RS - Financial Econometrics - Lecture 6 — Prediction & Forecasting

Lecture 6-c:
Forecasting, Prediction and
Model Selection

Brooks (4™ edition): Chapter 5

(for private use, not to be posted/shared online)

Review - Functional Form: Structural Change

* We test if an event at that time Tgp affected our model, creating a
“before” and an “after” in the parameters: That is,

Yi = Bo + B Xpi+ B: Xoit B3 X3 + & for i <Tsp
yi = B§ + B3 X1+ B3 X+ B3 X3+ & for i > Tgp

The event caused structural change in the model.

* A Chow test, an F-test, tests if one model applies to both regimes:

Vi =Bt By Xii + BoXoit Bs X3t & for all i
* We test Hy (No structural change): By = P5 = B,
1_n2—
1- B% =B
e
3=P5=0;

H, (structural changé): For at least one k (= 0, 1, 2, 3): By, # Bz 2
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Review - Functional Form: Structural Change
* We structure the Chow test to test Hy (No structural change), as usual.

* Steps for Chow (Structural Change) Test:

(1) Run OLS with all the data, with no distinction between regimes.
(Restricted or pooled model). Keep RSS;.

(2) Run two separate OLS, one for each regime (Unrestricted model):
Before Date T'g. Keep RSS;.

After Date Ty, Keep RSS,. = RSS; = RS§, + RSS,.

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

_ (RSSg — RSSy)/(ky —kg) _ (RSSg — [RSS; + RSS,])/k
T RSS/T—ky)  (RSS +RSS)/(T—2)

Review - Functional Form: Structural Change

* Before, when we presented the Chow test, we used the F-distribution,
which will be appropriate under (A5).

* In general, we rely on the asymptotic distribution —i.e., we do not rely
on (A5). It is common to approximate the distribution of the Chow
test, under H; and assuming a large number of observations pre- and
post-break, with

d da
J*F > X; (sometimes written as F' — X; /).
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Functional Form: Structural Change

Example: 3 Factor Fama-French Model for SLB

Q: Did the financial crisis (Sep 2008, Tgz = 429) affect the structure of
the FF Model? Sample: January 1973 — December 2023 (T = 611).

Pooled RSS = 3.5290
Jan 1973 — Sep 2008 RSS = RSS, = 2.0010 (T’ = 428)
Oct 2008 — Dec 2023 RSS = RSS, = 1.1213 (T = 183)

F= [RSSR—(RSS1+RSSy)1/J _ [3-5290 - (2.0010+ 1.1213)]/4

(RSS1+RSS2)/(T—k)  (2.0010+ 1.1213)/(611 — 24) = 19.6356
= Since F 51 o5 = 2.39, we reject H,,
Constant Mkt —rf SMB HML RSS T
1973-2020 -0.0073*  1.2138%  0.0123  0.4182* 3.5290 611
1973-2001 0.0013  0.9038% -0.2394% -0.3477¢  2.0010 428
2002 — 2023 -0.0141*  1.3129% 03703  1.1496* 1.1213 183 5

Functional Form: Structural Change

Example (continuation): The R package sctrucchange estimates the
Chow test. (As usual, you need to install package first.)

>x_slb <- SFX_da$SL.B

>lt_slb <- log(x_slb[-1]/x_slb[-T])

>slb_x <-1r_slb - RF

>library(sctrucchange)

> t_s <- 428

> sctest(slb_x ~ Mkt_RF + SMB + HML, type = "Chow", point = t_s)

Chow test

data: slb_x ~ Mkt_RF + SMB + HML
F =19.636, p-value = 3.331e-15
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Review - Functional Form: Structural Change

Example: We test if the Oct 1973 oil shock in quarterly GDP growth
rates had an structural change on the GDP growth rate model.

We model the GDP growth rate with an AR(1) model, that is, GDP
growth rate depends only on its own lagged growth rate:

Ve =Bo+ By Ye—1 T &

GDP_da <- read.csv("http:/ /www.bauet.uh.edu/rsusmel/4397/GDP_g.csv", head=TRUE,
Sep:">”)

x_date <- GDP_da$DATE

x_gdp <- GDP_da$GDP

x_dummy <- GDP_da$D73

T <- length(x_gdp)

s <- 108 # T, = Oct 1973

Ir_gdp <-log(x_gdpl[-1]/x_gdp[-T])

T <- length(lr_gdp)

lr_gdp0 <-lt_gdp[-1]

Ir_gdpl <-1t_gdp[-T]

ts<-ts-1 # Adjust t_s (we lost the first observation)

Review - Functional Form: Structural Change

Example (continuation):
y <-lr_gdp0O

x1 <- Ir_gdpl

T <- length(y)

x0 <- matrix(1,T,1)

x <- cbind(x0,x1)

k <- ncol(x)

# Restricted Model (Pooling all data)

fit_arl <-Im(lr_gdp0 ~ lr_gdp1) # Fitting AR(1) (Restricted) Model
e_R <-fit_arl$residuals # regression residuals, e
RSS_R <- sum(e_R"2) # RSS Restricted

> summary(fit_arl)

Coefficients:

Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.011411 0.001109 10291 < 2e-16 ***
Ir_gdp1 0.263353  0.055141 4.776  2.78e-06 ***

Signif. codes: 0 “*** (0.001 “***0.01 **0.05 0.1 “* 1

Residual standard error: 0.01242 on 306 degrees of freedom

© R. Susmel, 2023 — Do not share/post online without written authorization



RS - Financial Econometrics - Lecture 6 — Prediction & Forecasting

Review - Functional Form: Structural Change

Example (continuation):
# Unrestricted Model (Two regimes)

y_1 <-y[l:t_s]
x_ul <-x[l:t_s,]
fit_arl_1 <-lm(y_1 ~x_ul-1) # AR(1) Regime 1
el <- fit_arl_1$residuals # Regime 1 regression residuals, e
RSS1 <- sum(e1"2) # RSS1: RSS Regime 1
kk =t_s+1 # Starting date for Regime 2
y_2 <-y[kkT]
x_u2 <- x[kk:T}]
fit_arl 2 <-Ilm(y_2 ~x_u2-1) # AR(1) Regime 2
e2 <- fit_arl_2$residuals # Regime 2 regtression residuals, e
RSS2 <- sum(e2”2) # RSS2: RSS Regime 2
F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))
>F
[1] 4.3382
_val <- 1 - pf(E dfl = 2,df2 =T - 2*k) # p-value of F_test
> p_val
[1] 0.01388 => small p-values: Reject H, (No structural change). 3 9

Review - Modeling Structural Change

* Under H, (No structural change), we pool the data into one model. That
is, the parameters are the same under both regimes. We fit the same
model for all t, for example:

Ve =Bo+ By Ye—1 T &

e If the Chow test rejects H,, we need to reformulate the model. A
typical reformulation includes a dummy variable (Dsp ;). For example,
with vector X; of explanatory variables:

Ve = Bo + BiXe + By Dspe + ¥ Xe Dsp e + &
where

Dsp + if observation t occurred after T'gy

1
O =

otherwise.
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Review - Modeling Structural Change

Example: We are interested in introduce in the AR(1) model for GDP
growth rates (X; = Y¢_1), the effect of the Oct 1973 oil shock. We
include a dummy variable in the AR(1) model, say D
D73 = 1 if observation t occurred after October 1973
= 0 otherwise.

Then, Ve =Bo T B1Ye—1T v D73 + V1 Vi1 * D73 + &

In the model, the oil shock affects the constant and the slopes.

Constant Slopes:
Before oil shock (D,; = 0): Bo B
After oil shock (D,; = 1) : Bo * Vo Bit v

* We estimate the above model and perform an F-test to test if H, (No
11
structural change): y,= 0 & y, = 0.

.003779 0.002349 1.609

Review - Modeling Structural Change

Example: We add an Oct 1973 dummy in the AR(1) GDP model.

Tl <-T-t_s # Number of Observations after SB
D73_0 <- rep(0,t_s) #Dummy_t=0if t<=t_s

D73_1 <- rep(1,T1) # Dummy_t =1of t > t_s

D73 <-¢(D73_0,D73_1) # SB Dummy variable t_s <- 108
Ir_gdpl_D73 <-lr_gdpl * D73 # interactive dummy (effect on slope)

fit_arl_d_2 <- Im(r_gdp0 ~ lr_gdpl + D73 + Ir_gdp1_D73)
summary(fit_arl_d_2)

Coefficients:
Estimate Std. Error tvalue Pr(>|t|)
(Intercept)  0.008953 0.001935 4.627  5.5e-06 ***

Ir_gdpl 0.467457 0.090623 5.158 4.5¢-07 ***
D73 0.003779 0.002349  1.609 0.1086 = no significant effect on constant
Ir_gdpl1_D73 -0.326809 0.113592 -2.877 = significant effect of oil shock on slope.

Signif. codes: 0 *** (0.001 “***0.01 **0.05 0.1 “* 1

Conclusion: After the oil shock the slope significantly changed from
0.467457 to 0.140648 (= 0.467457 + (-0.326809)).
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Review - Modeling Structural Change

Example (continuation): Using the car package, we test the joint
hypothesis H, (No structural change): v,= 0 & y, = 0.

> libraty(car)
> linearHypothesis(fit_arl_d_2, c¢("D73 = 0","lr_gdp1_D73 = 0"), test="F")
Linear hypothesis test

Hypothesis:
D73=0
Ir_gdp1_D73 =0

Model 1: restricted model
Model 2: Ir_gdp0 ~ Ir_gdpl + D73 + Ir_gdp1_D73

ResDf  RSSDf Sumof Sq F Pr(>F)
1306 0.047201
2 304 0.045806 2 0.0013957 4.6316 *

Signif. codes: 0 “**0.001 ** 0.01 **0.05 < 0.1 > 1

Review - Functional Form: Structural Change
e It is also possible to do a Wald test to test H,, using only the
unrestricted estimators. Steps:

1) Run two separate OLS, one for each regime (Unrestricted model):
Before Date T Keep b, & Var[b,]

After Date T, Keep b, & Var[b,]

2) Compute the Wald test:
W = (b, — by {Var[b,] + Var[b,]} ! (b, —b,),
where Var[b, - b,] = Var|b,] + Var[b,], assuming Cov(b,, b,) = 0.

Under H, (& if the number of observations pre- and post-break are

d
large), the Wald test follows: W — X; 14
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Review — Chow Test with Unknown Break

* Problem with the (classic) Chow test: We condition on a specific date
for the structural break (say, October 73), which in general is unknown.

* An easy solution? Run a Chow test for all possible dates, select the
date, T, that maximizes the Chow test.

Rolling Chow Test = max Fr(7)
T€{Tmin, - Tmax
* We cannot run the Chow test for all dates. We need enough
observations to run OLS on both sides of the potential breaking
points. Then, we start to check for a breaking point at date Tyyjy, and
we finish to check at date T;pqy-

* This is called, “trimming” the data. Usually, we set Tjipn and Typax by
leaving a percentage, 7, of the initial of observations and final
observations. Usually, 1 = 10% or 15%. s

Review — Chow Test with Unknown Break

* This test was proposed by Quandt (1958):
QLRr = max }FT(T)

€{Tmin, - Tmax
¢ It is also possible to run the Wald test version of the Chow test for all
possible dates, again, selecting the date that maximizes

QLR = max We(7)

T€{Tmin, ~»Tmax}

* The first QLR is called the SupF test, the second the SupW.

Technical Problem: With this approach, the technical conditions under
which the asymptotic distribution is derived are not met in this setting;

* Andrews (1993) showed that under appropriate conditions, the QLR
statistic, also known as Sup-test (F, W, LR) statistic, has a non-standard
limiting distribution (“non-standard” = no existing table; needs a new one).
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Review — Chow Test with Unknown Break

* The QLR statistic, also known as Sup-test (F, W, LR) statistic, has a
non-standard limiting distribution.

* The distribution depends on the number of parameters of the
model, k, which are tested for stability, trimming values, ,, which only
affect the distribution through A = (1-x,)?/n,%

* Andrews (1993) tabulated the non-standard distribution of the SupW
for different k, a, and trimming values ().

Note: It is usual to test the SupF, using the critical values of SupW,
by dividing the SupW critical values by k. Andrews (2003) issued a
slightly corrected Table. In the next slide, we present the Sup[ critical
values for m, = 15%, taken from Stock and Watson (2011).

Review — Chow Test with Unknown Break

Critical values of the QLR test distribution, from Stock and Watson
(2011), setting m, = 15%; for a = 1%, 5%, 10%; and different k (= q).

TABLE 14.6  Crifical Values of the QLR Statistic with 15% Trimming

Number of Restrictions (g 10 5 1
1 7.12 8.68 12.16
2 5.00 5.86 7.78
4.09 4,71 6.02
4 59 409 512
J 326 3.66 45
6 0 337 4.1
7 84 315 3.8
8 269 298 3.57
9 258 284 338
10 248 271
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Review — Chow Test with Unknown Break

Example (continuation): We search for breaking points for GDP
growth rate in AR(1) model. We use package desk. (You can use library
strucchange, but it runs the SupW (F= SupW/2), see Andrews (1993.))

library(desk)

pie <-.15

TO <- round(T * pie)

T1 <- round(T *(1-pie))

my.qlr <- glr.test(lr_gdp0 ~ Ir_gdp1, from = TO, to = T1, sig.level = 0.05, details = TRUE)

> my.qlr # Print test results

QLR-Test for structural breaks at unknown date

Hypotheses:
HO: H1:
No break in t = 46...262 Some break in t = 46...262

Test results:
f.value lower.cv upper.cv p.value siglevel HO
211441 586 6.085 <1le-04  0.05 rej.

Review — Chow Test with Unknown Break

Example (continuation): We search for breaking points for GDP
growth rate in AR(1) model. Below, we plot all F-tests starting at T*15:

QLR Test: GDP growth rate AR(1) Model - 1947-2024

Fa

e

0

F-yalue

46 54 32 102 125 148 171 194 217 240

period

* Maximum F is 21.14 occurs in Jan 2009 (observation #250). Then,
QLR =21.14 > 5.86 = Reject H;, at 5% level & break is not Oct 73!.
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Review — Chow Test with Unknown Break

Example: We search for breaking points for IBM returns in the 3-
factor FIF model.

T<- length(ibm_x)

pie <-.15

TO <- round(T * pie)

T1 <- round(T *(1-pie))

my.qlr <- glr.test(fit_ibm_f£f3, from = TO, to = T1, sig.level = 0.05, details = TRUE)

> my.qlr # Print test results

QLR-Test for structural breaks at unknown date

Hypotheses:
HO: H1:
No break in t = 92...519 Some break in t = 92...519

Test results:
f.value lower.cv upper.cv p.value siglevel HO
4.5302 396  4.09 0.05 rej.

Review — Chow Test with Unknown Break

Example: We search for breaking points for IBM returns in the 3-
factor FIF model. Below, we plot all F-tests starting at T*15:

QLR Test: IBEM 3-factor FF Model - 1973 - 2023

-
T ZiT
. ¢
I & ]
2%%% g
% %@é
T P =)

o2 131 175 219 263 307 351 395 439 483

period

* Maximum F is 4.5302 occurs in Sep 2012 (observation #477). Then,
QLR =4.5302 > 4.09 = Reject H;, at 5% level.
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Chow Test: Structural Change — Forecasting

* Ignoring structural change affects forecasts.

Example: We want to forecast GDP growth for the 27 quarter of
2024 (2024: II) using the estimated AR(1) models. We have data from
1947:11 to 2024:1. We know the GDP growth in 2024:1”

Ye=2024:1 (GDP growth 2024:) = 0.01362407

Under no structural change, the 2024:11 forecasts is:
=0.011411 + 0.263353 * 0.01362407 = 0.014999

Under structural change, the 2024:11 forecasts is:
Ve=2024:11 = (0.008953 + 0.003779) + (0.467457 - 0.326809) Vr=2024:1
=0.012732 + 0.140648 * 0.01362407 = 0.014648

Chow Test: Structural Change — Remarks

* The results are conditional on the breaking point —say, October 73,
Dec 2001, or January 2009.

* The breaking point is usually unknown. It needs to be estimated.
* It can deal only with one structural break —i.e., two categories!
* The number of breaks is also unknown. They need to be estimated.

¢ Characteristics of the data (heteroscedasticity —for example, regimes
in the variance- and unit roots (high persistence) complicate the test.

* Missing structural breaks in deterministic parameters (intercepts,
trends, etc.) can be a cause of forecast failure.

* There are many modern tests that take care of these issues, but

usually also with non-standard distributions. ,
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Forecasting and Prediction

“There are two kind of forecasters: those who don't know and those who don 't know they don't know”

John Kenneth Galbraith (1993)

* Objective: Forecast
* Distinction: Ex post vs. Ex ante forecasting
— Ex post: RHS data are observed
— Ex ante (true forecasting): RHS data must be forecasted

* Prediction and Forecast
Prediction: Explaining an outcome, which could be a future outcome.

Forecast: A particular prediction, focusing in a future outcome.

Example: Prediction: Given x° = predict y°.

Forecast: Givenxd,; = predicty,.,.

Forecasting and Prediction: Types

* Two types of predictions:

- In sample (prediction): The expected value of y (in-sample), given the
estimates of the parameters. The in-sample prediction are the fitted
values, y.

- Out of sample (forecasting): The value of a future Y that is not
observed by the sample.

Notation & Terminology:
Let T be the forecast origin and [ is the forecast hotizon.
- Prediction for T made at T Yr.

- Forecast for T + I made at T:  Ypyy, ?T+I|T, Yr (D).
- Y7 (D): l-step abead forecast = Forecasted value Yy, at time T.
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Forecasting and Prediction: Information Set, L

* Any prediction or forecast needs an information set, 7. This
includes data, models and/or assumptions available at time T. The
predictions and forecasts will be conditional on I7.

For example, in-sample, IT = {x"} to predict y° (= b x).
Or in time series, It = {X7_1 X7_3 ..., XT_q} to predict 4.

* Then, the forecast is just the conditional expectation of Yry;, given
the observed sample:

?T+l = E[Yry1| X1, Xr—1, -, X1]

Example: If X7 = Y7, that is, we have an autoregressive model, using
only the past of Y7 to predict Y74, then, one-step ahead forecast is:

?T+1 = E[Yr41|Yr, Y71, .., Y1]

Forecasting and Prediction: Conditional E[.]

* The conditional expectation of Y7, is, in general, based on a model,
the experience of the forecaster or a combination of both.

Example: We base the conditional expectation on the 3-factor FF
model:

Yri1 = E[By + By Omrs1 —17) + By SMBryy + By HMLyy) | Ir]

* In the above equation, the forecast of Y74, also needs a forecast for
the driving variables in the model. That is, we need a forecast for:
-Elmr+1—1p) 1]
-E[SMBr4; |I7]
- E[HMMy |17 ]

¢ In general, we will need a model for X 7+1- Things can get
complicated very quickly.
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Forecasting and Prediction: Forecasts are RV

* Keep in mind that the forecasts are a random variable. Technically
speaking, they can be fully characterized by a pdf.

* In general, it is difficult to get the pdf for the forecast. In practice, we

get a point estimate (the forecast) and a C.I. to gauge the uncertainty
in the forecast.

* Q: What is a good forecast? We need metrics to evaluate the
forecasting performance of different models.

* In general, the evaluation of forecasts relies on MSE.

Note: Later in this class, when we cover time series (Brooks, Chapter
6), we go deeper into forecasting.

Forecasting and Prediction: Variance-bias

* We start with general model (DGP):
(A1) DGP:  y=/X,0) +e.

* Given x°, we predict ¥, using the expectation: E[y | X, x°] = fx", 6)
* We estimate E[y | X, x°] with P = fix", 0).
* The realization y" is just: y° = fx0, 6) + €°

* With y° observed, we compute the prediction error,

eO — yo_yo :f(xo, ’6) —j(xo, 6) _gh

¢ The associated expected squared prediction error can be written as:

E[(€°)%] = E[(5°~ y")?] = Var[§"] + [Bias(")]2 + Var[e]

* We want to minimize this squared error, E[(€?)2].
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Forecasting and Prediction: Variance-bias

* The associated expected squared prediction error can be written as:

E[(e°)?] = Var[§"] + [Bias(#")]* + Var[e]

* We want to minimize this squared error. Note that there is nothing a
forecaster can do regarding the last term, called the zveducible error.

* Then, all efforts are devoted to minimize the sum of a variance and a
squared bias. This creates the variance-bias trade-off in forecasting.

¢ It is possible that a biased forecast can produce a lower MSE than an
unbiased one. In this lecture, we based our forecasts on OLS
estimates, which under CLM assumptions, produce unbiased forecasts.

Note: The variance-bias trade-off is always present in forecasting. In
general, more flexible models have less bias and more variance. The
key is to pick an “optimal’ mix of both.

Prediction Intervals: Point Estimate
* Prediction: Given x” = predict y°.

* Given the CLM, we have:
Expectation: E[y|X, x°] = B’ x9
Predictor: y'=b"x°
Realization: y'=p" x0+¢°

Note: The predictor includes an estimate of €:

A

$' =b" x" + estimate of €’. (Estimate of €’=0, but with variance.)

* Associated with $° (a point estimate), there is a forecast error, €°:
e =9'—y'=b'x'— B'x'— &= (b-p)'x"— &°

and a variance
= Var[(§ - %) [x°] = E[@’ -y @' -y |x’]
Var[e? | x"] = x” Var[(b — B) | x] x° + &~
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Prediction Intervals: Point Estimate

Example: We estimated the 3 Factor FFF Model for IBM returns:
> summary(fit_ibm_ff3)

Estimate  Std. Error tvalue Pr(>|t|)
(Intercept) -0.005089 0.002488  -2.046  0.0412 *
Mkt RF  0.908299 0.056722  16.013  <2e-16 ***
SMB -0.212460 0.084112  -2.526  0.0118 *
HML -0.171500 0.084682  -2.025  0.0433 *

Suppose we are given x” = [1.0000 -0.0189 -0.0142 -0.0027]
Then,

$° =-0.005089 + 0.908299 * (-0.0189) - 0.212460 * (-0.0142)
- - 0.171500 * (-0.0027) = -0.01877582

Suppose we observe y? = 0.1555214. Then, the forecast error is
§° -y =-0.01877582 — 0.1555214 = -0.1742973

Prediction Intervals: Point Estimate

Example (continuation): In R:

b_ibm <- fit_ibm_ff3§coefficients # regression coefficients, b
x_0 <- tbind(1.0000, -0.0189, -0.0142, -0.0027) # x0
y_0 <-0.1555214
y_f0 <- t(b_ibm)%*% x_0
> y_f0
1]
[1,] -0.01877582
ef 0<-y_f0-y_0
>ef O
1]
[1,] -0.1742973
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Prediction Intervals: C.I.
* We estimate the uncertainty behind the forecast with the Var[e®].

Two cases:
(1) If x° is given —i.e., constants. Then,
Var[e®] = x Var[b|x"] x° + c2
= Form a (1- @)% C.I. as usual.
[9° £ trp1.0s2 * sqre(Var[e®])]

Note: In out-of-sample forecasting, usually, x” is unknown, it has to
be estimated.

(2) If x° has to be estimated, then we use a random variable. The C.I.
becomes more complicated. A bootstrap can be used.

Prediction Intervals: C.I. and Forecast Variance

* Assuming x" is known, the vatiance of the forecast etror is
o2 + x" Var[b | x"] x' = o2 + a?[x” (X'X)x"]
If the model contains a constant term, this is

K-1K-1

Var[e®] = o2|1 + = + Z E(x;) — )0 — %) (ZMOZ)IK

i=1 k=1

=|
&

(where Z is X without x,=i). In terms squares and cross products of
deviations from means.

Note: Large 62, small N, and large deviations from the means,
decrease the precision of the forecasting error.

Interpretation: Forecast variance is smallest in the middle of our
“experience” and increases as we move outside it.
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Prediction Intervals: C.I. and Forecast Variance

* Then, the (1 — )% C.L is given by: [§" + £7.,, " sqre(Var[e®])]

* As x" moves away from its mean, the C.I increases, this is known as
the “butterfly effect.”

==

]
]
]
]
]
]
]
]
]
]
]
I

x

FIGURE 6.1 Prediction Intervals.

Prediction Intervals: C.I. and Forecast Variance

Example (continuation): We want to calculate the variance of the
forecast error: for thee given x° = [1.0000 -0.0189 -0.0142 -0.0027]
Recall we got y° =b' x°=-0.01877587

Then,
Estimated Var[e? | x%] = x” Var[b|x% x° + s2 = 0.003429632

Var_b <- vcov(fit_ibm_ff3)
var_ef_0 <- t(x_0) %*% Var_b %*% x_0 + Sigma2
>var_ef 0
[1]
[1,] 0.003429632
> sqrt(var_ef_0)
1]
[1,] 0.05856306

Check: What is the forecast etror if x © = colMeans(x)?
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Prediction Intervals: C.I. and Forecast Variance

Example (continuation):

# (1-alpha)% C.I. for prediction (alpha = .05)
CL_Ib <-y_f0—1.96 * sqrt(var_ef_0)

> CI_Ib

>[1] -0.1335594

CI_ub <-y_f0 + 1.96 * sqrt(var_ef_0)
>CI_ub
>[1] 0.09600778

That is, CI for prediction: [-0.13356; 0.09601] with 95% confidence. A
wide interval, which makes clear the uncertainty surrounding the point
forecast: " = -0.01877587

Forecasting and Prediction: Model Validation

* Model validation refers to establishing the statistical adequacy of the
assumptions behind the model —i.e., (A1)-(A5) in this lecture.
Predictive power or forecast accuracy can be used to do model
validation.

* In the context of prediction and forecasting, model validation is done
by fitting a model in-sample, but keeping a small part of the sample,
the hold-out-sample, to check the accuracy of OOS forecasts.

* Hold out sample: We estimate the model using only a part of the
sample (say, up to time T,). The rest of the observations, the hold out
sample, (T - T, observations) are used to check the predictive power of
the model —i.e., the accuracy of predictions, by comparing $° with
actual y'.
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Review: Forecasting - Model Validation

UsS 3-mo interest rate: 1973-2023

USinterest rats

.

g nrnrnnmnmmnmnnnernerennnnanns Estimation iod

1 9‘00 1 9‘90 2o|oo 2ol1 o "I‘l =2012:11

Time

* For model validation, we keep a small part of the sample for checking
the forecasting skills (or accuracy) of the model. Steps:

Step 1. Estimate the model using all the observation up to T, (above
from 1973:1 to 2012:1I). The period used is called “estimation period
or estimation sample.” (Get in-sample forecasts, J.)

Review: Forecasting - Model Validation

UsS 3-mo interest rate: 1973-2023

= Validation
= Forecasts

USinterest rats

.

g nrnrnnmnmmnmnnnernerennnnanns Estimation iod

19'00 19'90 ZOIOO 20'10 "I‘l T
Step 2. Keep a (short) part of the sample, (T —T)), to check the model’s
forecasting skills. Using the estimates from Step 1, we produce forecasts,
¥, for the period (T — T)). Since in the petiod (T' - T,) we know y, we
can compute true MSE or MAE. This is the validation step.

1 ~
(T—Tl) ?=T1+1(yl - yl)z

For example, we compute: MSE =
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Review: Forecasting - Model Validation

UsS 3-mo interest rate: 1973-2023

= Validation
= Forecasts
%‘j - Out-of-
2 = Sample
- /\N\/ Forecasts

g nrnrnnmnmmnmnnnernerennnnanns Estimation iod

T T T —* .
1980 1990 2000 2010 T1 T

Time

Step 3. If happy with Step 2, we proceed to do true out-of-sample
forecasts. In general, for the out-of-sample forecast, we re-estimate the
model using all the sample —i.e., all T observations.

To evaluate the true OOS forecasts, we have to wait, say m periods, to
compute an MSE:  MSE = %ZﬁTﬂ(ﬁi — ;)2

Forecasting and Prediction: Model Validation

Details:

1) Estimation period. Use the first T; observations to estimate the
parameters of the model. Get in-sample forecasts, y. In-sample
evaluation of model (R?, t- & F-tests) is usually performed here.

2) Validation period. Use (T — T;) observations to check the model’s
forecasting skills. Given estimates in (1), OLS b, & using x°, get OSS §°
= b’ x". Since y" is known, calculate true MSE or MAE. For example:

_ 1 (T-T1) /40 0
MSE = mziz(rfﬂ)()’i - y7P)?

Note: It is common to set (T' — Ty) close to 10% of sample.

3) True OOS forecast period. Re-estimate model Produce OSS 9, but
since ¥’ is not known now, it will take time to evaluate the true OOS

forecasts.
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Forecasting and Prediction: Model Validation

Note: In the Machine Learning literature, the terminology used for
model validation is slightly different.

Step 1 is called “#raining)’ the data used (say, first Ty observations) are
called training data/ set. In this step, we fit (#rain) the model, subject to the
assumptions, for example, (Al)-(A4).

Step 2 has the same name, validation (or “single-split” validation). This step
can be used to “#une (hyper-)parameters.”” In our CLM, we can “tune” the
model for departures of (Al)-(A4), for example, by including more or
different variables (Al) and re-estimating the model accordingly using
“training data” alone. We choose the model with lower MSE or MAE.

Remark: The idea of this step is to simulate out-of-sample accuracy.
But, the “tuned” parameters selected in Step 2 are fed back to Step 1.

Step 3 fests the true out-of-sample forecast accuracy of model selected
by Step 1 & Step 2. This last part of the sample is called “esting sample.”

Forecasting and Prediction: Cross Validation

* Step 2 is used as a testing ground of the model before performing
OOS forecasting. There are many ways to approach the validation step.

* Instead of a single split, split the data in K parts. This is called K-fo/d
cross-validation. For j = 1, 2, ..., K, use all folds but fold J to estimate
model; use fold j to check model’s forecasting skills by computing MSE,
MSE;. The K-fold CV estimate is an average of each fold MSEs:

1
CVi = — X1 MSE;
Usual choices for K are 5 & 10. (These are arbitrary choices.)

Random and non-random splits of data can be used. The non-random
splits are used for some special cases, such as qualitative data, to make
sure the splits are “representative.”
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Forecasting and Prediction: Cross Validation

* Use a single observation for validation. This is called lave-one-out cross-
validation ILOOCY). A special case of K-fold cross-validation with K = T.
That is, use (T - 1) observations for estimation, and, then, use the
observation left out, i = 1, ..., T, to compute MSE_;), which is just
=iy — yi)?, where J(—iy is the prediction for observation i based on
the full sample but observation i. Then, compute:

1
CVp = XLy MSE ;)

¢ Instead of just one, it is possible to leave p observations for validation.
This is called leave-p-out cross-validation (LpOCV).

Remark: In time series, since the order of the data matters, cross
validation is more complicated. In general, rolling windows are used.

Forecasting and Prediction: Cross Validation

Example: We do cross-validation on the 3-factor Fama-French Model
for IBM returns with K = 5:

y <-ibm_x
ff_cv_data <- data.frame(Mkt_RF, SMB, HML)

#H#H#H#H CV: Cross-Validation K-fold Code Function #H#####
CV<- function(dats, n.folds) {

folds <- list() # flexible object for storing folds
fold.size <- nrow(dats)/n.folds
remain <- l:nrow(dats) # all obs are in

for (i in 1:n.folds){
select <- sample(remain, fold.size, replace = FALSE) #randomly sample fold_size from remaining obs)
folds[[i]] <- select # store indices (write a special statement for last fold if ‘leftover points’)
if (i == n.folds){
folds|[[i]] <- remain
}
remain <- setdiff(remain, select) #update remaining indices to reflect what was taken out

remain

!
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Forecasting and Prediction: Cross Validation

Example (continuation):

results <- matrix(0,1,n.folds)

for (i in 1:n.folds){
# fold i
indis <- folds[[i]]
estim <- dats[-indis, ]

test <- datsindis, |

Im.model <- Im(y[-indis] ~ ., data = estim)
pred <- predict(lm.model, newdata = test)
MSE <- mean((y[indis| - pred)"2)

#Hunpack into a vector

#split into estimation (train) & validation (test) sets

# OLS with estimation data
# predicted values for fold not used

# MSE (any other evaluation measure can be used)

results[[i]]<- MSE # Accumulate MSE in vector
}

return(results)

}
CV_{f_5 <- CV(ff_cv_data, 5)

> mean(CV_ff_5)
[1] 0.00346262

Evaluation of Forecasts: Measures of Accuracy

¢ Popular measures of OOS forecast accuracy, after m forecasts:

- 1
Mean Absolute Error (MAE) = —ZT"Lﬁl Vi —yi| = ;ZT:ﬁ1 le;]

Mean Squared Error (MSE) = % @i —y)? = T+7Z:L-1 e;’
Root Mean Square Error (RMSE) = / e
Mean Absolute Percentage Error (MAPE) = T+7Z:l_1 % * 100|
L
T+m
Zl T41 €i°

Theil’s U statistics =
’ Zl 1 yl
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restricted to be smaller than 1.

* An OOS R? can be computed as:

B2 — 1 MSEa
00S MSEy

with  MSEs = X121 (Vesr — Veir)?
MSEy = X121 (Verr — Ve)?

well-known finance application.)

performance.

Evaluation of Forecasts: Measures of Accuracy

* Theil’s U statistics has the interpretation of an R? But, it is not

where 7 is the forecasting horizon. (See Goyal and Welch (2008) for a

* Again, cross-validation measures can be used to evaluate forecasting

validation of predictions.

> summary(fit_ibm_2)

Estimate Std. Error t value Pr(>|t|)

x1 -0.003848 0.002571 -1.497 0.13510
xIMkt_RF  0.865579 0.059386 14.575 < 2e-16 ***
x1SMB -0.224914  0.085505 -2.630 0.00877 **

x1HML -0.230838 0.090251 -2.558 0.01081 *

Evaluation of Forecasts: Measures of Accuracy

Example: We want to check the forecast accuracy of the 3 FI Factor
Model for IBM returns. We estimate the model using only 1973 to
2017 data (T=539), leaving 2018-2020 (rm2 = 30 observations) for

TO <-1

T1 <-539 # End of Estimation Period (Dec 2017)

T2 <-T1+1 # Start of Validation Period (Jan 2018)

yl <-y[TO:T1]

x1 <-x[T0:T1,]

fit_ibm_2 <-Im(yl~ x1 - 1) # Estimation Period Regtession From TO to T1
b1 <- fit_ibm_2$coefficients # Extract OLS coefficients from regression
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Evaluation of Forecasts: Measures of Accuracy

Example (continuation): We condition on the observed data (no
model to predict FF factors used) from 2018: Jan to 2020: Jun.

x_0 <- x[T2:T,] # Validation data
y_0 <-y[T2:T] # Validation data
y_f0 <- x_0%*% b_ibm # Forecast

ef 0<-y_f0-y_0 # Forecasat error
mse_ef_0 <- sum(ef_0"2)/nrow(x_0) # MSE

> mse_ef 0

[1] 0.003703207

mae_ef_0 <- sum(abs(ef_0))/nrow(x_0) # MAE
> mae_ef 0

[1] 0.04518326

That is, MSE = 0.003703207
MAE = 0.04518326

Evaluation of Forecasts: Measures of Accuracy

Example (continuation): Plot of actual IBM returns and forecasts.

plot(y_f0, type="1", col="red", main = "IBM: Actual vs. Forecast (2018-2020)",
xlab = "Obs", ylab = "Forecast")

lines(y_0, type = "1", col = "blue")

legend("topleft”, legend = c("Actual", "Forecast"), col = c("blue", "red"), Ity = 1)

IBnM: Actual vws. Forecast (2018-2020)

— —  Actual
Forecast

Forecast
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Evaluation of Forecasts: Measures of Accuracy

* So far, we have judged the model with the better (usually, lower)
measure of accuracy as the better forecasting mode.

But, measures of accuracy are RV. Then, we cannot look at these
measures and establish that Model 1 is “more accurate” than Model 2.
Statistical error (“luck”) can create problems.

¢ The most popular measure of accuracy is the MSE.

Q: How do we know the MSE for model 1 is significantly better than
the MSE for model 2? We need a test for

H,: MSE(1) = MSE(2)

H,: MSE(1) # MSE(2).

Evaluation of Forecasts: Testing Accuracy

* Suppose two competing forecasting procedures produce a vector of
errors: e(D & @, Then, if expected MSE is the criterion used, the
procedure with the lower MSE will be judged superior.

* We want to test H,: MSE(1) = MSE(2)
H;: MSE(1) # MSE(2).

Assumptions: forecast errors are unbiased, normal, and uncorrelated.
If forecasts are unbiased, then MSE = Variance.

* Consider, the pair of RVs: (e + @) & (e — ). Now,

E[(e® +e®)(e® —e®)] = 07 - oF

* That is, we test H, by testing that the two RVs are not correlated!
Under H,,  E[(e® +e@)(e® —e@)] =0.
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Evaluation of Forecasts: Testing Accuracy

* Under H,, (e(l) + e(z)) & (e — e@) are not correlated —i.c.,
zero covariance. (See Morgan, Granger & Newbold (MGN, 1977).)

* There is a simpler way to do the MGN test. Steps:

1. Define e & e(z)’ where e is the error with the higher MSE. Let
Zy = e+ @ — eM: the error with the higher MSE.
X = e _ (2

2. Do a regression:  Z; = B x; + &

3. Test Hi:B=0 => a simple #est.

The MGN test statistic is exactly the same as that for testing H: § = 0.
This is the approach taken by Harvey, Leybourne & Newbold (1997).

e If the assumptions are violated, these tests have problems.

Evaluation of Forecasts: Testing Accuracy

Example: We produce IBM returns one-step-ahead forecasts for
2018-2020 using the 3-factor F-F Model for IBM returns:
(ri —=1)e =By + By (fm — 77)¢ + BoSMB; + B3 HML; + &,

Taking expectations at time t+1, conditioning on time #information
set, It :{(Tm - rf)t, SMBt, HMLt}

E[(r; — rf)t+1 | 1] = By + B, E[(15m — rf)t+1 [1e ]+
+ B E[SMByyq [1e] + BsE[HMLeyq |1 ]

In order to produce forecast, we will make a naive assumption: The
best forecast for the FF factors is the previous observation. Then,

E[(ri = 18)e41 | Ie] = By + By (hn — 17)¢ + B, SMB, + B; HML,.

Now, replacing the B by the estimated b, we have our one-step-ahead
forecasts. We produce one forecast at a time.
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Evaluation of Forecasts: Testing Accuracy

Example: We compare the forecast accuracy relative to a random walk
model for IBM excess returns. That is,

E[(r; — rf)t+1 [Ie] = (r;i — rf)t

Using R, we create the forecasting errors for both models and MSE:

T1 <-539 # End of Estimation Period (Dec 2017)
x_0f <-x[T1:(T-1),] # By assumption on the X, it starts at T'1.
y_0 <- y[T2:T] #T2="T1+ 1 (Jan 2018)

y_f0 <- x_0f %*% b1l # bl coefficients from fit_ibm_2

ef 0<-y_f0-y_0 #e

mse_ef_0 <- sum(ef_0"2)/nrow(x_0)

> mse_ef 0 # MSE(2)

[1] 0.01106811

ef_rw_0 <-y[T1:(T-1)] - y_O #e
mse_ef_rw_0 <- sum(ef_rw_0"2)/nrow(x_0)
> mse_ef_rw_0 # MSE(1) <= (1) is the higher MSE.

[1] 0.02031009

Evaluation of Forecasts: Testing Accuracy

Example: Now, we create z; = e +e@ & Xy = e — @),
Then, regress:  Zy = B X¢ + & and test H: B = 0.

# Step 1. Define errors and z & x
z_mgn <-ef_rw_0 +ef 0
x_mgn <-ef_rw_0 - ef_0

# Step 2. Regress x on z
fit_mgn <- Im(z_mgn ~ x_mgn)
> summary(fit_mgn)

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.05688 0.03512 1.619 0.117
x_mgn 2.77770 0.58332 4.762 Hork = significant

# Step 3. t-test on B
> coef(summary(fit_mgn))[, "t value"]
1.619 4.762

Conclusion: We reject that both MSEs are equal = MSE of RW is higher.
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Evaluation of Forecasts: MSE/MAE?

* MSE and MAE are very popular criteria to judge the forecasting
power of a model. However, they may not be the best measure for
everybody.

* Richard Levich’s textbook compares forecasting services to the
freely available forward rate. He finds that forecasting services may
have some ability to predict direction (appreciation or depreciation).

For some investors, the direction is what really matters, since direction
determines potential profits, not the error.

Forecasting Application: MSE/MAE?

Example: Two forecasts: Forward Rate (F, ) and Forecasting Service (FS)
F = USD/CAD

t,1-month

Eps [Ses 1 mons] = -7342 USD/CAD.  (Assume S, = .7330 USD/CAD).

(Investor’s strategy: buy CAD forward if FS forecasts CAD appreciation.)
Based on the FS forecast, Ms. Sternin decides to buy CAD forward at Fo

(A) Suppose that the CAD appreciates to S_,; = .7390 USD/CAD.
MAE = | 7390 - .7342| = .0052 USD/CAD.
Investor makes a profit of .7390 - = USD .055 USD.

(B) Suppose that the CAD depreciates to S, ; = .7315 USD/CAD.
MAE, = |.7315 - .7342| = 0027 USD/CAD. = smaller MAE!
Investor takes a loss of .7315 - =USD -.0020. 9
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