RS - Financial Econometrics - Lecture 6-b (Model Specification)

Lecture 6-b
Model Specification

Brooks (4™ edition): Chapters 3 & 4

© R. Susmel, 2023 (for private use, not to be posted/shared online). 1

Review: OLS Estimation - Assumptions

¢ CLM Assumptions

(A1) DGP:y =X B + gis correctly specified.

(A2) E[e|X] = 0

(A3) Var[e|X] = o® I;

(A4) X has full column rank —rank(X)=4-, where T = £.

Q: What happens when (A1) is not correctly specified?

* First, we looked at (Al), in the context of linearity. Are we omitting a
relevant regressor? Are we including an irrelevant variable? What
happens when we impose restrictions in the DGP?

* Second, in (A1), we allow some non-linearities in its functional form.
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Review: Specification — Omitted & Irrelevant X

* Omitting relevant variables: Suppose the correct model (DGP) is
y=XB, +XB,+¢€ —the “long regression,” with X, & X,.

But, we compute OLS omitting X, a true driver of y. That is,
y=XB, +e¢ —the “short regression.”

Implication: Restricted estimator b* is biased, but more efficient.

e Irrelevant variables . Suppose the correct model is
y=XB, +¢ —the “short regression,” with X,
But, we estimate, ignoring the true restriction B, = 0:

y=XB, +XB,+¢ —the “long regression.”

Implication: Estimator b is unbiased, but inefficient.

Review: Trilogy of Tests — LR, Wald & LM

* Given that omitting explanatory variables is a big problem (bias
estimation!), we use tests to check the specification of the model. We
test Hy: ;= 0, where B, is the vector of coefficients for the

J variables we consider omitting.

We have three asymptotic tests that follow the same )(]2 distribution:
- Wald test, W — estimates Unrestricted Model.

- Likelihood Ratio test, I.R — estimates both Unrestricted and
Restricted Models and assume a distribution (usually, normality).

- Lagrange Multiplier test, .M — estimates only Restricted Models.

We like LM tests because only the Restricted Model is estimated. If
we reject Hy: B;= 0, then, we re-specify the model: We need to add
the J explanatory variables.
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Review: Trilogy of Tests — LR, Wald & LM

* Given that omitting explanatory variables is a big problem (bias
estimation!), we use tests to check the specification of the model. We
test Hy: ;= 0, where B, is the vector of coefficients for the

J variables we consider omitting.

We have three asymptotic tests that follow the same )(]2 distribution:
- Wald test, W — estimates Unrestricted Model.

- Likelihood Ratio test, I.R — estimates both Unrestricted and
Restricted Models and assume a distribution (usually, normality).

- Lagrange Multiplier test, .M — estimates only Restricted Models.

We like LM tests because only the Restricted Model is estimated. If
we reject Hy: B;= 0, then, we re-specify the model: We need to add

the J explanatory variables.

Review: Trilogy of Tests — Wald

* In our general framework, we test Hy;: RB = q. In the patticular case
of testing for / omitted variables, q = 0. The /xk R matrix is a matrix
of zeros, with ones for the omitted variables, for example, if we omit
in the 3-factor FF model, SMB & HML, elements (1,3) and (2,4) will
have a 1. In this example, the restriction to test will is:

B1
S R G B
BHML

We based the Wald test on the unrestricted OLS b:
F = W*// = (Rb)' {R[s2(X'X)"JR'}"' Rb
Distribution under H,, if (A5) F=Ww*|] ~F Tk

d
if not (A5)  J*F— yJ
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Review: Trilogy of Tests — LR

* The LR test is based on the (log) Likelihood. It requires two ML
estimations:

- The unrestricted estimation, producing B
- The restricted estimation, producing o~
Then, the LR test:
~ ~ d
LR = 2[log(L(Bm1)) — log(L(6))] — x7

Note: MLE requires assuming a distribution, usually, a normal.

Technical note: The LR has a very good property: It is a consistent test.
An asymptotic test which rejects H, with probability one when the H,
is true is called a consistent test. That is, a consistent test has asymptotic
power of 1.

Review: Trilogy of Tests — LM
* The LM test needs only one estimation: the restricted estimation,
that is, imposing H: RB = q, producing B%.

Then, if the restriction is true, then the slope of the objective function
(say, the Likelihood) at 8% should be zero. The slope is called the
Score, S(GR).

* The LM test is based on a Wald test on H;: S(éR) =0.
~ ~ A d
LM = S(8R) [Var(S(8%)] 1S (8R) — x?
It turns out that there is a much simpler formulation for the LM test,

based on the residuals of the restricted model. We will present this
version of the test next.
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|_u

LR

Review: Trilogy of Tests — LR, Wald & LM

LR/2

LM

Wald
—

-~

oF O, =08

Remark: Asymptotically equivalent, but, for small T, in general,
W > LR >LM.

Model Specification with LM Tests

* The popular version of the LM test involves the following steps:
(1) Run restricted model (y = X B, + €). Get restricted residuals, ep.

(2) (Auxiliary Regression). Run the regression of € on all the omitted

| variables, Z, and the k included variables, X. In our case:

eR‘i = + 04 xl’l‘ + ...+ o xk,i + Y1 Zl,i + ...+ Y] Z],i + Vi
= Keep the R? from this regression, RZ5.
(3) Compute LM-statistic:
2 & 5
IM=T* ReR - X]

* Here, we use the LM test to check (Al). But, the LM test is very
general. It can be used in many settings, for example, to test for
nonlinearities, autocorrelation, heteroscedasticity, etc. 10
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Model Specification with LM Tests

Example: We use an LM test to check if the standard CAPM for
IBM returns omits SMB and HML. (] = 2)

fit_ibm_capm <-lm (ibm_x ~ Mkt_RF) # Restricted Model

resid_r <- fit_ibm_capm$residuals # extract residuals from R model
fit_1lm <-Im (resid_r ~ Mkt_RF + SMB + HML) # auxiliary regression

> summary(fit_Im)

Coefficients:

Estimate  Std. Error t value Pr(>|t|)
(Intercept) 0.0007021 0.0024875 0.282 0.7779
Mkt_RF  0.0125253 0.0567221 0.221 0.8253
SMB -0.2124596 0.0841119 -2.526 0.0118 *
HML -0.1715002 0.0846817 -2.025 0.0433 *
Signif. codes: 0 ¥ 0.001 ** 0.01 **0.05 0.1 <’ 1
Residual standard error: 0.05848 on 565 degrees of freedom
Multiple R-squared: 0.01649, Adjusted R-squared: 0.01127
F-statistic: 3.158 on 3 and 565 DF, p-value: 0.02438

11

Model Specification with LM Tests

Example (continuation):

R2_r <- summary(fit_lm)$r.squared # extracting R? from fit_lm
>R2 r
[1] 0.01649104

LM_test <-R2_r*T

> LM_test

[1] 9.383402 = LM_test > qchisq (.95,df=2) = Reject H,
> qchisq(.95, df = 2) # chi-squared (df=2) value at 5% level

[1] 5.991465

p_val <- 1 - pchisq(LM_test, df = 2) # p-value of LM_test

> p_val

[1] 0.009171071 => p-value is small = Reject H,,

Conclusion: We need to respecify the CAPM. Given the results of the
LM test we need to add SMB and HML.

12
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Functional Form: Linearity in Parameters

* So far, our models have been linear in variables and parameters:
Y = P1+ B2 X5 + B3X35 + Xy t €.

= OLS estimates all parameters: 1, B2, 3, & Ba-

* But OLS can handle non-linear models in variables, as long linearity
in parameters is preserved —i.e., zutrinsic linear model:

Y =P+ B2X5 + B3 X3 + Balog X, + €
Define: Z, = X3, Z3=.X;, & Z,=logX,
Then, the non-linear model becomes a linear model:

Y=P1+B2Zy; + B3Zs + PuZy+ &
13
= OLS can be used to estimate all B4, B2, B3, & La4- 7

Functional Form: Linearity in Parameters

* Suppose we have:
Yy =P1+BXy + X5+ £

This model allows for a quadratic relation between y and X,:

cletX3=X %, then, the model is intrinsic linear:
Yy =1+ B X2+ Pa3X3 + & o
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Functional Form: Linearity in Parameters

Example: We do a Wald test to check if a measure of market risk
(it — Tf)* is significant in the 3 FF factor model for IBM returns.

(rt _rf) = ﬁO + Bl (T'm’t —rf) + Bz SMBt + B3HMLt + 34(rm,t _ T-f)Z + &t

We can do OLS, by redefining the variables: X1= (i, ¢ — 17); X2 = SMB;
X3 = HMLt, X4, :(Tm't — rf)z. Then,
Y = o + B1X1 + BoXp + B3X3 + BuXi + &

Mkt_RF2 <- Mkt_RF"*2

fit_ibm_ff3 2 <-Im (ibm_x ~ Mkt_RF + SMB + HML + Mkt_RF2)
summary(fit_ibm_£f3_2)

Coefficients:

Estimate  Std. Error tvalue — Pr(>|t|)
(Intercept)-0.004765 0.002854  -1.670 0.0955 .
Mkt_RF 0.906527 0.057281  15.826 ~ <2e-16***

SMB -0.215128 0.084965  -2.532 0.0116 *
HML -0.173160  0.085054  -2.036 0.0422 * 15
Mkt_RF2 -0.143191 0.617314  -0.232 = Not significant!

Functional Form: Linearity in Parameters

Example (continuation): Now, we also check with an LM test if all
variables squares (T, ¢ — 77)%, SMB?, and HMI?) are omitted from the

3-factor FF model for IBM returns.
Mkt RF2 <- Mkt_RF"2
SMB2 <- SMB"2
HML2 <- HML"2
fit_ibm_ff3 <-Im (ibm_x ~ Mkt_RF + SMB + HML) # Restricted Model
resid_r <- fit_ibm_ff3$residuals # Extract residuals from R
fit_Im <-Im (resid_r ~ Mkt_RF + SMB + HML + Mkt_RF2 + SMB2 + HML2)
R2_r <- summary(fit_lm)$r.squared
LM _test<-R2 r*T
> L.M_test
[1] 2.453822
p_val <- 1 - pchisq(LLM_test, df = 3) # p-value of LM_test
> p_val
= p-value is higher than standard levels => Cannot Reject H;¢
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Functional Form: Linearity in Parameters

¢ Nonlinear in parameters:

Yy =01+ B:X; + B3X3 + Brp3Xy + £

This model is nonlinear in parameters since the coefficient of Xy is
the product of the coefficients of X, and X3.

* Some nonlinearities in parameters can be linearized by appropriate
transformations, but not this one. This is not an intrinsic linear model.
Different estimation techniques should be used in these cases.

Functional Form: Linearity in Parameters

¢ Intrinsic linear models can be estimated using OLS. Sometimes,
transformations are needed. Suppose we start with a power function:

y = B1XB28
¢ The errors enter in multiplicative form. Then, using logs:

logy = log B; XP2e = log B; + B, log X + log e,

Define:
y' =logy
X =logX
p1 = log f;
g =loge

Then, we have an intrinsic linear model:

Y =p1+BX + €, 18
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Functional Form: Linearity in Parameters

e Similar intrinsic linear model can be obtained if:
y=ePi+BX+e
= logy =0+ B, X + ¢
Define:
y' =logy
Then, we have an intrinsic linear model:

y=p+pX+e

Functional Form: Linearity in Parameters

* Not all models are intrinsic linear. For example:
y =B XP2 + ¢
logy = log( B, XP> + ¢)

We cannot linearize the model by taking logarithms. There is no way
of simplifying log(8; X2 + ).

* We will have to use some nonlinear estimation technique (ML can
estimate this model, once we assume a distribution for €).

20
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Functional Form: Ramsey’s RESET Test
¢ To test the specification of the functional form, Ramsey designed a
simple test. We start with the fitted values from our (A1) model:
y = Xb. (fOf example,y = b1X1 + bzXz)
Then, we add y? to the regression specification:
y=XB+3 y+e (%= (b X1)?+(boX2)* + 2b1 b, X, Xy)
* If ¥ is added to the regression specification, it should pick up

quadratic and interactive nonlinearity, if present, without necessarily
being highly correlated with any of the X variables.

* We test H, (linear functional form): y =0

H, (non linear functional form): y # 0 21

Functional Form: Ramsey’s RESET Test

* We test H, (linear functional form): y =0
H, (non linear functional form): y # 0

=> r-test on the OLS estimator of 7.
o If the ~statistic for Y2 is significant = evidence of nonlinearity.
e The RESET test is intended to detect nonlinearity, but not be specific

about the most appropriate nonlinear model (no specific functional
form is specified in H,).

James B. Ramsey, England ||
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Functional Form: Ramsey’s RESET Test

Example: We want to test the functional form of the 3 FF Factor
Model for IBM returns, using monthly data 1973-2020.

fit_ibm_ff3 <- lm(ibm_x ~ Mkt RF + SMB + HML)

y_hat <- fitted(fit_ibm_£f3)

y_hat2 <-y_hat"2

fit_ramsey <- Im(ibm_x ~ Mkt_RF + SMB + HML + y_hat2)

> summary(fit_ramsey)

Coefficients:

Estimate Std. Error  tvalue Pr(>|t|)
(Intercept)  -0.004547 0.002871  -1.584 0.1137
Mkt_RF 0.903783 0.058003  15.582 <2e-16 ***

SMB -0.217268 0.085128  -2.552 0.0110 *
HML -0.173276 0.084875  -2.042 0.0417 *
y_hat2 -0.289197 0.763526  -0.379 = Not significant! 23

Functional Form: Ramsey’s RESET Test

Example (continuation): Using R package, /zzest. (Install it first and,
then call the library).

Note: The test reported is an F-test ~ F, .., which is equal to (t;,)*
The p-values should be the same.

library(Imtest)
> resettest(fit_ibm_ff3, power=2, type="fitted")

RESET test
data: y ~ Mkt_RF + SMB + HML

RESET = 0.14346, df1 = 1, df2 = 564, p-value = = cannot reject H,,. Check: (-0.379)? = 0.1434

Conclusion: Given the result of the RESET test, we do not need to
respecify the 3-factor FIF model with quadratic and interactive terms.

24
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Qualitative Variables and Functional Form

* We want to model CEO compensation as a function of education. We
have data on annual total CEO compensation (Comp), annual returns,
annual sales, CEO’s age, and CEO’s last degree (education). We have
qualitative data.

* We can estimate CEO compensation regressions for each last degree —
i.e., BA/BS; MS/MA/MBA; Doctoral. We have three regressions:

Undergrad degree Comp; =B, + B, 2z + &y
Masters degree Comp; =0, + B 2 T &m
Doctoral degree Comp; =0+ B4z + €q

where the z; is a vector of the CEO 7§ age and previous experience, and
his/her firm’s annual returns and annual sales.

Potential problem: We have 3 small samples —i.e, lose power & precisionts

Qualitative Variables and Functional Form

* Alternatively, we can combine the 3 regressions in one, using the whole
sample. We use a dummy variable (indicator variable) that points whether an
observation belongs to a category or class or not. For example:
D¢c; =1 if observation i belongs to category C (say, male.)
=0 otherwise.

* For CEO’s education, we define two dummy variables:

Dpi=1 if CEO i’s has at least a Masters degree
= otherwise.

Dgi = if CEO i’s has a Doctoral degree
= otherwise.

Then, we introduce the dummy/indicator vatiables in the model:

Comp; =Py + By'z + By Dyit B3 Dai + 712 Di + 122, Dy i + €,
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Our CEO Compensation model becomes:

- Model for undergrads only (D, ; =0 & Dy ; = 0):
Comp; =0+ Pz, + &

- Model for Masters degree only (D, ; =1 & Dy ; =
Comp; =By + B+ (B + 7Dz + &

Qualitative Variables and Functional Form

Comp; =P+ P,'2; + P> Dy i+ B3 Dai + 7,2 Dimyi + 7,2, Dg i + &

¢ This model uses all the sample to estimate the parameters. It is flexible:

0):

- Model for Doctoral degree only (D, ; = 1 & Dy ;= 1):
Comp; =Py + B+ B+ By v+ 7))z + g 57

¢ Three models, encompassed by one regression:
Comp; =+ P,z + &
Comp; =B+ B)+ (Bt v)z + &
Comp; =P+ By + B) + (Bt v+ 7)) + &
¢ The parameters for the different categories are:
- Constant:

Constant for undergrad degree: [3,

Constant for Masters degree: 3, + [3,

Constant for Doctoral degree: 3, + 3, + [35
- Slopes:

Slopes for Masters degree: ; + 7,

Slopes for Doctoral degree: B, + v, + 7,

Qualitative Variables and Functional Form

Undergrad degree
Masters degree

Doctoral degree

28
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Qualitative Variables and Functional Form

* We can test the effect of education on CEO compensation:
(1) Hy: No effect of grad degree: 38;=08,=0& y;,=y,=0 = F-test.
(2) Hy: No effect of Masters degree on constant: 3, =0 = £est.
(3) Hy: No effect of doctoral degree: 3;=0 & y,=0 = F-test.
(4) Hy: No effect of Dr degree on marginal effect: y,=0 = £zest.

* We may have more than one qualitative category (last degree above) in
our data that we may want to introduce in our model.

Example: Suppose we also have data for CEO graduate school. Now,
we can create another qualitative category, “quality of school”, defined
as Top 20 school, to test if a Top 20 school provides “more value.” To
do this, we use D7gp to define if any schooling is in the Top 20.

Dropi =1  if CEO i’ school is a Top 20 school
=0  otherwise. 29

Qualitative Variables and Functional Form

Example (continuation):
The model becomes:

Comp; =B+ P,'z;+ P, Dy + By Dgi + By Dropi + 712 Dmi +

+7,'2;Dg; +7v5'2; Dropi + &

In this setting, we can test the effect of a Top20 education on CEO
compensation:

(1) Hy: No effect of Top20 degree: B, = 0 and y; =0 = F-test.

* The omitted category is the reference or control category. In our first
example, with only educational degrees, the reference category is
undergraduate degree. In the second example, with educational degrees
and quality of school (Top20 dummy), the reference category is

undergraduate degree with no Top 20 education. 30
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Qualitative Variables and Functional Form

* Dummy trap.

If there is a constant, the numbers of dummy variables per qualitative
variable should be equal to the number of categories minus 1. If you put
the number of dummies variables equals the number of categories, you
will create perfect multicollinearity —i.e., you fell on the dummy trap.

31

Dummy Variables as Seasonal Factors

* A popular use of dummy variables is in estimating seasonal effects. We
may be interested in studying the January effect in stock returns or if the
returns of oil companies (say, Exxon or BP) are affected by the seasons,
since in the winter people drive less and in the summer more.

In this case, we define dummy/indicator vatiables for Summer, Fall and
Winter (the base case is, thus, Spring):

Dgym; =1 if observation I occurs in Summer
= otherwise.

Dpan; =1 if observation I occurs in Fall
= otherwise.

Dyin; =1 if observation [ occurs in Winter
= otherwise.

Then, letting Z be the vector of the three FF factors, we have:
(ri —=17) = Bo + B2z + B2 Dsum,i + B3 Drawi + B4 Dwini + & »
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Dummy Variables as Seasonal Factors

Example: In the context of the 3-factor FF model, we test if Exxon’s
excess returns (XOM) are affected by seasonal (quarters) factors:

(rxom,i —177) = Bo + B1'z; + Bo Dsum,i + B3 Draw,i + B4 Dwin,i + &i

x_xom <- SFX_da$XOM # Extract XOM prices
T <- length(x_xom)

Ir_xom <- log(x_xom[-1]/x_xom[-T])

xom_x <-Ir_xom - RF

T <- length(xom_x)

Summ <- rep(c(0,0,0,0,0,0,1,1,1,0,0,0), round(T/12)) # Create Summer dummy

Fall <- rep(c(0,0,0,0,0,0,0,0,0,1,1,1), round(T/12)) # Create Fall dummy

Wint <- rep(c(1,1,1,0,0,0,0,0,0,0,0,0), round(T/12)) # Create Winter dummy

T1 <-T+1

Fall 1 <- Fall[2:T1] # Adjust sample (starts in Feb)

Wint_1 <- Wint[2:T1]
Summ_1 <- Summ|2:T1]

fit xom_s <- Im(xom_x ~ Mkt_RF + SMB + HML + Fall_1 + Wint_1 + Summ_1) 13

Dummy Variables as Seasonal Factors

Example (continuation):

fit xom_s <- Im(xom_x ~ Mkt_RF + SMB + HML + Fall_1 + Wint_1 + Summ_1)
> summary(fit_xom_s)

Coefficients:
Estimate  Std. Error t value Pr(>|t|)
(Intercept) 0.002445  0.003485 0.702 0.4832 = constant for reference category (Spring) = 0.
Mkt RF 0.761816  0.040602 18.763 < 2e-16 ***
SMB -0.261925  0.060575 -4.324 1.81e-05 ***
HML 0.370623  0.060049 6.172 1.29¢-09 ***
Fall_1 -0.006609  0.004947 -1.336 0.1822
Wint_1  -0.011283  0.004928 -2.290 * = significant. Reject Hy: No Winter effect.
Summ_1 -0.007100 0.004944 -1.436 0.1515

Interpretation: In the Winter quarter, Exxon excess returns decrease,
relative to the Spring, by 1.13%. But since Spring’s (& Fall’s & Winter’s)
effect is non-significant, the decrease is in absolute terms.

34
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Dummy Variables as Seasonal Factors

Example (continuation): We can test if all quarters jo/nf/y matter. That

is, Hy: B, = B3 =B, = 0.
We do an F-test:

fit_u <- Im(xom_x ~ Mkt_RF + SMB + HML + Fall_1 + Wint_1 + Summ_1)
fit_r <-lm(zxom_x ~ Mkt_RF + SMB + HML)

resid_u <- fit_u$residuals
RSS_u <- sum((resid_u)"2)

resid_r <- fit_r¥residuals
RSS_r <- sum((resid_1)"2)

f_test <- (RSS_r - RSS_u)/2)/ (RSS_u/ (T-4)

> f test

[1] 2.706574

>

p_val <- 1 - pf(f_test,df1=3, df2=T-3) # p-value of F-test
> p_val

[1] 0.05504357

Conclusion: p-value is “marginal.” At 5% level, cannot reject Hy: No joint seas effect. 35

Dummy Variables as Seasonal Factors

Example (continuation): Now, we are also interested in checking if the

slopes —i.e., marginal effects- are affected by the Winter quarter. We fit:
(rxom,i —77) = Bo + B1'z; + BoDsum,i + B3 Drawi + By Dwin,it ¥1'2; Dwini + &
Mkt W <- Mkt RF*Wint_1

SMB_W <- SMB*Wint_1

HMI_W <- HML*Wint_1
fit_xom_s2 <- Im(xom_x ~ Mkt_RF+ SMB+ HML+ Fall_1+ Wint_1+ Summ_1+ Mkt_W+ SMB_W + HMIL,_W)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.003127  0.003478 0.899 0.368962
Mkt_RF 0.695762 0.048202 14.434 < 2e-16 ***

SMB -0.291199 0.075197 -3.872 0.000120 ***
HML 0.270262 0.077416  3.491 0.000519 ***
Mkt_W  0.208912 0.091972 2.271 * = significant effect on Mkt slope

SMB_W  0.064753 0.126138 0.513 0.607911
HML_W  0.198753 0.124261 1.599 0.110278

Fall_1 -0.006795 0.004934 -1.377 0.169038
Wint_1 -0.013747 0.005000 -2.750 Hok = significant effect on constant.
Summ_1  -0.007492 0.004928 -1.520 0.129012 36
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Dummy Variables as Seasonal Factors

Example (continuation):
Interpretation: The only factor interacting significantly with Winter is the
Market factor. Then, we have two significantly different slopes:

In the Winter, the Market slope is: 0.695762 + 0.208912 = 0.903674
In all other quarters, the Market is: 0.695762

It looks like in the Winter, XOM behaves closer to the Market, while in
all other quarters, it is significantly less risky than the market.

* Again, a joint interacting Winter effect is not significant:

> f test
[1] 3.921696
_val <- 1 - pf(f_test, df 1= 3, df2=T-7) # p-value of F-test
> p_val
[1] = p-valne < .05, then, we reject H,, (joint Winter interactive effect): y; = 0.

37

Dummy Variables: Is There a January Effect?

Example: We want to test the January effect on IBM stock returns,
where because of tax reasons/window dressing, stocks go down in
December and recover in January. The test can be done by adding a
dummy variable to the 3-factor FFF model:
Dy =1 if observation t occurs in January
=0 otherwise.
Then, we estimate the expanded model:
(it = 77) =By + By Ome —7¢) + P, SMBe + BsHMLy + B, Dy e + 8¢

We test Hy(No January effect): B, =0 = est.

Alternatively, we can estimate do an LM test on the residuals of the 3-
factor FF model and check if Dy ; is significant.

T <- length(ibm_x)
Jan <- rep(c(1, 0,0, 0,0,0,0,0,0,0, 0, 0), (round(T)/12+1)) # Create January dummy

T2 <-T+1 38
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Dummy Variables: Is There a January Effect?

Example (continuation):

Jan_1 <- Jan[2:T2] # Adjust sample
fit_ibm_ff <-Im (ibm_x ~ Mkt_RF + SMB + HML) # Restricted Regression
resid_r <- fit_ibm_ff$residuals # Keep residuals (eg)
fit_Jan <-Im (resid_r ~ Mkt_RF + SMB + HML + Jan_1) # Auxiliary Regression

> summary(fit_Jan)

Coefficients:

Estimate  Std. Error t value Pr(>|t])
(Intercept) -0.002111  0.002561 -0.824 0.41027
Mkt RF  -0.005198  0.056405 -0.092 0.92661
SMB -0.026306  0.084063 -0.313 0.75445
HML -0.014914  0.083606 -0.178 0.85848
Jan_1 0.026966  0.008906 3.028 0.00258 **

Signif. codes: 0 “***(0.001 “**0.01 % 0.05 > 0.1 < 1

Residual standard error: 0.058 on 565 degrees of freedom
Multiple R-squared: 0.01597, Adjusted R-squared: 0.009
F-statistic: 2.292 on 4 and 565 DE, p-value: 0.05841 39

Dummy Variables: Is There a January Effect?

Example (continuation):

R2_r <- summary(fit_Jan)$r.squared # Keep R"2 from Auxiliary Regression
>R2 r
[1] 0.01596528

IM_test <-R2_r*T
> LM_test
[1] 9.084247

p_val <- 1 - pchisq(LLM_test, df = 1) # p-valne of TLM_test
> p_val
[1] 0.002578207 = p-valne is small = Reject H,.

Given this result, we modify the 3-factor FIF and add the January
Dummy to the FF model:

fit_ibm_new <-Im (ibm_x ~ Mkt_RF + SMB + HML + Jan_1)
summary(fit_ibm_new)

40
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Dummy Variables: Is There a January Effect?

Example (continuation):
> summary(fit_ibm_new)

Coefficients:

Estimate  Std. Error t value Pr(>|t])
(Intercept) -0.007302 0.002561 -2.851 0.00452 **
Mkt RF  0.905182 0.056405 16.048 < 2e-16 ***
SMB -0.247691 0.084063 -2.946 0.00335 **
HML -0.154093 0.083606 -1.843 0.06584 .
Jan_1 0.026966  0.008906 3.028 0.00258 **

Signif. codes: 0 “***(0.001 “**0.01 % 0.05 > 0.1 < 1

Residual standard error: 0.058 on 565 degrees of freedom
Multiple R-squared: 0.3499, Adjusted R-squared: 0.3453
F-statistic: 76.01 on 4 and 565 DF, p-value: < 2.2¢-16

Interpretation: We have two constants (excess return, Jensen’s alpha):
Feb - Dec: -0.7302% (significant).
January: -0.7302% + 2.6966% = 1.9664% (significant). 4l

Dummy Variables: Is There a January Effect?

Example (continuation):

Interpretation: We have two constants (excess return, Jensen’s alpha):
Feb - Dec: -0.7302% (significant).

January: -0.7302% + 2.6966% = 1.9664% (significant).

When the January dummy was not in the model, we had: -0.005191,
which is close to an average of the constants (= -0.007302 *11 +
0.019664)/12 = -0.00505).

Interpretation: During January IBM has an additional 2.6966% excess
returns. This is a big number. Today, the evidence for the January effect
is much weaker than in this case.

* Note that in the FIF model we expect the constant to be very small
(=0). In this case, it is not zero. Maybe we have a misspecified (Al). 0
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Dummy Variable for One Observation

* We can use a dummy variable to isolate a single observation.
D; =1 for observation j.
=0  otherwise.

¢ Define d to be the dummy variable in question.
Z = all other regressors. X = [Z, D]

* Multiple regression of y on X. We know that
X'e=0 where e = the column vector of residuals.

= D;'e =0 = e; = 0 (perfect fit for observation j).

* This approach can be used to deal with (eliminate) out/iers.

43

Dummy Variable for One Observation

Example: In Dec 1992, IBM reported record losses and gave a very
bleak picture of its future. The stock tumbled -30.64% that month.
We check the effect of that extreme observation, a potential outlier,
on the 3-factor FF model + January dummy:

dec_1992 <- rep(0,T) # Define Dec 1992 dummy

dec_1992[239] <- 1 # Define Dec 1992 dummy (=1 if Dec 1992)
fit_d92 <- Im (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + dec_1992)

> summary(fit_d92)

Coefficients:

Estimate ~ Std. Etror t value Pr(>|t])
(Intercept) -0.006772  0.002502 -2.707 0.00699 **
Mkt_RF  0.908775  0.055054 16.507 < 2e-16 ***

SMB -0.239213  0.082059 -2.915 0.00370 **

HML -0.138629  0.081647 -1.698 0.09008 .

Jan_1 0.026163  0.008694 3.009 0.00273 **

dec_1992 -0.306202 0.056710 -5.399 9.86e-08 *** (same value of observation)

Note: Potential “Outlier” has no major effect on coefficients. “
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Functional Form: Structural Change (Again)

* We want to test if an event at that time Tgp affected our model,
creating a “before” and an “after” in the parameters: That is,
_qnl 1 1 1 ;
Vi = Po + B Xp,it P2 Xoi+ P3 X3 + & fori < Tsp
— p2 2 2 2 ;
Vi =PBo +Pr Xy + B3 Xoi + P35 X3 & fori > Tsp

The event caused structural change in the model.

* A Chow test, an F-test, tests if one model applies to both regimes:
Vi =Bot+ B X + B X2t By Xz + & for all i

* We test Hy (No structural change): By = P5 = B,
ol
BZ — P27 P2
B3 =B5 =5,

H, (structural changé): For at least one k (= 0, 1, 2, 3): By # Bi‘:

Functional Form: Structural Change
* We structure the Chow test to test Hy (No structural change), as usual.

* Steps for Chow (Structural Change) Test:

(1) Run OLS with all the data, with no distinction between regimes.
(Restricted or pooled model). Keep RSS;.

(2) Run two separate OLS, one for each regime (Unrestricted model):
Before Date T'g. Keep RSS;.

After Date T, Keep RSS,. = RSS; = RS§, + RSS,.

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

_ (RSSg — RSSy)/(ky —kg) _ (RSSg — [RSS;1 + RSS,])/k
- (RSSy) /(T — ky) ~ (RSS; + RSS,)/(T — 2k)

46
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Functional Form: Structural Change

* Before, when we presented the Chow test, we use the F-distribution,
which will be appropriate under (A5).

* In general, we rely on the asymptotic distribution —i.e., we do not rely
on (A5). Then, under H, (& if the number of observations pre- and
post-break are large), then

d da
J*F > X; (sometimes written as F' — X; /).

* Note that it is also possible to do a Wald test to test H,:

47

Functional Form: Structural Change

Example: 3 Factor Fama-French Model for SLB

Q: Did the financial crisis (Sep 2008, Tgz = 429) affect the structure of
the FF Model? Sample: January 1973 — December 2023 (T = 611).

Pooled RSS = 3.5290
Jan 1973 — Sep 2008 RSS = RSS, = 2.0010 (T’ = 428)
Oct 2008 — Dec 2023 RSS = RSS, = 1.1213 (T = 183)

_ [RSSR—(RSS1+RSS)1/] _ [3.5290 - (2.0010+ 1.1213)]/4

(RSS1+RSS2)/(T—k)  (2.0010+ 1.1213)/(611 — 24) = 19.6356
= Since F 51 o5 = 2.39, we reject H,,
Constant Mkt —rf SMB HML RSS T
1973-2020 -0.0073*  1.2138%  0.0123  0.4182* 3.5290 611
1973-2001 0.0013  0.9038% -0.2394% -0.3477¢  2.0010 428
2002 — 2023 -0.0141*  1.3129% 03703  1.1496* 1.1213 183 48
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Functional Form: Structural Change

Example (continuation): The R package sctrucchange estimates the
Chow test. (As usual, you need to install package first.)

>x_slb <- SFX_da$SL.B

>lt_slb <- log(x_slb[-1]/x_slb[-T])

>slb_x <-1r_slb - RF

>library(sctrucchange)

> t_s <- 428

> sctest(slb_x ~ Mkt_RF + SMB + HML, type = "Chow", point = t_s)

Chow test

data: slb_x ~ Mkt_RF + SMB + HML
F =19.636, p-value = 3.331e-15

49

Functional Form: Structural Change

Example: We test if the Oct 1973 oil shock in quarterly GDP growth
rates had an structural change on the GDP growth rate model.

We model the GDP growth rate with an AR(1) model, that is, GDP
growth rate depends only on its own lagged growth rate:

Ve =Bo+ By Ye—1 T &

GDP_da <- read.csv("http:/ /www.bauet.uh.edu/rsusmel/4397/GDP_g.csv", head=TRUE,
Sep:">”)

x_date <- GDP_da$DATE

x_gdp <- GDP_da$GDP

x_dummy <- GDP_da$D73

T <- length(x_gdp)

s <- 108 # T, = Oct 1973

Ir_gdp <-log(x_gdpl[-1]/x_gdp[-T])
T <- length(lr_gdp)

lr_gdp0 <-lt_gdp[-1]

Ir_gdpl <-1t_gdp[-T]

ts<-ts-1 # Adjust t_s (we lost the first obsetvation) 50
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Functional Form: Structural Change

Example (continuation):
y <-lr_gdp0O

x1 <- Ir_gdpl

T <- length(y)

x0 <- matrix(1,T,1)

x <- cbind(x0,x1)

k <- ncol(x)

# Restricted Model (Pooling all data)

fit_arl <-Im(lr_gdp0 ~ lr_gdp1) # Fitting AR(1) (Restricted) Model
e_R <-fit_arl$residuals # regression residuals, e

RSS_R <- sum(e_R"2) # RSS Restricted

> summary(fit_arl)

Coefficients:

Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.011406 0.001118 10.200 < 2e-16 ***
Ir_gdp1 0.262234  0.055543 4.721  3.59e-06 ***

Signif. codes: 0 *** (0.001 “***0.01 **0.05 0.1 “* 1

Residual standard error: 0.01248 on 302 degrees of freedom 51
Functional Form: Structural Change
Example (continuation):

# Unrestricted Model (Two regimes)

y_1 <-y[l:t_s]

x_ul <-x[l:t_s)]

fit_arl_1 <-lm(y_1 ~x_ul-1) # AR(1) Regime 1

el <- fit_arl_1$residuals # Regime 1 regression residuals, e
RSS1 <- sum(el”2) # RSS Regime 1

kk =t_s+1 # Starting date for Regime 2

y_2 <-y[kkT]

x_u2 <- x[kk:T}]

fit_arl 2 <-Ilm(y_2 ~x_u2-1) # AR(1) Regime 2

e2 <- fit_arl_2$residuals # Regime 2 regression residuals, e
RSS2 <- sum(e2”2) # RSS Regime 2

F <- (RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))

>F

[1] 4.391997

p_val <-1-pf(E dfl = 2,df2 =T - 2*k) # p-value of F_test

> p_val

[1] 0.0131817 => small p-values: Reject H, (No structural change). 52
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same model for all ¢, for example:

where

=0 otherwise.

Ve =Bo+ By Ye—1 T &

Structural Change: Specification with Dummies

* Under the H, (No structural change), we pool the data into one model.
That is, the parameters are the same under both regimes. We fit the

e If the Chow test rejects H,, we need to reformulate the model. A
typical reformulation includes a dummy variable (Dsp ;). For example,
with vector X; of explanatory variables:

Ve = Bo+ Bi'xe + By Dsp e + 1'% Dspr + &

Dsp: =1 if observation t occurred after T'¢y

53

AR(1) model, say D

= 0 otherwise.

Structural Change: Specification with Dummies

Example: We are interested in modelling the effect of the Oct 1973
oil shock in GDP growth rates. We include a dummy variable in the

D73, = 1 if observation t occurred after October 1973

Then, Ye=Bo T B/xt ¥ By D73 + v/ X D73 + g

In the model, the oil shock affects the constant and the slopes.

Constant Slopes:
Before oil shock (D3 = 0): Bo Bs
After oil shock (D73 = 1) : By + B, Bit+ v

structural change): p,= 0 & y, = 0.

* We estimate the above model and perform an F-test to test if H, (No

54
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Structural Change: Specification with Dummies

Example: We add an Oct 1973 dummy in the AR(1) GDP model.

T1 <-T-t_s # Number of Observations after SB
D73_0 <- rep(0,t_s) #Dummy_t=0if t<=t_s

D73_1 <- rep(1,T1) # Dummy_t =1 of t > t_s

D73 <-¢(D73_0,D73_1) # SB Dummy variable t_s <- 108
Ir_gdpl_D73 <-lr_gdpl * D73 # interactive dummy (effect on slope)

fit_arl_d_2 <- Im(r_gdp0 ~ lr_gdpl + D73 + Ir_gdp1_D73)
summary(fit_arl_d_2)

Coefficients:
Estimate Std. Error tvalue Pr(>|t|)
(Intercept)  0.009139 0.001939 4.712  3.75e-06 ***

Ir_gdpl 0.457011 0.090716 5.038  8.15¢-07 ***
D73 0.003499 0.002362 1.482 0.13947 = no significant effect on constant
Ir_gdpl1_D73 -0.316005 0.114197 -2.767 = significant effect of oil shock on slope.

Signif. codes: 0 “*** (0.001 “***0.01 **0.05 0.1 “* 1

Conclusion: After the oil shock the slope significantly changed from
0.457011 to 0.141006 (= 0.457011 + (-0.316005)).

55

Structural Change: Wald Test

e It is also possible to do a Wald test to test H,, using only the
unrestricted estimators. Steps:

1) Run two separate OLS, one for each regime (Unrestricted model):
Before Date T Keep b, & Var[b,]

After Date T Keep b, & Var[b,]

2) Compute the Wald test:
W = (b, —by)" {Varb, - b]}"' (b, — b))
where Var[b, - b,] is computed using Var[b,] and Var[b,].

Under H, (& if the number of observations pre- and post-break are

a
large), the Wald test follows: W — X;

56
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Structural Change: Test with Unknown Break

* The previous examples compute the Chow test assuming that we
know exactly when the break occurred —say, October 73 or Dec 2001.
That is, the results are conditional on the assumed breaking point.

* In general, breaking points are unknown, we need to estimate them.

* One quick approach is to do a rolling Chow test —that is we run the
Chow test for all dates in the sample— and pick the date that maximizes
the F-tests.

* This test was proposed by Quandt (1958):
QLR = max Fr(7)

TE Tmin -+Tmax
The max (supremum) is taken over all potential breaks in (T, T,
For example, Typin = T* .15; Typgx = T'* .85; that is we trim 30% of
the observations (1, = 15% in each side) to run the test. s

Structural Change: Test with Unknown Break

¢ It is also possible to run the Wald test version of the Chow test for all
possible dates, again, selecting the date that maximizes
QLR = max W (1)

T€{Tmin, ~»Tmax

* The first QLR is called the SupF test, the second the SupW.

Technical Problem: With this approach, the technical conditions under
which the asymptotic distribution is derived are not met in this setting;

* Andrews (1993) showed that under appropriate conditions, the QLR
statistic, also known as Sup-test (F, W, LR) statistic, has a non-standard
limiting distribution (“non-standard” = no existing table; needs a new one).

¢ The distribution depends on the number of parameters of the

model, k, which are tested for stability, and trimming value, . 3
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Structural Change: Test with Unknown Break

* Andrews (1993) tabulated the non-standard distribution of the SupW
for different k, a, and trimming values (n).

Note: It is usual to test the SupF, using the critical values of SupW,
by dividing the SupW critical values by k. In the next slide, Andrews
(1993) table. (Andrews (2003) issued a slightly corrected Table.)

For example, for k =2 & 4, (& 71y= Tmin/T = (1 - Tinax/T) = .15),
using o« = .05, the SupW critical values are = 11.79 & 16.45,
respectively. Then, for the SupF critical values, we get 5.89 (= 11.79/2)
and 4.11 (= 16.45/2), respectively.

Structural Change: Test with Unknown Break

Critical values of the QLR test Distribution, taken from Andrews
(1993). Note: p = # of parameters (k), n, = trimming value. (Ignore A.)
840 DONALD W. K. ANDREWS

TABLE
Asvmrromic Crimical VALUES

Critical value

p=1 p=2 p=3 p=4 p=5
wo A 1% S® 1% 10% 5% 1% 10% 5% 1% 10% % 1% 10% 5% 1% {for test for

50 100 271 384 663 461 S99 921 625 781 1134 778 949 1328 924 1107 1509 k:2 .= 15
A9 108 347 473 782 542 686 1030 719 883 1258 893 1063 1464 1039 1228 163 5 g T .
A8 117 37 510 826 580 731 1071 764 929 1305 942 1117 1517 1096 1288 1683 _

A7 127 402 538 865 612 767 1101 798 962 1339 982 1163 1591 1140 1327 17.M2 and o = .05.
A5 149 438 591 900 660 811 1177 850 1015 1423 1035 1227 1664 1205 1400 18
A0 225 510 657 982 745 902 1291 946 1117 1488 1139 1332 1766 1) 9.23
35 345 559 705 1053 806 967 1353 1016 1205 1571 1210 14 386 1593 1999
TA79 19.10 1458 1648 20.67
1534 1978 1517 1725 2139
1584 2024 1563 1788 2190

A5 3211 747 885 1235 1001 1179 1551 1227 1415 1768 1431 - 164542071 1620 1835 2249
[0 BLOO 763 931 1269 1050 1227 1604 1281 1462 1828 1494 1698 2T 687 1893 23
05 36100 819 984 1301 1120 1293 1644 1347 1515 1906 1562 1756 2154 17 61 2418

p=6 p=T p=8 =9 p=10
wy A 10% 5% 1% 10% 5% 1% 10% 3% 1% 10% 3% 1% 10% 5% 1%

50 100 1064 1259 1681 1202 1407 1848 1336 1551 2009 1468 1692 2167 1599 1831 2321 Critical value
49 108 1181 174 1832 1327 1552 1993 1329 1563 2033 1617 1836 205 1733 1979 H@ o f

48 117 1242 1445 19012 1352 1614 2064 1389 1631 2114 1682 1925 2383 1808 2035 2575 1Of test for
A7 127 1290 1486 1968 1432 1663 2114 1443 1674 2172 1726 1974 2480 1867 2092 2643

A5 149 1353 1559 2045 1497 1738 2232 1505 1753 2228 1810 2059 2552 19% 7 2% k=4 1. = .15
40 225 1471 1691 2160 1623 1841 2135 1626 1873 2363 1956 2212 2686 2074 2315 2886 >0

s 345 1556 1775 2233 1709 1934 2410 1706 1946 2464 20490 2203 2077 2187 2417 9% d — 05
30 544 1632 1846 2306 1774 2001 2486 1790 2036 2564 2127 2365 2850 2273 2508 w4 and o« = .U,
25 900 1700 1907 2365 1838 2063 2511 1861 2095 2610 2193 2431 2923 2332 2550 3132

20 1600 1756 1964 2427 1904 2107 2572 197 2147 2676 2254 2491 2992 2400 2642 3198

15 3211 1812 2026 2479 19.69 2184 2623 1982 2213 2725 2315 2547 3052 2462 27.03 1B

10 5100 1878 2082 2521 2032 2251 2691 2045 2287 2769 2377 2616 3115 2539 2787 3295

05 36100 1949 2156 2556 2102 2322 27153 2123 2360 2877 2464 2694 3161 2624 2863 386
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F-test

GDP Growth - AR(1) Model: F-test at different Break Points

Structural Change: Test with Unknown Break

Example (continuation): We search for breaking points for GDP
growth rate in AR(1) model. Below, we plot all F-tests starting at T*15:
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Break Point

* Maximum F is 22.08 occurs in Jan 2009 (observation #250). Then,
QLR =22.08 > 5.89 = Reject H;, at 5% level & break is not Oct 73!.

F-test

F-test at different Break Points

Structural Change: Test with Unknown Break

Example: We search for breaking points for IBM returns in the 3-
factor FIF model. Below, we plot all F-tests starting at T*15:

= Cannot reject H at 5% level.
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* Maximum F is 3.83 occurs in May 1993 (observation #243). Then,
QLR =3.83 < 4.11
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Structural Change: Test with Unknown Break (R)

* Chow Test for different breaking points, starting at T'1.

y <-ibm_x;

x1 <- Mkt_RF

x2 <- SMB

x3 <- HML

T <- length(x1)

x0 <- matrix(1,T,1)

x <- cbind(x0,x1,x2,x3)

k <- ncol(x)

b <- solve(t(x)%*% x)%*% t(x)%*%y #b=(XX)-1X'y (OLS regtession)

e <-y-x%*%b # regression residuals, e

RSS_R <- as.numeric(t(e)%o*%oc) # RSS for Restricted (no structural change)
T1 <- round(T * 1/5) # Trim .20 of data

t<-T1 # t will be the counter for loop. Starts at T1.
T2 <- round(T * 4/5) # Trim .20 of data

T sam <-T2-T1

All_F <- matrix(0,T_sam,1) # Matrix to accumulate the (T2-T1) F-tests
while (t <=T2) { # Start while loop with counter t

vl <yl

x_ul <-x[l:t] s

Structural Change: Test with Unknown Break (R)

b_1 <- solve(t(x_ul)%*% x_ul)%*% t(x_ul)%*%y_1  #b = (X'X)-1 X'y (OLS regression)

el <-y_1-x_ul%*%b_1 # regression residuals, e
RSS1 <- as.numeric(t(e1)%*%el) # RSS for regime 1

kk = t+1

y_2 <- y[kkeT]

x_u2 <- x[kk:T}]
b_2 <- solve(t(s_u2)%*% x_u2)%*% t(x_u2)%*%y_2  #b = (X'X)-1 X'y (OLS regression)
€2 <-y_2-x_u2%*%b_2 # regression residuals, e

RSS2 <- as.numeric(t(e2)%0*%c2) # RSS for regime 2

F <- (RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))

kt<-t-T1+1 # kt is an index that start at 1
All_Flkt] <-F # add F-test to All_F according to kt
t=t+1

}

plot(AllE, col="red",ylab ="F-test", xlab ="Break Point")
title("F-test at different Break Points")

F_max <- max(All_F) # Find the maximum F-test (QLR)
3
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RS - Financial Econometrics - Lecture 6-b (Model Specification)

Structural Change Tests: Remarks

* The results are conditional on the breaking point —say, October 73 or
Dec 2001.

* The breaking point is usually unknown. It needs to be estimated.
* It can deal only with one structural break —i.e., two categories!
* The number of breaks is also unknown. They need to be estimated.

¢ Characteristics of the data (heteroscedasticity —for example, regimes
in the variance- and unit roots (high persistence) complicate the test.

* In general, only asymptotic (consistent) results are available.

* There are many modern tests that take care of these issues, but
usually also with non-standard distributions.
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