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Lecture 6-d:
Forecasting, Prediction and 

Model Selection

Brooks (4th edition): Chapter 5

(for private use, not to be posted/shared online)

Estimation Period

Out-of-
Sample 
Forecasts

Validation 
Forecasts

Steps to measure forecast accuracy:

1) Select a (long) part of the sample (estimation period) to estimate the
parameters of the model. (Get in-sample forecasts, 𝑦.)

2) Keep a (short) part of the sample to check the model’s forecasting
skills. This is the validation step. You can calculate true MSE or MAE

3) If happy with Step 2), proceed to do out-of-sample forecasts.

Review: Forecasting – Model Validation
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Forecasting: USD/GBP



RS - Financial Econometrics - Lecture 6

2© R Susmel, 2023. Do not share/post online without written authorization

• Prediction: Given x0  predict 𝑦0.

• Given the CLM, we have:  
Expectation: E[𝑦|X, x0] = x0; 
Predictor:  𝑦0 = b’x0

Realization: 𝑦0 = x0 + 0

Note: The predictor includes an estimate of 0:  
𝑦0 = b’x0 + estimate of 0.  (Estimate of 0=0, but with variance.)

• Associated with 𝑦0 (a point estimate), there is a forecast error, 𝑒 :
𝑒 = 𝑦0 – 𝑦0 = bx0 – x0 – 0 = (b – )x0 – 0

and a variance
 Var[(𝑦0 – 𝑦0)|x0] = E[(𝑦0 – 𝑦0) (𝑦0 – 𝑦0)|x0] 

Var 𝑒 |x0  = x0 Var[(b – )|x0] x0 + 2

Review: Prediction Intervals – Point Estimate

• Assuming x0 is known, the variance of the forecast error is  
2 + x0’ Var[b|x0]x0 = 2 + 2[x0’ (X’X)-1x0]

If the model contains a constant term, this is

Var 𝑒    𝜎 1   
1
𝑁
    𝑥     �̄� 𝑥     �̄� Z M Z

(where Z is X without x1=ί). In terms squares and cross products of 
deviations from means.  

Note: Large 2, small 𝑁, and large deviations of driving variables from 
their means, decrease the precision of the forecasting error.

• Then, the (1 α)% C.I. is given by: [𝑦0 tT-k,α/2 * sqrt(Var 𝑒

Review: Prediction Intervals – C.I. and Variance
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• The most popular measures of  out-of-sample forecast accuracy, after 
𝑚 forecasts are: 

Mean Absolute Error (MAE) = ∑ |𝑦 𝑦 | ∑ |𝑒 |

Mean Squared Error (MSE) = ∑ 𝑦 𝑦 ∑ 𝑒

• The lower the above criteria, say MSE, the better the forecasting 
ability of  our model.

Review: Evaluation of  Forecasts – MSE & MAE

• Suppose two competing forecasting procedures produce a vector of  
errors: 𝑒 & 𝑒 . We use the MSE to evaluate the models:

• We want to test H0: MSE(1) = MSE(2) 
H1: MSE(1) ≠ MSE(2). 

Assumptions: forecast errors are unbiased, normal, and uncorrelated.  
If  forecasts are unbiased, then MSE = Variance.

• Consider, the pair of  RVs: (𝑒 𝑒 ) & (𝑒 𝑒 ). Now,

𝐸 𝑒 𝑒 𝑒 𝑒 𝜎 𝜎

• That is, we test H0 by testing that the two RVs are not correlated! 

Under H0, 𝐸 𝑒 𝑒 𝑒 𝑒  0.

Review: Evaluation of  forecasts – Testing MSEs
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• Under H0,  𝑒 𝑒  & 𝑒 𝑒 are not correlated..

This idea is due to Morgan, Granger and Newbold (MGN, 1977).

• There is a simpler way to do the MGN test. Steps:
1. Define 𝑒 & 𝑒 , where 𝑒 is error with higher MSE. Let

𝑧  = 𝑒 𝑒 - 𝑒 is the error with the higher MSE.
𝑥 = 𝑒 𝑒

2. Do a regression: 𝑧 = β 𝑥 + 𝜀
3. Test H0: β = 0  a simple t-test. 

The MGN test statistic is exactly the same as that for testing H0: β = 0. 
This is the approach taken by Harvey, Leybourne and Newbold (1997).

• If  the assumptions are violated, these tests have problems.

Review: Evaluation of  forecasts – Testing MSEs

• Based on how we select the “driving” variables 𝑋 , we have different
forecasting approaches:

- Fundamental (based on data considered fundamental, from theory)

- Technical analysis (based on data that incorporates only past prices)

• Fundamental Approach to Forecast Exchange Rates, 𝑆 (USD/JPY)

Based on an economic model, we generate

E [𝑆 ] = E [𝑓 𝑋 ] = 𝑔 𝑋 ,

𝑋 : dataset with fundamental economic variables:

- GNP growth rate,

- Current Account,

- Interest rates,

- Inflation rates, etc.

Forecasting Application: Fundamental Approach 
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• The economic model usually incorporates:

- Statistical characteristics of data (seasonality, autocorrelation, etc.)

- Experience of the forecaster (what information to use, lags, etc.)

 Mixture of art and science.

• The economic model provides the structure for the forecasts (also
called structural model).

• We compare the economic model’s performance with the
performance of a simpler model, for example, the Random Walk
(RWM). For many assets, the RWM is found to be a good forecasting
model, especially for 𝑆 , in the short-run. The RWM forecasts are:

E [𝑆 ] = 𝑆

Forecasting Application: Fundamental Approach 

Model

Data

Estimation

Forecast

Evaluation

Modify/Change 
Model Test Model

Theory

Pass?

Practice

Forecasting Application: Fundamental Approach 

Continue
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• Fundamental Forecasting: We want to forecast the FX rate 𝑆 =
USD/JPY. We model percentage changes in 𝑆 :

𝑒 , = log(𝑆 ) - log(𝑆 )

(1) Select a Model: Based on Theory (IFE, & Asset Approach)

𝑒 , = β0 + β1 (𝑖 , – 𝑖 , ) + β2 (𝑦 , – 𝑦 , ) + 

Et[𝑒 , ] = β0 + β1 𝐸 (𝑖  – 𝑖 )  + β2 𝐸 (𝑦  – 𝑦 )  

 Et[𝑆 ] = 𝑆 = 𝑆 * (1 + Et[𝑒 , ])

(2) Collect data: 𝑆 , 𝑿  (Interest rates, 𝑖 , & GDP growth rates, 𝑦 ).

(3) Estimation of Model (using estimation period): OLS  get 𝐛.

Forecasting Application: Fundamental Approach 

• Fundamental Forecasting (continuation)

(4) Generate forecasts. Assumptions about Xt are needed.

Et[𝑿 ] = δ1 + δ2 (𝑿 ) -an AR(1) model.

 Et[𝑒 , ] = Et[𝑿𝒕 𝟏]' 𝐛

 Et[𝑆 ] = 𝑆 * (1 + Et[𝑒 , ])

Note: We estimate δ1 & δ2 using OLS and, then, we used them to
forecast 𝑿 .

(5) Evaluation of Forecasts: MSE (& compare with RWM’s MSE).

Model’s Forecast Errort+1 = Et[𝑆 ] - 𝑆
RWM’s Forecast Errort+1 = 𝑆 - 𝑆

Compute: 𝑀𝑆𝐸 ∑ 𝑒 , (𝑗 = Our Model, RWM)

Forecasting Application: Fundamental Approach 
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Example: (1) & (2) Based on the following model,
𝑒 , = β0 + β1 (𝑖 , – 𝑖 , ) + β2 (𝑦 , – 𝑦 , ) + β3 (𝑚 , – 𝑚 , ) + 

we collect quarterly data (FX_USA_JAP.csv) from 1978:II – 2020:II.
we read the data and transform it to estimate model:

FX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/FX_USA_JAP.csv", head=TRUE, sep=",")

us_I <- FX_da$US_INF # Read US Inflation (IUS) data from file

us_mg <- FX_da$US_M1_c # Read US Money growth (mUS) data from file

us_i <- FX_da$US_I3M # Read US 3-mo Interest rate (iUS) data from file

us_y <- FX_da$US_GDP_g # Read US GDP growth (yUS) data from file

us_tb <- FX_da$US_CA_c # Read US Current account change (tbUS) data from file

jp_I <- FX_da$JAP_INF # Read Japan Inflation (IUS) data from file

jp_mg <- FX_da$JAP_MI_c # Read Japan Money growth (mJP) data from file

jp_i <- FX_da$JAP_I3M # Read Japan 3-mo Interest rate (iJP) data from file

jp_y <- FX_da$JAP_GDP_g # Read Japan GDP growth yJP) data from file

jp_tb <- FX_da$JAP_CA_c # Read Japan Current account change (tbJP) data from file

e_f <- FX_da$JPY.USD_c # Read changes in JPY/USD (e)

Forecasting Application: Fundamental Approach 

Example (continuation):
inf_dif <- us_I - jp_I # Define inflation rate differential (inf_dif)

int_dif <- us_i - jp_i

mg_dif <- us_mg - jp_mg

y_dif <- us_y - jp_y

tb_dif <- us_tb - jp_tb

xx <- cbind(int_dif, mg_dif, y_dif)

T <- length(e_f)

T_est <- 161 # Define final observation for estimation period.

e_f1 <- e_f[1:T_est] # Adjust sample size to T_est

xx_1 <- xx[1:T_est,] # Adjust sample size to T_est

(3) Estimation of model: OLS
fit_ef <- lm(e_f1 ~ xx_1)

summary(fit_ef)

Forecasting Application: Fundamental Approach 
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Example (continuation):

(3) Estimation of model (using only estimation period (T=161): Get b.
> summary(fit_ef)

Call:

lm(formula = e_f1 ~ xx_1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7246 0.6971 2.474 0.0144 *

xx_1int_dif -0.5281 0.2478 -2.131 0.0346 *

xx_1mg_dif 0.1104 0.1912 0.577 0.5647

xx_1y_dif -0.2034 0.4538 -0.448 0.6546

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.293 on 157 degrees of freedom

Multiple R-squared: 0.04673, Adjusted R-squared: 0.02851

F-statistic: 2.565 on 3 and 157 DF, p-value: 0.05661

Forecasting Application: Fundamental Approach 

Example (continuation): (4) Generate Forecasts. Need first to
estimate model for X variables. (using estimation period data only)

• AR(1) for (𝑖 , – 𝑖 , )

int_dif_lag1 <- int_dif[1:T_est-1] # Lag iUS,t – iJAP,t)

int_dif_lag0 <- int_dif[2:T_est] # Adjust sample size (lost one observation above)

fit_int <- lm(int_dif_lag0 ~ int_dif_lag1) # Fit AR(1) model

> summary(fit_int)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.22774 0.11074 2.057 0.0414 *

int_dif_lag1 0.87537 0.03772 23.210 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.045 on 158 degrees of freedom

Multiple R-squared: 0.7732, Adjusted R-squared: 0.7718

F-statistic: 538.7 on 1 and 158 DF, p-value: < 2.2e-16

Forecasting Application: Fundamental Approach 
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Example (continuation): (4 continuation)

• AR(1) for (𝑚 , – 𝑚 , )

mg_dif_lag1 <- mg_dif[1:T_est-1] # Lag mUS,t – mJAP,t)

mg_dif_lag0 <- mg_dif[2:T_est] # Adjust sample size (lost one observation above)

fit_mg <- lm(mg_dif_lag0 ~ mg_dif_lag1) # Fit AR(1) model

> summary(fit_mg)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.008708 0.216621 -0.040 0.967986

mg_dif_lag1 0.296597 0.076124 3.896 0.000144 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.74 on 158 degrees of freedom

Multiple R-squared: 0.08766, Adjusted R-squared: 0.08188

F-statistic: 15.18 on 1 and 158 DF, p-value: 0.000144

Forecasting Application: Fundamental Approach 

Example (continuation): (4 continuation)

• AR(1) for (𝑦 , – 𝑦 , )

y_dif_lag1 <- y_dif[1:T_est-1] # Lag yUS,t – yJAP,t)

y_dif_lag0 <- y_dif[2:T_est] # Adjust sample size (lost one observation above)

fit_y <- lm(y_dif_lag0 ~ y_dif_lag1) # Fit AR(1) model

> summary(fit_y)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.166258 0.086575 1.920 0.0566 .

y_dif_lag1 -0.008828 0.077255 -0.114 0.9092

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.08 on 158 degrees of freedom

Multiple R-squared: 8.263e-05, Adjusted R-squared: -0.006246

F-statistic: 0.01306 on 1 and 158 DF, p-value: 0.9092

Forecasting Application: Fundamental Approach 
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Example (continuation): (4 continuation)

• Now, we can do one-step-ahead forecast for the X variables:
T_val <- T_est+1 # start of Validation period

xx_cons <- rep(1,T-T_val+1) # create the constant vector

int_dif_0 <- cbind(xx_cons,xx[T_val:T,1]) %*% fit_int$coeff # 8 forecasts for (iUS,t – iJAP,t)

mg_dif_0 <- cbind(xx_cons,xx[T_val:T,2]) %*% fit_mg$coeff # 8 forecasts for (mUS,t – mJAP,t)

y_dif_0 <- cbind(xx_cons,xx[T_val:T,3]) %*% fit_y$coeff # 8 forecasts for (yUS,t – yJAP,t)

• Finally, we compute the one-step-ahead forecast for e and MSE:

e_Mod_0 <- cbind(xx_cons,int_dif_0,mg_dif_0,y_dif_0)%*%fit_ef$coeff # Model’s forecast

f_e_Mod <- e_f[T_val:T] - e_Mod_0 # Model’s forecast error

mse_e_f <- sum(f_e_Mod^2)/(T-T_val+1) # Model’s MSE

> mse_e_f

[1] 3.974203

Forecasting Application: Fundamental Approach 

Example (continuation): (5) Evaluation of Forecasts
mse_e_f <- sum(f_e_Mod^2)/(T-T_val+1) # Model’s MSE

> mse_e_f

[1] 3.974203

• Compute the one-step-ahead forecast for RW Model and, then, its MSE:
e_f_RW_0 <- rep(0,T-T_val+1) # RW forecast = 0 (always 0, for all t+T!)

f_e_RW <- e_f[T_val:T] - e_f_RW_0 # RW’s forecast error

mse_e_RW <- sum(f_e_RW^2)/(T-T_val+1) # RW’s MSE

> mse_e_RW

[1] 3.381597  Lower MSE than Model. Not good for Model.

• Compare MSEs: The RW model has a better MSE (usual finding).

• A MGN test is usually done. But, we have only m=8 observations, we
can do the test, but the results are very likely not to be taken seriously.

Forecasting Application: Fundamental Approach 



RS - Financial Econometrics - Lecture 6

11© R Susmel, 2023. Do not share/post online without written authorization

Example (continuation): (5) Evaluation of Forecasts

• MGN/HLN test:
z_mgn <- e_Mod + e_RW

x_mgn <- e_Mod - e_RW

fit_mgn <- lm(z_mgn ~ x_mgn)

> summary(fit_mgn)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.355 2.680 0.506 0.631

x_mgn 1.798 2.759 0.651 0.539  not significant, but unreliable (a very small sample).

Residual standard error: 3.026 on 6 degrees of freedom  very small # for df to make inferences.

Multiple R-squared: 0.05322, Adjusted R-squared: -0.1046

F-statistic: 0.3373 on 1 and 6 DF, p-value: 0.5826

• Suppose you are happy with the Model, you believe the difference in
MSEs is not significant, now you generate out-of-sample forecasts.

Forecasting Application: Fundamental Approach 

Example (continuation):

(6) Out-of-sample one-step-ahead forward forecast for 𝑆 :

E : 𝑆 : 𝑆 :  (1 + E : 𝑒 , :

We observe St today (2020:II): S2020:II = 100.77 JPY/USD, which we
invert since we work with direct quotes: S2020:II = 0.009279 USD/JPY.

We need to forecast the independent variables, based on AR(1) results,

𝑿 = {(𝑖 , – 𝑖 , ), (𝑦 , – 𝑦 , ), (𝑚 , – 𝑚 , ) }

• Forecasting 𝑖 , – 𝑖 , ): Et=2020:II 𝑖  𝑖 : ]
int_dif_p1 <- cbind(1,int_dif[T]) %*% fit_int$coeff # int_dif_p1 = Et=2020:II[(iUS,t – iJAP)t+1=2020:III]

> int_dif_p1

[,1]

[1,] 0.4684645

Forecasting Application: Fundamental Approach 
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Example (continuation): (6) Out-of-sample forecast for St:

• Forecasting (mUS,t – mJAP,t): Et=2020:II[(mUS,t – mJAP)t+1=2020:III]
mg_dif_p1 <- cbind(1,m_dif[T]) %*% fit_m$coeff # mg_dif_p1 = Et=2020:II[(mUS,t – mJAP)t+1=2020:III]

> mg_dif_p1

[,1]

[1,] 4.921977

• Forecasting (yUS,t – yJAP,t): Et=2020:II[(yUS,t – yJAP)t+1=2020:III]
y_dif_p1 <- cbind(1,y_dif[T]) %*% fit_y$coeff # y_dif_p1 = Et=2020:II[(yUS,t – yJAP)t+1=2020:III]

> y_dif_p1

[,1]

[1,] 0.176617

• Forecasting Et=2020:II[St+1=2020:III]
S <- 0.009279 # Today’s value of St=2020:II

e_f_p1 <- cbind(1,int_dif_p1,mg_dif_p1,y_dif_p1) %*% fit_ef$coeff # Today’s forecast for et=2020:III

S_p1 <- S * (1+e_f_p1/100) # Today’s forecast for St=2020:III

Forecasting Application: Fundamental Approach 

Example (continuation): (6) Out-of-sample forecast for St:

• Forecasting Et=2020:II[St+1=2020:III] (=S_p1 in the R script below)
> S <- 0.00927902 # Today’s value of St=2020:II

> e_f_p1 <- cbind(1,inf_dif_p1,mg_dif_p1,y_dif_p1)%*%fit_ef$coeff # Today’s forecast for et=2020:III

> e_f_p1 # Print forecast for et=2020:III

[,1]

[1,] 1.984401  1.98% depreciation of USD against JPY in 3rd Quarter.

> S_p1 <- S * (1+e_f_p1/100) # e is in %, we divide by 100 to put it decimal from

> S_p1 # Print forecast for St=2020:III

[,1]

[1,] 0.009463133  Model’s forecast for St+1=2020:III = 0.009463133 USD/JPY.

• Et=2020:II[St+1=2020:III] = 0.009463133 USD/JPY.

(using the indirect quote, Et=2020:II[St+1=2020:III] = 105.6732 JPY/USD).

Forecasting Application: Fundamental Approach 
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Example (continuation): (6) Out-of-sample forecast for St:

• We can use the one-step-ahead forecasts to generate two-step-ahead
forecasts. That is, we forecast Et=2020:II[St+1=2020:IV] (=S_p2 below)
> S1 <- S_p1 # Today’s forecast for St+1=2020:III

> int_dif_p2 <- cbind(1,int_dif_p1)%*%fit_int$coeff # Today’s forecast for (iUS – iJP)t+2

> mg_dif_p2 <- cbind(1,mg_dif_p1)%*%fit_mg$coeff # Today’s forecast for (mUS – mJP)t+2

> y_dif_p2 <- cbind(1,y_dif_p1)%*%fit_y$coeff # Today’s forecast for (yUS – yJP)t+2

> e_f_p2 <- cbind(1,int_dif_p2,mg_dif_p2,y_dif_p2)%*%fit_ef$coeff # Today’s forecast for
et=2020:IV

> e_f_p2

[,1]

[1,] 1.514363  1.11% depreciation of USD against JPY in 4th Quarter.

> S_p2 <- S1*(1+e_f_p2/100)

> S_p2

[,1]

[1,] 0.009606439  Model’s forecast for St+1=2020:III = 0.009606439USD/JPY.

• Et=2020:II[St+1=2020:III] = 0.009606439 USD/JPY.

Forecasting Application: Fundamental Approach 

Example (continuation): (6) Out-of-sample forecast for St:

• We can use the two-step-ahead forecast to generate three-step-ahead
forecasts. Obviously, we can continue this process to generate l-step-
ahead forecasts for St (a simple do loop will do it).

• Eventually, we will collect m of out-of-sample forecasts (m one-step-
ahead forecasts, m two-step-ahead forecasts, m three-step-ahead
forecasts, etc.) to get an MSE and run a MGN/HLN test on them.

• It is possible that one model is the best in the short-term (say, up to 3
steps ahead); other is better in the medium-term (say, from 4 to 6 steps
ahead); and another is best for longer-term. For example, the RW
model is very good (“unbeatable”) up to 3 months ahead. Then, other
models start to produce better forecasts, especially after 6 months.

Forecasting Application: Fundamental Approach 
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• Practical Issues in Fundamental Forecasting

- Are we using the "right model?"

- Estimation of the model (OLS, MLE, other methods).

- Some explanatory variables (Xt+T) are contemporaneous.

 We also need a model to forecast the Xt+T variables.

• Does Forecasting Work?

For exchange rates, in the short-run (up to 6 months), RW models
tend to do very well. They beat structural (and other) models: Lower
MSE, MAE.

Many argue that the structural models used are not the “right models.”

Forecasting Application: Fundamental Approach 

• Specifying the DGP in (A1) is the most important step in applied 
work. We have assumed “correct specification,” which, in practice, is an 
unrealistic assumption, since we do not really observed the true DGP. 

• A bad model can create many problems: biases, wrong inferences, 
bad forecasts, etc.  

• So far, we have implicitly used a simple strategy:

(1) We started with a DGP, which we assumed to be true.

(2) We tested some H0 (from economic theory).

(3) We used the model (restricted, if  needed) for prediction & 
forecasting.

Model Selection Strategies



RS - Financial Econometrics - Lecture 6

15© R Susmel, 2023. Do not share/post online without written authorization

• Q: How do we propose and select a model (a DGP)? 

• Potentially, we have a huge number of  possible models with:

- Different functional form: f(.), g(.), h(.), etc.

- Different explanatory variables: X, Z, W, dummy variables, D, etc.

Suppose, we have 4 different models to choose from:
Model 1 𝒚 = Xβ + ε
Model 2 𝒚 = Zγ + ξ
Model 3 𝒚 = (Wγ)λ + η
Model 4 𝒚 = exp(Z D δ) + 𝛜

• We want to select the best model, the one that is closest to the true 
and unobserved DGP. In practice, we aim for a “good” model. 

Model Selection Strategies

• A model is a simplification. Many approaches to build a model:

• “Pre-eminence of  theory.”  Economic theory should drive a 
model. Data is only used to quantify theory. Econometric methods 
offer sophisticated ways ‘to bring data into line’ with a particular 
theory. 

• Purely data driven models. Success of  ARIMA models (late 60s –
early 70s), discussed in Parts 8 & 9: No theory, only exploiting the 
time-series characteristics of  the data to build models. 

• Modern (LSE) view.  A compromise: theory and the characteristics 
of  the data are used to build a model. 

Model Selection Strategies – Views
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• Theory and practice play a role in deriving a good model. David 
Hendry (2009) emphasizes:

“This implication is not a tract for mindless modeling of  data in the 
absence of  economic analysis, but instead suggests formulating more 
general initial models that embed the available economic theory as a 
special case, consistent with our knowledge of  the institutional 
framework, historical record, and the data properties.”  

“Applied econometrics cannot be conducted without an economic 
theoretical framework to guide its endeavors and help interpret its 
findings. Nevertheless, since economic theory is not complete, correct, 
and immutable, and never will be, one also cannot justify an insistence 
on deriving empirical models from theory alone.”

Model Selection Strategies – Modern View

• According to David Hendry, a good model should be:

- Data admissible -i.e., modeled and observed y should have the 
same properties.

- Theory consistent -our model should “make sense”

- Predictive valid -we should expect out-of-sample validation

- Data coherent -all information should be in the model. 
Nothing left in the errors (white noise errors).

- Encompassing -our model should explain earlier models.

• That is, we are searching  for a statistical model that can generate the 
observed data (y, X), this is usually referred as statistical adequacy, makes 
theoretical sense and can explain other findings.

Model Selection Strategies – A Good Model
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• FAQ in practice:

- Should I include all the variables in the database in my model?

- How many explanatory variables do I need in my model?

- How many models do I need to estimate?

- What functional form should I be using?

- Should the model allow for structural breaks?

- Should I include dummies & interactive dummies ?

- Which regression model will work best and how do I arrive at it?

Model Selection Strategies – FAQ

• Diagnostic testing: We test assumptions behind the model. In our case, 
assumptions (A1)-(A5) in the CLM.

Example:  Test E[|X] = 0  -i.e., the residuals are zero-mean, 
uncorrelated with anything (that is, white noise distributed errors).

In selecting a model, this is a very important step. We run a lot of  test 
to check the residuals are acceptable or the model is not misspecified: 
Ramsey’s reset test, tests for autocorrelation, etc.

• Parameter testing: We test economic H0’s.

Example:  Test β = 0 -for example, there is no size effect on 
the expected return equation.

Model Selection Strategies – Important Concepts
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Model Selection Strategies: Two Methods

• There are several model-selection methods. We will consider two: 

- Specific to General

- General to Specific

• Specific to General. Start with a small “restricted model,” do some 
testing and make model bigger model in the direction indicated by the 
tests (for example, add  variable xk when test reject H0: βk=0).

• General to Specific. Start with a big “general unrestricted model,” do 
some testing and reduce model in the direction indicated by the tests 
(for example, eliminate variable xk when test cannot reject H0: βk=0).

• Steps:

(1) Begin with a small theoretical model – for example, the CAPM

𝒚 = X + . 
(2) Estimate the model – say, using OLS

(3) Do some diagnostic testing – are residuals white noise?

If the assumptions do not hold, then use:

- More advanced econometrics – GLS instead of OLS?

- A more general model – More regressors? Lags?

(4) Test economic H0 on the parameters    – Is HML significant?

(5) Modify model in (1) in the direction of rejections of H0.

• This strategy is known as specific to general. In the machine learning 
literature, this strategy is also called forwards selection.

Model Selection Strategies: Specific to General
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Example: Specific-to-general strategy to model IBM returns:

(1) We start with the 3-factor FF model for IBM:
(𝑟 , – 𝑟 ) = 0 + 1 (𝑟 , – 𝑟 ) + 2 𝑆𝑀𝐵 + 3 𝐻𝑀𝐿 + t

(2) Estimate the 3-factor FF model for IBM:
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML)

> summary(fit_ibm_ff3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005191 0.002482  -2.091   0.0369 *  

Mkt_RF 0.910379 0.056784 16.032 <2e-16 ***

SMB       -0.221386 0.084214  -2.629   0.0088 ** 

HML     -0.139179 0.084060  -1.656   0.0983 .  

---

Residual standard error: 0.05842 on 566 degrees of freedom

Multiple R-squared:  0.3393,    Adjusted R-squared:  0.3358 

F-statistic:  96.9 on 3 and 566 DF,  p-value: < 2.2e-16

Model Selection Strategies: Specific to General

Example (continuation): 

(3) Diagnostic tests: Check t-stats & R2, F-test goodness of fit, etc.

(4) LM Test to test if there is a January Effect (H0: No January effect): 
> LM_test
[1] 9.084247  LM_test > 3.84  Reject H0: No January effect.

(5) Given this result, we modify the 3-factor FF and add the January 
Dummy to the FF model:
fit_ibm_new <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1)
> summary(fit_ibm_new)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.007302 0.002561  -2.851  0.00452 ** 
Mkt_RF 0.905182 0.056405  16.048  < 2e-16 ***
SMB     -0.247691 0.084063  -2.946  0.00335 ** 
HML     -0.154093 0.083606  -1.843  0.06584 .  
Jan_1        0.026966 0.008906   3.028 0.00258 ** 

Model Selection Strategies: Specific to General
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• The specific-to-general method makes assumptions along the way 
Some remarks based on the previous example:

(1) Very likely the starting model is based on theory and experience 
(HML is not significant at the usual 5% level). Not clear how to 
proceed from there to a more general model.

(2) We tested for a January effect and then added to the model. 
However, we could have tested for a Dot.com effect or for an 
interactive Dot.com/January effect with the 3 FF factors. Not clear 
when to stop the search.

(3) Select a p-value to add variables to the model. In this case, we use 
the standard 5% for the tests. 

Model Selection Strategies: Specific to General

• Note that in the previous example, we started with a model. What 
happens if are skeptical regarding models?

• A popular implementation of the specific-to-general model selection 
is the stepwise regression, where we start with only a set of potential 
explanatory variables and let the data, based on some criteria (R2, AIC, 
etc.),  determine which variables to keep.

Model Selection Strategies: Specific to General
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• Overall structure:

- The method begins with a 𝑘 potential regressors. 

- Do 𝑘 one-variable regressions. Pick the one that shows the biggest t-
stat or maximizes a goodness of fit measure, say, Adjusted-R2, 𝑅2. 
Suppose 𝑥 is selected.

- Then, do 𝑘 1 -variable regressions all with 𝑥 . Select the regressor
(in addition to 𝑥 ) that has the highest t-stat or that maximizes 𝑅2.

- Continue. But, when we start adding regressors, we usually check if 
the added regressor(s) change the significance of previous steps. (Note: 
at each step, we remove or add a regressor(s) based on t- or F-tests.) 

- Stop: Additional regressors do not have significant t-stats/increase 𝑅2. 

Decisions: Selection of 𝑘 variables, α for tests (α = 5%, 10%, 20%?) 
and goodness of fit statistic. 

Model Selection Strategies: Stepwise Regression

• Decisions: Selection of 𝑘 initial variables, α for tests (α = 5%, 10%, 
30%?) and goodness of fit statistic. 

Remark: Always keep in mind that the selected (final) model is not 
necessarily better than others. Type I and Type II errors are likely to 
occur, thus the final model may have irrelevant and/or omitted 
variables.

Technical Note: Though popular in practice, in general, selecting  
variables based on p-values is not advised, since the distribution of the 
OLS coefficients is affected. (Pre-testing problem, due to accumulation 
of Type I/Type II errors.)

Model Selection Strategies: Stepwise Regression
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Example: Stepwise regression strategy to model IBM returns. We start 
with the 5 FF factors as candidates for IBM. We use the function 
ols_step_forward_p in the olsrr package, which uses p-values to select:

library(olsrr)

ff_step_data <- data.frame(Mkt_RF, SMB, HML, RMW, CMA) 

ibm_ff_model <- lm(ibm_x ~ ., data = ff_step_data) # default p-value (penter) is 0.3 

ols_step_forward_p(ibm_ff_model , details = TRUE) #  long final output

Parameter Estimates                                    

----------------------------------------------------------------------------------------

model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 

----------------------------------------------------------------------------------------

(Intercept) -0.005 0.002     -1.999    0.046    -0.010     0.000 

Mkt_RF 0.887 0.055        0.574 16.227    0.000     0.780     0.995 

SMB -0.261 0.088       -0.111 -2.960    0.003    -0.435    -0.088 

RMW -0.128 0.114       -0.042 -1.122    0.262    -0.351     0.096 

----------------------------------------------------------------------------------------

Model Selection Strategies: Stepwise Regression

Example (continuation):

Selection Summary                              

--------------------------------------------------------------------------------------

Variable                 Adj.                                        

Step  Entered     R-Square    R-Square C(p)        AIC         RMSE     

--------------------------------------------------------------------------------------

1    Mkt_RF 0.3087      0.3075 7.7108 -1665.5551 0.0594    

2    SMB       0.3174      0.3151 2.2117 -1671.0548 0.0590    

3    RMW      0.3188      0.3154 2.9552  -1670.3207 0.0590    

--------------------------------------------------------------------------------------

Conclusion: The Stepwise Regression method selects Market excess 
returns, SMB & RMW as the drivers of IBM excess returns.

Model Selection Strategies: Stepwise Regression
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• Begin with a general unrestricted model (GUM), which nests restricted 
models and, thus, allows any restrictions to be tested. Say:

𝒚 = X + Zγ + Wλδ + (X * W)ζ + (Z * D)ψ + . 

• Then, reduction of the GUM starts. Mainly using t-tests, and F-tests, 
we move from the GUM to a smaller, more parsimonious, specific 
model. If competing models are selected, encompassing tests or 
information criteria (AIC, BIC) can be used to select a final model. 
This is the discovery stage. After this reduction, we keep a final (restricted 
GUM) model:

𝒚 = X + . 

• Creativity is needed for the specification of a GUM. Theory and 
empirical evidence play a role in designing a GUM. 

Model Selection Strategies: General to Specific

• General-to-Specific Method:

Step 1 - First ensure that the GUM does not suffer from any 
diagnostic problems. Check residuals in the GUM to ensure that they 
possess acceptable properties. (For example, test for white noise in 
residuals, incorrect functional form, autocorrelation, etc.).

Step 2 - Test the restrictions implied by the specific model against the 
general model – either by exclusion tests or other tests of linear 
restrictions.

Step 3 - If the restricted model is accepted, test its residuals to ensure 
that this more specific model is still acceptable on diagnostic grounds.

• This strategy is called general to specifics (“gets”), LSE, TTT (Test, test, 
test). In the machine learning literature, this strategy is also called 
backwards selection.

Model Selection Strategies: General to Specific
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• The role of diagnostic testing is two-fold. 

- In the discovery steps (Steps 1 & 2), the tests are being used as design 
criteria.  Testing plays the role of checking that the original GUM was 
a good starting point after the GUM has been simplified. 

- In the context of model evaluation (Step 3), the role of testing is 
clear cut. Suppose you use the model to produce forecasts.  These 
forecasts can be evaluated with a test. This is the critical evaluation of 
the model.

John Dennis Sargan (1924 – 1996, England)

Model Selection Strategies: General to Specific

• A modeling strategy is consistent if its probability of finding the true 
model tends to 1 as T -the sample size- increases.

• Properties for strategies

(1) Specific to General 

- It is not consistent if the original model is incorrect.

- It need not be predictive valid, data coherent, & encompassing.

- No clear stopping point for an unordered search.

(2) General to Specific 

- It is consistent under some circumstances. But, it needs a large T.

- It uses data mining, which can lead to incorrect models for small T.

- The significance levels are incorrect. This is the problem of mass 
significance.

Model Selection Strategies: Properties
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Example: General-to-specific strategy to model IBM returns:

Step 1 - Start with a GUM: the 3-factor FF model for IBM + January 
(𝐽𝑎𝑛 ) & Dot.com (𝐷𝑜𝑡 ) Dummy + non-linear & interactive effects:
(IBMRet – rf)t = 0 + 1 (𝑟 , – 𝑟 ) + 2 𝑆𝑀𝐵 + 3 𝐻𝑀𝐿 + 4 𝐽𝑎𝑛

+ 5 𝐷𝑜𝑡 + 6 (𝑟 , – 𝑟 )2 + 7 𝑆𝑀𝐵 2 + 8 𝐻𝑀𝐿 2 +
+ 9 (𝑟 , – 𝑟 ) * 𝑆𝑀𝐵 + 10 (𝑟 , – 𝑟 ) * 𝐻𝑀𝐿 + 
+ 11 (𝑟 , – 𝑟 ) * 𝐽𝑎𝑛 + 12 𝑆𝑀𝐵 * 𝐽𝑎𝑛
+ 13 𝐻𝑀𝐿 * 𝐽𝑎𝑛 + 14 (𝑟 , – 𝑟 ) * 𝐷𝑜𝑡
+ 15𝐻𝑀𝐿 *𝐷𝑜𝑡 + 16 𝑆𝑀𝐵 * 𝐷𝑜𝑡 + t

Step 1 - Estimate GUM:
Mkt_Jan <- Mkt_RF * Jan_1

HML_Jan <- HML * Jan_1

Mkt_Dot <- Mkt_RF * Dot_com

HML_Dot <- HML * Dot_com

SMB Dot <- SMB * Dot com

Model Selection Strategies: General to Specific

Example (continuation): 
fit_ibm_gum <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + Mkt_RF_2 + SMB_2 + HML_2 + 
Mkt_HML + Mkt_SMB + SMB_HML + Mkt_Jan + HML_Jan + Mkt_Dot + HML_Dot + SMB_Dot)

> summary(fit_ibm_gum)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.007836 0.003063  -2.559 0.010772 *  

Mkt_RF 0.791866 0.090474   8.752 < 2e-16 ***

SMB       -0.295790 0.110655  -2.673 0.007738 ** 

HML     -0.233942 0.135146  -1.731 0.084004 .  practice says “keep it.” Judgement call.

Jan_1      0.031769 0.009349   3.398 0.000727 ***

Mkt_RF_2 -0.433762 0.850899  -0.510 0.610417    

SMB_2    -0.927271 1.470645  -0.631 0.528615    

HML_2    2.707992 1.670366   1.621 0.105545  almost 10%, I keep it. Judgement call.

Mkt_HML 0.628721 1.557090   0.404 0.686531    

Mkt_SMB 0.791625 1.746939   0.453 0.650618    

SMB_HML -1.044806 2.029091  -0.515 0.606819    

Mkt_Jan -0.069413 0.189309  -0.367 0.714008    

HML_Jan -0.259697 0.255484  -1.016 0.309841    

Model Selection Strategies: General to Specific
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Example (continuation): 
Estimate Std. Error t value Pr(>|t|)    

Mkt_Dot 0.323382 0.130645   2.475 0.013612 *  

HML_Dot 0.059742 0.208277   0.287 0.774342    

SMB_Dot 0.076998 0.198964   0.387 0.698910 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05788 on 553 degrees of freedom

Multiple R-squared:  0.3663, Adjusted R-squared:  0.3491 

F-statistic: 21.31 on 15 and 553 DF,  p-value: < 2.2e-16

Step 1 – Check GUM residuals for departures of (A2)-(A3). A 
Ramsey’s reset test can be done (using the resettest in the lmtest library).

> resettest(fit_ibm_gum, type="fitted")

RESET test

data:  fit_gum

RESET = 1.2645, df1 = 2, df2 = 551, p-value = 0.2832

Model Selection Strategies: General to Specific

Example (continuation): 

Step 2 – Reduce Model with t-test and F-tests. Say, we keep all the 
variables with a p-value close to 10% (we still keep HML, using previous 
experience). We estimate a restricted GUM: 

fit_ibm_gum_r <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + HML_2 + Mkt_Dot)

> summary(fit_ibm_gum_r)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.008696   0.002788  -3.119  0.00191 ** 

Mkt_RF     0.779336   0.072453  10.756 < 2e-16 ***

SMB      -0.280018   0.083891 -3.338  0.00090 ***

HML     -0.250480   0.088504 -2.830  0.00482 ** 

Jan_1    0.028499   0.008937   3.189 0.00151 ** 

HML_2    1.676011   1.331161   1.259  0.20853    

Mkt_Dot  0.344030   0.116685  2.948  0.00333 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Model Selection Strategies: General to Specific
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Example (continuation): 

Step 2 – Test the restrictions implied by the specific model against the 
general model. Using an F-test, we test J=9 restrictions: 

H0: 5= 6 = 8 = 9 = 10 = 11 = 12 = 14= 15. 

e_u <- fit_ibm_gum$residuals # GUM residuals

RSS_u <- t(e_u)%*%e_u

e_r <- fit_ibm_gum_r$residuals # Restricted GUM residuals

RSS_r <- t(e_r)%*%e_r

f_test_gum <- ((RSS_r - RSS_u)/9)/(RSS_u/(T-16)) # F-test

> f_test_gum

[,1]

[1,] 0.4299497  we cannot reject H0 (f_test_gum < qchisq(.95, 9, 553) = 1.896801)

> qf(.95, df1=9, df2=T-16)

[1] 1.896801 

p_val <- 1 - pf(f_test_gum, df = 9 , df2=T-16) # p-value of F-test 

>  p_val

[1,] 0.919105  p-value is almost 1. No evidence for H0.

Model Selection Strategies: General to Specific

Example (continuation): 

Step 2 – Further specification checks of Restricted GUM, for example, 
perform a Ramsey’s reset test (using the resettest in the lmtest library).
> resettest(fit_gum_r, type="fitted")

RESET test

data:  fit_ibm_gum_r

RESET = 1.0998, df1 = 2, df2 = 561, p-value = 0.3337

Step 3 - Test if Restricted GUM residuals are acceptable –i.e., do 
diagnostic tests (mainly, make sure they are white noise). If Restricted 
GUM passes all the diagnostic tests, it becomes the “final model.”

Note: With the final model, we use it to justify/explain financial theory 
and features, and do forecasting.

Model Selection Strategies: General to Specific
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• The general-to-specific method makes assumptions along the way.

Some remarks based on the previous example:

(1) Select a p-value for the tests of significance in the discovery stage 
(we use 10%). Given that we performed 15 t-tests, we should not be 
surprised we rejected the GUM, since we had an overall significance, 
α* = .79 [= 1 – (1 - .10)^15]. Mass significance is an issue.  

(2) Judgement calls are also made.

(3) The reduction of the GUM involves “pre-testing” –i.e., data mining. 
We are likely rejecting a true H0 (false positives) & not rejecting a true 
H1 (false negatives), along the way. This increases the probability that 
the final model is not a good approximation. It is  common to ignore 
(or not even acknowledge) pre-testing issues. 

Model Selection Strategies: General to Specific

• Begin with a big model, with 𝑘 regressors:

𝒚 = X + .
The idea is to select the “best” subset of the 𝑘 regressors in X, where 
“best” is defined by the researcher, say MSE, Adjusted-R2, etc. 

• In theory, it requires 2 regressions. It can take a while if 𝑘 is big (𝑘
< 40 is no problem).

• Many tricks are used to reduce the number of regressions.

• In practice, we use best subset to reduce the number of models to 
consider. For example, from the regressions with one-variable, keep 
the best one-variable model, from the regression with two-variables, 
keep the best two-variable model, etc.

Model Selection Strategies: Best Subset
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Example: We want to select a model for IBM excess returns, using 
the 𝑘=3 Fama-French factors: Market excess returns (Mkt_RF), SMB, 
& HML. We have 8 (=23) models and, thus, regressions: 
1) Constant; 
2) Mkt_RF (CAPM)
3) SMB
4) HML
5) Mkt_RF & SMB 
6) Mkt_Rf & HML
7) SMB & HML
8) Mkt_RF, SMB, & HML (the 3-factor F-F Model). 

• We select the model with the lower MSE. Or, we can carry two or 
three models of the best models to do cross-validation.

Model Selection Strategies: Best Subset

Example (continuation): Suppose we selected three model: CAPM 
(M1); Mkt_RF & SMB (M2); and the 3-factor F-F Model (M3).

Now, we use 𝐾-fold cross-validation, with 𝐾 = 5.

CV5 M1: 0.003542756

CV5 M2: 0.003505873

CV5 M3: 0.003556918

Note: Models look very similar. Practitioners compute a SE for 𝐶𝑉
and use a one SE rule. If within one SE, keep simplest model (M1).

Model Selection Strategies: Best Subset
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• In the end, judgment must be used in weighing up various criteria: 

- The Economic Criterion   –are the estimated parameters plausible? 
(Economic Significance).

- The First Order Statistical Criterion  –does the model provide a 
good fit (in-sample) with statistically significant parameter estimates? 

- The Second Order Statistical Criterion  –is the model generally 
free of  misspecification problems – as evidenced in the diagnostic 
tests?

- The Out of  Sample Predictive Criterion   –does the model 
provide good out of  sample predictions?

Model Selection Strategies: Judgement Calls


