
RS - Financial Econometrics - Lecture 6

1© R Susmel, 2023. Do not share/post online without written authorization

1

Lecture 6-d:
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Model Selection

Brooks (4th edition): Chapter 5
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• For model validation, we keep a small part of the sample for checking
the forecasting skills (or accuracy) of the model. Steps:

Step 1. Estimate the model using all the observation up to T1 (above
from 1973:I to 2012:II). The period used is called “estimation period
or estimation sample.” (Get in-sample forecasts, 𝑦ො.)

Estimation Period

T1 = 2012:II

Review: Forecasting - Model Validation
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Step 2. Keep a (short) part of the sample, (T – T1), to check the model’s
forecasting skills. Using the estimates from Step 1, we produce forecasts,
𝑦ො, for the period (T – T1). Since in the period (T – T1) we know 𝑦, we
can compute true MSE or MAE. This is the validation step.

For example, we compute: MSE =
ଵ

ሺ்ି భ்ሻ
∑ ሺ𝑦ො௜ െ 𝑦௜
்
௜ୀ భ்ାଵ ሻଶ

Validation 
Forecasts

Estimation Period

Review: Forecasting - Model Validation

T1 T

Step 3. If happy with Step 2, we proceed to do true out-of-sample
forecasts. In general, for the out-of-sample forecast, we re-estimate the
model using all the sample –i.e., all T observations.

To evaluate the true OOS forecasts, we have to wait, say 𝑚 periods, to

compute an MSE : MSE =
ଵ

௠
∑ ሺ𝑦ො௜ െ 𝑦௜
௠
௜ୀ்ାଵ ሻଶ

Out-of-
Sample 
Forecasts

Validation 
Forecasts

Estimation Period

Review: Forecasting - Model Validation

T1 T
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• Prediction: Given 𝒙0  predict 𝑦0.

• Given the CLM, we have:  
Expectation: E[𝑦|X, 𝒙0] =  𝒙0; 
Predictor:  𝑦ො0 = 𝐛 𝒙0

Realization: 𝑦0 =  𝒙0 + 0

Note: The predictor includes an estimate of 0:  
𝑦ො0 = b 𝒙0 + estimate of 0.  (Estimate of 0=0, but with variance.)

• Associated with 𝑦ො0 (a point estimate), there is a forecast error, 𝑒଴:
𝑒଴ = 𝑦ො0 – 𝑦0 = 𝐛𝒙0 – 𝒙0 – 0 = (𝐛 – )𝒙0 – 0

and a variance
 Var[(𝑦ො0 – 𝑦0)|𝒙0] = E[(𝑦ො0 – 𝑦0) (𝑦ො0 – 𝑦0)|𝒙0] 

Varሾ𝑒଴|𝒙0ሿ = 𝒙0 Var[(𝐛 – )|𝒙0] 𝒙0 + 2

Review: Prediction Intervals – Point Estimate

• Assuming 𝒙0 is known, the variance of the forecast error is  
2 + 𝒙0 Var[b|𝒙0] 𝒙0 = 2 + 2[𝒙0 (XX)-1𝒙0]

If the model contains a constant term, this is

Varሾ𝑒଴ሿ  ൌ  𝜎ଶ 1  ൅ 
1
𝑁
 ൅ ෍ ෍ሺ𝑥௝

଴  െ  𝑥̄௝ሻሺ𝑥௞
଴  െ  𝑥̄௞ሻሺZᇱM଴Zሻ௝௞

௄ିଵ

௞ୀଵ

௄ିଵ

௝ୀଵ

(where Z is X without x1=ί). In terms squares and cross products of 
deviations from means.  

Note: Large 2, small 𝑁, and large deviations of driving variables from 
their means, decrease the precision of the forecasting error.

• Then, the (1 െ α)% C.I. is given by: [𝑦ො0 േ tT-k,α/2 * sqrt(Varሾ𝑒଴ሿሻሿ

Review: Prediction Intervals – C.I. and Variance
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• The most popular measures of  out-of-sample forecast accuracy, after 
𝑚 forecasts are: 

Mean Absolute Error (MAE) = 
ଵ

௠
∑ |𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ | ൌ ଵ

௠
∑ |𝑒௜|
்ା௠
௜ୀ்ାଵ

Mean Squared Error (MSE) = 
ଵ

௠
∑ ሺ𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ ሻଶ ൌ ଵ

௠
∑ 𝑒௜ଶ
்ା௠
௜ୀ்ାଵ

• The lower the above criteria, say MSE, the better the forecasting 
ability of  our model.

Review: Evaluation of  Forecasts – MSE & MAE

• Suppose two competing forecasting procedures produce a vector of  
errors: 𝑒ሺଵሻ & 𝑒ሺଶሻ. We use the MSE to evaluate the models:

• We want to test H0: MSE(1) = MSE(2) 
H1: MSE(1) ≠ MSE(2). 

Assumptions: forecast errors are unbiased, normal, and uncorrelated.  
If  forecasts are unbiased, then MSE = Variance.

• Consider, the pair of  RVs: (𝑒ሺଵሻ ൅ 𝑒ሺଶሻ) & (𝑒ሺଵሻ െ 𝑒ሺଶሻ). Now,

𝐸ሾሺ𝑒ሺଵሻ ൅ 𝑒ሺଶሻሻሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻሿ ൌ 𝜎ଵ
ଶ െ 𝜎ଶ

ଶ

• That is, we test H0 by testing that the two RVs are not correlated! 

Under H0, 𝐸ሾሺ𝑒ሺଵሻ ൅ 𝑒ሺଶሻሻሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻሿ ൌ 0.

Review: Evaluation of  forecasts – Testing MSEs
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• Under H0,  𝑒
ଵ ൅ 𝑒 ଶ  & ሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻ are uncorrelated –i.e., zero 

covariance. Idea from Morgan, Granger & Newbold (MGN, 1977).

• There is a simpler way to do the MGN test. Steps:
1. Define 𝑒 ଵ & 𝑒 ଶ , where 𝑒 ଵ is error with higher MSE. Let

𝑧௧ = 𝑒ሺଵሻ ൅ 𝑒ሺଶሻ - 𝑒 ଵ is the error with the higher MSE.
𝑥௧ = 𝑒ሺଵሻ െ 𝑒ሺଶሻ

2. Do a regression: 𝑧௧ = β 𝑥௧ + 𝜀௧
3. Test H0: β = 0  a simple t-test. 

The MGN test statistic is exactly the same as that for testing H0: β = 0. 
This is the approach taken by Harvey, Leybourne and Newbold (1997).

• If  the assumptions are violated, these tests have problems.

Review: Evaluation of  forecasts – Testing MSEs

• Based on how we select the “driving” variables 𝑋௧, we have different
forecasting approaches:

- Fundamental (based on data considered fundamental, from theory)

- Technical analysis (based on data that incorporates only past prices)

• Fundamental Approach to Forecast Exchange Rates, 𝑆௧ (USD/JPY)

Based on an economic model, we generate

E௧[𝑆௧ାଵ] = E௧[𝑓ሺ𝑋௧ାଵሻ] = 𝑔ሺ𝑋௧ሻ,
𝑋௧: dataset with fundamental economic variables:

- GNP growth rate,

- Current Account,

- Interest rates,

- Inflation rates, etc.

Forecasting Application: Fundamental Approach 
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• The economic model usually incorporates:

- Statistical characteristics of data (seasonality, autocorrelation, etc.)

- Experience of the forecaster (what information to use, lags, etc.)

 Mixture of art and science.

• The economic model provides the structure for the forecasts (also
called structural model).

• We compare the economic model’s performance with the
performance of a simpler model, for example, the Random Walk
(RWM). For many assets, the RWM is found to be a good forecasting
model, especially for 𝑆௧ , in the short-run. The RWM forecasts are:

E௧[𝑆௧ାଵ] = 𝑆௧

Forecasting Application: Fundamental Approach 

Model

Data

Estimation

Forecast

Evaluation

Modify/Change 
Model Test Model

Theory

Pass?

Practice

Forecasting Application: Fundamental Approach 

Continue
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• Fundamental Forecasting: We want to forecast the FX rate 𝑆௧ =
USD/JPY. We model percentage changes in 𝑆௧:

𝑒௙,௧ = log(𝑆௧) - log(𝑆௧ିଵ)

(1) Select a Model: Based on Theory (IFE, & Asset Approach)

𝑒௙,௧ = β0 + β1 (𝑖௎ௌ,௧ – 𝑖௃஺௉,௧) + β2 (𝑦௎ௌ,௧ – 𝑦௃஺௉,௧) + ௧
Et[𝑒௙,௧ାଵ] = β0 + β1 𝐸௧ሾ(𝑖௎ௌ – 𝑖௃஺௉)ሿ௧ାଵ + β2 𝐸௧ሾ(𝑦௎ௌ – 𝑦௃஺௉)ሿ௧ାଵ 

 Et[𝑆௧ାଵ] = 𝑆௧ାଵ
ி = 𝑆௧ * (1 + Et[𝑒௙,௧ାଵ])

(2) Collect data: 𝑆௧, 𝑿௧ (Interest rates, 𝑖௧, & GDP growth rates, 𝑦௧).

(3) Estimation of Model (using estimation period): OLS  get 𝐛.

Forecasting Application: Fundamental Approach 

• Fundamental Forecasting (continuation)

(4) Generate forecasts. Assumptions about Xt are needed.

Et[𝑿௧ାଵ] = δ1 + δ2 (𝑿௧) -an AR(1) model.

 Et[𝑒௙,௧ାଵ] = 𝐛 Et[𝑿𝒕ା𝟏] = 𝐛 𝑿𝒕
 Et[𝑆௧ାଵ] = 𝑆௧* (1 + Et[𝑒௙,௧ାଵ])

Note: We estimate δ1 & δ2 using OLS, 𝐛, and, then, we used them
to forecast 𝑿௧ାଵ.

(5) Evaluation of Forecasts: MSE (& compare with RWM’s MSE).

Model’s Forecast Errort+1 = Et[𝑆௧ାଵ] - 𝑆௧ାଵ
RWM’s Forecast Errort+1 = 𝑆௧ - 𝑆௧ାଵ

Compute: 𝑀𝑆𝐸௝ ൌ
ଵ

௠
∑ 𝑒௃,௜

ଶ்ା௠
௜ୀ்ାଵ (𝑗 = Our Model, RWM)

Forecasting Application: Fundamental Approach 
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Example: (1) & (2) Based on the following model,
𝑒௙,௧ = β0 + β1 (𝑖௎ௌ,௧ – 𝑖௃஺௉,௧) + β2 (𝑦௎ௌ,௧ – 𝑦௃஺௉,௧) + β3 (𝑚௎ௌ,௧ – 𝑚௃஺௉,௧) + ௧
we collect quarterly data (FX_USA_JAP.csv) from 1978:II – 2020:II.
we read the data and transform it to estimate model:

FX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/FX_USA_JAP.csv", head=TRUE, sep=",")

us_I <- FX_da$US_INF # Read US Inflation (IUS) data from file

us_mg <- FX_da$US_M1_c # Read US Money growth (mUS) data from file

us_i <- FX_da$US_I3M # Read US 3-mo Interest rate (iUS) data from file

us_y <- FX_da$US_GDP_g # Read US GDP growth (yUS) data from file

us_tb <- FX_da$US_CA_c # Read US Current account change (tbUS) data from file

jp_I <- FX_da$JAP_INF # Read Japan Inflation (IUS) data from file

jp_mg <- FX_da$JAP_MI_c # Read Japan Money growth (mJP) data from file

jp_i <- FX_da$JAP_I3M # Read Japan 3-mo Interest rate (iJP) data from file

jp_y <- FX_da$JAP_GDP_g # Read Japan GDP growth yJP) data from file

jp_tb <- FX_da$JAP_CA_c # Read Japan Current account change (tbJP) data from file

e_f <- FX_da$JPY.USD_c # Read changes in JPY/USD (e)

Forecasting Application: Fundamental Approach 

Example (continuation):
inf_dif <- us_I - jp_I # Define inflation rate differential (inf_dif)

int_dif <- us_i - jp_i

mg_dif <- us_mg - jp_mg

y_dif <- us_y - jp_y

tb_dif <- us_tb - jp_tb

xx <- cbind(int_dif, mg_dif, y_dif)

T <- length(e_f)

T_est <- 161 # Define final observation for estimation period.

e_f1 <- e_f[1:T_est] # Adjust sample size to T_est

xx_1 <- xx[1:T_est,] # Adjust sample size to T_est

(3) Estimation of model: OLS
fit_ef <- lm(e_f1 ~ xx_1)

summary(fit_ef)

Forecasting Application: Fundamental Approach 
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Example (continuation):

(3) Estimation of model (using only estimation period (T=161): Get b.
> summary(fit_ef)

Call:

lm(formula = e_f1 ~ xx_1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7246 0.6971 2.474 0.0144 *

xx_1int_dif -0.5281 0.2478 -2.131 0.0346 *

xx_1mg_dif 0.1104 0.1912 0.577 0.5647

xx_1y_dif -0.2034 0.4538 -0.448 0.6546

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.293 on 157 degrees of freedom

Multiple R-squared: 0.04673, Adjusted R-squared: 0.02851

F-statistic: 2.565 on 3 and 157 DF, p-value: 0.05661

Forecasting Application: Fundamental Approach 

Example (continuation): (4) Generate Forecasts. Need first to
estimate model for X variables. (using estimation period data only)

• AR(1) for (𝑖௎ௌ,௧ – 𝑖௃஺௉,௧)

int_dif_lag1 <- int_dif[1:T_est-1] # Lag ሺiUS,t – iJAP,t)

int_dif_lag0 <- int_dif[2:T_est] # Adjust sample size (lost one observation above)

fit_int <- lm(int_dif_lag0 ~ int_dif_lag1) # Fit AR(1) model

> summary(fit_int)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.22774 0.11074 2.057 0.0414 *

int_dif_lag1 0.87537 0.03772 23.210 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.045 on 158 degrees of freedom

Multiple R-squared: 0.7732, Adjusted R-squared: 0.7718

F-statistic: 538.7 on 1 and 158 DF, p-value: < 2.2e-16

Forecasting Application: Fundamental Approach 
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Example (continuation): (4 continuation)

• AR(1) for (𝑚௎ௌ,௧ – 𝑚௃஺௉,௧)

mg_dif_lag1 <- mg_dif[1:T_est-1] # Lag ሺmUS,t – mJAP,t)

mg_dif_lag0 <- mg_dif[2:T_est] # Adjust sample size (lost one observation above)

fit_mg <- lm(mg_dif_lag0 ~ mg_dif_lag1) # Fit AR(1) model

> summary(fit_mg)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.008708 0.216621 -0.040 0.967986

mg_dif_lag1 0.296597 0.076124 3.896 0.000144 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.74 on 158 degrees of freedom

Multiple R-squared: 0.08766, Adjusted R-squared: 0.08188

F-statistic: 15.18 on 1 and 158 DF, p-value: 0.000144

Forecasting Application: Fundamental Approach 

Example (continuation): (4 continuation)

• AR(1) for (𝑦௎ௌ,௧ – 𝑦௃஺௉,௧)

y_dif_lag1 <- y_dif[1:T_est-1] # Lag ሺyUS,t – yJAP,t)

y_dif_lag0 <- y_dif[2:T_est] # Adjust sample size (lost one observation above)

fit_y <- lm(y_dif_lag0 ~ y_dif_lag1) # Fit AR(1) model

> summary(fit_y)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.166258 0.086575 1.920 0.0566 .

y_dif_lag1 -0.008828 0.077255 -0.114 0.9092

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.08 on 158 degrees of freedom

Multiple R-squared: 8.263e-05, Adjusted R-squared: -0.006246

F-statistic: 0.01306 on 1 and 158 DF, p-value: 0.9092

Forecasting Application: Fundamental Approach 
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Example (continuation): (4 continuation)

• Now, we can do one-step-ahead forecast for the X variables:

T_val <- T_est+1 # start of Validation period

xx_cons <- rep(1,T-T_val+1) # create the constant vector

int_dif_0 <- cbind(xx_cons,xx[T_val:T,1]) %*% fit_int$coeff # 8 forecasts for (iUS,t – iJAP,t)

mg_dif_0 <- cbind(xx_cons,xx[T_val:T,2]) %*% fit_mg$coeff # 8 forecasts for (mUS,t – mJAP,t)

y_dif_0 <- cbind(xx_cons,xx[T_val:T,3]) %*% fit_y$coeff # 8 forecasts for (yUS,t – yJAP,t)

• Finally, we compute the one-step-ahead forecast for e and MSE:

e_Mod_0 <- cbind(xx_cons,int_dif_0,mg_dif_0,y_dif_0)%*%fit_ef$coeff # Model’s forecast

f_e_Mod <- e_f[T_val:T] - e_Mod_0 # Model’s forecast error

mse_e_f <- sum(f_e_Mod^2)/(T-T_val+1) # Model’s MSE

> mse_e_f

[1] 3.974203

Forecasting Application: Fundamental Approach 

Example (continuation): (5) Evaluation of Forecasts
mse_e_f <- sum(f_e_Mod^2)/(T-T_val+1) # Model’s MSE

> mse_e_f

[1] 3.974203

• Compute the one-step-ahead forecast for RW Model and, then, its MSE:
e_f_RW_0 <- rep(0,T-T_val+1) # RW forecast = 0 (always 0, for all t+T!)

f_e_RW <- e_f[T_val:T] - e_f_RW_0 # RW’s forecast error

mse_e_RW <- sum(f_e_RW^2)/(T-T_val+1) # RW’s MSE

> mse_e_RW

[1] 3.381597  Lower MSE than Model. Not good for Model.

• Compare MSEs: The RW model has a better MSE (usual finding).

• A MGN test is usually done. But, we have only m=8 observations, we
can do the test, but the results are very likely not to be taken seriously.

Forecasting Application: Fundamental Approach 
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Example (continuation): (5) Evaluation of Forecasts

• MGN/HLN test:
z_mgn <- e_Mod + e_RW

x_mgn <- e_Mod - e_RW

fit_mgn <- lm(z_mgn ~ x_mgn)

> summary(fit_mgn)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.355 2.680 0.506 0.631

x_mgn 1.798 2.759 0.651 0.539  not significant, but unreliable (a very small sample).

Residual standard error: 3.026 on 6 degrees of freedom  very small # for df to make inferences.

Multiple R-squared: 0.05322, Adjusted R-squared: -0.1046

F-statistic: 0.3373 on 1 and 6 DF, p-value: 0.5826

• Suppose you are happy with the Model, you believe the difference in
MSEs is not significant, now you generate out-of-sample forecasts.

Forecasting Application: Fundamental Approach 

Example (continuation):

(6) Out-of-sample one-step-ahead forward forecast for 𝑆௧:

E௧ୀଶ଴ଶ଴:ூூ 𝑆௧ାଵୀଶ଴ଶ଴:ூூூ ൌ 𝑆௧ୀଶ଴ଶ଴:ூூ (1 + E௧ୀଶ଴ଶ଴:ூூሾ𝑒௙,௧ାଵୀଶ଴ଶ଴:ூூூሿሻ

We observe St today (2020:II): S2020:II = 100.77 JPY/USD, which we
invert since we work with direct quotes: S2020:II = 0.009279 USD/JPY.

We need to forecast the independent variables, based on AR(1) results,

𝑿௧ = {(𝑖௎ௌ,௧ – 𝑖௃஺௉,௧), (𝑦௎ௌ,௧ – 𝑦௃஺௉,௧), (𝑚௎ௌ,௧ – 𝑚௃஺௉,௧) }

• Forecasting ሺ𝑖௎ௌ,௧ାଵ – 𝑖௃஺௉,௧ାଵ): Et=2020:IIሾሺ𝑖௎ௌ  െ 𝑖௃஺௉௎ௌሻ௧ାଵୀଶ଴ଶ଴:ூூூ]
int_dif_p1 <- cbind(1,int_dif[T]) %*% fit_int$coeff # int_dif_p1 = Et=2020:II[(iUS,t – iJAP)t+1=2020:III]

> int_dif_p1

[,1]

[1,] 0.4684645

Forecasting Application: Fundamental Approach 
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Example (continuation): (6) Out-of-sample forecast for St:

• Forecasting (mUS,t – mJAP,t): Et=2020:II[(mUS,t – mJAP)t+1=2020:III]
mg_dif_p1 <- cbind(1,m_dif[T]) %*% fit_m$coeff # mg_dif_p1 = Et=2020:II[(mUS,t – mJAP)t+1=2020:III]

> mg_dif_p1

[,1]

[1,] 4.921977

• Forecasting (yUS,t – yJAP,t): Et=2020:II[(yUS,t – yJAP)t+1=2020:III]
y_dif_p1 <- cbind(1,y_dif[T]) %*% fit_y$coeff # y_dif_p1 = Et=2020:II[(yUS,t – yJAP)t+1=2020:III]

> y_dif_p1

[,1]

[1,] 0.176617

• Forecasting Et=2020:II[St+1=2020:III]
S <- 0.009279 # Today’s value of St=2020:II

e_f_p1 <- cbind(1,int_dif_p1,mg_dif_p1,y_dif_p1) %*% fit_ef$coeff # Today’s forecast for et=2020:III

S_p1 <- S * (1+e_f_p1/100) # Today’s forecast for St=2020:III

Forecasting Application: Fundamental Approach 

Example (continuation): (6) Out-of-sample forecast for St:

• Forecasting Et=2020:II[St+1=2020:III] (=S_p1 in the R script below)
> S <- 0.00927902 # Today’s value of St=2020:II

> e_f_p1 <- cbind(1,inf_dif_p1,mg_dif_p1,y_dif_p1)%*%fit_ef$coeff # Today’s forecast for et=2020:III

> e_f_p1 # Print forecast for et=2020:III

[,1]

[1,] 1.984401  1.98% depreciation of USD against JPY in 3rd Quarter.

> S_p1 <- S * (1+e_f_p1/100) # e is in %, we divide by 100 to put it decimal from

> S_p1 # Print forecast for St=2020:III

[,1]

[1,] 0.009463133  Model’s forecast for St+1=2020:III = 0.009463133 USD/JPY.

• Et=2020:II[St+1=2020:III] = 0.009463133 USD/JPY.

(using the indirect quote, Et=2020:II[St+1=2020:III] = 105.6732 JPY/USD).

Forecasting Application: Fundamental Approach 
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Example (continuation): (6) Out-of-sample forecast for St:

• We can use the one-step-ahead forecasts to generate two-step-ahead
forecasts. That is, we forecast Et=2020:II[St+1=2020:IV] (=S_p2 below)
> S1 <- S_p1 # Today’s forecast for St+1=2020:III

> int_dif_p2 <- cbind(1,int_dif_p1)%*%fit_int$coeff # Today’s forecast for (iUS – iJP)t+2

> mg_dif_p2 <- cbind(1,mg_dif_p1)%*%fit_mg$coeff # Today’s forecast for (mUS – mJP)t+2

> y_dif_p2 <- cbind(1,y_dif_p1)%*%fit_y$coeff # Today’s forecast for (yUS – yJP)t+2

> e_f_p2 <- cbind(1,int_dif_p2,mg_dif_p2,y_dif_p2)%*%fit_ef$coeff # Today’s forecast for
et=2020:IV

> e_f_p2

[,1]

[1,] 1.514363  1.11% depreciation of USD against JPY in 4th Quarter.

> S_p2 <- S1*(1+e_f_p2/100)

> S_p2

[,1]

[1,] 0.009606439  Model’s forecast for St+1=2020:III = 0.009606439USD/JPY.

• Et=2020:II[St+1=2020:III] = 0.009606439 USD/JPY.

Forecasting Application: Fundamental Approach 

Example (continuation): (6) Out-of-sample forecast for St:

• We can use the two-step-ahead forecast to generate three-step-ahead
forecasts. Obviously, we can continue this process to generate l-step-
ahead forecasts for St (a simple do loop will do it).

• Eventually, we will collect m of out-of-sample forecasts (m one-step-
ahead forecasts, m two-step-ahead forecasts, m three-step-ahead
forecasts, etc.) to get an MSE and run a MGN/HLN test on them.

• It is possible that one model is the best in the short-term (say, up to 3
steps ahead); other is better in the medium-term (say, from 4 to 6 steps
ahead); and another is best for longer-term. For example, the RW
model is very good (“unbeatable”) up to 3 months ahead. Then, other
models start to produce better forecasts, especially after 6 months.

Forecasting Application: Fundamental Approach 
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• Practical Issues in Fundamental Forecasting

- Are we using the "right model?"

- Estimation of the model (OLS, MLE, other methods).

- Some explanatory variables (𝑋௧ା்) are contemporaneous.

 We also need a model to forecast the 𝑋௧ା் variables.

• Does Forecasting Work?

For exchange rates, in the short-run (up to 6 months), RW models
tend to do very well. They beat structural (and other) models: Lower
MSE, MAE.

Many argue that the structural models used are not the “right models.”

Forecasting Application: Fundamental Approach 

• Specifying the DGP in (A1) is the most important step in applied 
work. We have assumed “correct specification,” which, in practice, is an 
unrealistic assumption, since we do not really observed the true DGP. 

• A bad model can create many problems: biases, wrong inferences, 
bad forecasts, etc.  

• So far, we have implicitly used a simple strategy:

(1) We started with a DGP, which we assumed to be true.

(2) We tested some H0 (from economic theory).

(3) We used the model (restricted, if  needed) for prediction & 
forecasting.

Model Selection Strategies
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• Q: How do we propose and select a model (a DGP)? 

• Potentially, we have a huge number of  possible models with:

- Different functional form: f(.), g(.), h(.), etc.

- Different explanatory variables: X, Z, W, dummy variables, D, etc.

Suppose, we have 4 different models to choose from:
Model 1 𝒚 = Xβ + ε
Model 2 𝒚 = Zγ + ξ
Model 3 𝒚 = (Wγ)λ + η
Model 4 𝒚 = exp(Z D δ) + 𝛜

• We want to select the best model, the one that is closest to the true 
and unobserved DGP. In practice, we aim for a “good” model. 

Model Selection Strategies

• A model is a simplification. Many approaches to build a model:

• “Pre-eminence of  theory.”  Economic theory should drive a 
model. Data is only used to quantify theory. Econometric methods 
offer sophisticated ways ‘to bring data into line’ with a particular 
theory. 

• Purely data driven models. Success of  ARIMA models (late 60s –
early 70s), discussed in Parts 8 & 9: No theory, only exploiting the 
time-series characteristics of  the data to build models. 

• Modern (LSE) view.  A compromise: theory and the characteristics 
of  the data are used to build a model. 

Model Selection Strategies – Views
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• Theory and practice play a role in deriving a good model. David 
Hendry (2009) emphasizes:

“This implication [… ] suggests formulating more general initial 
models that embed the available economic theory as a special case, 
consistent with our knowledge of  the institutional framework, 
historical record, and the data properties.”  

“Applied econometrics cannot be conducted without an economic 
theoretical framework to guide its endeavors and help interpret its 
findings. ”

“ Nevertheless, since economic theory is not complete, correct, and 
immutable, and never will be, one also cannot justify an insistence on 
deriving empirical models from theory alone.”

Model Selection Strategies – Modern View

• According to David Hendry, a good model should be:

- Data admissible -i.e., modeled and observed y should have the 
same properties.

- Theory consistent -our model should “make sense”

- Predictive valid -we should expect out-of-sample validation

- Data coherent -all information should be in the model. 
Nothing left in the errors (white noise errors).

- Encompassing -our model should explain earlier models.

• That is, we are searching  for a statistical model that can generate the 
observed data (𝒚, X), this is usually referred as statistical adequacy, 
makes theoretical sense and can explain other findings.

Model Selection Strategies – A Good Model
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• FAQ in practice:

- Should I include all the variables in the database in my model?

- How many explanatory variables do I need in my model?

- How many models do I need to estimate?

- What functional form should I be using?

- Should the model allow for structural breaks?

- Should I include dummies & interactive dummies ?

- Which regression model will work best and how do I arrive at it?

Model Selection Strategies – FAQ

• Diagnostic testing: We test assumptions behind the model. In our case, 
assumptions (A1)-(A5) in the CLM.

Example:  Test E[|X] = 0  -i.e., the residuals are zero-mean, 
uncorrelated with anything (that is, white noise distributed errors).

In selecting a model, this is a very important step. We run a lot of  test 
to check the residuals are acceptable or the model is not misspecified: 
Ramsey’s reset test, tests for autocorrelation, etc.

• Parameter testing: We test economic H0’s.

Example:  Test β௞= 0 -for example, there is no size effect on 
the expected return equation.

Model Selection Strategies – Important Concepts
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Model Selection Strategies: Two Methods

• There are several model-selection methods. We will consider two: 

• Specific to General. Start with a small “restricted model,” do some 
testing and make model bigger model in the direction indicated by the 
tests (for example, add variable 𝒙௞ when test reject H0: β௞= 0).

Popular application: Stepwise Regression.

• General to Specific (GETS). Start with a big “general unrestricted 
model,” do some testing and reduce model in the direction indicated 
by the tests (for example, eliminate variable 𝒙௞ when test cannot reject 
H0: β௞= 0).

Popular application: Best subset.

• Problem with all methods: They all run lots of  tests. Type-I errors 
(irrelevant variable) & Type-II errors (omitted variables) will occur.

• The specific-to-general method, in theory, is very simple. Steps:

(1) Begin with a small theoretical model – for example, the CAPM

𝒚 = X + . 
(2) Estimate the model – say, using OLS

(3) Do some diagnostic testing – are residuals white noise?

If the assumptions do not hold, then use:

- More advanced econometrics – GLS instead of OLS?

- A more general model – More regressors? Lags?

(4) Test economic H0 on the parameters    – Is HML significant?

(5) Modify model in (1) in the direction of rejections of H0.

• This strategy is known as specific to general. In the machine learning 
literature, this strategy is also called forwards selection.

Model Selection Strategies: Specific to General
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Example: Specific-to-general strategy to model IBM returns:

(1) We start with the 3-factor FF model for IBM:
(𝑟௜ୀூ஻ெ,௧ – 𝑟௙) = 0 + 1 (𝑟௠,௧ – 𝑟௙) + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧+ t

(2) Estimate the 3-factor FF model for IBM:
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML)

> summary(fit_ibm_ff3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005191 0.002482  -2.091   0.0369 *  

Mkt_RF 0.910379 0.056784 16.032 <2e-16 ***

SMB       -0.221386 0.084214  -2.629   0.0088 ** 

HML     -0.139179 0.084060  -1.656   0.0983 .  

---

Residual standard error: 0.05842 on 566 degrees of freedom

Multiple R-squared:  0.3393,    Adjusted R-squared:  0.3358 

F-statistic:  96.9 on 3 and 566 DF,  p-value: < 2.2e-16

Model Selection Strategies: Specific to General

Example (continuation): 

(3) Diagnostic tests: Check t-stats & R2, F-test goodness of fit, etc.

(4) LM Test to test if there is a January Effect (H0: No January effect): 
> LM_test
[1] 9.084247  LM_test > 3.84 Reject H0: No January effect.

(5) Given this result, we modify the 3-factor FF and add the January 
Dummy to the FF model:
fit_ibm_new <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1)
> summary(fit_ibm_new)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.007302 0.002561  -2.851  0.00452 ** 
Mkt_RF 0.905182 0.056405  16.048  < 2e-16 ***
SMB     -0.247691 0.084063  -2.946  0.00335 ** 
HML     -0.154093 0.083606  -1.843  0.06584 .  
Jan_1        0.026966 0.008906   3.028 0.00258 ** 

Model Selection Strategies: Specific to General
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• The specific-to-general method makes assumptions along the way 
Some remarks based on the previous example:

(1) Very likely the starting model is based on theory and experience 
(HML is not significant at the usual 5% level). Not clear how to 
proceed from there to a more general model.

(2) We tested for a January effect and then added to the model. 
However, we could have tested for a Dot.com effect or for an 
interactive Dot.com/January effect with the 3 FF factors. Not clear 
when to stop the search.

(3) Select a p-value to add variables to the model. In this case, we use 
the standard 5% for the tests. 

Model Selection Strategies: Specific to General

• Note that in the previous example, we started with a model. What 
happens if are skeptical regarding models?

• A popular implementation of the specific-to-general model selection 
is the stepwise regression, where we start with only a set of potential 
explanatory variables and let the data, based on some criteria (R2, AIC, 
etc.),  determine which variables to keep.

Model Selection Strategies: Specific to General
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• Overall structure:

- The method begins with a 𝑘 potential regressors. 

- Do 𝑘 one-variable regressions. Pick the one that shows the biggest t-
stat or maximizes a goodness of fit measure, say, Adjusted-R2, 𝑅2. 
Suppose 𝑥௝ is selected.

- Then, do 𝑘 െ 1 -variable regressions all with 𝑥௝ . Select the regressor
(in addition to 𝑥௝) that has the highest t-stat or that maximizes 𝑅2.

- Continue. But, when we start adding regressors, we usually check if 
the added regressor(s) change the significance of previous steps. (Note: 
at each step, we remove or add a regressor(s) based on t- or F-tests.) 

- Stop: Additional regressors do not have significant t-stats/increase 𝑅2. 

Decisions: Selection of 𝑘 variables, α for tests (α = 5%, 10%, 20%?) 
and goodness of fit statistic. 

Model Selection Strategies: Stepwise Regression

• Decisions: Selection of 𝑘 initial variables, α for tests (α = 5%, 10%, 
30%?) and goodness of fit statistic. 

Remark: Always keep in mind that the selected (final) model is not 
necessarily better than others. Type I and Type II errors are likely to 
occur: Final model may have irrelevant and/or omitted variables.

Technical Note: Though popular in practice, in general, selecting  
variables based on p-values is not advised, since the distribution of the 
OLS coefficients is affected. (Pre-testing problem, due to accumulation 
of Type I/Type II errors.)

Model Selection Strategies: Stepwise Regression
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Example: Stepwise regression strategy to model IBM returns. We start 
with the 5 FF factors as candidates for IBM. We use the function 
ols_step_forward_p in the olsrr package, which uses p-values to select:
library(olsrr)

ff_step_data <- data.frame(Mkt_RF, SMB, HML, RMW, CMA) 

ibm_ff_model <- lm(ibm_x ~ ., data = ff_step_data) # default p-value (penter) is 0.3 

> ols_step_forward_p(ibm_ff_model , details = TRUE) #  long final output

Forward Selection Method    

---------------------------

Candidate Terms: 

1. Mkt_RF

2. SMB 

3. HML 

4. RMW 

5. CMA 

We are selecting variables based on p value...

Model Selection Strategies: Stepwise Regression

Example (continuation): Final output is long (last pages)
No more variables to be added.

Variables Entered: 

+ Mkt_RF

+ SMB 

Final Model Output 

------------------

Model Summary                            

------------------------------------------------------------------

R                       0.567       RMSE                    0.059 

R-Squared               0.322       Coef. Var -26735.706 

Adj. R-Squared          0.320       MSE                     0.003 

Pred R-Squared          0.314       MAE                     0.042 

------------------------------------------------------------------

RMSE: Root Mean Square Error 

Model Selection Strategies: Stepwise Regression
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Example (continuation): It selects Mkt_RF & SMB.
Parameter Estimates                                    

----------------------------------------------------------------------------------------

model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 

----------------------------------------------------------------------------------------

(Intercept)    -0.005      0.002    -2.162  0.031    -0.010     0.000 

Mkt_RF 0.895         0.053        0.584    16.932    0.000     0.791     0.999 

SMB    -0.232         0.081       -0.099    -2.866    0.004    -0.391    -0.073 

----------------------------------------------------------------------------------------

Selection Summary                              

--------------------------------------------------------------------------

Variable                  Adj.                                        

Step    Entered     R-Square    R-Square C(p)        AIC         RMSE     

--------------------------------------------------------------------------

1    Mkt_RF 0.3129      0.3118    7.2302    -1722.6920    0.0589    

2    SMB           0.3220      0.3198    1.0441    -1728.8899    0.0586    

Model Selection Strategies: Stepwise Regression

• GETS starts with a general unrestricted model (GUM), which nests 
restricted models and allows any restrictions to be tested. Say:

𝒚 = X + Zγ + Wλδ + (X * W)ζ + (Z * D)ψ + . 

• GETS assumes that the GUM contains the true DGP; it’s a nested 
model inside. The GUM contains relevant variable (with significant 
coefficients) and irrelevant variables. The aim of GETS is to discover 
the DGP. In practice, to get a “good” approximation to the DGP.

• Then, the reduction of the GUM starts. Using t-tests, and F-tests, we 
move from the GUM to a smaller, more parsimonious, specific model. 

• If competing models are selected, encompassing tests or information 
criteria (AIC, BIC) can be used to pick a final model. This is the 
discovery stage.

Model Selection Strategies: General to Specific
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• After the discovery stage is finish, we end up with a final model, a 
restricted GUM:

𝒚 = X + . 

• Creativity is needed for the specification of a GUM. Theory and 
empirical evidence play a role in designing a GUM. 

Note: Recall the remark regarding Type-I and Type-II errors. GETS 
performs lots of tests: omitted & irrelevant variables will very likely be 
in the final model. 

- Type-I errors (irrelevant variables): Hopefully, as T → ∞, GETS 
only keeps α% of irrelevant variables.  

- Type-II errors (omitted variables): Hopefully. as T → ∞, GETS 
keeps all the relevant variables.

Model Selection Strategies: General to Specific

• General-to-Specific Method:

Step 1 - First ensure that the GUM does not suffer from any 
diagnostic problems. Check residuals in the GUM to ensure that they 
possess acceptable properties. (For example, test for white noise in 
residuals, incorrect functional form, autocorrelation, etc.).

Step 2 - Test the restrictions implied by the specific model against the 
general model – either by exclusion tests or other tests of linear 
restrictions.

Step 3 - If the restricted model is accepted, test its residuals to ensure 
that this more specific model is still acceptable on diagnostic grounds.

• This strategy is called general to specifics (“GETS”), LSE, TTT (Test, 
test, test). In the machine learning literature, this strategy is also called 
backwards selection.

Model Selection Strategies: General to Specific
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• The role of diagnostic testing is two-fold. 

- In the discovery steps (Steps 1 & 2), the tests are being used as design 
criteria.  Testing plays the role of checking that the original GUM was 
a good starting point after the GUM has been simplified. 

- In the context of model evaluation (Step 3), the role of testing is 
clear cut. Suppose you use the model to produce forecasts.  These 
forecasts can be evaluated with a test. This is the critical evaluation of 
the model.

John Dennis Sargan (1924 – 1996, England)

Model Selection Strategies: General to Specific

Example: General-to-specific strategy to model IBM returns:

Step 1 - Start with a GUM: the 3-factor FF model for IBM + January 
(𝐽𝑎𝑛௧) & Dot.com (𝐷𝑜𝑡௧) Dummy + non-linear & interactive effects:
(𝑟ூ஻ெ,௧ – 𝑟௙) = 0 + 1 (𝑟௠,௧ – 𝑟௙) + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧ + 4 𝐽𝑎𝑛௧

+ 5 𝐷𝑜𝑡௧ + 6 (𝑟௠,௧ – 𝑟௙)2 + 7 𝑆𝑀𝐵௧2 + 8 𝐻𝑀𝐿௧2 +
+ 9 (𝑟௠,௧ – 𝑟௙) * 𝑆𝑀𝐵௧ + 10 (𝑟௠,௧ – 𝑟௙) * 𝐻𝑀𝐿௧ + 
+  11 (𝑟௠,௧ – 𝑟௙) * 𝐽𝑎𝑛௧ + 12 𝑆𝑀𝐵௧ * 𝐽𝑎𝑛௧
+ 13 𝐻𝑀𝐿௧ * 𝐽𝑎𝑛௧ + 14 (𝑟௠,௧ – 𝑟௙) * 𝐷𝑜𝑡௧
+ 15𝐻𝑀𝐿௧ *𝐷𝑜𝑡௧+ 16 𝑆𝑀𝐵௧ * 𝐷𝑜𝑡௧ + t

Step 1 - Estimate GUM:
Mkt_Jan <- Mkt_RF * Jan_1

HML_Jan <- HML * Jan_1

Mkt_Dot <- Mkt_RF * Dot_com

HML_Dot <- HML * Dot_com

SMB_Dot <- SMB * Dot_com

Model Selection Strategies: General to Specific
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Example (continuation): 
fit_ibm_gum <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + Mkt_RF_2 + SMB_2 + HML_2 + 
Mkt_HML + Mkt_SMB + SMB_HML + Mkt_Jan + HML_Jan + Mkt_Dot + HML_Dot + SMB_Dot)

> summary(fit_ibm_gum)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.007836 0.003063  -2.559 0.010772 *  

Mkt_RF 0.791866 0.090474   8.752 < 2e-16 ***

SMB       -0.295790 0.110655  -2.673 0.007738 ** 

HML     -0.233942 0.135146  -1.731 0.084004 .  practice says “keep it.” Judgement call.

Jan_1      0.031769 0.009349   3.398 0.000727 ***

Mkt_RF_2 -0.433762 0.850899  -0.510 0.610417    

SMB_2    -0.927271 1.470645  -0.631 0.528615    

HML_2    2.707992 1.670366   1.621 0.105545  almost 10%, I keep it. Judgement call.

Mkt_HML 0.628721 1.557090   0.404 0.686531    

Mkt_SMB 0.791625 1.746939   0.453 0.650618    

SMB_HML -1.044806 2.029091  -0.515 0.606819    

Mkt_Jan -0.069413 0.189309  -0.367 0.714008    

HML_Jan -0.259697 0.255484  -1.016 0.309841    

Model Selection Strategies: General to Specific

Example (continuation): 
Estimate Std. Error t value Pr(>|t|)    

Mkt_Dot 0.323382 0.130645   2.475 0.013612 *  

HML_Dot 0.059742 0.208277   0.287 0.774342    

SMB_Dot 0.076998 0.198964   0.387 0.698910 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05788 on 553 degrees of freedom

Multiple R-squared:  0.3663, Adjusted R-squared:  0.3491 

F-statistic: 21.31 on 15 and 553 DF,  p-value: < 2.2e-16

Step 1 – Check GUM residuals for departures of (A2)-(A3). A 
Ramsey’s reset test can be done (using the resettest in the lmtest library).

> resettest(fit_ibm_gum, type="fitted")

RESET test

data:  fit_gum

RESET = 1.2645, df1 = 2, df2 = 551, p-value = 0.2832

Model Selection Strategies: General to Specific
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Example (continuation): 

Step 2 – Reduce Model with t-test and F-tests. Say, we keep all the 
variables with a p-value close to 10% (we still keep HML, using previous 
experience). We estimate a restricted GUM: 

fit_ibm_gum_r <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + HML_2 + Mkt_Dot)

> summary(fit_ibm_gum_r)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.008696   0.002788  -3.119  0.00191 ** 

Mkt_RF     0.779336   0.072453  10.756 < 2e-16 ***

SMB      -0.280018   0.083891 -3.338  0.00090 ***

HML     -0.250480   0.088504 -2.830  0.00482 ** 

Jan_1    0.028499   0.008937   3.189 0.00151 ** 

HML_2    1.676011   1.331161   1.259  0.20853    

Mkt_Dot  0.344030   0.116685  2.948  0.00333 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Model Selection Strategies: General to Specific

Example (continuation): 

Step 2 – Test the restrictions implied by the specific model against the 
general model. Using an F-test, we test J=9 restrictions: 

H0: 5= 6 = 8 = 9 = 10 = 11 = 12 = 14= 15. 

e_u <- fit_ibm_gum$residuals # GUM residuals

RSS_u <- t(e_u)%*%e_u

e_r <- fit_ibm_gum_r$residuals # Restricted GUM residuals

RSS_r <- t(e_r)%*%e_r

f_test_gum <- ((RSS_r - RSS_u)/9)/(RSS_u/(T-16)) # F-test

> f_test_gum

[,1]

[1,] 0.4299497  we cannot reject H0 (f_test_gum < qchisq(.95, 9, 553) = 1.896801)

> qf(.95, df1=9, df2=T-16)

[1] 1.896801 

p_val <- 1 - pf(f_test_gum, df = 9 , df2=T-16) # p-value of F-test 

>  p_val

[1,] 0.919105  p-value is almost 1. No evidence for H0.

Model Selection Strategies: General to Specific
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Example (continuation): 

Step 2 – Further specification checks of Restricted GUM, for example, 
perform a Ramsey’s reset test (using the resettest in the lmtest library).
> resettest(fit_gum_r, type="fitted")

RESET test

data:  fit_ibm_gum_r

RESET = 1.0998, df1 = 2, df2 = 561, p-value = 0.3337

Step 3 - Test if Restricted GUM residuals are acceptable –i.e., do 
diagnostic tests (mainly, make sure they are white noise). If Restricted 
GUM passes all the diagnostic tests, it becomes the “final model.”

Note: With the final model, we use it to justify/explain financial theory 
and features, and do forecasting.

Model Selection Strategies: General to Specific

Example (continuation): 

Step 1 – can be done with R package olsrr, using the function 
ols_step_backward_p, which performs backwards selection.

library(olsrr)

## We need to put all the explanatory variables in a data frame

ff_step_data <- data.frame(Mkt_RF, SMB, HML, Jan_1, Dot_com, Mkt_RF2, HML2, 
SMB2, Mkt_HML, Mkt_SMB, SMB_HML, Mkt_Jan, SMB_Jan, HML_Jan, Mkt_Dot, 
HML_Dot, SMB_Dot) 

## Fit GUM with lm

fit_ibm_gum2 <- lm(ibm_x ~ ., data = ff_step_data) # default p-value is 0.3 

## Use GETS (backward search, in this package). We can specify the p-value (prem) to 
eliminate variables.

ols_step_backward_p(fit_ibm_gum2, prem = .05, details = TRUE) #  long final output

Model Selection Strategies: General to Specific
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• The general-to-specific method makes assumptions along the way.

Some remarks based on the previous example:

(1) Select a p-value for the tests of significance in the discovery stage 
(we use 10%). Given that we performed 15 t-tests, we should not be 
surprised we rejected the GUM, since we had an overall significance, 
α* = .79 [= 1 – (1 - .10)^15]. Mass significance is an issue.  

(2) Judgement calls are also made.

(3) The reduction of the GUM involves “pre-testing” –i.e., data mining. 
We are likely rejecting a true H0 (false positives) & not rejecting a true 
H1 (false negatives), along the way. This increases the probability that 
the final model is not a good approximation. It is  common to ignore 
(or not even acknowledge) pre-testing issues. 

Model Selection Strategies: General to Specific

• Begin with a big model, with 𝑘 regressors:

𝒚 = X + .
The idea is to select the “best” subset of the 𝑘 regressors in X, where 
“best” is defined by the researcher, say MSE, Adjusted-R2, etc. 

• In theory, it requires 2௞regressions. It can take a while if 𝑘 is big (𝑘
< 40 is no problem).

• Many tricks are used to reduce the number of regressions.

• In practice, we use best subset to reduce the number of models to 
consider. For example, from the regressions with one-variable, keep 
the best one-variable model, from the regression with two-variables, 
keep the best two-variable model, etc.

Model Selection Strategies: Best Subset



RS - Financial Econometrics - Lecture 6

31© R Susmel, 2023. Do not share/post online without written authorization

Example: We want to select a model for IBM excess returns, using 
the 𝑘=3 Fama-French factors: Market excess returns (Mkt_RF), SMB, 
& HML. We have 8 (=23) models and, thus, regressions: 
1) Constant; 
2) Mkt_RF (CAPM)
3) SMB
4) HML
5) Mkt_RF & SMB 
6) Mkt_Rf & HML
7) SMB & HML
8) Mkt_RF, SMB, & HML (the 3-factor F-F Model). 

• We select the model with the lower MSE. Or, we can carry two or 
three models of the best models to do cross-validation.

Model Selection Strategies: Best Subset

Example (continuation): Suppose we selected three model: CAPM 
(M1); Mkt_RF & SMB (M2); and the 3-factor F-F Model (M3).

Now, we use 𝐾-fold cross-validation, with 𝐾 = 5.

CV5 M1: 0.003542756

CV5 M2: 0.003505873

CV5 M3: 0.003556918

Note: Models look very similar. Practitioners compute a SE for 𝐶𝑉௄
and use a one SE rule. If within one SE, keep simplest model (M1).

R Note: The package olsrr also computes the Best subset. You need to 
use the command (you can select adjusted R2 as a metric for selection):

ols_step_best_subset(model, metric = “adjr” )

Model Selection Strategies: Best Subset
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• A modeling strategy is consistent if its probability of finding the true 
model tends to 1 as T -the sample size- increases.

• Properties for strategies

(1) Specific to General 

- It is not consistent if the original model is incorrect.

- It need not be predictive valid, data coherent, & encompassing.

- No clear stopping point for an unordered search.

(2) General to Specific 

- It is consistent under some circumstances. But, it needs a large T.

- It uses data mining, which can lead to incorrect models for small T.

- The significance levels are incorrect. This is the problem of mass 
significance.

Model Selection Strategies: Properties

• In the end, judgment must be used in weighing up various criteria: 

- The Economic Criterion   –are the estimated parameters plausible? 
(Economic Significance).

- The First Order Statistical Criterion  –does the model provide a 
good fit (in-sample) with statistically significant parameter estimates? 

- The Second Order Statistical Criterion  –is the model generally 
free of  misspecification problems – as evidenced in the diagnostic 
tests?

- The Out of  Sample Predictive Criterion   –does the model 
provide good out of  sample predictions?

Model Selection Strategies: Judgement Calls
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• So far, we have emphasized finding a DGP, that gives us a (linear) 
model for the conditional expectation of  𝒚.  Then, using this model, 
we estimate its parameters to get 𝒚ෝ. For example, a 𝑘-factor model:

E[𝑦௜ | 𝑥௜] = α + 1 𝑥ଵ,௜+ 2 𝑥ଶ,௜ + … + ௞ 𝑥௞,௜ ⟹ 𝑦ො௜

• Machine Learning (ML) methods can be used to select a model and 
covariates, especially when the goal is to generate predictions, 𝑦ො௜. ML 
models are very efficient in settings with many (hundreds or 
thousands) explanatory variables or covariates –i.e., large 𝑘. 

Note: We have relied on linear models, but ML methods can allow for 
almost any functional form for E[𝑦௜ | 𝑥௜]. Moreover, in general, ML 
does not care about the interpretation of  its parameters, though work 
is being done to derive the properties of  parameters and predictions. 

Model Selection Strategies: Machine Learning

• We start with an ML method that preserve linearity for the 
conditional expectation, E[𝑦௜ | 𝑥௜], with 𝑘 covariates: 

E[𝑦௜ | 𝑥௜] = ଵ 𝑥ଵ,௜+ ଶ 𝑥ଶ,௜ + ଷ 𝑥ଷ,௜ + …+ ௞ 𝑥௞,௜ = ′ 𝒙௜

• OLS estimates this model by 

min


∑ ሺ𝑦௜ െ ′ 𝒙௜ሻே
௜ୀଵ

ଶ

• Q: We can do OLS, which has nice properties, why do we need ML? 
When 𝑘 is very large, possible exceeding 𝑁, the OLS estimator may 
have inferior predictive properties, in terms of  MSE, to those of  other 
estimators that impose some restrictions or “penalties” on the size of  
the parameters in the minimization problem. These restrictions are 
called “regularizations.”

Machine Learning: OLS with Restrictions
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• These restrictions or penalties are called “regularizations.” In general, 
the bigger the size of  the vector of  parameter (the “complexity”) the 
bigger the penalty. For example,

min


 ∑ ሺ𝑦௜ െ ′ 𝒙௜ሻே
௜ୀଵ

ଶ
+ λ Penalty(sizeሺ)) (λ > 0)

where λ > 0. Different penalties for complexity give different models.

• The parameter controls the strength of  the penalty.

- when λ = 0, we have OLS 

- when λ = ∞, we have  = 0.

- when λ ∈ (0, ∞), we have a combination (or trade-of) between OLS 
and reducing complexity (setting coefficients to zero) and/or reducing 
the weights of  covariates (“shrinking the coefficients” in the model.

Machine Learning: Regularization

• LASSO or Least Absolute Shrinkage and Selection Operator, proposed by 
Tibshirani (1996), sets Penalty(sizeሺ)) = ∑ |௝ |௞

௝ୀଵ . That is:

min


 ∑ ሺ𝑦௜ െ ′ 𝒙௜ሻே
௜ୀଵ

ଶ
+ λ ∑ |௝ |௞

௝ୀଵ

Lasso, given its penalty structure, “shrinks” the ’s toward zero, some 
’s will be set to exactly zero.

Unlike OLS, there is no closed form solution to Lasso minimization. 
but we can numerically compute the solution, ෠௅௔௦௦௢,to the above 
problem. (It is a quadratic programming from convex optimization.)

Machine Learning: LASSO
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• Ridge regression of  Hoerl and Kennard (1970) sets 
Penalty(sizeሺ)) = ∑ ௝

ଶ௞
௝ୀଵ . That is:

min


 ሼ∑ ሺ𝑦௜  െ ′ 𝒙௜ሻே
௜ୀଵ

ଶ
+ λ ∑ ௝

ଶ௞
௝ୀଵ = (𝒚 – X)′(𝒚 – X) + λ ′ }

Using linear algebra, we get a closed form solution for this problem:

෠ோ௜ௗ௚௘= (X′X + λI)-1 X′𝒚

Ridge regression, given its penalty structure, tends to reduce all the ’s.

Remark: Ridge regression shrinks –i.e., reduce- all coefficients 
towards zero, but lasso can remove predictors from model by shrinking 
(setting) the coefficients completely to zero. Thus, we can think of  Lasso 
as a mechanism to select covariates –i.e., model selection.

Machine Learning: Ridge Regression

Technical note: We can generalize the above estimation problem by 
defining the penalty using the 𝐿௣-norm notation:

min


 ∑ ሺ𝑦௜ െ ′ 𝒙௜ሻே
௜

ଶ
+ λ ሺ∥  ∥௤ሻଵ/௤

where ∥  ∥௤ = ∑ |௝ |௞
௝ୀଵ

௤
.

For q = 1, we have Lasso; for q = 2, we have Ridge regression. As q → 0, 
we get closer to best subset regression. 

• It is also possible to combine (weight) the restrictions (LASSO & 
Ridge), this combination is called Elastic net:

min


 ∑ ሺ𝑦௜ െ ′ 𝒙௜ሻே
௜ୀଵ

ଶ
+ λ ሼ𝛼 ∑ |௝ |௞

௝ୀଵ  + ሺ1 െ 𝛼ሻ∑ ௝
ଶ௞

௝ୀଵ ሽ

where 𝛼 ∈ ሾ0,1ሿ.

LASSO & Ridge: Generalization
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• The parameter controls the strength of  the penalty. How do we 
compute it?

• The parameter λ is estimated (“tuned”) through out-of-sample 𝐾-fold
cross-validation. That is, for each λ, we split the data in 𝐾 parts. For 𝑗 =
1, 2, …, 𝐾, use all folds but fold 𝑗 to estimate model; use fold 𝑗 to
check model’s forecasting skills by computing MSE, 𝑀𝑆𝐸௝ . The 𝐾-fold
CV estimate is an average of each fold MSE’s:

𝐶𝑉௄ ൌ
ଵ

௄
∑ 𝑀𝑆𝐸௝
௄
௝ୀଵ

Pick λ that has the smallest 𝐶𝑉௄ . 

• It is desirable to select the 𝐾-folds randomly, easier to do in cross 
section than in time series, where dependence creates problems.

LASSO & Ridge: Selecting λ

• Both Lasso and Ridge regression estimates are not scale invariant, 
unlike OLS. Suppose we move  𝒙௞ from percentage points to decimal. 
That is, 𝒙𝒌

∗ ൌ  𝒙𝒌/100. 

The 𝒙௞
∗ ’ coefficient will be scaled as  ௞

∗ ൌ 100 ∗ ௞. Then, the impact 
of  𝒙௞ on 𝒚 does not change (௞′𝒙௞ = ௞

∗ ′ 𝒙௞
∗ ). Given the nature of  

the penalty –i.e., large coefficients are penalized –, we have that 

෠௟௔௦௦௢,௞
∗ ് 100 ∗ ෡௟௔௦௦௢,௞ & ෠ோ௜ௗ௚௘,௞

∗ ് 100 ∗ ෠ோ௜ௗ௚௘,௞

To avoid these issue, it is common to standardize all covariates, 𝒙௞ :

𝒛௞ = 
𝒙ೖ ି 𝒙ഥೖ
𝒔ೖ

(𝒔௞: sample SD of  𝒙௞)

Note: Now, all predictors have zero mean and unit variance.

LASSO & Ridge: Standardization
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• We know OLS b is unbiased. Thus, the regularized (restricted) 
estimators  ෡௟௔௦௦௢ & ෠ோ௜ௗ௚௘ are biased; their appeal is lower variance.

• In particular, for ෠ோ௜ௗ௚௘ , the variance is much smaller than OLS b
when the data shows multicollinearity, something common in large 
cross-section models. ( ෡௟௔௦௦௢ does not do as well.)

• As pointed out above, the big appeal of   ෡௟௔௦௦௢ is its sparcity (a 
smaller dimension than b & ෠ோ௜ௗ௚௘). We can use lasso as a model 
selection tool.

LASSO & Ridge: Properties

Example: In the general-to-specific example, we estimated with OLS a 
model with 16 parameters. Now, we estimate the model with LASSO, 
using the R package glmmet (for LASSO set alpha=1, for Ridge set 
alpha=0). This package uses the Matrix package and the vector of 
covariates need to be formatted as a matrix, using data.matrix. It selects 
lambda, λ, based on 𝑘-fold (sets 𝑘=10) cross-validation.

library(glmmet)
library(Matrix)
x_vec <- data.frame(Mkt_RF, SMB, HML, Jan_1, Mkt_RF_2, SMB_2, HML_2, Mkt_HML, 
Mkt_SMB, SMB_HML, Mkt_Jan, HML_Jan, Mkt_Dot, HML_Dot, SMB_Dot)

x_la <- data.matrix(x_vec1)
cv_mod <- cv.glmnet(x_la, ibm_x, alpha = 1) # run LASSO using CV to select (“tune”) λ
plot(cv_model) # plot the MSE for each λ

tuned_lambda <- cv_model$lambda.min # get the lambda that minimizes function
tuned_lambda

opt_model <- glmnet(x_la, ibm_x, alpha = 1, lambda = tuned_lambda)

coef(opt_model) # print coefficients

ML Estimation & Forecasting: LASSO
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Example (continuation):
> coef(opt_model) # print coefficients
16 x 1 sparse Matrix of class "dgCMatrix"

s0
(Intercept) -0.005835974
Mkt_RF 0.791803084
SMB         -0.079653804
HML          .          
Jan_1        0.008697714
Mkt_RF_2     .          
SMB_2        .          
HML_2        .          
Mkt_HML .          
Mkt_SMB .          
SMB_HML      .          
Mkt_Jan .          
HML_Jan -0.004928686
Mkt_Dot 0.004006239
HML_Dot .          
SMB_Dot . 

ML Estimation & Forecasting: LASSO

Example (continuation):
Note: As expected many coefficients are completely “shrunk” to 0.
The model with the non-zero coefficients is the one that we use to 
predict out-of-sample –we need new data for the covariates to do this. 

It is possible to compute R2 for the estimated LASSO model:

> y_predicted <- predict(best_model, s = tuned_lambda, newx = x_la)
> 
> sst <- sum((y - mean(y))^2)
> sse <- sum((y_predicted - y)^2)
> 
> R2 <- 1 - sse/sst
> R2
[1] 0.3197774 (unrestricted OLS R2 = 0.3484)

If we have new data, say x_new, we set i newx=x_new, above in 
predict function.

ML Estimation & Forecasting: LASSO


