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Lecture 7-a
Departures from OLS Assumptions

1

Brooks (4th edition): Chapter 5

© R. Susmel, 2022 (for private use, not to be posted/shared online).

• Q: How do we propose and select a model (a DGP)? 

• Potentially, we have a huge number of  possible models with:

- Different functional form: f(.), g(.), h(.), etc.

- Different explanatory variables: X, Z, W, dummy variables, D, etc.

Suppose, we have 4 different models to choose from:
Model 1 𝒚 = Xβ + ε
Model 2 𝒚 = Zγ + ξ
Model 3 𝒚 = (Wγ)λ + η
Model 4 𝒚 = exp(Z D δ) + 𝛜

• We want to select the best model, the one that is closest to the true 
and unobserved DGP. In practice, we aim for a “good” model. 

Review: Model Selection Strategies
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• There are several model-selection methods. We consider two:

• Specific to General. Start with a small “restricted model,” do some 
testing & make model bigger model in the direction indicated by the 
tests (for example, add variable x௞when test reject H0: β௞= 0).

Popular application: Stepwise Regression.

Main Problem: Not clear when to stop considering adding variables.

• General to Specific. Start with a big “general unrestricted model,” 
do some testing & reduce model in the direction indicated by the tests 
(for example, eliminate variable x௞ when test cannot reject H0: β௞= 0).

Popular application: Best subset.

Main Problems: Mass significance & pre-testing (data mining).

Review: Model Selection Strategies – Methods

• Begin with a big model, with 𝑘 regressors:

𝒚 = X + .
The idea is to select the “best” subset of the 𝑘 regressors in X, where 
“best” is defined by the researcher, say MSE, Adjusted-R2, etc. 

• In theory, it requires 2௞regressions. It can take a while if 𝑘 is big (𝑘
< 40 is no problem).

• Many tricks are used to reduce the number of regressions.

• In practice, we use best subset to reduce the number of models to 
consider. For example, from the regressions with one-variable, keep 
the best one-variable model, from the regression with two-variables, 
keep the best two-variable model, etc.

Model Selection Strategies: Best Subset
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Example: We want to select a model for IBM excess returns, using 
the 𝑘=3 Fama-French factors: Market excess returns (Mkt_RF), SMB, 
& HML. We have 8 (=23) models and, thus, regressions: 
1) Constant; 
2) Mkt_RF (CAPM)
3) SMB
4) HML
5) Mkt_RF & SMB 
6) Mkt_Rf & HML
7) SMB & HML
8) Mkt_RF, SMB, & HML (the 3-factor F-F Model). 

• We select the model with the lower MSE. Or, we can carry two or 
three models of the best models to do cross-validation.

Model Selection Strategies: Best Subset

Example (continuation): We use library olsrr in R:
library(olsrr)
ff_step_data <- data.frame(Mkt_RF, SMB, HML) 
fit_ibm_ff3_sb <- lm(ibm_x ~ ., data = ff_step_data) # default p-value (penter) is 0.3 
ols_step_best_subset(fit_ibm_ff3_sb, details = TRUE) #  long final output

Model Index    Predictors
-----------------------------

1         Mkt_RF
2         Mkt_RF SMB     
3         Mkt_RF SMB HML 

-----------------------------
Subsets Regression Summary                                                      

------------------------------------------------------------------------------------------------------------------------------------
Adj.        Pred

Model    R-Square    R-Square R-Square C(p)        AIC           SBIC          SBC         MSEP      FPE       
-----------------------------------------------------------------------------------------------------------------------------------
1        0.3128      0.3116       0.308    8.3178    -1705.0204    -3424.8023    -1691.7998    2.1146    0.0035 
2        0.3214      0.3192      0.3134    2.6125    -1710.7200    -3430.4398    -1693.0924    2.0913    0.0035 
3        0.3221      0.3187       0.311    4.0000    -1709.3362    -3429.0366    -1687.3018    2.0927    0.0035   

Model Selection Strategies: Best Subset
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Example (continuation): Suppose we selected three model: CAPM 
(M1); Mkt_RF & SMB (M2); and the 3-factor F-F Model (M3).

Now, we use 𝐾-fold cross-validation, with 𝐾 = 5. That is,

𝐶𝑉ହ ൌ
1
5
෍𝑀𝑆𝐸ሺି௜ሻ

ହ

௜ୀଵ

CV5 M1: 0.003542756

CV5 M2: 0.003505873

CV5 M3: 0.003556918

Note: Models look very similar. Practitioners compute a SE for 𝐶𝑉௄
and use a one SE rule. If within one SE, keep simplest model (M1).

R Note: Use the same CV function, from Lecture 6-c, to compute CV.

Model Selection Strategies: Best Subset

• In the end, judgment must be used to select a model. In general, we 
consider various criteria: 

- The Economic Criterion   –are the estimated parameters plausible? 
(Economic Significance).

- The First Order Statistical Criterion  –does the model provide a 
good fit (in-sample) with statistically significant parameter estimates? 

- The Second Order Statistical Criterion  –is the model generally 
free of  misspecification problems – as evidenced in the diagnostic 
tests?

- The Out of  Sample Predictive Criterion   –does the model 
provide good out of  sample predictions?

Model Selection Strategies: Judgement Calls
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• Recall the CLM Assumptions

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X) = 𝑘–, where T ≥ 𝑘.

• OLS estimation: b = (X′X)-1X′ 𝒚
Var[b|X] = σ2 (X′X)-1

 b unbiased and efficient (MVUE)

• If  (A5) |X ~N(0, σ2IT)  b|X ~N(, σ2(X’ X)-1)

Now, b is also the MLE (consistency, efficiency, invariance, etc). (A5)
gives us finite sample results for b (and for tests: t-test, F-test, Wald tests). 

CLM: Review

2

3

• So far, we have discussed some violations of  CLM Assumptions:

(1) (A1) – OLS can easily deal with some non-linearities in the DGP. 

 as long as we have intrinsic linearity, b keeps its nice properties. 

– Wald, F, & LM tests to check for misspecification

(2) (A4) – Perfect Multicollinearity means we need to change the 
model. Multicollinearity is a potential problem. In general, exogenous 
to the researcher. We need to be aware of  this problem.

• Now, we examine assumptions (A2), (A3) and (A5). We change:

(i) X is stochastic. That is, it has a distribution.

(ii) Var[|X] ് σ2 IT

(iii) |X  is not N(0, σ2IT)

CLM: Departures from the Assumptions
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• The traditional derivation of  the CLM assumes X as non-stochastic. 
In our derivation, however, we allowed X to be stochastic, but we 
conditioned on observing its realizations (an elegant trick, but not very 
realistic).

• Now, we allow a stochastic X. But, we need additional assumptions 
to get unbiasedness and consistency for the OLS b. 

– We need independence between X & : {𝑥௜ , ε௜} 𝑖 = 1, 2, ...., T   is a 
sequence of  independent observations.

– We require that X have finite means and variances. Similar 
requirement for , but we also require E[] = 0.

Then, we get unbiasedness:

E[b] =  + E[(X′X)-1X′ ] =  + E[(X′X)-1X′] E[] = 

CLM: Departures from (A2)

4

• Technical Note: To get consistency (& asymptotic normality) for b, 
we need an additional (asymptotic) assumption regarding X:

XX/T 
 ௣ 

Q (Q: pd (𝑘x𝑘) matrix of  finite elements)

or plim (XX/T) =  Q 

- Q: Why do we need this assumption in terms of  a ratio divided by 
T? Each element of  XX matrix is a sum of  T numbers.  

𝑿ᇱ𝑿 ൌ

𝛴௜ୀଵ
் 𝑥௜ଵ

ଶ 𝛴௜ୀଵ
் 𝑥௜ଵ𝑥௜ଶ . . . 𝛴௜ୀଵ

் 𝑥௜ଵ𝑥௜௄
𝛴௜ୀଵ
் 𝑥௜ଶ𝑥௜ଵ 𝛴௜ୀଵ

் 𝑥௜ଶ
ଶ . . . 𝛴௜ୀଵ

் 𝑥௜ଶ𝑥௜௄
. . . . . . . . . . . .

𝛴௜ୀଵ
் 𝑥௜௄𝑥௜ଵ 𝛴௜ୀଵ

் 𝑥௜௄𝑥௜ଶ . . . 𝛴௜ୀଵ
் 𝑥௜௄

ଶ

As T , these sums will become large. We divide by T so that the 
sums will not be too large. 

CLM: Departures from (A2)

5
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• We divide by T so that the sums will not be too large. 

Note: This assumption is not a difficult one to make since the LLN  
suggests that the each component of  XX/T goes to the mean values 
of  XX. We require that these values are finite. 

– Implicitly, we assume that there is not too much dependence in X. 

• If  there is dependence between X & , OLS b is no longer 
unbiased or consistent. Easy to see the biased result: we cannot longer 
separate E[(X′X)-1X′ ] into a product of  two expectations:

E[(X′X)-1X′ ] ≠ E[(X′X)-1X′] E[]
Then,

E[b] = β + E[(X′X)-1X′ ] ≠ β

CLM: Departures from (A2)

5

• Then,

E[b] = β + E[(X′X)-1X′] ≠ β

• Dependence between X &  occurs when X is also an endogenous 
variable, like 𝒚. This is common, especially in Corporate Finance. 

Example: We study CEO compensation as function of  Size of  a 
firm, and Board composition. Board Composition & Size of  a firm 
are endogenous –i.e., determined by the firm, dependent on CEO’s 
decisions.

• Inconsistency is a fatal flaw in an estimator. In these situations, we 
use different estimation methods. The most popular is Instrumental 
Variable (IV) estimation.

CLM: Departures from (A2) – Endogeneity

6
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• Now, we have a new set of assumptions in the CLM: 

(A1) DGP: 𝒚 = X  + . 
(A2’) X stochastic, but E[X ] = 0 and E[] = 0.

(A3) Var[|X] = σ2 IT

(A4’) plim (XX/T) = Q (p.d. matrix with finite elements, rank=𝑘)

• With these new assumptions and using properties of probability limits 
(plims) & the CLT, we can show the following asymptotic results:

1.  b and s2 are consistent.

2. T (b – β) 
 ௗ 

N(0, σ2Q-1)  b
 ௔ 

N(β, (σ2/T)Q-1)

3. test-t
 ௗ 

N(0,1) 

F-tests & Wald tests 
 ௗ 

χ௃
ଶ

CLM: Departures from (A2) – Asymptotics

15

• Asymptotic results 2 and 3 state the asymptotic distribution of b and 
the t-, F- and Wald test. All derived from the new set of assumptions 
and the CLT. (A5) was not used. 

• That is, we relax (A5), but, now, we require large samples (T → ∞). 

Note: In practice, we use the asymptotic distribution as an 
approximation to the finite sample –i.e., for any T– distribution. 

This is why we used the 
 ௔ 

notation in:

b 
 ௔ 

N(β, (σ2/T) Q-1) (
 ௔ 

: “approximation”) 

We should be aware that this approximation may not be accurate in 
many situations.

CLM: Departures from (A5) 

16
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• Two observations regarding relaxing (A5)  |X ~ i.i.d. N(0, σ2IT):

– Throwing away the normality for |X is not bad. 

In many econometric situations, normality is not a good assumption 
(daily, weekly, or monthly stock returns do not follow a normal). 

– Removing the i.i.d. assumption for |X is also not bad. 

In many econometric situations, identical distributions are not 
realistic, since different means and variances are common.

• Q: Do we need to throw away normality for |X? Not necessarily. 
We can test for normality on the residuals using a Jarque-Bera test.

Remark: Usually, for returns of financial assets normality is rejected, 
especially at the monthly, weekly, daily, and intra-daily frequencies.

CLM: Departures from (A5) – Remarks 

17

• Q: Why are we interested in large sample properties, like 
consistency, when in practice we have finite samples?

A: As a first approximation, if we can show that an estimator has 
good large sample properties, then we may be optimistic about its 
finite sample properties. 

For example, if an estimator is inconsistent, we know that for finite 
samples it will definitely be biased.

CLM: Departures from (A5) – Remarks 

18
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• Now, we relax (A3).  The CLM assumes that errors are uncorrelated 
and all are drawn from a distribution with the same variance, σ2. 

(A3) Var[|X] = 2IT

Instead, we will assume:

(A3’) Var[|X] = Σ (sometimes written= 2, where  ≠ IT)

Σ = 

σଵ
ଶ ଵଶ ⋯ ଵ்

ଶଵ σଶ
ଶ ⋯ ଶ்

⋮ ⋮ ⋮ ⋮
்ଵ ்ଶ ⋯ σ்

ଶ

• Two Leading Cases:

– Pure heteroscedasticity: Model only the diagonal elements. 

– Pure cross/autocorrelation: Model only the off-diagonal elements. 

CLM: Departures from (A3)

11

• Pure heteroscedasticity:

E[𝜀௜ 𝜀௝|X] = ௜௝ = ௜
ଶ if  𝑖 ൌ 𝑗 

= 0 if  𝑖 ≠ 𝑗 
 Var[𝜀௜|X]  =  ௜

ଶ

Σ = 

σଵ
ଶ 0 ⋯ 0

0 σଶ
ଶ ⋯ 0

⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ்

ଶ

• This type of  variance-covariance structure is common in time series, 
where we observe the variance of  the errors changing over time or 
subject to different regimes (bear/bull). Or in cross-sections, where we 
observe the variance of  the errors change with the industry.

CLM: Departures from (A3) – Heteroscedasticity

20
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Example: We plot the residuals from the 3-factor FF model for XOM 
to see if  there is evidence for heteroscedasticity. We observe a usual 
result: The variance of  residuals from returns models changes over 
time: Periods with low variance & periods with high variance.

CLM: Departures from (A3) – Heteroscedasticity

21

𝑙𝑜𝑤 σ ℎ𝑖𝑔ℎ σ

• Relative to pure heteroscedasticity, LS gives each observation a 
weight of  1/T.  But, if  the variances are not equal, then some 
observations (low variance ones) are more informative than others.

X3 X5X4X1 X2

1

Y

CLM: Departures from (A3) – Heteroscedasticity

22
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• Pure cross/auto-correlation:

E[𝜀௜ 𝜀௝|X]  = ௜௝ if  𝑖 ≠ 𝑗
= 2 if  𝑖 = 𝑗

Σ = 

σଶ ଵଶ ⋯ ଵ்
ଶଵ σଶ ⋯ ଶ்
⋮ ⋮ ⋮ ⋮

்ଵ ்ଶ ⋯ σଶ

• This type of  variance-covariance structure is common in cross 
sections, where errors can show strong correlations, for example, 
when we model returns, the errors of  two firms in the same industry 
can be subject to common (industry) shocks. Also common in time 
series, where we observe clustering of  shocks over time.

CLM: Departures from (A3) – Cross-correlation

23

Example 1 (auto-correlation): We compute the interest differentials 
between quarterly interest rates in the U.S. and Japan, 𝑦௧ ൌ 𝑖௎ௌ,௧ –
𝑖௃஺௉,௧. We want to check if  there is evidence of  autocorrelation. 
Below, we compute the correlations between 𝑦௧ & 𝑦௧ିଵ and between 
𝑦௧ & 𝑦௧ିଶ: Cov(𝑦௧, 𝑦௧ିଵ) and Cov(𝑦௧, 𝑦௧ିଶ).  

Cov(𝑦௧, 𝑦௧ିଵ) = .872

Cov(𝑦௧, 𝑦௧ିଶ) = .719

Conclusion (informal): Both covariances look very different from 0. 

Example 2 (cross-correlation): We compute the correlation between 
the residuals of  3-factor FF model of  XOM & SLB. It is equal to .427.

Conclusion (informal): The size of  the correlation points to a 
moderate cross-correlation between both residuals. 

CLM: Departures from (A3) – Heteroscedasticity

24
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• Relative to pure cross/auto-correlation, LS is based on simple sums. 
In the case of  autocorrelation, the information that one observation 
(today’s) might provide about another (tomorrow’s) is never used. In 
the case of  cross-correlation, the information that 𝑖 (XOM) might 
provide about 𝑗 (SLB) is ignored.

Note: Heteroscedasticity and autocorrelation are different problems 
and generally occur with different types of  data. But, the implications 
for OLS are the same.

CLM: Departures from (A3) – Cross-correlation

25

26

• OLS b is still unbiased and consistent. (Proofs do not rely on (A3).)

• OLS b still follows an asymptotic normal distribution. It is 
– Easy to show for the pure heteroscedasticity case using a 

version of the CLT that assumes only independence 

– More complicated derivation –i.e., with new assumptions–
for the cross/auto-correlation case (there is dependence!).

• But, OLS b is no longer BLUE. There are more efficient 
estimators; estimators that take into account the heteroscedasticity in 
the data. 

Note: We used (A3) to derive our test statistics. A revision is needed! 

CLM: Departures from (A3) – Implications
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27

• There are several theoretical reasons why the ௜
ଶ may be related to 

some explanatory variables 𝑧ଵ,  . . . , 𝑧௝ and/or 𝑧ଵ2,…, 𝑧௝2. 

Examples:

1. Following the error-learning models, as people learn, their errors of 
behavior become smaller over time. Then, ௜

ଶ is expected to 
decrease.6

2. As data collecting techniques improve, ௜
ଶ is likely to decrease. 

Companies with sophisticated data processing techniques are likely to 
commit fewer errors in forecasting customer’s orders. 

3. As companies grow, companies expand and tend to be more 
diversified and, thus, safer. Hence, ௜

ଶ is likely to decrease with size. 

4. Companies with larger profits tend to have greater variability in 
their dividend/buyback policies than companies with lower profits. 

Finding Heteroscedasticity

28

• Heteroscedasticity can also be the result of outliers (either very small 
or very large). The inclusion/exclusion of an outlier,  especially if T is 
small, can affect the results of regressions.

• Violations of  (A1) –model is correctly specified–, can produce 
heteroscedasticity,  due to omitted variables from the model or 
incorrect functional form (e.g., linear vs log–linear models).

• Skewness in the distribution of one or more regressors included in 
the model can induce heteroscedasticity. Examples are economic 
variables such as income, wealth, and education. 

Finding Heteroscedasticity
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29

• Heteroscedasticity is usually modeled using one the following 
specifications: 

– H1 : ௧ଶ is a function of past ε௧
ଶ and past ௧ଶ (ARCH models).

– H2 : ௧ଶ increases monotonically with one (or several) exogenous 
variable(s) (𝑧ଵ,,  . . . , 𝑧௝).

– H3 : ௧ଶ decreases monotonically with Size (Market Cap).

– H4 : ௧ଶ is the same within p subsets of the data but differs across 
the subsets (grouped heteroscedasticity). This specification allows for 
structural breaks.

• These are the usual alternatives hypothesis (H1) in the 
heteroscedasticity tests.

Finding Heteroscedasticity

20

• Visual test

In a plot of residuals against dependent variable or other variable will 

often produce a fan shape.
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Finding Heteroscedasticity
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21

Testing for Heteroscedasticity

• Q: Why do we want to test for heteroscedasticity if b is unbiased?

A: OLS is no longer efficient. There is an estimator with lower 
asymptotic variance (the GLS/FGLS estimator). 

• We want to test: H0: E(௜
ଶ) = 2 for all 𝑖.

• H1 and the structure of the test depend on what we consider the 
drivers of ௜

ଶ – i.e., in the previous examples: H1, H2, H3, H4, etc.

• The key is whether E[௜
ଶ] = ௜

ଶ is related to 𝑿 and/or 𝑿2. Suppose 
we suspect a particular independent variable, say 𝒙௝ , is driving ௜

ଶ: 

௜
ଶ = f(𝒙௝)

• Then, a simple test: Check the RSS for large values of 𝒙௝ , and the 
RSS for small values of 𝒙௝ . This is the Goldfeld-Quandt (GQ) test.

• GQ tests H0: ௜
ଶ = 2

H1: ௜
ଶ f𝒙௝)

• Easy to compute: 

– Step 1. Arrange the data from small to large values of the 
independent variable suspected of causing heteroscedasticity, 𝒙௝ .

– Step 2. Run two separate regressions, one for small values of 𝒙௝
and one for large values of 𝒙௝ , omitting d middle observations (d ≈ 
20%). Get the RSS for each regression: RSS1 for small values of 𝒙௝
and RSS2 for large 𝒙௝ ’s.

– Step 3. Calculate the F ratio

GQ = 
RSS2
RSS1

, ~ 𝐹ௗ௙,ௗ௙, with 𝑑𝑓=[(T – d) – 2(𝑘 +1)]/2   (A5 holds)

22

Testing for Heteroscedasticity: GQ Test
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If (A5) does not hold, the F distribution becomes an approximation. 
Other tests may be preferred.

Note: When we suspect more than one variable is driving ௜
ଶ, the 

GQ test is not very useful.

• The GQ test is a popular test for structural breaks (two regimes) in 
variance. For these tests, we rewrite Step 3 to allow for a different 
sample size in the sub-samples 1 and 2, since the breaking point does 
not have to be in the middle of the sample:

– Step 3. Calculate the F-test ratio

GQ = [RSS2/ (T2 – 𝑘)]/[RSS1/ (T1 – 𝑘)]

R Note: The package lmtest computes this test with function gqtest. It 
splits the sample in the middle. You need to specify d. 23

Testing for Heteroscedasticity: GQ Test

Example: We test if the 3-factor FF model for IBM and GE returns 
shows heteroscedasticity with a GQ test, using gqtest in package lmtest.

• IBM returns
library(lmtest)

> gqtest(ibm_x ~ Mkt_RF + SMB + HML, fraction = .20)

Goldfeld-Quandt test

data:  ibm_x ~ Mkt_RF + SMB + HML

GQ = 1.1006, df1 = 224, df2 = 223, p-value = 0.2371  cannot reject H0 at 5% level.

alternative hypothesis: variance increases from segment 1 to 2

• GE returns
gqtest(ge_x ~ Mkt_RF + SMB + HML, fraction = .20)

Goldfeld-Quandt test

data:  ge_x ~ Mkt_RF + SMB + HML

GQ = 2.744, df1 = 281, df2 = 281, p-value < 2.2e-16  reject H0 at 5% level.

alternative hypothesis: variance increases from segment 1 to 2 23

Testing for Heteroscedasticity: GQ Test
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24

• Popular heteroscedasticity LM tests:

- Breusch and Pagan (1979)’s LM test (BP).  

- White (1980)’s general test.  

• Both tests are based on OLS residuals, 𝒆, and calculated under H0 

(No heteroscedasticity): 2. The squared residuals are used to estimate 

௜
ଶ.

• The BP test is an LM test, derived under normality –i.e., (A5). It is a 
general tests designed to detect any linear forms of heteroscedasticity, 
driven by some variables, z. That is, the BP tests: 

H0: ௜
ଶ = 2

H1: ௜
ଶ fzi)

Testing for Heteroscedasticity: LM Tests

24

• The White test is an asymptotic Wald-type test, normality is not 
needed. It allows for nonlinearities by using squares and cross-
products of all the 𝑥’s in the auxiliary regression –i.e., as the drivers of 
௜
ଶ. That is, the White tests: 

H0: ௜
ଶ = 2

H1: ௜
ଶ fxଵଶ, xଶଶ, ..., x௃ଶ, 𝑥ଵ𝑥ଶ, 𝑥ଵ𝑥ଷ, 𝑥ଶ𝑥ଷ, ...)

Testing for Heteroscedasticity: LM Tests



RS - Financial Econometrics: Lecture 7 (Heteroscedasticity)

19(c) RS 2022 - Do not post/share online without written authorization

• The derivation of the BP test is complicated, it relies on the 
likelihood function, which is constructed under normality, and its 
first derivative, the score. However, the implementation of the BP 
test is simple, based on the squared OLS residuals, 𝑒௜

ଶ. 

• Calculation of the Breusch-Pagan test

- Step 1. Run OLS on DGP:

𝒚 = X  + . –Keep 𝑒௜ and compute ோଶ = RSS/T

- Step 2. (Auxiliary Regression). Run the regression of 𝑒௜
ଶ/ோଶ on the 

𝑚 explanatory variables, z. In our example, 

𝑒௜
ଶ/ோଶ = α଴ + αଵ 𝑧ଵ,௜ + .... + α௠ 𝑧௠,௜ + 𝑣௜

- Step 3. Keep the RSS from Step 2 regression. Let’s call it 𝑅𝑆𝑆௘ . 

Calculate LM = (TSS - 𝑅𝑆𝑆௘)/2 
   ௗ   

χ௠
ଶ . 25

Testing for Heteroscedasticity: BP Test

• There is a version of the BP, which is robust to departures from 
normality: the “studentized” version of Koenker (1981). The BP 
test is asymptotically equivalent to a T*R2 test, where R2 is calculated 
from a regression of 𝑒௜

ଶ/ோଶ on the variables Z. (Omitting ோଶ , a 
constant, from the denominator is OK, since it does not affect R2.) 

• We have different Steps 2 & 3: 

- Step 2. (Auxiliary Regression). Run the regression of 𝒆𝒊
𝟐 on the 𝑚

explanatory variables, z. In our example, 

𝑒௜
ଶ = α଴ + αଵ 𝑧ଵ,௜ + .... + α௠ 𝑧௠,௜ + 𝑣௜ –Keep R2 (𝑅௘ଶ

ଶ )

- Step 3. Using the R2 from Step 2, 𝑅௘ଶ
ଶ , calculate

LM = T 𝑅௘ଶ
ଶ   ௗ  

χ௠
ଶ .

26

Testing for Heteroscedasticity: BP Test
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27

Example: We suspect that squared Mkt_RF (x1) –a measure of the 
overall market’s variance- drives heteroscedasticity. We do a 
studentized LM-BP test for IBM in the 3-factor FF model:

fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML) # Step 1 – OLS in DGP (3-factor FF model)

e_ibm <- fit_ibm_ff3$residuals # Step 1 – keep residuals

e2 <- e_ibm^2 # Step 1 – squared residuals

Mkt_RF_2 <- Mkt_RF^2

fit_ibm_BP <- lm (e2 ~ Mkt_RF_2) # Step 2 – Auxiliary regression

Re_2 <- summary(fit_ibm_BP)$r.squared # Step 2 – keep R^2

LM_BP_test <- Re2 * T

> LM_BP_test # Step 3 – Compute LM-BP test: R^2 * T

[1] 0.25038

>  p_val <- 1 - pchisq(LM_BP_test, df = 1) # p-value of LM_test 

>  p_val

[1] 0.6168019

LM-BP Test: 0.25028  cannot reject H0 at 5% level (χ2
[1],.05≈3.84); 

with a p-value = .6168.

Testing for Heteroscedasticity: Example – IBM 

28

Example (continuation): The bptest in the lmtest package performs a 
studentized LM-BP test for the same variables used in the model 
(Mkt, SMB and HML). For IBM in the 3-factor FF model:

> bptest(ibm_x ~ Mkt_RF + SMB + HML) #bptest only allows to test H1:௜
ଶfxi=model variables)

studentized Breusch-Pagan test

data:  ibm_x ~ Mkt_RF + SMB + HML

BP = 4.1385, df = 3, p-value = 0.2469

LM-BP Test: 4.1385  cannot reject H0 at 5% level (χ2
[3],.05≈7.815); 

with a p-value = 0.2469.

Note: Heteroscedasticity in financial time series is very common. In 
general, it is driven by squared market returns or squared past errors.

Testing for Heteroscedasticity: Example – IBM 
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Example: We suspect that squared Market returns drive 
heteroscedasticity. We do an LM-BP (studentized) test for Disney:

lr_dis <- log(x_dis[-1]/x_dis[-T]) # Log returns for DIS
dis_x <- lr_dis – RF # Disney excess returns

fit_dis_ff3 <- lm (dis_x ~ Mkt_RF + SMB + HML) # Step 1 – OLS in DGP (3-factor FF model)

e_dis <- fit_dis_ff3 $residuals # Step 1 – keep residuals

e_dis2 <- e_dis^2 # Step 2 – squared residuals

fit_dis_BP <- lm (e_dis2 ~ Mkt_RF_2) # Step 2 – Auxiliary regression 

Re_2 <- summary(fit_dis_BP)$r.squared # Step 2 – Keep R^2 from Auxiliary reg

LM_BP_test <- Re_2 * T # Step 3 – Compute LM Test: R^2 * T

> LM_BP_test

[1] 14.15224

p_val <- 1 - pchisq(LM_BP_test, df = 1)  # p-value of LM_test 

>  p_val

[1] 0.0001685967

LM-BP Test: 14.15  reject H0 at 5% level (χ2
[1],.05 ≈ 3.84); with a p-

value = .0001.

Testing for Heteroscedasticity: Example – DIS 

41

42

Example (continuation): We do the same test but with SMB 
squared for Disney:

e-dis2 <- e_dis^2

SMB_2 <- SMB^2

fit_dis_BP_2 <- lm (e_dis2 ~ SMB_2)

Re_2 <- summary(fit_dis_BP_2)$r.squared

LM_BP_test <- Re_2 * T

> LM_BP_test

[1] 7.564692

p_val <- 1 - pchisq(LM_BP_test, df = 1)  # p-value of LM_test 

>  p_val

[1] 0.005952284

LM-BP Test: 7.56  reject H0 at 5% level (χ2
[1],.05≈3.84); with a p-

value= .006. 

Testing for Heteroscedasticity: Example – DIS 
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43

Example (continuation): If we do use the lmtest package, we get:

> bptest(dis_x ~ Mkt_RF + SMB + HML)

studentized Breusch-Pagan test

data:  dis_x ~ Mkt_RF + SMB + HML

BP = 6.9935, df = 3, p-value = 0.07211

LM-BP Test: 6.99  cannot reject H0 at 5% level (χଷ,.଴ହ
ଶ ≈ 7.815); 

with a p-value = .07211.

Note: In general, you need squared values when model 
heteroscedasticity in financial assets.

Testing for Heteroscedasticity: Example – DIS 

32

Example: We suspect that squared interest rate differentials drive 
heteroscedasticity for residuals in encompassing (IFE + PPP) model 
for changes in the USD/GBP. We do an LM-BP (studentized) test:

y <- lr_usdgbp
fit_gbp <- lm (y ~ inf_dif + int_dif)
e_gbp <- fit_gbp$residuals
e_gbp2 <- e_gbp^2
int_dif_2 <- int_dif^2
fit_gbp_BP <- lm (e_gbp2 ~ int_dif_2)
Re_2 <- summary(fit_gbp_BP)$r.squared
LM_BP_test <- Re_2 * T

> LM_BP_test

[1] 21.11134

p_val <- 1 - pchisq(LM_BP_test, df = 1)  # p-value of LM_test 

>  p_val

[1] 4.333567e-06

LM-BP Test: 21.11134  reject H0 at 5% level (p-value < .00001).

Testing for Heteroscedasticity: Example – GBP 
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• The White test derivation is also complicated, but, the usual 
calculation of the White test is a known one for us:

– Step 1. (Same as BP’s Step 1). Run OLS on DGP:

𝒚 = X  + . Keep residuals, 𝑒௜.

– Step 2. (Auxiliary Regression). Regress 𝑒2 on all the explanatory 
variables (𝑥௝), their squares (𝑥௝2), & all their cross products ሺ𝑥௝  ∗ 𝑥௜ሻ. 

For example, when the model contains 𝑘 = 2 explanatory variables, 
the test is based on: 

𝑒௜
ଶ = β0 + β1 𝑥ଵ,௜ + β2 𝑥ଶ,௜ + β3 𝑥ଵ,௜

ଶ + β4 𝑥ଶ,௜
ଶ + β5 𝑥ଵ,௜𝑥ଶ,௜ + 𝑣௜

Let m be the number of regressors in auxiliary regression (in the 
above example, 𝑚 = 5). Keep R2, say 𝑅௘ଶ

ଶ .

– Step 3. Compute the statistic: LM = T 𝑅௘ଶ
ଶ ௗ
→ χ௠

ଶ .

Testing for Heteroscedasticity: White Test

45

Example: White Test for 3 factor FF model for IBM returns, T=569:

e_ibm2 <- e_ibm^2

xx2 <- cbind(Mkt_RF_2, SMB_2, HML_2, Mkt_HML,Mkt_SMB, SMB_HML) # Not 
including original variables is OK

fit_ibm_W <- lm(e_ibm2 ~ Mkt_RF + SMB + HML + xx2)

r2_e2 <- summary(fit_ibm_W)$r.squared # Keep R^2 from Auxiliary regression

> r2_e2

[1] 0.0166492

lm_t <- T * r2_e2 # Compute LM test: R2 * T

> lm_t

[1] 10.93483

> qchisq(.95, df = df_lm) 

[1] 12.59159

LM-White Test: 10.93  cannot reject H0 at 5% level (χ2
[6],.05≈12.59). 

Testing for Heteroscedasticity: White Test

46
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Example (continuation): Now, we do a White Test for the 3 factor 
F-F model for DIS and GE returns (T=569). 

• For DIS, we get:
e_dis2 <- e_dis^2

fit_dis_W <- lm (e_dis2 ~ Mkt_RF + SMB + HML + xx2)

Re_2W <- summary(fit_dis_W)$r.squared

LM_W_test <- Re_2W * T

> LM_W_test

[1] 25.00148  reject H0 at 5% level (χ2
[6],05≈12.59).

p_val <- 1 - pchisq(LM_W_test, df = df_lm) # p-value of LM_test

>  p_val

[1] 0.0003412389

• For GE, we get:
LM-White Test: 20.15 (p-value = 0.0026)  reject H0 at 5% level.

Testing for Heteroscedasticity: White Test

47

Example: We do a White Test for the residuals in the encompassing 
(IFE + PPP) model for changes in the USD/GBP (T=363): 

e_gbp2 <- e_gbp^2  

int_dif2 <- int_dif^2 

inf_dif2 <- inf_dif^2  

int_inf_dif <- int_dif*inf_dif

fit_gbp_W <- lm (e_gbp2 ~ int_dif + inf_dif + int_dif2 + inf_dif2+ int_inf_dif)

Re_2W <- summary(fit_gbp_W)$r.squared

LM_W_test <- Re_2W * T

p_val <- 1 - pchisq(LM_W_test, df = 3)  # p-value of LM_test

> LM_W_test

[1] 15.46692 

> p_val

[1] 0.001458139  reject H0 at 5% level

Testing for Heteroscedasticity: White Test

48
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• Drawbacks of the Breusch-Pagan test: 

- It is sensitive to violations of the normality assumption. The 
studentized version of Koenker is more robust and, then, more used.

• Drawbacks of the White test

- If a model has several regressors, the test can consume a lot of df’s. 

- In cases where the White test statistic is statistically significant, 
heteroscedasticity may not necessarily be the cause, but model 
specification errors.

- It is general. It does not give us a clue about how to model 
heteroscedasticity to do FGLS. The BP test points us in a direction.

- In simulations, it does not perform well relative to others, especially, 
for time-varying heteroscedasticity, typical of financial time series. 

Testing for Heteroscedasticity: Remarks

49

• There are several reasons why the 𝜀௜ may be related to 𝜀௝ . In general, 
we find autocorrelation (or serial correlation) in time series, where 
𝜀௜ୀ௧ is correlated to 𝜀௝ୀ௧ି௟. Typical situation: it takes time to absorb a 
shock, then shocks show persistence over time.

• The shocks can also be correlated over the cross-section, causing 
cross-correlation. For example, if  an unexpected new tax is imposed 
on the technology sector, all the companies in the sector are going to 
share this shock.

• Usually, we model autocorrelation using two models: autoregressive 
(AR) and moving averages (MA). 

- In an AR model, the errors, 𝜀௧, show a correlation over time. 
- In an MA model, the errors, 𝜀௧, are a function (similar to a 

weighted average) of  previous errors, now denoted 𝑢௧’s.

Finding Auto-correlation

50
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Examples: 
- First-order autoregressive autocorrelation: AR(1)

𝜀௧ = 𝜀௧ିଵ ൅ 𝑢௧

- pth-order autoregressive autocorrelation: AR(p)
𝜀௧ = 𝜀௧ିଵ ൅ 𝜀௧ିଶ ൅ ⋯൅ p 𝜀௧ି௣ ൅ 𝑢௧

- Third-order moving average autocorrelation: MA(3)
𝜀௧ = 𝑢௧λ𝑢௧ିଵ ൅ λ 𝑢௧ିଶ ൅ λ3 𝑢௧ିଷ

Note: The last example is described as third-order moving average 
autocorrelation, denoted MA(3), because it depends on the three 
previous innovations as well as the current one.

Finding Auto-correlation

51

• Plot data, usually residuals from a regression, to see if  there is a 
pattern:

- Positive autocorrelation: A positive (negative) observation tends to 
be followed by a positive (negative) observation. We tend to see 
continuation in the series.

- Negative autocorrelation: A positive (negative) observation tends 
to be followed by a negative (positive) observation. We tend to see 
reversals.

- No autocorrelation: A positive (negative) observation has the same 
probability of  being followed by a negative or positive (positive or 
negative) observation. We tend to see no pattern.

Finding Auto-correlation – Visual Check

52
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Example: I simulate a 𝑦௧ series, with N(0,1) 𝑢௧ errors:
𝑦௧ = 𝑦௧ିଵ ൅ 𝑢௧

Three cases:
(1) Positive autocorrelation:  
(2) Negative autocorrelation:  
(3) No correlation:  

• R code for simulation:
T_sim <- 200
u <- rnorm(200) # Draw T_sim normally distributed errors
y_sim <- matrix(0,T_sim,1)
rho <- .7 # Change to create different correlation patterns
a <- 2 # Time index for observations
while (a <= T_sim) {

y_sim[a] = rho * y_sim[a-1] + u[a] # y_sim simulated autocorrelated values
a <- a + 1
} 
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time")
title("Visual Test: Autocorrelation?") 53

Finding Auto-correlation – Visual Check

Example (continuation):
(1) Positive autocorrelation:  

(2) Negative autocorrelation:  

54

Finding Auto-correlation – Visual Check
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Example (continuation):
(3) No autocorrelation:  

55

Finding Auto-correlation – Visual Check

Example: Residual plot for the 3 factor F-F model for IBM returns:

56

Finding Auto-correlation – Visual Check: IBM

• It looks like a small , but not very clear pattern from the graphs. 
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Example: Residual plot for the 3 factor F-F model for GE returns:

• It looks like a small , but not very clear pattern from the graphs. 
57

Finding Auto-correlation – Visual Check: GE

Example: Residual plot for the encompassing model (IFE + PPP) 
for changes in the USD/GBP:

• Again, it looks like a small , but not very clear pattern. 
58

Finding Auto-correlation – Visual Check: GBP
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• There are several autocorrelation tests. The AR(𝑝) model to be 
tested is:

𝜀௧ = ଵ 𝜀௧ିଵ ൅ ଶ 𝜀௧ିଶ ൅ ⋯൅ ௣ 𝜀௧ି௣ ൅ 𝑢௧

• Under the null hypothesis of no autocorrelation of order 𝑝, we have 
H0 (No autocorrelation):  ௣= 0.
H1 : At least one ௜ ് 0. 𝑖= 1 , 2, …, 𝑝

Under H0, we can use OLS residuals, 𝑒௧.

• Breusch–Godfrey (1978) proposed an LM test for autocorrelations 
(BG test). It is very similar to the BP test.

59

Testing for Autocorrelation: LM Test 

• Breusch–Godfrey (1978) LM test. Similar to the BP test:

– Step 1. (Same as BP’s Step 1). Run OLS on DGP:

y = X  + . - Keep residuals, 𝑒௧.

– Step 2. (Auxiliary Regression). Run the regression of 𝑒௧ on all 
the explanatory variables, X, and 𝑝 lags of residuals, 𝑒௧:

𝑒௧ = 𝒙௧’ γ + α1 𝑒௧ିଵ + .... + αp 𝑒௧ି௣ + 𝑣௧ - Keep R2 (𝑅௘ଶ)

– Step 3. Keep 𝑅௘ଶ. Then, calculate:

LM = (T- p) * 𝑅௘ଶ
ௗ
→ χ௣

ଶ . (T- p) = lost 𝑝 observations 

Note: In general, in Step 2, if we do not include 𝒙௧, the LM test is 
not that different.

60

Testing for Autocorrelation: LM Test 
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Example: LM-AR Test for the 3 factor F-F model for IBM returns 
(p = 12 lags):

e_ibm <- fit_ibm_ff3$residuals # OLS residuals

p_lag <- 12 # Select # of lags for test (set p)

e_lag <- matrix(0,T-p_lag,p_lag) # Matrix to collect lagged residuals

a <- 1

while (a<=p_lag) { # loop creates matrix (e_lag) with lagged e

za <- e_ibm[a:(T-p_lag+a-1)]

e_lag[,a] <- za

a <- a+1

}

Mkt_RF_p <- Mkt_RF[(p_lag+1):T] # Adjust for new sample size: T – p_lag

SMB_p <- SMB[(p_lag+1):T]

HML_p <- HML[(p_lag+1):T]

fit_ibm_ar <- lm(e_ibm[(p_lag+1):T] ~ e_lag + Mkt_RF_p + SMB_p + HML_p) # Aux R

r2_e1 <- summary(fit_ibm_ar)$r.squared # get R2 from Auxiliary Regression

Testing for Autocorrelation: LM Test 

61

Example (continuation):
> r2_e1

[1] 0.0303721 

> (T-p_lag)

[1] 557

lm_t <- (T-p_lag )* r2_e1 # LM-test with p lags

> lm_t

[1] 16.91726 

df <- ncol(e_lag) # degrees of freedom for the LM Test

> 1-pchisq(lm_t,df)

[1] 0.1560063

LM-AR(12) Test: 16.91726  cannot reject H0 at 5% level (p-value > .05)

• If we  run the test with p = 4 lags, we get
LM-AR(4) Test: 2.9747 (p-value = 0.56)  cannot reject H0 at 5% level

Testing for Autocorrelation: LM Test 

62
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Example (continuation):
The package lmtest, performs this test, bgtest, (and many others, used in 
this class, encompassing, jtest, waldtest, etc). 

library(lmtest)
> bgtest(ibm_x ~ Mkt_RF + SMB + HML, order=12)

Breusch-Godfrey test for serial correlation of  order up to        12

data:  lr_ibm ~ Mkt_RF + SMB + HML
LM test = 16.259, df = 12, p-value = 0.1797 (minor difference with the previous test, likely 

due to multiplication by T. Results do not 
change much)

Note: If you do not include in the Auxiliary Regression the original 
regressors (Mkt_RF, SMB, HML) the test do not change much. You 
get LM-AR(12) Test: 16.83253  very similar. Not entirely 

correct, but it works well. 

Testing for Autocorrelation: LM Test 
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Example (continuation):
Autocorrelation is very common. If I run the test for Disney, CNP, 
or GE, instead, we get significant test results. 

• For DIS: 
lr_dis <- log(x_dis[-1]/x_dis[-T])
dis_x <- lr_dis – RF

> bgtest(dis_x ~ Mkt_RF + SMB + HML, order=4)
Breusch-Godfrey test for serial correlation of order up to  4

data:  dis_x ~ Mkt_RF + SMB + HML
LM test = 8.6382, df = 4, p-value = 0.07081  cannot reject H0 at 5% level (p-value >.05)

> bgtest(dis_x ~ Mkt_RF + SMB + HML, order=12)
Breusch-Godfrey test for serial correlation of order up to  12

data:  dis_x ~ Mkt_RF + SMB + HML
LM test = 30.068, df = 12, p-value = 0.002728  reject H0 at 5% level (p-value < .05)

Testing for Autocorrelation: LM Test 

64
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Example (continuation):
LM tests for autocorrelation (with 4 or 12 lags) for GE & CNP show 
significant test results:

lr_ge <- log(x_ge[-1]/x_ge[-T]); ge_x <- lr_ge – RF
lr_cnp <- log(x_cnp[-1]/x_cnp[-T]); cnp_x <- lr_cnp – RF

• For GE: 
> bgtest(ge_x ~ Mkt_RF + SMB + HML, order=4)

Breusch-Godfrey test for serial correlation of order up to  4

data:  ge_x ~ Mkt_RF + SMB + HML
LM test = 28.257, df = 4, p-value = 0.005073  cannot reject H0 at 5% level (p-value >.05)

• For CNP: 
> bgtest(cnp_x ~ Mkt_RF + SMB + HML, order=12)

Breusch-Godfrey test for serial correlation of order up to  12

data:  cnp_x ~ Mkt_RF + SMB + HML
LM test = 31.718, df = 12, p-value = 0.00153  reject H0 at 5% level (p-value < .05)

Testing for Autocorrelation: LM Test 
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• Q: How many lags are needed in the test? 
A: Enough to make sure there is no auto-correlation left in the 
residuals. 

There are some popular rule of thumbs: for daily data, 5 or 20 lags; for 
weekly, 4 or 12 lags; for monthly data, 12 lags; for quarterly data, 4 
lags.

Testing for Autocorrelation: LM Test 

66



RS - Financial Econometrics: Lecture 7 (Heteroscedasticity)

34(c) RS 2022 - Do not post/share online without written authorization

Testing for Autocorrelation: Durbin-Watson

• The Durbin-Watson (1950) (DW) test for AR(1) autocorrelation:  
H00 against H1≠ 0. Based on simple correlations of 𝒆.

𝑑 = 
∑ ሺ௘೟ ି ௘೟షభሻమ
೅
೟సమ

∑ ௘೟
మ೅

೟సభ

• It is easy to show that when T → ∞, 𝑑  2(1 - ).  

•  is estimated by the sample correlation r.

• Under H0, =0. Then, 𝑑 should be distributed randomly around 2.

• Small values (close to 0) or Big values (close to 4) of 𝑑 lead to 
rejection of H0. The distribution depends on X. Since there are better 
tests, in practice, the DW is used “visually:” Is 𝑑 close to 2? 

The R function dwtest from the lmtest package produces also a p-value. 
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Example: DW Test for the 3 factor F-F model for IBM returns

RSS <- sum(e_ibm^2) # RSS
DW <- sum((e_ibm[1:(T-1)] - e_ibm[2:T])^2)/RSS # DW stat
> DW
[1] 2.042728  DW statistic ≈ 2  No evidence for autocorrelation of order 1.
> 2 * (1 - cor(e_ibm[1:(T-1)], e_ibm[2:T])) # approximate DW stat
[1] 2.048281

• Similar finding for Disney returns:
> DW

[,1]
[1,] 2.1609  DW statistic ≈ 2  But, DIS suffers from autocorrelation!

 This is why DW are not that informative. They only test for AR(1) in residuals.

Note: The package lmtest performs this test too, dwtest:

> dwtest(fit_ibm_ff3)

DW = 2.0427, p-value = 0.7087

Testing for Autocorrelation: DW Test 

68



RS - Financial Econometrics: Lecture 7 (Heteroscedasticity)

35(c) RS 2022 - Do not post/share online without written authorization

Example: DW Test for the residuals of the encompassing model 
(IFE + PPP) for changes in USD/GBP:

e_gbp <- fit_gbp$residuals
> dwtest(fit_gbp)

Durbin-Watson test

data:  fit_gbp
DW = 1.8588, p-value = 0.08037  not significant at 5% level.
alternative hypothesis: true autocorrelation is greater than 0

Testing for Autocorrelation: DW Test 
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