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Lecture 6-c:
Forecasting, Prediction and 

Model Selection

Brooks (4th edition): Chapter 5

(for private use, not to be posted/shared online)

• We structure the Chow test to test H0 (No structural change), as usual. 

• Steps for Chow (Structural Change) Test: 

(1) Run OLS with all the data, with no distinction between regimes. 
(Restricted or pooled model). Keep RSSR.

(2) Run two separate OLS, one for each regime (Unrestricted model):

Before Date TSB. Keep RSS1. 

After Date TSB. Keep RSS2.  RSSU = RSS1 + RSS2. 

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

𝐹
𝑅𝑆𝑆 𝑅𝑆𝑆 / 𝑘 𝑘

𝑅𝑆𝑆 / 𝑇 𝑘
𝑅𝑆𝑆 𝑅𝑆𝑆 𝑅𝑆𝑆 /𝑘
𝑅𝑆𝑆 𝑅𝑆𝑆 / 𝑇 2𝑘

Review - Functional Form: Structural Change
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Example: 3 Factor Fama-French Model for IBM (continuation)
Q: Did the dot.com bubble (end of 2001) affect the structure of the FF 
Model? Sample: Jan 1973 – June 2020 (T = 569).

Pooled RSS = 1.9324

Jan 1973 – Dec 2001 RSS = RSS1 = 1.33068 (T = 342) 

Jan 2002 – June 2020 RSS = RSS2 = 0.57912 (T = 227) 

𝐹 /  

/
= 

[1.9324  1.3307+ 0.57911)]/4
1.3307+ 0.57911)/(569 − 2∗4) = 1.6627

 Since F4,565,.05 = 2.39, we cannot reject H0

Constant Mkt – rf SMB HML RSS T

1973-2020 -0.0051 0.9083 -0.2125 -0.1715 1.9324 569

1973-2001 -0.0038 0.8092 -0.2230 -0.1970 1.3307 342

2002 – 2020 -0.0073 1.0874 -0.1955 -0.3329 0.5791 227
3

Review - Functional Form: Structural Change

Example: We test if  the Oct 1973 oil shock in quarterly GDP growth 
rates had an structural change on the GDP growth rate model.

We model the GDP growth rate with an AR(1) model, that is, GDP 
growth rate depends only on its own lagged growth rate:

𝑦 = 0 + 1 𝑦 + 
GDP_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/GDP_q.csv", head=TRUE, 
sep=",")
x_date <- GDP_da$DATE
x_gdp <- GDP_da$GDP
x_dummy <- GDP_da$D73
T <- length(x_gdp)
t_s <- 108 # TSB = Oct 1973

lr_gdp <- log(x_gdp[-1]/x_gdp[-T])
T <- length(lr_gdp)
lr_gdp0 <- lr_gdp[-1]
lr_gdp1 <- lr_gdp[-T]
t_s <- t_s -1 # Adjust t_s (we lost the first observation) 4

Review - Functional Form: Structural Change
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Example (continuation):
y <- lr_gdp0 
x1 <- lr_gdp1
T <- length(y)
x0 <- matrix(1,T,1)
x <- cbind(x0,x1)
k <- ncol(x)

# Restricted Model (Pooling all data)
fit_ar1 <- lm(lr_gdp0 ~ lr_gdp1) # Fitting AR(1) (Restricted) Model
e_R <- fit_ar1$residuals # regression residuals, e
RSS_R <- sum(e_R^2) # RSS Restricted

> summary(fit_ar1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.011406 0.001118 10.200 < 2e-16 ***
lr_gdp1  0.262234 0.055543 4.721 3.59e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.01248 on 302 degrees of  freedom 5

Review - Functional Form: Structural Change

Example (continuation):
# Unrestricted Model (Two regimes)

y_1 <- y[1:t_s]
x_u1 <- x[1:t_s,]
fit_ar1_1 <- lm(y_1 ~ x_u1 - 1) # AR(1) Regime 1
e1 <- fit_ar1_1$residuals # Regime 1 regression residuals, e
RSS1 <- sum(e1^2) # RSS Regime 1

kk = t_s+1 # Starting date for Regime 2
y_2 <- y[kk:T]
x_u2 <- x[kk:T,]
fit_ar1_2 <- lm(y_2 ~ x_u2 - 1) # AR(1) Regime 2
e2 <- fit_ar1_2$residuals # Regime 2 regression residuals, e
RSS2 <- sum(e2^2) #  RSS Regime 2

F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))
> F
[1] 4.391997
p_val <- 1 - pf(F, df1 = 2, df2 = T - 2*k)  # p-value of  F_test
> p_val
[1] 0.0131817  small p-values: Reject H0 (No structural change). 3

6

Review - Functional Form: Structural Change
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• Under the H0 (No structural change), we pool the data into one model. 
That is, the parameters are the same under both regimes. We fit the 
same model for all 𝑡, for example:

𝑦 = 0 + 1 𝑦 + 

• If  the Chow test rejects H0, we need to reformulate the model. A 
typical reformulation includes a dummy variable (𝐷 , ). For example, 
with vector 𝒙  of  explanatory variables:

𝑦 = 0 + β1′𝒙  + 2𝐷 , + γ1′𝒙𝒕 𝐷 ,  + 
where

𝐷 , = 1 if  observation 𝑡 occurred after  TSB

= 0 otherwise.

Review - Modeling Structural Change

7

Example: We are interested in modelling the effect of  the Oct 1973 
oil shock in GDP growth rates. We include a dummy variable in the 
AR(1) model, say D73:

𝑫𝟕𝟑,𝒕 = 1 if  observation 𝑡 occurred after October 1973
= 0 otherwise.

Then, 𝑦 = β0 + β1′𝒙 + β2 𝑫𝟕𝟑,𝒕 + γ1′𝒙 𝑫𝟕𝟑,𝒕 + 

In the model, the oil shock affects the constant and the slopes.

• We estimate the above model and perform an F-test to test if  H0 (No 
structural change): γ0 = 0 & γ1 = 0. 

Constant Slopes:

Before oil shock (D73 = 0): β0 β1

After oil shock (D73 = 1) : β0 + γ0 β1 + γ1

8

Review - Modeling Structural Change
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Example: We add an Oct 1973 dummy in the AR(1) GDP model.
T1 <- T - t_s # Number of  Observations after SB
D73_0 <- rep(0,t_s) # Dummy_t = 0 if  t <= t_s
D73_1 <- rep(1,T1) # Dummy_t = 1 of  t > t_s
D73 <- c(D73_0,D73_1) # SB Dummy variable t_s <- 108
lr_gdp1_D73 <- lr_gdp1 * D73 # interactive dummy (effect on slope)
fit_ar1_d_2 <- lm(lr_gdp0 ~ lr_gdp1 + D73 + lr_gdp1_D73)
summary(fit_ar1_d_2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.009139   0.001939 4.712 3.75e-06 ***
lr_gdp1  0.457011 0.090716 5.038 8.15e-07 ***
D73 0.003499   0.002362 1.482 0.13947  no significant effect on constant
lr_gdp1_D73 -0.316005 0.114197 -2.767 0.00601 **  significant effect of  oil shock on slope.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Conclusion: After the oil shock the slope significantly changed from 
0.457011 to 0.141006 (= 0.457011 + (-0.316005)).

9

Review - Modeling Structural Change

• Problem with Chow Test for structural break: It is conditional on the 
set date for the structural break, which in general is unknown. An easy 
solution? Run a Chow test for all possible dates. 

• The problem with this approach is that the technical conditions 
under which the asymptotic distribution is derived are not met in this 
setting. 

• Andrews (1993) showed that under appropriate conditions, the QLR 
statistic, also known as SupLR statistic, has a non-standard limiting 
distribution (“non-standard” = no existing table; needs a new one). 

• Andrews (1993) tabulated the non-standard distribution for different
number of  parameters in model (𝑘), trimming values (π0), & 
significance level (α). Andrews’ table is in the next slide.

3

Review – Chow Test with Unknown Break 
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Critical values of the QLR test Distribution, taken from Andrews 
(1993). Note: p = # of parameters (𝑘), π0 = trimming value. (Ignore λ.)

*

16.45: Critical 
value for test for 
𝑘=4, π0 = .15 
and α = .05.

11.79: Critical 
value for test 
for 𝑘=2, π0 = 
.15 and α = .05.

Review – Chow Test with Unknown Break 

*

Example (continuation): We search for breaking points for GDP 
growth rate in AR(1) model. Below, we plot all F-tests starting at T*15:

• Maximum F is 22.08 occurs in Jan 2009 (observation #250). Then, 
𝑄𝐿𝑅 = 22.08 > 11.79  Reject H0 at 5% level & break is not Oct 73!.

Review – Chow Test with Unknown Break 
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Example: We search for breaking points for IBM returns in the 3-
factor FF model. Below, we plot all F-tests starting at T*15:

• Maximum F is 3.83 occurs in May 1993 (observation #243). Then, 
𝑄𝐿𝑅 = 3.83 < 16.45  Cannot reject H0 at 5% level.

Review – Chow Test with Unknown Break 

• The results are conditional on the breaking point –say, October 73 or 
Dec 2001.

• The breaking point is usually unknown. It needs to be estimated.

• It can deal only with one structural break –i.e., two categories!

• The number of  breaks is also unknown. They need to be estimated.

• Characteristics of  the data (heteroscedasticity –for example, regimes 
in the variance- and unit roots (high persistence) complicate the test.

• In general, only asymptotic (consistent) results are available.

• There are many modern tests that take care of  these issues, but 
usually also with non-standard distributions.

3

Chow Test: Structural Change – Remarks
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Forecasting and Prediction

• Objective: Forecast

• Distinction:  Ex post vs. Ex ante forecasting

– Ex post: RHS data are observed

– Ex ante (true forecasting): RHS data must be forecasted

• Prediction and Forecast

Prediction: Explaining an outcome, which could be a future outcome.   

Forecast: A particular prediction, focusing in a future outcome.

Example: Prediction: Given 𝒙0  predict 𝑦0.

Forecast: Given 𝒙  predict 𝑦t+1.

“There are two kind of forecasters: those who don´t know and those who don´t know they don´t know”

John Kenneth Galbraith (1993)  

Forecasting and Prediction: Types

• Two types of predictions:

- In sample (prediction): The expected value of 𝒚 (in-sample), given the 
estimates of the parameters. The in-sample prediction are the fitted 
values, 𝒚.

- Out of sample (forecasting): The value of a future 𝒚 that is not 
observed by the sample.

Notation & Terminology: 
Let 𝑇 be the forecast origin and 𝑙 is the forecast horizon. 

- Prediction for 𝑇 made at 𝑇: 𝑌 .
- Forecast for 𝑇 𝑙 made at 𝑇: 𝑌 , 𝑌 | , 𝑌 𝑙 .
- 𝑌 𝑙 : 𝑙-step ahead forecast = Forecasted value 𝑌 at time 𝑇.
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Forecasting and Prediction: Information Set, IT

• Any prediction or forecast needs an information set, 𝐼 . This 
includes data, models and/or assumptions available at time T. The 
predictions and forecasts will be conditional on 𝐼 .

For example, in-sample, 𝐼 = {x0} to predict y0. 
Or in time series, 𝐼 = {x , x , ..., x } to predict 𝑦 .

• Then, the forecast is just the conditional expectation of 𝑌 , given
the observed sample:

𝑌 𝐸 𝑌 |𝑋 ,𝑋 , … ,𝑋

Example: If 𝑋 𝑌 , then, the one-step ahead forecast is:

𝑌 𝐸 𝑌 |𝑌 ,𝑌 , … ,𝑌

Forecasting and Prediction: Conditional E[.]

• The conditional expectation of 𝑌 is, in general, based on a model,  
the experience of the forecaster or a combination of both.

Example: We base the conditional expectation on the 3-factor FF 
model:

𝑌 E[(0 + 1 (𝑟 , – 𝑟 ) + 2 𝑆𝑀𝐵 + 3 𝐻𝑀𝐿 )|IT ] 

• In the above equation, the forecast of 𝑌 also needs a forecast for 
the driving variables in the model. That is, we need a forecast for: 

- E[(𝑟 , – 𝑟 ) |IT ] 
- E[𝑆𝑀𝐵 |IT ] 
- E[𝐻𝑀𝑀 |IT ]

• In general, we will need a model for 𝑋 . Things can get 
complicated very quickly.
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Forecasting and Prediction: Forecasts are RV

• Keep in mind that the forecasts are a random variable. Technically 
speaking, they can be fully characterized by a pdf. 

• In general, it is difficult to get the pdf for the forecast. In practice, we 
get a point estimate (the forecast) and a C.I. to gauge the uncertainty 
in the forecast.

• Q: What is a good forecast? We need metrics to evaluate the 
forecasting performance of different models. 

• In general, the evaluation of forecasts relies on MSE.  

Note: Later in this class, when we cover time series (Brooks, Chapter 
6), we go deeper into forecasting.

• We start with general model (DGP):

(A1) DGP: 𝒚 = f(X, θ) + .

• Given x0, we predict 𝑦0, using the expectation: E[𝑦|X, x0] = f(x0, θ)  

• We estimate E[𝑦|X, x0] with 𝑦0 = f(x0, θ). 

• The realization 𝑦0 is just: 𝑦0 = f(x0, θ) + 0

• With 𝑦0 observed, we compute the prediction error, 

𝑒 = 𝑦0 – 𝑦0 = f(x0, θ) – f(x0, θ) – 0

• The associated expected squared prediction error can be written as:

E[ 𝑒 2 ] = E[ 𝑦0 
– 𝑦0 2 ] = Var[𝑦0 ] + [Bias(𝑦0 )]2 + Var[] 

• We want to minimize this squared error, E[ 𝑒 2 ]. 

Forecasting and Prediction: Variance-bias 
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• The associated expected squared prediction error can be written as:

E[ 𝑒 2 ] = Var[𝑦0 ] + [Bias(𝑦0 )]2 + Var[] 

• We want to minimize this squared error. Note that there is nothing a 
forecaster can do regarding the last term, called the irreducible error. 

• Then, all efforts are devoted to minimize the sum of a variance and a 
squared bias. This creates the variance-bias trade-off in forecasting.

• It is possible that a biased forecast can produce a lower MSE than an 
unbiased one. In this lecture, we based our forecasts on OLS 
estimates, which under CLM assumptions, produce unbiased forecasts.

Note: The variance-bias trade-off is always present in forecasting.  In 
general, more flexible models have less bias and more variance. The 
key is to pick an “optimal” mix of both.

Forecasting and Prediction: Variance-bias 

• Prediction: Given x0  predict 𝑦0.

• Given the CLM, we have:  
Expectation: E[𝑦|X, x0] = x0; 
Predictor:  𝑦0 = b’x0

Realization: 𝑦0 = x0 + 0

Note: The predictor includes an estimate of 0:  
𝑦0 = b’x0 + estimate of 0.  (Estimate of 0=0, but with variance.)

• Associated with 𝑦0 (a point estimate), there is a forecast error, 𝑒 :
𝑒 = 𝑦0 – 𝑦0 = bx0 – x0 – 0 = (b – )x0 – 0

and a variance
 Var[(𝑦0 – 𝑦0)|x0] = E[(𝑦0 – 𝑦0) (𝑦0 – 𝑦0)|x0] 

Var 𝑒 |x0  = x0 Var[(b – )|x0] x0 + 2

Prediction Intervals: Point Estimate
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Example: We estimated the 3 Factor FF Model for IBM returns: 
> summary(fit_ibm_ff3)

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.005089 0.002488 -2.046 0.0412 * 
Mkt_RF 0.908299 0.056722 16.013  <2e-16 ***
SMB         -0.212460 0.084112 -2.526 0.0118 * 
HML         -0.171500  0.084682 -2.025  0.0433 * 

Suppose we are given x0 = [1.0000 -0.0189 -0.0142 -0.0027]
Then,      

𝑦0 = -0.005089 + 0.908299 * (-0.0189) - 0.212460 * (-0.0142) 
- - 0.171500 * (-0.0027) = -0.01877582

Suppose we observe y0 = 0.1555214.  Then, the forecast error is
𝑦0 – 𝑦0 = -0.01877582 - 0.1555214 = -0.1742973

Prediction Intervals: Point Estimate

Example (continuation): In R:

b_ibm <- fit_ibm_ff3$coefficients # regression coefficients, b

x_0 <- rbind(1.0000, -0.0189, -0.0142, -0.0027) # x0

y_0 <- 0.1555214

y_f0 <- t(b_ibm)%*% x_0

> y_f0

[,1]

[1,] -0.01877582

ef_0 <- y_f0 - y_0

> ef_0

[,1]

[1,] -0.1742973

Prediction Intervals: Point Estimate
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• We estimate the uncertainty behind the forecast with the Var 𝑒 .

Two cases:
(1) If x0 is given –i.e., constants. Then,

Var 𝑒 = x0 Var[b|x0] x0 + 2

 Form a (1-α)% C.I. as usual.
[𝑦0 tT-k,1-α/2 * sqrt(Var 𝑒

Note: In out-of-sample forecasting, x0 is unknown, it has to be 
estimated.

(2) If x0 has to be estimated, then we use a random variable.  What is 
the variance of the product?  One possibility:  Use bootstrapping.

Prediction Intervals: C.I.

• Assuming x0 is known, the variance of the forecast error is  
2 + x0’ Var[b|x0]x0 = 2 + 2[x0’ (X’X)-1x0]

If the model contains a constant term, this is

Var 𝑒    𝜎 1   
1
𝑁
    𝑥     �̄� 𝑥     �̄� Z M Z

(where Z is X without x1=ί). In terms squares and cross products of 
deviations from means.  

Note: Large 2, small 𝑁, and large deviations from the means, 
decrease the precision of the forecasting error.

Interpretation:  Forecast variance is smallest in the middle of our 
“experience” and increases as we move outside it. 

Prediction Intervals: C.I. and Forecast Variance



RS - Financial Econometrics - Lecture 6 – Prediction & Forecasting

14© R. Susmel, 2023 – Do not share/post online without written authorization

• Then, the (1 α)% C.I. is given by: [ŷ0 tT-k,α/2 * sqrt(Var 𝑒

• As x0 moves away from its mean, the C.I increases, this is known as 
the “butterfly effect.”

Prediction Intervals: C.I. and Forecast Variance

Example (continuation): We want to calculate the variance of the 
forecast error: for thee given x0 = [1.0000 -0.0189 -0.0142 -0.0027]
Recall we got 𝑦0 = b’x0 = -0.01877587

Then,
Estimated Var[𝑒 |x0] = x0 Var[b|x0] x0 + s2 = 0.003429632

Var_b <- vcov(fit_ibm_ff3)
var_ef_0 <- t(x_0) %*% Var_b %*% x_0 + Sigma2 
> var_ef_0

[,1]
[1,] 0.003429632
> sqrt(var_ef_0)

[,1]
[1,] 0.05856306

Check: What is the forecast error if x0 = colMeans(x)?

Prediction Intervals: C.I. and Forecast Variance
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Example (continuation):

# (1-alpha)% C.I. for prediction (alpha = .05)
CI_lb <- y_f0 – 1.96 * sqrt(var_ef_0) 

> CI_lb

>[1] -0.1335594

CI_ub <- y_f0 + 1.96 * sqrt(var_ef_0)

>CI_ub

>[1] 0.09600778

That is, CI for prediction: [-0.13356; 0.09601] with 95% confidence. A 
wide interval, which makes clear the uncertainty surrounding the point 
forecast: ŷ0 = -0.01877587

Prediction Intervals: C.I. and Forecast Variance

Forecasting and Prediction: Model Validation

• Model validation refers to establishing the statistical adequacy of the 
assumptions behind the model –i.e., (A1)-(A5) in this lecture. 
Predictive power or forecast accuracy can be used to do model 
validation. 

• In the context of prediction and forecasting, model validation is done 
by fitting a model in-sample, but keeping a small part of the sample, 
the hold-out-sample, to check the accuracy of OOS forecasts.  

• Hold out sample: We estimate the model using only a part of the 
sample (say, up to time T1). The rest of the observations, the hold out 
sample, (T - T1 observations) are used to check the predictive power of 
the model –i.e., the accuracy of predictions, by comparing ŷ0 with 
actual y0.



RS - Financial Econometrics - Lecture 6 – Prediction & Forecasting

16© R. Susmel, 2023 – Do not share/post online without written authorization

Estimation Period

Out-of-
Sample 
Forecasts

Validation 
Forecasts

Steps to measure forecast accuracy:

1) Select a (long) part of the sample (estimation period) to estimate the
parameters of the model. (Get in-sample forecasts, 𝑦.)

2) Keep a (short) part of the sample to check the model’s forecasting
skills. This is the validation step. You can calculate true MSE or MAE

3) If happy with Step 2), proceed to do out-of-sample forecasts.

Forecasting and Prediction: Model Validation
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Forecasting: USD/GBP

Details:

1) Estimation period. Use the first 𝑇 observations to estimate the
parameters of the model. This step produces in-sample forecasts, 𝑦. In-
sample evaluation of model is usually performed here.

2) Validation period. Use (𝑇 𝑇 ) observations to check the model’s 
forecasting skills. Given estimates in (1) , get OSS 𝑦0, but since 𝑦0 is 
known, calculate true MSE or MAE. For example: 

𝑀𝑆𝐸  ∑ 𝑦  𝑦  

Note: It is common to set (𝑇 𝑇 ) close to 10% of sample.

3) True OOS forecast period. Produce OSS 𝑦0, but since 𝑦0 is not
known now, it will take time to evaluate the true OOS forecasts.

Forecasting and Prediction: Model Validation
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Note: In the Machine Learning literature, the terminology used for
model validation is slightly different.

Step 1 is called “training,” the data used (say, first 𝑇 observations) are
called training data/set. In this step, we estimate the parameters of the
model, subject to the assumptions, for example, (A1)-(A4).

Step 2 has the same name, validation (or “single-split” validation). This step
can be used to “tune (hyper-)parameters.” In our CLM, we can “tune” the
model for departures of (A1)-(A4), for example, by including more or
different variables (A1) and re-estimating the model accordingly using
“training data” alone. We choose the model with lower MSE or MAE.

Remark: The idea of this step is to simulate out-of-sample accuracy.
But, the “tuned” parameters selected in Step 2 are fed back to Step 1.

Step 3 tests the true out-of-sample forecast accuracy of model selected
by Step 1 & Step 2. This last part of the sample is called “testing sample.”

Forecasting and Prediction: Model Validation

• Step 2 is used as a testing ground of the model before performing
OOS forecasting. There are many ways to approach the validation step.

• Instead of a single split, split the data in 𝐾 parts. This is called 𝐾-fold
cross-validation. For 𝑗 = 1, 2, …, 𝐾, use all folds but fold 𝑗 to estimate
model; use fold 𝑗 to check model’s forecasting skills by computing MSE,
𝑀𝑆𝐸 . The 𝐾-fold CV estimate is an average of each fold MSE’s:

𝐶𝑉 ∑ 𝑀𝑆𝐸

Usual choices for 𝐾 are 5 & 10. (These are arbitrary choices.)

Random and non-random splits of data can be used. The non-random
splits are used for some special cases, such as qualitative data, to make
sure the splits are “representative.”

Forecasting and Prediction: Cross Validation
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• Use a single observation for validation. This is called leave-one-out cross-
validation (LOOCV). A special case of 𝐾-fold cross-validation with 𝐾 = T.
That is, use (T - 1) observations for estimation, and, then, use the
observation left out, 𝑖 = 1, …, T, to compute 𝑀𝑆𝐸 , which is just
𝑦 𝑦 , where 𝑦  is the prediction for observation 𝑖 based on

the full sample but observation 𝑖. Then, compute:

𝐶𝑉 ∑ 𝑀𝑆𝐸

• Instead of just one, it is possible to leave p observations for validation.
This is called leave-p-out cross-validation (LpOCV).

Remark: In time series, since the order of the data matters, cross
validation is more complicated. In general, rolling windows are used.

Forecasting and Prediction: Cross Validation

Example: We do cross-validation on the 3-factor Fama-French Model 
for IBM returns with 𝐾=5: 
y <- ibm_x

ff_cv_data <- data.frame(Mkt_RF, SMB, HML) 

###### CV: Cross-Validation K-fold Code Function ######

CV<- function(dats, n.folds){

folds <- list() # flexible object for storing folds

fold.size <- nrow(dats)/n.folds

remain <- 1:nrow(dats) # all obs are in

for (i in 1:n.folds){

select <- sample(remain, fold.size, replace = FALSE) #randomly sample fold_size from remaining obs)

folds[[i]] <- select # store indices ( write a special statement for last fold if  ‘leftover points’)

if  (i == n.folds){

folds[[i]] <- remain

}

remain <- setdiff(remain, select) #update remaining indices to reflect what was taken out

remain

}

Forecasting and Prediction: Cross Validation
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Example (continuation):
results <- matrix(0,1,n.folds)

for (i in 1:n.folds){

# fold i

indis <- folds[[i]] #unpack into a vector

estim <- dats[-indis, ] #split into estimation (train) & validation (test) sets

test <- dats[indis, ]

lm.model <- lm(y[-indis] ~ ., data = estim) # OLS with estimation data

pred <- predict(lm.model, newdata = test) # predicted values for fold not used

MSE <- mean((y[indis] - pred)^2) # MSE (any other evaluation measure can be used)

results[[i]]<- MSE # Accumulate MSE in vector

}

return(results)

}

CV_ff_5 <- CV(ff_cv_data, 5)

> mean(CV_ff_5)

[1] 0.00346262

Forecasting and Prediction: Cross Validation

• Popular measures of  OOS forecast accuracy, after 𝑚 forecasts: 

Mean Absolute Error (MAE) = ∑ |𝑦 𝑦 | ∑ |𝑒 |

Mean Squared Error (MSE) = ∑ 𝑦 𝑦 ∑ 𝑒

Root Mean Square Error (RMSE) = ∑ 𝑒

Mean Absolute Percentage Error (MAPE) = ∑ | ∗ 100|

Theil’s U statistics = 
∑

∑

Evaluation of  Forecasts: Measures of  Accuracy
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• Theil’s U statistics has the interpretation of  an R2. But, it is not 
restricted to be smaller than 1.

• An OOS R2 can be computed as: 

𝑅 = 1 -

with 𝑀𝑆𝐸 = ∑ 𝑦 𝑦
𝑀𝑆𝐸 = ∑ 𝑦 𝑦

where 𝜏 is the forecasting horizon. (See Goyal and Welch (2008) for a 
well-known finance application.)

• Again, cross-validation measures can be used to evaluate forecasting 
performance. 

Evaluation of  Forecasts: Measures of  Accuracy

Example: We want to check the forecast accuracy of the 3 FF Factor 
Model for IBM returns. We estimate the model using only 1973 to 
2017 data (T=539), leaving 2018-2020 (m = 30 observations) for 
validation of predictions.
T0 <- 1

T1 <- 539 # End of Estimation Period (Dec 2017)

T2 <- T1+1 # Start of Validation Period (Jan 2018)

y1 <- y[T0:T1]

x1 <- x[T0:T1,]

fit_ibm_2 <- lm(y1~ x1 - 1) # Estimation Period Regression From T0 to T1

b1 <- fit_ibm_2$coefficients # Extract OLS coefficients from regression

> summary(fit_ibm_2)

Estimate Std. Error t value Pr(>|t|)    

x1       -0.003848   0.002571  -1.497  0.13510    

x1Mkt_RF 0.865579   0.059386  14.575  < 2e-16 ***

x1SMB   -0.224914   0.085505  -2.630  0.00877 ** 

x1HML  -0.230838   0.090251  -2.558  0.01081 *

Evaluation of  Forecasts: Measures of  Accuracy
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Example (continuation): We condition on the observed data (no 
model to predict FF factors used) from 2018: Jan to 2020: Jun.
x_0 <- x[T2:T,] # Validation data

y_0 <- y[T2:T] # Validation data

y_f0 <- x_0%*% b_ibm # Forecast

ef_0 <- y_f0 - y_0 # Forecasat error

mse_ef_0 <- sum(ef_0^2)/nrow(x_0) # MSE

> mse_ef_0

[1] 0.003703207

mae_ef_0 <- sum(abs(ef_0))/nrow(x_0) # MAE

> mae_ef_0

[1] 0.04518326

That is, MSE = 0.003703207

MAE = 0.04518326

Evaluation of  Forecasts: Measures of  Accuracy

Example (continuation): Plot of actual IBM returns and forecasts.
plot(y_f0, type="l", col="red", main = "IBM: Actual vs. Forecast (2018-2020)",

xlab = "Obs",  ylab = "Forecast")

lines(y_0, type = "l", col = "blue")

legend("topleft",  legend = c("Actual", "Forecast"),  col = c("blue", "red"),  lty = 1)

Evaluation of  Forecasts: Measures of  Accuracy
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• So far, we have judged the model with the better (usually, lower) 
measure of  accuracy as the better forecasting mode.

But, measures of  accuracy are RV. Then, we cannot look at these 
measures and establish that Model 1 is “more accurate” than Model 2. 
Statistical error (“luck”) can create problems.

• The most popular measure of  accuracy is the MSE.

Q: How do we know the MSE for model 1 is significantly better than 
the MSE for model 2? We need a test for

H0: MSE(1) = MSE(2) 
H1: MSE(1) ≠ MSE(2). 

.

Evaluation of  Forecasts: Measures of  Accuracy

• Suppose two competing forecasting procedures produce a vector of  
errors: 𝑒 & 𝑒 . Then, if  expected MSE is the criterion used, the 
procedure with the lower MSE will be judged superior.

• We want to test H0: MSE(1) = MSE(2) 
H1: MSE(1) ≠ MSE(2). 

Assumptions: forecast errors are unbiased, normal, and uncorrelated.  
If  forecasts are unbiased, then MSE = Variance.

• Consider, the pair of  RVs: (𝑒 𝑒 ) & (𝑒 𝑒 ). Now,

𝐸 𝑒 𝑒 𝑒 𝑒 𝜎 𝜎

• That is, we test H0 by testing that the two RVs are not correlated! 

Under H0, 𝐸 𝑒 𝑒 𝑒 𝑒  0.

Evaluation of  Forecasts: Testing Accuracy
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• Under H0,  𝑒 𝑒  & 𝑒 𝑒 are not correlated.
This idea is due to Morgan, Granger and Newbold (MGN, 1977).

• There is a simpler way to do the MGN test. Steps:

1. Define 𝑒 & 𝑒 , where 𝑒 is the error with the higher MSE. Let
𝑧  = 𝑒 𝑒 – 𝑒 : the error with the higher MSE.
𝑥 = 𝑒 𝑒

2. Do a regression: 𝑧 = β 𝑥 + 𝜀

3. Test H0: β = 0  a simple t-test. 

The MGN test statistic is exactly the same as that for testing H0: β = 0. 
This is the approach taken by Harvey, Leybourne & Newbold (1997).

• If  the assumptions are violated, these tests have problems.

Evaluation of  Forecasts: Testing Accuracy

Example: We produce IBM returns one-step-ahead forecasts for 
2018-2020 using the 3 FF Factor Model for IBM returns:

𝑟 𝑟 = 0 + 1 𝑟 𝑟 + 2 𝑆𝑀𝐵   𝐻𝑀𝐿 + 

Taking expectations at time 𝑡+1, conditioning on time t information 
set, 𝐼 ={ 𝑟 𝑟 , 𝑆𝑀𝐵 , 𝐻𝑀𝐿 }

E[ 𝑟 𝑟 |𝐼 ] = 0 + 1 E[ 𝑟 𝑟 |𝐼 ] +
+ 2 E[𝑆𝑀𝐵 |𝐼 ] + 3 E[𝐻𝑀𝐿 |𝐼 ] 

In order to produce forecast, we will make a naive assumption: The 
best forecast for the FF factors is the previous observation. Then,

E[ 𝑟 𝑟 |𝐼 ] = 0 + 1 𝑟 𝑟 + 2 𝑆𝑀𝐵 + 3 𝐻𝑀𝐿 .

Now, replacing the  by the estimated b, we have our one-step-ahead 
forecasts. We produce one forecast at a time.

Evaluation of  Forecasts: Testing Accuracy
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Example: We compare the forecast accuracy relative to a random walk 
model for IBM excess returns. That is,  

E[ 𝑟 𝑟 |𝐼 ] = 𝑟 𝑟

Using R, we create the forecasting errors for both models and MSE:
T1 <- 539 # End of  Estimation Period (Dec 2017)
x_0f  <- x[T1:(T-1),] # By assumption on the X, it starts at T1.
y_0 <- y[T2:T] # T2 = T1 + 1 (Jan 2018)
y_f0 <- x_0f  %*% b1 # b1 coefficients from fit_ibm_2 
ef_0 <- y_f0 - y_0 # et

(2) 

mse_ef_0 <- sum(ef_0^2)/nrow(x_0)
> mse_ef_0 # MSE(2)
[1] 0.01106811

ef_rw_0 <- y[T1:(T-1)] - y_0 # et
(1) 

mse_ef_rw_0 <- sum(ef_rw_0^2)/nrow(x_0)
> mse_ef_rw_0 # MSE(1) <= (1) is the higher MSE.
[1] 0.02031009

Evaluation of  Forecasts: Testing Accuracy

Example: Now, we create 𝑧  = 𝑒 𝑒 , &  𝑥 = 𝑒 𝑒 . 
Then, regress: 𝑧 = β 𝑥 + 𝜀 and test H0: β = 0.

# Step 1. Define errors and z & x
z_mgn <- ef_rw_0 + ef_0
x_mgn <- ef_rw_0 - ef_0

# Step 2. Regress x on z
fit_mgn <- lm(z_mgn ~ x_mgn)
> summary(fit_mgn)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.05688    0.03512   1.619    0.117    
x_mgn 2.77770    0.58332   4.762 5.32e-05 ***  significant!

# Step 3. t-test on β
> coef(summary(fit_mgn))[, "t value"]
1.619 4.762

Conclusion: We reject that both MSEs are equal  MSE of  RW is higher.

Evaluation of  Forecasts: Testing Accuracy
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• MSE and MAE are very popular criteria to judge the forecasting
power of a model. However, they may not be the best measure for
everybody.

• Richard Levich’s textbook compares forecasting services to the
freely available forward rate. He finds that forecasting services may
have some ability to predict direction (appreciation or depreciation).

For some investors, the direction is what really matters, since direction
determines potential profits, not the error.

Evaluation of  Forecasts: MSE/MAE?

Example: Two forecasts: Forward Rate (Ft,T) and Forecasting Service (FS)

Ft,1-month = .7335 USD/CAD

EFS,t[St+1-month]= .7342 USD/CAD. (Assume St = .7330 USD/CAD).

(Investor’s strategy: buy CAD forward if FS forecasts CAD appreciation.)

Based on the FS forecast, Ms. Sternin decides to buy CAD forward at Ft,1-m.

(A) Suppose that the CAD appreciates to St+1 = .7390 USD/CAD.

MAEFS = .7390 - .7342 = .0052 USD/CAD.

Investor makes a profit of .7390 - .7335 = USD .055 USD.

(B) Suppose that the CAD depreciates to St+1 = .7315 USD/CAD.

MAEFS = .7315 - .7342 = .0027 USD/CAD.  smaller MAE!

Investor takes a loss of .7315 - .7335 = USD -.0020. ¶

Forecasting Application: MSE/MAE?
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• Based on how we select the “driving” variables 𝑋 , we have different
forecasting approaches:

- Fundamental (based on data considered fundamental)

- Technical analysis (based on data that incorporates only past prices)

• Fundamental Approach to Forecast Exchange Rates, 𝑆 (USD/JPY)

Based on an economic model, we generate

E [𝑆 ] = E [𝑓 𝑋 ] = 𝑔 𝑋 ,

where 𝑋 is a dataset regarded as fundamental economic variables:

- GNP growth rate,

- Current Account,

- Interest rates,

- Inflation rates, etc.

Forecasting Application: Fundamental Approach 

• The economic model usually incorporates:

- Statistical characteristics of data (seasonality, autocorrelation, etc.)

- Experience of the forecaster (what information to use, lags, etc.)

 Mixture of art and science.

• The economic model provides the structure for the forecasts (also
called structural model).

• We compare the economic model’s performance with the
performance of a simpler model, the Random Walk (RW model),
which is found to be very good model for St in the short-run. The
forecasts for the RW are given by:

E [𝑆 ] = 𝑆

Forecasting Application: Fundamental Approach 
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Forecasting Application: Fundamental Approach 

Continue

• Fundamental Forecasting: We want to forecast the FX rate 𝑆 =
USD/JPY. We model percentage changes in 𝑆 :

𝑒 , = log(𝑆 ) - log(𝑆 )

(1) Select a Model: Based on Theory (IFE & Asset Approach)

𝑒 , = β0 + β1 (𝑖 , – 𝑖 , ) + β2 (𝑦 , – 𝑦 , ) + 

Et[𝑒 , ] = β0 + β1 𝐸 (𝑖  – 𝑖 )  + β2 𝐸 (𝑦  – 𝑦 )  

 Et[𝑆 ] = 𝑆 = 𝑆 * (1 + Et[𝑒 , ])

(2) Collect data: 𝑆 , 𝑿  (Interest rates, 𝑖 , & GDP growth rates, 𝑦 ).

(3) Estimation of Model (using estimation period): OLS  get 𝐛.

Forecasting Application: Fundamental Approach 
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• Fundamental Forecasting (continuation)

(4) Generate forecasts. Assumptions about Xt are needed.

Et[𝑿 ] = δ1 + δ2 (𝑿 ) -an AR(1) model.

 Et[𝑒 , ] = Et[𝑿𝒕 𝟏]' 𝐛

 Et[𝑆 ] = 𝑆 * (1 + Et[𝑒 , ])

(5) Evaluation of Forecasts: MSE (& compare with RW’s MSE).

Model’s Forecast Errort+1 = Et[𝑆 ] - 𝑆
RW’s Forecast Errort+1 = 𝑆 - 𝑆

Compute: 𝑀𝑆𝐸 ∑ 𝑒 , (𝑗 = Model, RW)

Then, run MGN to compare MSEs.

Forecasting Application: Fundamental Approach 


