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Lecture 6-c:
Forecasting, Prediction and 

Model Selection

Brooks (4th edition): Chapter 5

(for private use, not to be posted/shared online)

• We test if  an event at that time 𝑇ௌ஻ affected our model, creating a 
“before” and an “after” in the parameters: That is,

𝑦௜ = ଴ଵ + ଵଵ 𝑋ଵ,௜+ ଶଵ 𝑋ଶ,௜+ ଷଵ 𝑋ଷ,௜ + 𝜀௜ for 𝑖 ≤ 𝑇ௌ஻
𝑦௜ = ଴ଶ + ଵଶ 𝑋ଵ,௜ + ଶଶ 𝑋ଶ,௜ + ଷଶ 𝑋ଷ,௜ + 𝜀௜ for 𝑖 > 𝑇ௌ஻

The event caused structural change in the model. 

• A Chow test, an F-test, tests if  one model applies to both regimes:
𝑦௜ = 0 + 1 𝑋ଵ,௜ + 2 𝑋ଶ,௜+ 3 𝑋ଷ,௜ + 𝜀௜ for all 𝑖

• We test H0 (No structural change): ଴ଵ = ଴ଶ = 0

ଵଵ = ଵଶ = 1

ଶଵ = ଶଶ = 2

ଷଵ = ଷଶ = 3

H1 (structural change): For at least one 𝑘 (= 0, 1, 2, 3): ௞
ଵ ≠ ௞

ଶ 2

Review - Functional Form: Structural Change
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• We structure the Chow test to test H0 (No structural change), as usual. 

• Steps for Chow (Structural Change) Test: 

(1) Run OLS with all the data, with no distinction between regimes. 
(Restricted or pooled model). Keep RSSR.

(2) Run two separate OLS, one for each regime (Unrestricted model):

Before Date TSB. Keep RSS1. 

After Date TSB. Keep RSS2.  RSSU = RSS1 + RSS2. 

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

𝐹 ൌ
ሺ𝑅𝑆𝑆ோ െ 𝑅𝑆𝑆௎ሻ/ሺ𝑘௎ െ 𝑘ோሻ

ሺ𝑅𝑆𝑆௎ሻ/ሺ𝑇 െ 𝑘௎ሻ
ൌ
ሺ𝑅𝑆𝑆ோ െ ሾ𝑅𝑆𝑆ଵ ൅ 𝑅𝑆𝑆ଶሿሻ/𝑘
ሺ𝑅𝑆𝑆ଵ ൅ 𝑅𝑆𝑆ଶሻ/ሺ𝑇 െ 2𝑘ሻ

Review - Functional Form: Structural Change
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• Before, when we presented the Chow test, we used the F-distribution, 
which will be appropriate under (A5).

• In general, we rely on the asymptotic distribution –i.e., we do not rely 
on (A5). It is common to approximate the distribution of  the Chow 
test, under H0 and assuming a large number of  observations pre- and 
post-break, with

J * 𝐹
ௗ
→ χ௃

ଶ (sometimes written as 𝐹
ௗ
→ χ௃

ଶ/J).

Review - Functional Form: Structural Change
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Example: 3 Factor Fama-French Model for SLB 

Q: Did the financial crisis (Sep 2008, TSB  = 429) affect the structure of 
the FF Model? Sample: January 1973 – December 2023 (T = 611).

Pooled RSS = 3.5290

Jan 1973 – Sep 2008 RSS = RSS1 = 2.0010 (T = 428) 

Oct 2008 – Dec 2023 RSS = RSS2 = 1.1213 (T = 183)

𝐹 ൌ ሾோௌௌೃିሺோௌௌభାோௌௌమሻሿ/௃ 

ሺோௌௌభାோௌௌమሻ/ሺ்ି௞ሻ
= 

[3.5290 ି ሺ2.0010+ 1.1213)]/4
ሺ2.0010+ 1.1213)/(611 − 2∗4) = 19.6356

 Since F4,611,.05 = 2.39, we reject H0

Constant Mkt – rf SMB HML RSS T

1973-2020 -0.0073* 1.2138* 0.0123 0.4182* 3.5290 611

1973-2001 0.0013 0.9038* -0.2394* -0.3477* 2.0010 428

2002 – 2023 -0.0141* 1.3129* 0.3703 1.1496* 1.1213 183 5

Functional Form: Structural Change

Example (continuation): The R package sctrucchange estimates the 
Chow test. (As usual, you need to install package first.)
>x_slb <- SFX_da$SLB

>lr_slb <- log(x_slb[-1]/x_slb[-T])

>slb_x <- lr_slb - RF

>library(sctrucchange)

> t_s <- 428

> sctest(slb_x ~ Mkt_RF + SMB + HML, type = "Chow", point = t_s)

Chow test

data:  slb_x ~ Mkt_RF + SMB + HML

F = 19.636, p-value = 3.331e-15

6

Functional Form: Structural Change
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Example: We test if  the Oct 1973 oil shock in quarterly GDP growth 
rates had an structural change on the GDP growth rate model.

We model the GDP growth rate with an AR(1) model, that is, GDP 
growth rate depends only on its own lagged growth rate:

𝑦௧ = 0 + 1 𝑦௧ିଵ + ௧
GDP_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/GDP_q.csv", head=TRUE, 
sep=",")
x_date <- GDP_da$DATE
x_gdp <- GDP_da$GDP
x_dummy <- GDP_da$D73
T <- length(x_gdp)
t_s <- 108 # TSB = Oct 1973

lr_gdp <- log(x_gdp[-1]/x_gdp[-T])
T <- length(lr_gdp)
lr_gdp0 <- lr_gdp[-1]
lr_gdp1 <- lr_gdp[-T]
t_s <- t_s -1 # Adjust t_s (we lost the first observation) 7

Review - Functional Form: Structural Change

Example (continuation):
y <- lr_gdp0 
x1 <- lr_gdp1
T <- length(y)
x0 <- matrix(1,T,1)
x <- cbind(x0,x1)
k <- ncol(x)

# Restricted Model (Pooling all data)
fit_ar1 <- lm(lr_gdp0 ~ lr_gdp1) # Fitting AR(1) (Restricted) Model
e_R <- fit_ar1$residuals # regression residuals, e
RSS_R <- sum(e_R^2) # RSS Restricted

> summary(fit_ar1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.011411 0.001109 10.291 < 2e-16 ***
lr_gdp1  0.263353   0.055141 4.776 2.78e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.01242 on 306 degrees of  freedom 8

Review - Functional Form: Structural Change
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Example (continuation):
# Unrestricted Model (Two regimes)

y_1 <- y[1:t_s]
x_u1 <- x[1:t_s,]
fit_ar1_1 <- lm(y_1 ~ x_u1 - 1) # AR(1) Regime 1
e1 <- fit_ar1_1$residuals # Regime 1 regression residuals, e
RSS1 <- sum(e1^2) # RSS1: RSS Regime 1 

kk = t_s+1 # Starting date for Regime 2
y_2 <- y[kk:T]
x_u2 <- x[kk:T,]
fit_ar1_2 <- lm(y_2 ~ x_u2 - 1) # AR(1) Regime 2
e2 <- fit_ar1_2$residuals # Regime 2 regression residuals, e
RSS2 <- sum(e2^2) #  RSS2: RSS Regime 2

F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))
> F
[1] 4.3382
p_val <- 1 - pf(F, df1 = 2, df2 = T - 2*k)  # p-value of  F_test
> p_val
[1] 0.01388  small p-values: Reject H0 (No structural change). 3

9

Review - Functional Form: Structural Change

• Under H0 (No structural change), we pool the data into one model. That 
is, the parameters are the same under both regimes. We fit the same 
model for all 𝑡, for example:

𝑦௧ = 0 + 1 𝑦௧ିଵ + ௧

• If  the Chow test rejects H0, we need to reformulate the model. A 
typical reformulation includes a dummy variable (𝐷ௌ஻,௧). For example, 
with vector 𝒙௧  of  explanatory variables:

𝑦௧ = 0 + β1′𝒙௧  + 2𝐷ௌ஻,௧ + γ1′𝒙𝒕 𝐷ௌ஻,௧ + ௧
where

𝐷ௌ஻,௧ = 1 if  observation 𝑡 occurred after  TSB

= 0 otherwise.

Review - Modeling Structural Change

10
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Example: We are interested in introduce in the AR(1) model for GDP 
growth rates (𝒙௧ = 𝑦௧ିଵ), the effect of  the Oct 1973 oil shock. We 
include a dummy variable in the AR(1) model, say D73:

𝑫𝟕𝟑,𝒕 = 1 if  observation 𝑡 occurred after October 1973
= 0 otherwise.

Then, 𝑦௧ = β0 + β1 𝑦௧ିଵ+ γ0 𝑫𝟕𝟑,𝒕 + γ1 𝑦௧ିଵ ∗ 𝑫𝟕𝟑,𝒕 + ௧

In the model, the oil shock affects the constant and the slopes.

• We estimate the above model and perform an F-test to test if  H0 (No 
structural change): γ0 = 0 & γ1 = 0. 

Constant Slopes:

Before oil shock (D73 = 0): β0 β1

After oil shock (D73 = 1) : β0 + γ0 β1 + γ1

11

Review - Modeling Structural Change

Example: We add an Oct 1973 dummy in the AR(1) GDP model.
T1 <- T - t_s # Number of  Observations after SB
D73_0 <- rep(0,t_s) # Dummy_t = 0 if  t <= t_s
D73_1 <- rep(1,T1) # Dummy_t = 1 of  t > t_s
D73 <- c(D73_0,D73_1) # SB Dummy variable t_s <- 108
lr_gdp1_D73 <- lr_gdp1 * D73 # interactive dummy (effect on slope)
fit_ar1_d_2 <- lm(lr_gdp0 ~ lr_gdp1 + D73 + lr_gdp1_D73)
summary(fit_ar1_d_2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.008953   0.001935 4.627 5.5e-06 ***
lr_gdp1  0.467457 0.090623   5.158 4.5e-07 ***
D73 0.003779   0.002349 1.609 0.1086  no significant effect on constant
lr_gdp1_D73 -0.326809 0.113592 -2.877 0.0043 **  significant effect of  oil shock on slope.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Conclusion: After the oil shock the slope significantly changed from 
0.467457 to 0.140648 (= 0.467457 + (-0.326809)).

12

Review - Modeling Structural Change
0.003779 0.002349 1.609 
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Example (continuation): Using the car package, we test the joint 
hypothesis H0 (No structural change): γ0 = 0 & γ1 = 0. 

> library(car)
> linearHypothesis(fit_ar1_d_2, c("D73 = 0","lr_gdp1_D73 = 0"), test="F") 
Linear hypothesis test

Hypothesis:
D73 = 0
lr_gdp1_D73 = 0

Model 1: restricted model
Model 2: lr_gdp0 ~ lr_gdp1 + D73 + lr_gdp1_D73

Res.Df RSS Df Sum of  Sq F  Pr(>F)  
1    306 0.047201                              
2    304 0.045806  2 0.0013957 4.6316 0.01044 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 13

Review - Modeling Structural Change

• It is also possible to do a Wald test to test H0, using only the 
unrestricted estimators. Steps:

1) Run two separate OLS, one for each regime (Unrestricted model):

Before Date TSB. Keep b1 & Var[b1]

After Date TSB. Keep b2 & Var[b2]

2) Compute the Wald test:

𝑊 = (b1 – b2) {Var[b1] + Var[b2]}-1 (b1 – b2),

where Var[b1 - b2] = Var[b1] + Var[b2], assuming Cov( b1, b2) = 0. 

Under H0 (& if  the number of  observations pre- and post-break are 

large), the Wald test follows: 𝑊
ௗ
→ χ௃

ଶ

Review - Functional Form: Structural Change

14
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• Problem with the (classic) Chow test: We condition on a specific date 
for the structural break (say, October 73), which in general is unknown. 

• An easy solution? Run a Chow test for all possible dates, select the 
date, 𝜏, that maximizes the Chow test.

𝑅𝑜𝑙𝑙𝑖𝑛𝑔 𝐶ℎ𝑜𝑤 𝑇𝑒𝑠𝑡 ൌ 𝑚𝑎𝑥
ఛఢሼఛ೘೔೙, …,ఛ೘ೌೣሽ

𝐹்ሺ𝜏ሻ

• We cannot run the Chow test for all dates. We need enough 
observations to run OLS on both sides of  the potential breaking 
points. Then, we start to check for a breaking point at date 𝜏௠௜௡, and 
we finish to check at  date 𝜏௠௔௫. 

• This is called, “trimming” the data. Usually, we set 𝜏௠௜௡ and 𝜏௠௔௫ by 
leaving a percentage, π, of  the initial of  observations and final 
observations. Usually, π = 10% or 15%. 3

Review – Chow Test with Unknown Break 

• This test was proposed by Quandt (1958):

𝑄𝐿𝑅் ൌ 𝑚𝑎𝑥
ఛఢሼఛ೘೔೙, …,ఛ೘ೌೣሽ

𝐹்ሺ𝜏ሻ

• It is also possible to run the Wald test version of  the Chow test for all  
possible dates, again, selecting the date that maximizes

𝑄𝐿𝑅் ൌ 𝑚𝑎𝑥
ఛఢሼఛ೘೔೙, …,ఛ೘ೌೣሽ

𝑊்ሺ𝜏ሻ

• The first 𝑄𝐿𝑅் is called the SupF test, the second the SupW. 

Technical Problem: With this approach, the technical conditions under 
which the asymptotic distribution is derived are not met in this setting.

• Andrews (1993) showed that under appropriate conditions, the QLR 
statistic, also known as Sup-test (F, W, LR) statistic, has a non-standard 
limiting distribution (“non-standard” = no existing table; needs a new one). 3

Review – Chow Test with Unknown Break 
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• The QLR statistic, also known as Sup-test (F, W, LR) statistic, has a 
non-standard limiting distribution.

• The distribution depends on the number of  parameters of  the 
model, 𝑘, which are tested for stability, trimming values, π0, which only 
affect the distribution through  λ = (1-π0)2/π0

2. 

• Andrews (1993) tabulated the non-standard distribution of  the SupW
for different 𝑘, α, and trimming values (π0). 

Note: It is usual to test the SupF,  using the critical values of  SupW, 
by dividing the SupW critical values by 𝑘. Andrews (2003) issued a 
slightly corrected Table. In the next slide, we present the SupF critical 
values for π0 = 15%, taken from Stock and Watson (2011).

3

Review – Chow Test with Unknown Break 

Critical values of the QLR test distribution, from Stock and Watson 
(2011), setting π0 = 15%; for α = 1%, 5%, 10%; and different 𝑘 ሺൌ 𝑞ሻ.

Review – Chow Test with Unknown Break 
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Example (continuation): We search for breaking points for GDP 
growth rate in AR(1) model. We use package desk. (You can use library 
strucchange, but it runs the SupW (F= SupW/2), see Andrews (1993.))

library(desk)

pie <- .15

T0 <- round(T * pie)

T1 <- round(T *(1-pie))

my.qlr <- qlr.test(lr_gdp0 ~ lr_gdp1, from = T0, to = T1, sig.level = 0.05, details = TRUE)

> my.qlr # Print test results

QLR-Test for structural breaks at unknown date 

Hypotheses: 

H0:                         H1:

No break in t = 46...262  Some break in t = 46...262

Test results: 

f.value lower.cv  upper.cv  p.value sig.level H0

21.1441 5.86     6.085  < 1e-04  0.05  rej.

Review – Chow Test with Unknown Break 

Example (continuation): We search for breaking points for GDP 
growth rate in AR(1) model. Below, we plot all F-tests starting at T*15:

• Maximum F is 21.14 occurs in Jan 2009 (observation #250). Then, 
𝑄𝐿𝑅෣ = 21.14 > 5.86  Reject H0 at 5% level & break is not Oct 73!.

Review – Chow Test with Unknown Break 
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Example: We search for breaking points for IBM returns in the 3-
factor FF model. 

T<- length(ibm_x)

pie <- .15

T0 <- round(T * pie)

T1 <- round(T *(1-pie))

my.qlr <- qlr.test(fit_ibm_ff3, from = T0, to = T1, sig.level = 0.05, details = TRUE)

> my.qlr # Print test results

QLR-Test for structural breaks at unknown date 

-----------------------------------------------

Hypotheses: 

H0:                         H1:

No break in t = 92...519  Some break in t = 92...519

Test results: 

f.value lower.cv  upper.cv  p.value sig.level H0

4.5302 3.96      4.09   0.0243 0.05  rej.

Review – Chow Test with Unknown Break 

Example: We search for breaking points for IBM returns in the 3-
factor FF model. Below, we plot all F-tests starting at T*15:

• Maximum F is 4.5302 occurs in Sep 2012 (observation #477). Then, 
𝑄𝐿𝑅෣ = 4.5302 > 4.09  Reject H0 at 5% level.

Review – Chow Test with Unknown Break 
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• Ignoring structural change affects forecasts.

Example: We want to forecast GDP growth for the 2nd quarter of  
2024 (2024: II) using the estimated AR(1) models. We have data from 
1947:II to 2024:I. We know the GDP growth in 2024:I”

𝑦௧ୀଶ଴ଶସ:ூ (GDP growth 2024:I) = 0.01362407 

Under no structural change, the 2024:II forecasts is:
𝑦ො௧ୀଶ଴ଶସ:ூூ = 0.011411 + 0.263353 𝑦௧ୀଶ଴ଶସ:ூ

= 0.011411 + 0.263353 * 0.01362407 = 0.014999

Under structural change, the 2024:II forecasts is:
𝑦ො௧ୀଶ଴ଶସ:ூூ = (0.008953 + 0.003779) + (0.467457 - 0.326809) 𝑦௧ୀଶ଴ଶସ:ூ

= 0.012732 + 0.140648 * 0.01362407 = 0.014648

3

Chow Test: Structural Change – Forecasting

• The results are conditional on the breaking point –say, October 73,  
Dec 2001, or January 2009.

• The breaking point is usually unknown. It needs to be estimated.

• It can deal only with one structural break –i.e., two categories!

• The number of  breaks is also unknown. They need to be estimated.

• Characteristics of  the data (heteroscedasticity –for example, regimes 
in the variance- and unit roots (high persistence) complicate the test.

• Missing structural breaks in deterministic parameters (intercepts, 
trends, etc.) can be a cause of  forecast failure.

• There are many modern tests that take care of  these issues, but 
usually also with non-standard distributions.

3

Chow Test: Structural Change – Remarks
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Forecasting and Prediction

• Objective: Forecast

• Distinction:  Ex post vs. Ex ante forecasting

– Ex post: RHS data are observed

– Ex ante (true forecasting): RHS data must be forecasted

• Prediction and Forecast

Prediction: Explaining an outcome, which could be a future outcome.   

Forecast: A particular prediction, focusing in a future outcome.

Example: Prediction: Given 𝒙0  predict 𝑦0.

Forecast: Given 𝒙௧ାଵ
଴  predict 𝑦t+1.

“There are two kind of forecasters: those who don´t know and those who don´t know they don´t know”

John Kenneth Galbraith (1993)  

Forecasting and Prediction: Types

• Two types of predictions:

- In sample (prediction): The expected value of 𝒚 (in-sample), given the 
estimates of the parameters. The in-sample prediction are the fitted 
values, 𝒚ෝ.

- Out of sample (forecasting): The value of a future 𝒚 that is not 
observed by the sample.

Notation & Terminology: 
Let 𝑇 be the forecast origin and 𝑙 is the forecast horizon. 

- Prediction for 𝑇 made at 𝑇: 𝑌෠் .
- Forecast for 𝑇 ൅ 𝑙 made at 𝑇: 𝑌෠் ା௟ , 𝑌෠் ା௟|் , 𝑌෠் ሺ𝑙ሻ.
- 𝑌෠் ሺ𝑙ሻ: 𝑙-step ahead forecast = Forecasted value 𝑌 ା௟ at time 𝑇.
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Forecasting and Prediction: Information Set, IT

• Any prediction or forecast needs an information set, 𝐼் . This 
includes data, models and/or assumptions available at time T. The 
predictions and forecasts will be conditional on 𝐼் .

For example, in-sample, 𝐼் = {𝒙0} to predict 𝒚0 (= 𝐛 𝒙0).
Or in time series, 𝐼் = {𝒙்ିଵ

଴
, 𝒙்ିଶ
଴

, ..., 𝒙்ି௤
଴ } to predict 𝑦்ା௟ .

• Then, the forecast is just the conditional expectation of 𝑌 ା௟ , given
the observed sample:

𝑌෠் ା௟ ൌ 𝐸ሾ𝑌 ା௟|𝑋் ,𝑋்ିଵ, … ,𝑋ଵሿ

Example: If 𝑋் ൌ 𝑌 , that is, we have an autoregressive model, using
only the past of 𝑌 to predict 𝑌 ା௟ , then, one-step ahead forecast is:

𝑌෠் ାଵ ൌ 𝐸ሾ𝑌 ାଵ|𝑌 ,𝑌 ିଵ, … ,𝑌ଵሿ

Forecasting and Prediction: Conditional E[.]

• The conditional expectation of 𝑌 ା௟ is, in general, based on a model,  
the experience of the forecaster or a combination of both.

Example: We base the conditional expectation on the 3-factor FF 
model:

𝑌෠் ା௟ ൌ E[(0 + 1 (𝑟௠,்ା௟ – 𝑟௙) + 2 𝑆𝑀𝐵்ା௟ + 3 𝐻𝑀𝐿்ା௟)|𝐼்] 

• In the above equation, the forecast of 𝑌 ା௟ also needs a forecast for 
the driving variables in the model. That is, we need a forecast for: 

- E[(𝑟௠,்ା௟ – 𝑟௙) |𝐼் ] 
- E[𝑆𝑀𝐵்ା௟ |𝐼்] 
- E[𝐻𝑀𝑀்ା௟|𝐼் ]

• In general, we will need a model for 𝑋෠்ା௟. Things can get 
complicated very quickly.
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Forecasting and Prediction: Forecasts are RV

• Keep in mind that the forecasts are a random variable. Technically 
speaking, they can be fully characterized by a pdf. 

• In general, it is difficult to get the pdf for the forecast. In practice, we 
get a point estimate (the forecast) and a C.I. to gauge the uncertainty 
in the forecast.

• Q: What is a good forecast? We need metrics to evaluate the 
forecasting performance of different models. 

• In general, the evaluation of forecasts relies on MSE.  

Note: Later in this class, when we cover time series (Brooks, Chapter 
6), we go deeper into forecasting.

• We start with general model (DGP):

(A1) DGP: 𝒚 = f(X, θ) + .

• Given 𝒙0, we predict 𝑦0, using the expectation: E[𝑦|X, 𝒙0] = f(𝒙0, θ)  

• We estimate E[𝑦|X, 𝒙0] with 𝑦ො0 = f(𝒙0, θ෠). 

• The realization 𝑦0 is just: 𝑦0 = f(𝒙0, θ) + 0

• With 𝑦0 observed, we compute the prediction error, 

𝑒଴ = 𝑦ො0 – 𝑦0 = f(𝒙0, θ෠) – f(𝒙0, θ) – 0

• The associated expected squared prediction error can be written as:

E[ሺ𝑒଴ሻ2 ] = E[ሺ𝑦ො0 
– 𝑦0ሻ2 ] = Var[𝑦ො0 ] + [Bias(𝑦ො0 )]2 + Var[] 

• We want to minimize this squared error, E[ሺ𝑒଴ሻ2 ]. 

Forecasting and Prediction: Variance-bias 
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• The associated expected squared prediction error can be written as:

E[ሺ𝑒଴ሻ2 ] = Var[𝑦ො0 ] + [Bias(𝑦ො0 )]2 + Var[] 

• We want to minimize this squared error. Note that there is nothing a 
forecaster can do regarding the last term, called the irreducible error. 

• Then, all efforts are devoted to minimize the sum of a variance and a 
squared bias. This creates the variance-bias trade-off in forecasting.

• It is possible that a biased forecast can produce a lower MSE than an 
unbiased one. In this lecture, we based our forecasts on OLS 
estimates, which under CLM assumptions, produce unbiased forecasts.

Note: The variance-bias trade-off is always present in forecasting.  In 
general, more flexible models have less bias and more variance. The 
key is to pick an “optimal” mix of both.

Forecasting and Prediction: Variance-bias 

• Prediction: Given 𝒙0  predict 𝑦0.

• Given the CLM, we have:  
Expectation: E[𝑦|X, 𝒙0] =  𝒙0; 
Predictor:  𝑦ො0 = 𝐛 𝒙0

Realization: 𝑦0 =  𝒙0 + 0

Note: The predictor includes an estimate of 0:  
𝑦ො0 = b 𝒙0 + estimate of 0.  (Estimate of 0=0, but with variance.)

• Associated with 𝑦ො0 (a point estimate), there is a forecast error, 𝑒଴:
𝑒଴ = 𝑦ො0 – 𝑦0 = 𝐛𝒙0 – 𝒙0 – 0 = (𝐛 – )𝒙0 – 0

and a variance
 Var[(𝑦ො0 – 𝑦0)|𝒙0] = E[(𝑦ො0 – 𝑦0) (𝑦ො0 – 𝑦0)|𝒙0] 

Varሾ𝑒଴|𝒙0ሿ = 𝒙0 Var[(𝐛 – )|𝒙0] 𝒙0 + 2

Prediction Intervals: Point Estimate
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Example: We estimated the 3 Factor FF Model for IBM returns: 
> summary(fit_ibm_ff3)

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.005089 0.002488 -2.046 0.0412 * 
Mkt_RF 0.908299 0.056722 16.013  <2e-16 ***
SMB         -0.212460 0.084112 -2.526 0.0118 * 
HML         -0.171500  0.084682 -2.025  0.0433 * 

Suppose we are given 𝒙0 = [1.0000 -0.0189 -0.0142 -0.0027]
Then,      

𝑦ො0 = -0.005089 + 0.908299 * (-0.0189) - 0.212460 * (-0.0142) 
- - 0.171500 * (-0.0027) = -0.01877582

Suppose we observe y0 = 0.1555214.  Then, the forecast error is
𝑦ො0 – 𝑦0 = -0.01877582 – 0.1555214 = -0.1742973

Prediction Intervals: Point Estimate

Example (continuation): In R:

b_ibm <- fit_ibm_ff3$coefficients # regression coefficients, b

x_0 <- rbind(1.0000, -0.0189, -0.0142, -0.0027) # 𝒙0

y_0 <- 0.1555214

y_f0 <- t(b_ibm)%*% x_0

> y_f0

[,1]

[1,] -0.01877582

ef_0 <- y_f0 - y_0

> ef_0

[,1]

[1,] -0.1742973

Prediction Intervals: Point Estimate



RS - Financial Econometrics - Lecture 6 – Prediction & Forecasting

18© R. Susmel, 2023 – Do not share/post online without written authorization

• We estimate the uncertainty behind the forecast with the Varሾ𝑒଴ሿ.

Two cases:
(1) If 𝒙0 is given –i.e., constants. Then,

Varሾ𝑒଴ሿ = 𝒙0 Var[b|𝒙0] 𝒙0 + 2

 Form a (1-α)% C.I. as usual.
[𝑦ො0 േ tT-k,1-α/2 * sqrt(Varሾ𝑒଴ሿሻሿ

Note: In out-of-sample forecasting, usually, 𝒙0 is unknown, it has to 
be estimated.

(2) If 𝒙0 has to be estimated, then we use a random variable.  The C.I. 
becomes more complicated. A bootstrap can be used. 

Prediction Intervals: C.I.

• Assuming 𝒙0 is known, the variance of the forecast error is  
2 + 𝒙0 Var[b|𝒙0] 𝒙0 = 2 + 2[𝒙0 (XX)-1𝒙0]

If the model contains a constant term, this is

Varሾ𝑒଴ሿ  ൌ  𝜎ଶ 1  ൅ 
1
𝑁
 ൅ ෍ ෍ሺ𝑥௝

଴  െ  �̄�௝ሻሺ𝑥௞
଴  െ  �̄�௞ሻሺZᇱM଴Zሻ௝௞

௄ିଵ

௞ୀଵ

௄ିଵ

௝ୀଵ

(where Z is X without x1=ί). In terms squares and cross products of 
deviations from means.  

Note: Large 2, small 𝑁, and large deviations from the means, 
decrease the precision of the forecasting error.

Interpretation:  Forecast variance is smallest in the middle of our 
“experience” and increases as we move outside it. 

Prediction Intervals: C.I. and Forecast Variance
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• Then, the (1 െ α)% C.I. is given by: [𝑦ො0 േ tT-k,α/2 * sqrt(Varሾ𝑒଴ሿሻሿ

• As 𝒙0 moves away from its mean, the C.I increases, this is known as 
the “butterfly effect.”

Prediction Intervals: C.I. and Forecast Variance

Example (continuation): We want to calculate the variance of the 
forecast error: for thee given 𝒙0 = [1.0000 -0.0189 -0.0142 -0.0027]
Recall we got 𝑦ො0 = b 𝒙0 = -0.01877587

Then,
Estimated Var[𝑒଴|𝒙0] = 𝒙0 Var[b|𝒙0] 𝒙0 + 𝑠2 = 0.003429632

Var_b <- vcov(fit_ibm_ff3)
var_ef_0 <- t(x_0) %*% Var_b %*% x_0 + Sigma2 
> var_ef_0

[,1]
[1,] 0.003429632
> sqrt(var_ef_0)

[,1]
[1,] 0.05856306

Check: What is the forecast error if 𝒙 0 = colMeans(x)?

Prediction Intervals: C.I. and Forecast Variance
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Example (continuation):

# (1-alpha)% C.I. for prediction (alpha = .05)
CI_lb <- y_f0 – 1.96 * sqrt(var_ef_0) 

> CI_lb

>[1] -0.1335594

CI_ub <- y_f0 + 1.96 * sqrt(var_ef_0)

>CI_ub

>[1] 0.09600778

That is, CI for prediction: [-0.13356; 0.09601] with 95% confidence. A 
wide interval, which makes clear the uncertainty surrounding the point 
forecast: 𝑦ො0 = -0.01877587

Prediction Intervals: C.I. and Forecast Variance

Forecasting and Prediction: Model Validation

• Model validation refers to establishing the statistical adequacy of the 
assumptions behind the model –i.e., (A1)-(A5) in this lecture. 
Predictive power or forecast accuracy can be used to do model 
validation. 

• In the context of prediction and forecasting, model validation is done 
by fitting a model in-sample, but keeping a small part of the sample, 
the hold-out-sample, to check the accuracy of OOS forecasts.  

• Hold out sample: We estimate the model using only a part of the 
sample (say, up to time T1). The rest of the observations, the hold out 
sample, (T - T1 observations) are used to check the predictive power of 
the model –i.e., the accuracy of predictions, by comparing 𝑦ො0 with 
actual 𝑦0.
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• For model validation, we keep a small part of the sample for checking
the forecasting skills (or accuracy) of the model. Steps:

Step 1. Estimate the model using all the observation up to T1 (above
from 1973:I to 2012:II). The period used is called “estimation period
or estimation sample.” (Get in-sample forecasts, 𝑦ො.)

Estimation Period

T1 = 2012:II

Review: Forecasting - Model Validation

Step 2. Keep a (short) part of the sample, (T – T1), to check the model’s
forecasting skills. Using the estimates from Step 1, we produce forecasts,
𝑦ො, for the period (T – T1). Since in the period (T – T1) we know 𝑦, we
can compute true MSE or MAE. This is the validation step.

For example, we compute: MSE =
ଵ

ሺ்ି భ்ሻ
∑ ሺ𝑦ො௜ െ 𝑦௜
்
௜ୀ భ்ାଵ ሻଶ

Validation 
Forecasts

Estimation Period

Review: Forecasting - Model Validation

T1 T
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Step 3. If happy with Step 2, we proceed to do true out-of-sample
forecasts. In general, for the out-of-sample forecast, we re-estimate the
model using all the sample –i.e., all T observations.

To evaluate the true OOS forecasts, we have to wait, say 𝑚 periods, to

compute an MSE : MSE =
ଵ

௠
∑ ሺ𝑦ො௜ െ 𝑦௜
௠
௜ୀ்ାଵ ሻଶ

Out-of-
Sample 
Forecasts

Validation 
Forecasts

Estimation Period

Review: Forecasting - Model Validation

T1 T

Details:

1) Estimation period. Use the first 𝑇ଵ observations to estimate the
parameters of the model. Get in-sample forecasts, 𝑦ො . In-sample
evaluation of model (R2, t- & F-tests) is usually performed here.

2) Validation period. Use (𝑇 െ 𝑇ଵ) observations to check the model’s 
forecasting skills. Given estimates in (1), OLS 𝐛, & using 𝒙0, get OSS 𝑦ො0

= 𝐛 𝒙0. Since 𝑦0 is known, calculate true MSE or MAE. For example: 

𝑀𝑆𝐸 ൌ  ଵ

ሺ்ି భ்ሻ
∑ ሺ𝑦ො௜

଴  െ 𝑦௜
଴ሻଶሺ்ି భ்ሻ

௜ୀሺ భ்ାଵሻ
 

Note: It is common to set (𝑇 െ 𝑇ଵ) close to 10% of sample.

3) True OOS forecast period. Re-estimate model Produce OSS 𝑦ො0, but
since 𝑦0 is not known now, it will take time to evaluate the true OOS
forecasts.

Forecasting and Prediction: Model Validation
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Note: In the Machine Learning literature, the terminology used for
model validation is slightly different.

Step 1 is called “training,” the data used (say, first 𝑇ଵ observations) are
called training data/set. In this step, we fit (train) the model, subject to the
assumptions, for example, (A1)-(A4).

Step 2 has the same name, validation (or “single-split” validation). This step
can be used to “tune (hyper-)parameters.” In our CLM, we can “tune” the
model for departures of (A1)-(A4), for example, by including more or
different variables (A1) and re-estimating the model accordingly using
“training data” alone. We choose the model with lower MSE or MAE.

Remark: The idea of this step is to simulate out-of-sample accuracy.
But, the “tuned” parameters selected in Step 2 are fed back to Step 1.

Step 3 tests the true out-of-sample forecast accuracy of model selected
by Step 1 & Step 2. This last part of the sample is called “testing sample.”

Forecasting and Prediction: Model Validation

• Step 2 is used as a testing ground of the model before performing
OOS forecasting. There are many ways to approach the validation step.

• Instead of a single split, split the data in 𝐾 parts. This is called 𝐾-fold
cross-validation. For 𝑗 = 1, 2, …, 𝐾, use all folds but fold 𝑗 to estimate
model; use fold 𝑗 to check model’s forecasting skills by computing MSE,
𝑀𝑆𝐸௝ . The 𝐾-fold CV estimate is an average of each fold MSE’s:

𝐶𝑉௄ ൌ
ଵ

௄
∑ 𝑀𝑆𝐸௝
௄
௝ୀଵ

Usual choices for 𝐾 are 5 & 10. (These are arbitrary choices.)

Random and non-random splits of data can be used. The non-random
splits are used for some special cases, such as qualitative data, to make
sure the splits are “representative.”

Forecasting and Prediction: Cross Validation
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• Use a single observation for validation. This is called leave-one-out cross-
validation (LOOCV). A special case of 𝐾-fold cross-validation with 𝐾 = T.
That is, use (T - 1) observations for estimation, and, then, use the
observation left out, 𝑖 = 1, …, T, to compute 𝑀𝑆𝐸ሺି௜ሻ, which is just
ሺ𝑦ොሺି௜ሻ െ 𝑦௜ሻଶ, where 𝑦ොሺି௜ሻ is the prediction for observation 𝑖 based on
the full sample but observation 𝑖. Then, compute:

𝐶𝑉௡ ൌ
ଵ

௡
∑ 𝑀𝑆𝐸ሺି௜ሻ
௡
௜ୀଵ

• Instead of just one, it is possible to leave p observations for validation.
This is called leave-p-out cross-validation (LpOCV).

Remark: In time series, since the order of the data matters, cross
validation is more complicated. In general, rolling windows are used.

Forecasting and Prediction: Cross Validation

Example: We do cross-validation on the 3-factor Fama-French Model 
for IBM returns with 𝐾 = 5: 
y <- ibm_x

ff_cv_data <- data.frame(Mkt_RF, SMB, HML) 

###### CV: Cross-Validation K-fold Code Function ######

CV<- function(dats, n.folds){

folds <- list() # flexible object for storing folds

fold.size <- nrow(dats)/n.folds

remain <- 1:nrow(dats) # all obs are in

for (i in 1:n.folds){

select <- sample(remain, fold.size, replace = FALSE) #randomly sample fold_size from remaining obs)

folds[[i]] <- select # store indices ( write a special statement for last fold if  ‘leftover points’)

if  (i == n.folds){

folds[[i]] <- remain

}

remain <- setdiff(remain, select) #update remaining indices to reflect what was taken out

remain

}

Forecasting and Prediction: Cross Validation
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Example (continuation):
results <- matrix(0,1,n.folds)

for (i in 1:n.folds){

# fold i

indis <- folds[[i]] #unpack into a vector

estim <- dats[-indis, ] #split into estimation (train) & validation (test) sets

test <- dats[indis, ]

lm.model <- lm(y[-indis] ~ ., data = estim) # OLS with estimation data

pred <- predict(lm.model, newdata = test) # predicted values for fold not used

MSE <- mean((y[indis] - pred)^2) # MSE (any other evaluation measure can be used)

results[[i]]<- MSE # Accumulate MSE in vector

}

return(results)

}

CV_ff_5 <- CV(ff_cv_data, 5)

> mean(CV_ff_5)

[1] 0.00346262

Forecasting and Prediction: Cross Validation

• Popular measures of  OOS forecast accuracy, after 𝑚 forecasts: 

Mean Absolute Error (MAE) = 
ଵ

௠
∑ |𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ | ൌ ଵ

௠
∑ |𝑒௜|
்ା௠
௜ୀ்ାଵ

Mean Squared Error (MSE) = 
ଵ

௠
∑ ሺ𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ ሻଶ ൌ ଵ

௠
∑ 𝑒௜ଶ
்ା௠
௜ୀ்ାଵ

Root Mean Square Error (RMSE) = 
ଵ

௠
∑ 𝑒௜ଶ்ା௠
௜ୀ்ାଵ

Mean Absolute Percentage Error (MAPE) = 
ଵ

௠
∑ | ௬

ො೔ି௬೔
௬೔

்ା௠
௜ୀ்ାଵ ∗ 100|

Theil’s U statistics = 
భ
೘
∑ ௘೔మ
೅శ೘
೔స೅శభ

భ
೅
∑ ௬೔మ
೅
೔సభ

Evaluation of  Forecasts: Measures of  Accuracy
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• Theil’s U statistics has the interpretation of  an R2. But, it is not 
restricted to be smaller than 1.

• An OOS R2 can be computed as: 

𝑅ைைௌ
ଶ = 1 -

ெௌாಲ
ெௌாಿ

with 𝑀𝑆𝐸஺ = ∑ ሺ𝑦௧ାఛ െ 𝑦ො௧ାఛሻଶ
௠
௧ୀଵ

𝑀𝑆𝐸ே = ∑ ሺ𝑦௧ାఛ െ 𝑦ത௧ሻଶ
௠
௧ୀଵ

where 𝜏 is the forecasting horizon. (See Goyal and Welch (2008) for a 
well-known finance application.)

• Again, cross-validation measures can be used to evaluate forecasting 
performance. 

Evaluation of  Forecasts: Measures of  Accuracy

Example: We want to check the forecast accuracy of the 3 FF Factor 
Model for IBM returns. We estimate the model using only 1973 to 
2017 data (T=539), leaving 2018-2020 (m = 30 observations) for 
validation of predictions.
T0 <- 1

T1 <- 539 # End of Estimation Period (Dec 2017)

T2 <- T1+1 # Start of Validation Period (Jan 2018)

y1 <- y[T0:T1]

x1 <- x[T0:T1,]

fit_ibm_2 <- lm(y1~ x1 - 1) # Estimation Period Regression From T0 to T1

b1 <- fit_ibm_2$coefficients # Extract OLS coefficients from regression

> summary(fit_ibm_2)

Estimate Std. Error t value Pr(>|t|)    

x1       -0.003848   0.002571  -1.497  0.13510    

x1Mkt_RF 0.865579   0.059386  14.575  < 2e-16 ***

x1SMB   -0.224914   0.085505  -2.630  0.00877 ** 

x1HML  -0.230838   0.090251  -2.558  0.01081 *

Evaluation of  Forecasts: Measures of  Accuracy
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Example (continuation): We condition on the observed data (no 
model to predict FF factors used) from 2018: Jan to 2020: Jun.
x_0 <- x[T2:T,] # Validation data

y_0 <- y[T2:T] # Validation data

y_f0 <- x_0%*% b_ibm # Forecast

ef_0 <- y_f0 - y_0 # Forecasat error

mse_ef_0 <- sum(ef_0^2)/nrow(x_0) # MSE

> mse_ef_0

[1] 0.003703207

mae_ef_0 <- sum(abs(ef_0))/nrow(x_0) # MAE

> mae_ef_0

[1] 0.04518326

That is, MSE = 0.003703207

MAE = 0.04518326

Evaluation of  Forecasts: Measures of  Accuracy

Example (continuation): Plot of actual IBM returns and forecasts.
plot(y_f0, type="l", col="red", main = "IBM: Actual vs. Forecast (2018-2020)",

xlab = "Obs",  ylab = "Forecast")

lines(y_0, type = "l", col = "blue")

legend("topleft",  legend = c("Actual", "Forecast"),  col = c("blue", "red"),  lty = 1)

Evaluation of  Forecasts: Measures of  Accuracy
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• So far, we have judged the model with the better (usually, lower) 
measure of  accuracy as the better forecasting mode.

But, measures of  accuracy are RV. Then, we cannot look at these 
measures and establish that Model 1 is “more accurate” than Model 2. 
Statistical error (“luck”) can create problems.

• The most popular measure of  accuracy is the MSE.

Q: How do we know the MSE for model 1 is significantly better than 
the MSE for model 2? We need a test for

H0: MSE(1) = MSE(2) 
H1: MSE(1) ≠ MSE(2). 

.

Evaluation of  Forecasts: Measures of  Accuracy

• Suppose two competing forecasting procedures produce a vector of  
errors: 𝑒ሺଵሻ & 𝑒ሺଶሻ. Then, if  expected MSE is the criterion used, the 
procedure with the lower MSE will be judged superior.

• We want to test H0: MSE(1) = MSE(2) 
H1: MSE(1) ≠ MSE(2). 

Assumptions: forecast errors are unbiased, normal, and uncorrelated.  
If  forecasts are unbiased, then MSE = Variance.

• Consider, the pair of  RVs: (𝑒ሺଵሻ ൅ 𝑒ሺଶሻ) & (𝑒ሺଵሻ െ 𝑒ሺଶሻ). Now,

𝐸ሾሺ𝑒ሺଵሻ ൅ 𝑒ሺଶሻሻሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻሿ ൌ 𝜎ଵ
ଶ െ 𝜎ଶ

ଶ

• That is, we test H0 by testing that the two RVs are not correlated! 

Under H0, 𝐸ሾሺ𝑒ሺଵሻ ൅ 𝑒ሺଶሻሻሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻሿ ൌ 0.

Evaluation of  Forecasts: Testing Accuracy
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• Under H0, 𝑒
ଵ ൅ 𝑒 ଶ  & ሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻ are not correlated –i.e., 

zero covariance. (See Morgan, Granger & Newbold (MGN, 1977).)

• There is a simpler way to do the MGN test. Steps:

1. Define 𝑒ሺଵሻ & 𝑒ሺଶሻ, where 𝑒ሺଵሻ is the error with the higher MSE. Let
𝑧௧ = 𝑒ሺଵሻ ൅ 𝑒ሺଶሻ – 𝑒ሺଵሻ: the error with the higher MSE.
𝑥௧ = 𝑒ሺଵሻ െ 𝑒ሺଶሻ

2. Do a regression: 𝑧௧ = β 𝑥௧ + 𝜀௧

3. Test H0: β = 0  a simple t-test. 

The MGN test statistic is exactly the same as that for testing H0: β = 0. 
This is the approach taken by Harvey, Leybourne & Newbold (1997).

• If  the assumptions are violated, these tests have problems.

Evaluation of  Forecasts: Testing Accuracy

Example: We produce IBM returns one-step-ahead forecasts for 
2018-2020 using the 3-factor F-F Model for IBM returns:

ሺ𝑟௜ െ 𝑟௙ሻ௧ = 0 + 1 ሺ𝑟௠ െ 𝑟௙ሻ௧ + 2 𝑆𝑀𝐵௧ ൅ ଷ 𝐻𝑀𝐿௧ + ௧

Taking expectations at time 𝑡+1, conditioning on time t information 
set, 𝐼௧ ={ሺ𝑟௠ െ 𝑟௙ሻ௧, 𝑆𝑀𝐵௧ , 𝐻𝑀𝐿௧}

E[ሺ𝑟௜ െ 𝑟௙ሻ௧ାଵ|𝐼௧] = 0 + 1 E[ሺ𝑟௠ െ 𝑟௙ሻ௧ାଵ|𝐼௧ ] +
+ 2 E[𝑆𝑀𝐵௧ାଵ|𝐼௧ ] + 3 E[𝐻𝑀𝐿௧ାଵ|𝐼௧ ] 

In order to produce forecast, we will make a naive assumption: The 
best forecast for the FF factors is the previous observation. Then,

E[ሺ𝑟௜ െ 𝑟௙ሻ௧ାଵ|𝐼௧] = 0 + 1 ሺ𝑟௠ െ 𝑟௙ሻ௧ + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧.

Now, replacing the  by the estimated b, we have our one-step-ahead 
forecasts. We produce one forecast at a time.

Evaluation of  Forecasts: Testing Accuracy
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Example: We compare the forecast accuracy relative to a random walk 
model for IBM excess returns. That is,  

E[ሺ𝑟௜ െ 𝑟௙ሻ௧ାଵ|𝐼௧ ] = ሺ𝑟௜ െ 𝑟௙ሻ௧

Using R, we create the forecasting errors for both models and MSE:
T1 <- 539 # End of  Estimation Period (Dec 2017)
x_0f  <- x[T1:(T-1),] # By assumption on the X, it starts at T1.
y_0 <- y[T2:T] # T2 = T1 + 1 (Jan 2018)
y_f0 <- x_0f  %*% b1 # b1 coefficients from fit_ibm_2 
ef_0 <- y_f0 - y_0 # et

(2) 

mse_ef_0 <- sum(ef_0^2)/nrow(x_0)
> mse_ef_0 # MSE(2)
[1] 0.01106811

ef_rw_0 <- y[T1:(T-1)] - y_0 # et
(1) 

mse_ef_rw_0 <- sum(ef_rw_0^2)/nrow(x_0)
> mse_ef_rw_0 # MSE(1) <= (1) is the higher MSE.
[1] 0.02031009

Evaluation of  Forecasts: Testing Accuracy

Example: Now, we create 𝑧௧ = 𝑒ሺଵሻ ൅ 𝑒ሺଶሻ, &  𝑥௧ = 𝑒ሺଵሻ െ 𝑒ሺଶሻ. 
Then, regress: 𝑧௧ = β 𝑥௧ + 𝜀௧ and test H0: β = 0.

# Step 1. Define errors and z & x
z_mgn <- ef_rw_0 + ef_0
x_mgn <- ef_rw_0 - ef_0

# Step 2. Regress x on z
fit_mgn <- lm(z_mgn ~ x_mgn)
> summary(fit_mgn)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.05688    0.03512   1.619    0.117    
x_mgn 2.77770    0.58332   4.762 5.32e-05 ***  significant!

# Step 3. t-test on β
> coef(summary(fit_mgn))[, "t value"]
1.619 4.762

Conclusion: We reject that both MSEs are equal  MSE of  RW is higher.

Evaluation of  Forecasts: Testing Accuracy
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• MSE and MAE are very popular criteria to judge the forecasting
power of a model. However, they may not be the best measure for
everybody.

• Richard Levich’s textbook compares forecasting services to the
freely available forward rate. He finds that forecasting services may
have some ability to predict direction (appreciation or depreciation).

For some investors, the direction is what really matters, since direction
determines potential profits, not the error.

Evaluation of  Forecasts: MSE/MAE?

Example: Two forecasts: Forward Rate (Ft,T) and Forecasting Service (FS)

Ft,1-month = .7335 USD/CAD

EFS,t[St+1-month]= .7342 USD/CAD. (Assume St = .7330 USD/CAD).

(Investor’s strategy: buy CAD forward if FS forecasts CAD appreciation.)

Based on the FS forecast, Ms. Sternin decides to buy CAD forward at Ft,1-m.

(A) Suppose that the CAD appreciates to St+1 = .7390 USD/CAD.

MAEFS = .7390 - .7342 = .0052 USD/CAD.

Investor makes a profit of .7390 - .7335 = USD .055 USD.

(B) Suppose that the CAD depreciates to St+1 = .7315 USD/CAD.

MAEFS = .7315 - .7342 = .0027 USD/CAD.  smaller MAE!

Investor takes a loss of .7315 - .7335 = USD -.0020. ¶

Forecasting Application: MSE/MAE?


