# White SE HC0
t_White <- b_i/SE_White3
> SE_White3
(Intercept)      Mkt_RF SMB         HML 
0.002533461 0.063818378 0.108316056 0.098800721 
> t_White3
(Intercept)      Mkt_RF SMB         HML 

-2.049116   14.265162   -2.043885   -1.408684 ⟹ similar results with HC3 refinement
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The White Estimator: Application 2 – iMX

Example: We estimate Mexican interest rates (iMX) with a linear 
model including US interest rates, changes in exchange rates 
(MXN/USD), Mexican inflation and Mexican GDP growth, using 
quarterly data 1978:II – 2020:II (T=166): 

iMX,t = 0 + 1 iUS,t + 2 et + 3 mx_It + 4 mx_yt + 

FMX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/FX_USA_MX.csv", head=TRUE, 
sep=",")

us_i <- FMX_da$US_int # US short-term interest rates (iUS)

mx_CPI <- FMX_da$MX_CPI # Mexican CPI

mx_M1 <- FMX_da$MX_M1 # Mexican Money Supply (M1)

mx_i <- FMX_da$MX_int # Mexican short-term interest rates (iMX)

mx_GDP <- FMX_da$MX_GDP # Mexican GDP

S_mx <- FMX_da$MXN_USD # St = exchange rates (MXN/USD) 

T <- length(mx_CPI)

mx_I <- log(mx_CPI[-1]/mx_CPI[-T]) # Mexican Inflation: Log  changes in CPI

mx_y <- log(mx_GDP[-1]/mx_GDP[-T]) # Mexican growth: Log  changes in GDP

Example (continuation): 
mx_mg <- log(mx_M1[-1]/mx_M1[-T]) # Money growth: Log  changes in M1

e_mx <- log(S_mx[-1]/S_mx[-T]) # Log changes in St.

us_i_1 <- us_i[-1]/100 # Adjust sample size.

mx_i_1 <- mx_i[-1]/100

mx_i_0 <- mx_i[-T]/100

fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y)

b_i <- fit_i$coefficients # Extract OLS coeff’s from fit_i

> summary(fit_i)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.04022 0.01506   2.671  0.00834 ** 

us_i_1    0.85886 0.31211  2.752  0.00661 ** 

e_mx -0.01064 0.02130  -0.499  0.61812    

mx_I 3.34581 0.19439  17.212  < 2e-16 ***

mx_y -0.49851 0.73717  -0.676  0.49985    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The White Estimator: Application 2 – iMX
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Example (continuation): 
White <- vcovHC(fit_i, type = "HC0") # Extract White Var Matrix from fit_i

SE_White <- sqrt(diag(White)) # White SE HC0

t_White <- b_i/SE_White

> SE_White

(Intercept)      us_i_1        e_mx mx_I mx_y

0.009665759 0.480130221 0.026362820 0.523925226 1.217901733 

> t_White

(Intercept)      us_i_1        e_mx mx_I mx_y

4.1613603   1.7888018 -0.4035554   6.3860367  -0.4093221 ⟹ iUS,t not longer significant at 5% level.

White3 <- vcovHC(fit_i, type = "HC3") # Using popular refinement HC3

SE_White3 <- sqrt(diag(White3)) # White SE HC3

t_White <- b_i/SE_White3

> t_White3

(Intercept)      us_i_1        e_mx mx_I mx_y

3.6338983   1.5589936 -0.2117600   5.4554986  -0.3519886 ⟹ iUS,t not longer significant at 10% level

The White Estimator: Application 2 – iMX

• Newey-West allow for both heteroscedasticy and autocorrelation. 

(A3’) Var[|X] = Σ

Σ = 

σ  ⋯ 
 σ ⋯ 
⋮ ⋮ ⋮ ⋮

  ⋯ σ

-a (TxT) matrix

Now, we need to estimate 
Q* = (1/T) XΣX  = (1/T) ∑ ∑   𝒙  𝒙  

= (1/T) ∑   𝒙  𝒙    𝒙  𝒙 ⋯   𝒙  𝒙

• Newey and West (1987) follow White (1980) to produce a HAC 
(Heteroscedasticity and Autocorrelation Consistent) estimator of  Q*, also 
referred as long-run variance (LRV): Use 𝑒 𝑒 to estimate  .

Newey-West Estimator
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• Now, we also have autocorrelation. We need to estimate 
Q* = (1/T) ∑ ∑   𝒙  𝒙  

 natural estimator of  Q*: 
ST = (1/T) ∑ ∑  𝑒  𝑒  𝒙  𝒙 

Or using time series notation, estimator of  Q*: 
ST = (1/T) ∑ ∑ 𝒙 𝑒  𝑒 𝒙 

• There are some restrictions that need to be imposed: 
- Q* needs to be a pd matrix (use a quadratic form) 
- The double sum cannot explode (use decaying weights to cut the 

sum short, after lag L the weights are zero).

Newey-West Estimator

Whitney Newey, USA Kenneth D. West, USA

• Using time series notation, estimator of  Q*: 
ST = (1/T) ∑ ∑ 𝒙 𝑒  𝑒 𝒙 

Example: Back to the simplest case, a regression with only one 
explanatory variable, but now with a heteroscedastic and 
autocorrelated error term. We estimate the “true” variance of  b with:

VarT[b|X] = 1
∑ 𝑥𝑖 �̅� 2𝑇
𝑖

2
∑ 𝑒𝑖

2 𝑥𝑖 �̅� 2𝑇
𝑖 1 + 

+ ∑ ∑  𝑥𝑖 �̅�  𝑒   𝑒 𝑥𝑗 �̅�𝑇
𝑗 𝑖 1

𝑇
𝑖 1 }

We add the sum of  the autocovariances of   𝑤  (= 𝑥  𝑒 to the White 
estimator of  VarT[b|X]. If  the autocovariances of   𝑤  (= 𝑥  𝑒 are 
positive, the NW estimator will be bigger than the White estimator. 
This is a very common case.

Newey-West Estimator
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• Two components for the NW HAC estimator:
(1) Start with Heteroscedasticity Component:

S0 = ∑ 𝑒  𝒙𝒕 𝒙  – the White estimator.

(2) Add the Autocorrelation Component

ST = S0 + ∑ 𝑘 𝑙  ∑ 𝒙 𝑒 𝑒 𝒙  + 𝒙 𝑒 𝑒 𝒙 )
where

𝑘  | |
–decaying weights (Bartlett kernel)

𝐿 is the  cut-off  lag, which is a function of  T. (More data, longer L).

The weights are linearly decaying, suppose L = 30. Then, 
𝑘(1) = 30/31 = 0.9677419
𝑘(2) = 29/31 = 0.9354839
𝑘(3) = 28/31 = 0.9032258

Newey-West Estimator

𝑘
𝑗

𝐿 𝑇
𝐿 1 |𝑗|
𝐿 1

• ST = S0 + ∑ 𝑘 𝑙  ∑ 𝒙 𝑒 𝑒 𝒙  + 𝒙 𝑒 𝑒 𝒙 )

Then,
Est. Var[b] = (1/T) (X’X/T)-1 ST (X’X/T)-1 –NW’s HAC Var.

• Under suitable conditions, as 𝐿 & T → ∞, and 𝐿/T→ 0, ST → Q*. 

• Asymptotic inferences can be based on OLS b, with t-tests and Wald 
tests using N(0,1) and χ2 critical values, respectively. 

• There are many refinements of  the NW estimators. Today, all HAC 
estimators are usually referred as NW estimators, regardless of  the 
weights (kernel) used if  they produce a positive (semi-) definite 
covariance matrix.

Newey-West Estimator
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Example: Back to the simplest case, a regression with only one 
explanatory variable, but with a heteroscedastic and autocorrelated
error term. Suppose we set 𝐿 =12, then:

VarT[b|X] = 
∑ ̅

∑ 𝑒 𝑥 �̅� + 

+ ∑   ∑  𝑥 �̅�  𝑒   𝑒 𝑥 �̅� }

To compute ST, we only add 12 autocovariances of  𝑤  (= 𝑥  𝑒 to 
the White estimator, S0.

Technical Detail: Above, it is mentioned that the asymptotics need 
that as 𝐿 & T → ∞, and 𝐿/T→ 0, to get ST → Q*. That is, as we 
gather more data, we need to increase 𝐿 –i.e., use more lags.

Newey-West Estimator

• All econometric packages (SAS, SPSS, Eviews, etc.) calculate NW 
SE. In R, you can use the library “sandwich,” to calculate NW SEs:
> library(sandwich)
> NeweyWest(x, lag = NULL, order.by = NULL, prewhite = TRUE, adjust = FALSE, 
diagnostics = FALSE, sandwich = TRUE, ar.method = "ols", data = list(), verbose = FALSE)

• Install R package sandwich and then call it.

Example:
## fit the 3 factor Fama French Model for IBM returns: 
fit_ibm <- lm(ibm_x ~ Mkt_RF + SMB + HML) 

## NeweyWest computes the NW SEs. It requires lags=L & suppression of  prewhitening
NeweyWest(fit_ibm_ff3, lag = 4, prewhite = FALSE)

Note: It is usually found that the NW SEs are downward biased.

NW Estimator: In all Econometric Packages
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• You can also program the NW SEs yourself. In R:

NW_f <- function(y, X, b, lag)
{
T <- length(y); 
k <- length(b);
yhat <- X%*%b 
e <- y - yhat
hhat <- t(X)*as.vector(t(e))
G <- matrix(0,k,k)
a <- 0
w <- numeric(T)
while (a <= lag) {
Ta <- T - a
ga <- matrix(0,k,k)
w[lag+1+a] <- (lag+1-a)/(lag+1)
za <- hhat[,(a+1):T] %*% t(hhat[,1:Ta])
ga <- ga + za
G <- G + w[lag+1+a]*ga

a <- a+1
}

F <- t(X)%*%X
V <- solve(F)%*%G%*%solve(F)
nw_se <- sqrt(diag(V))
ols_se <- sqrt(diag(solve(F)*drop((t(e)%*%e))/(T-k)))
l_se = list(nw_se,ols_se)
return(l_se) 
}

NW_f(y,X,b,lag=4)

NW Estimator: Script in R 

Example: We estimate the 3 factor F-F model for IBM returns:
> t_OLS
(Intercept)      Mkt_RF SMB         HML 

-2.091345   16.032190  -2.628853   -1.655705 ⟹ with SE_OLS: SMB significant at 1% level

NW <- NeweyWest(fit_ibm_ff3, lag = 4, prewhite = FALSE) # with 4 lags
SE_NW <- diag(sqrt(abs(NW)))
t_NW <- b_ibm/SE_NW
> SE_NW
(Intercept)      Mkt_RF SMB         HML 
0.002527425 0.069918706 0.114355320 0.104112705 
> t_NW
(Intercept)      Mkt_RF SMB         HML 

-2.054010   13.020543   -1.935945   -1.336811 ⟹ SMB close to significant at 5% level

• If  we add more lags in the NW function (lag = 8) 
NW <- NeweyWest(fit_ibm_ff3, lag = 8, prewhite = FALSE)
SE_NW <- diag(sqrt(abs(NW)))
t_NW <- b_ibm/SE_NW
> t_NW
(Intercept)      Mkt_RF SMB         HML 

-2.033648   12.779060   -1.895993   -1.312649 ⟹ not very different results. 

NW Estimator: Application 1 – IBM



RS - Financial Econometrics - Lecture 7 (Heteroscedasticity)

27© RS 2022 – Do not post/share online without written authorization from author.

Example: Mexican short-term interest rates
NW <- NeweyWest(fit_i, lag = 4, prewhite = FALSE) # with 4 lags

SE_NW <- diag(sqrt(abs(NW)))

t_NW <- b_i/SE_NW

> SE_NW

(Intercept)      us_i_1        e_mx mx_I mx_y

0.01107069  0.55810758  0.01472961  0.51675771  0.93960295 

> t_NW

(Intercept)      us_i_1        e_mx mx_I mx_y

3.6332593   1.5388750 -0.7222770   6.4746121  -0.5305582  ⟹ iUS,t not longer significant at 10% level

• If  we add more lags in the text (lag = 8) 

NW <- NeweyWest(fit_i, lag = 8, prewhite = FALSE)

SE_NW <- diag(sqrt(abs(NW)))

t_NW <- b_i/SE_NW

> t_NW

(Intercept)      us_i_1        e_mx mx_I mx_y

3.0174983   1.4318654 -0.8279016   6.5897816  -0.5825521 ⟹ similar results.

NW Estimator: Application 2 – iMX

• There are many estimators of  Q* based on a specific parametric 
model for Σ, using time series models (Lecture 8). Thus, they are not 
robust to misspecification of  (A3’). This is the appeal of  White & NW.

• NW SEs are used almost universally in academia. However:
- NW SEs perform poorly in Monte Carlo simulations: 
- NW SEs tend to be downward biased. 
- The finite-sample performance of  tests using NW SE is not well 

approximated by the asymptotic theory. 
- Tests have size distortions.

• Q: What happens if  we know the specific form of  (A3’)? 
We can do much better –i.e., more efficient- than using OLS with 
NW SEs. In this case, we can do Generalized LS (GLS), a method 
that delivers the most efficient estimators.

NW Estimator: Remarks
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Generalized Least Squares (GLS)

• GRM: Assumptions (A1), (A2), (A3’) & (A4) hold. That is,
(A1) DGP: 𝒚 = X  +  is correctly specified. 
(A2) E[|X] = 0
(A3’) Var[|X] = Σ = σ  ( is symmetric  TT = )

(A4) X has full column rank –i.e., rank(X) = 𝑘–, where T ≥ 𝑘.

• Suppose we know the form of (A3’)? We can use this information 
to gain efficiency.

• When we know (A3’), we transform 𝒚 & X, in such a way, that we 
can do again OLS with the transformed data.

To do this transformation, we exploit a property of symmetric 
matrices, like the variance-covariance matrix, :

 is symmetric  exists T ∋ TT =   T-1  T-1= I 

Generalized Least Squares (GLS)

Note:  can be decomposed as 
 = T T (think of T as 1/2)  T-1  T-1= I 

• We transform the linear model in (A1) using P = -1/2 (= T-1).
P =  -1/2  PP = -1    

P𝒚 = PX + P or  
𝒚*  = X* + *.
E[**’|X*] = P E[|X*] P = P E[|X] P = σ2 P  P

= σ2 -1/2  -1/2 = σ2 IT  back to (A3)

• The transformed model is homoscedastic: We have the CLM 
framework back  we can use OLS! 

bGLS = b* = (X*X*)-1 X*𝒚*

= (XP PX)-1 XP P𝒚
= (XΩ-1X)-1 XΩ-1𝒚
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Remarks: 

– The transformed model is homoscedastic:

Var[*|X*] = E[**|X*]= PE[|X*]P = σ2 PP = σ2 IT

– We have the CLM framework back: We do OLS with the 
transformed model, we call this OLS estimator, the GLS 
estimator:

bGLS = b* = (X*X*)-1 X* 𝒚* = (XP PX)-1 XP P𝒚
= (XΩ-1X)-1 XΩ-1𝒚

– Key assumption:  is known, and, thus, P is also known; 
otherwise we cannot transformed the model.

• Big Question: Is  known?

Generalized Least Squares (GLS)

Alexander C. Aitken (1895 –1967, NZ)

• The GLS estimator is: 

bGLS = (X’Ω-1X)-1 X’Ω-1 𝒚
Note I: bGLS ≠ b.  bGLS is BLUE by construction, b is not.

• Check unbiasedness:
bGLS = (X’Ω-1X)-1 X’Ω-1 𝒚 = (X’Ω-1X)-1 X’Ω-1 (X  + )

=  +(X’Ω-1X)-1 X’Ω-1 
E[bGLS |X] = 

• Efficient Variance
bGLS is BLUE. The “best” variance can be derived  from 

Var[bGLS|X] = σ (X*’X*)-1 = σ (X’Ω-1X)-1

Then, the usual OLS variance for b is biased and inefficient!

Generalized Least Squares (GLS)


