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Lecture 6-a
Testing in the CLM & Model 

Specification

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2020 (for private use, not to be posted/shared online).

• Q: Is Rb – q close to 0? Two different approaches to this question. 

Approach (1): We base the answer on the discrepancy vector:  

m = Rb – q. 

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

Under H0 and assuming (A5) & estimating 2 with s2 = ee/(T - 𝑘):

W* = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

F = W*/J ~ 𝐹௃,்ି௞.

If (A5) is not assumed, the results are only asymptotic: J * F
ௗ
→ χ௃

ଶ

Review: Testing H0: R – q = 0
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Approach (2): We base the answer on a model loss of fit when 
restrictions are imposed. Then, we construct an F test to check if the 
unrestricted RSS (𝑅𝑆𝑆௎) is different from the restricted RSS (𝑅𝑆𝑆ோ). 
Does it go down a lot?  –i.e., significantly? 

Steps: 

1. Estimate Restricted Model, get 𝑅𝑆𝑆ோ
2. Estimate Unrestricted Model, get 𝑅𝑆𝑆௎

𝐹 ൌ  
ೃೄೄೃ ష ೃೄೄೆ
ሺೖೆ ష ೖೃሻ
ೃೄೄೆ
ሺ೅ష ೖೆሻ

~ 𝐹௃,்ି௞. (where 𝐽 = 𝑘௎ െ  𝑘ோ)

• The F-test constructed using a variable that can divide the data into 
2 categories to compute 𝑅𝑆𝑆ோ & 𝑅𝑆𝑆௎ is usually referred as Chow test. 

Review: Testing H0: R – q = 0 with an F-Test

Review: Non-nested Models and Tests

• So far, all our tests (t-, F- & Wald tests) have been based on nested 
models, where the R model is a restricted version of  the U model.

Example:  
Model U Y = Xβ + Wδ + ε (Unrestricted)
Model R Y = Xβ + ξ (Restricted)

Model U becomes Model R under H0: δ = 0.

• Sometimes, we have two rival non-models -i.e., neither is a 
restricted version of  the other. How do we choose a model?

Example:  
Model 1 Y = Xβ + Wδ + ε
Model 2 Y = Xβ + Zγ + ξ
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• Encompassing Test

We have:
Model 1 Y = Xβ + Wδ + ε
Model 2 Y = Xβ + Zγ + ξ

Then, the Encompassing Model (ME) is:
ME: Y = Xβ + Wδ + Zγ + ε

Now test, separately, the hypotheses (1) δ = 0 and (2) γ = 0. That is, 

F-test for H0: γ = 0: ME (U Model) vs Model 1 (R Model).
F-test for H0: δ = 0: ME (U Model) vs Model 2 (R Model).

Assuming the restrictions cannot be rejected, we prefer the model with 
the lower F statistic for the test of  restrictions. 

Review: Non-nested Models and Tests

• J-Test

Two non-nested models:
Model 1: Y = Xβ + ε
Model 2: Y = Zγ + ξ

• Steps:
(1) Estimate Model 1  obtain fitted values: Xb. 

(2) Add Xb to the list of  regressors in Model 2:  Y = Zγ + λXb + ξ

(3) Do a t-test on λ. Rejecting H0: λ=0 is evidence against Model 2 & in 
favour of  Model 1. 

(4) Repeat the procedure (1)-(3) the other way round and do a t-test on 
λ. Rejecting H0: λ=0 is evidence against Model 1 & for Model 2. 

(5) Rank the models on the basis of  this test.

Review: Non-nested Models and Tests
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OLS Estimation - Assumptions

• CLM Assumptions

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X)=𝑘-, where T ≥ 𝑘.

Q: What happens when (A1) is not correctly specified? 

• We look at (A1). We have already studied what happens when we 
impose restrictions in the DGP: If we impose a true restrictions, 
estimation is unbiased & more efficient; a false restriction causes bias!

This short lecture: Are we omitting a relevant regressor? Are we 
including an irrelevant variable? Can we test for omitted variables?

Specification Errors: Omitted & Irrelevant X’s

• Omitting relevant variables:  Suppose the correct model (DGP) is 

𝒚 = X11 + X22 +  –the “long regression,” with X1 & X2.  

But, we compute OLS omitting X2, a true driver of y. That is,

𝒚 = X11 +  –the “short regression.” 

Implication: Restricted estimator b* is biased, but more efficient.

• Irrelevant variables . Suppose the correct model is 

𝒚 = X11 +  –the “short regression,” with X1

But, we estimate, ignoring the  true restriction 2 = 0:

𝒚 = X11 + X22 +  –the “long regression.”

Implication: Estimator b is unbiased, but inefficient.
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• In practice, we rely on the asymptotic distribution of the Wald test. 

That is, W
ௗ
→ 𝜒௃

ଶ.

• There are two other popular tests that are asymptotically equivalent 
–i.e., with same asymptotic distribution: the Likelihood Ratio (LR) 
and the Lagrange Multiplier (LM) tests.

• LR test: Based on the (log) Likelihood. It needs two ML estimations: 

- The unrestricted estimation, producing θ෠ெ௅, 

- The restricted estimation, producing θ෠ோ. 

Then, the LR test:

𝐿𝑅 ൌ 2ሾlogሺ 𝐿ሺθ෠ெ௅ሻሻ െ logሺ 𝐿ሺθ෠ோሻሻሿ 
 ୢ 

 𝜒௃
ଶ

Note: MLE requires assuming a distribution, usually, a normal.

Trilogy of Asymptotic Tests: LR, Wald, and LM

Example: We do a LR test to test if the SMB & HML FF factors are 
significant, using monthly data 1973 – 2020 (T=569). That is, 

H0: SMB = HML = 0

We use the function lrtest from the R package lmtest. 

library(lmtest)
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML)
fit_ibm_capm <- lm (ibm_x ~ Mkt_RF)
lrtest(fit_ibm_ff3, fit_ibm_capm)

Likelihood ratio test

Model 1: ibm_x ~ Mkt_RF + SMB + HML
Model 2: ibm_x ~ Mkt_RF
#Df LogLik Df Chisq Pr(>Chisq)   

1   5 810.03                        
2   3 805.30 -2 9.4616  0.008819 **  p-value is small: Reject H0

The F Test: Are SMB and HML Priced Factors?
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Technical note: The LR test is a consistent test. An asymptotic test 
which rejects H0 with probability one when the H1 is true is called a 
consistent test. That is, a consistent test has asymptotic power of 1.  The 
LR test  is a consistent test. 

• LM Test: It needs only one estimation: the restricted estimation, 
producing θ෠ோ. If the restriction is true, then the slope of the objective 
function (say, the Likelihood) at θ෠ோshould be zero. The slope is called 
the Score, S(θ෠ோ). The LM test is based on a Wald test on S(θ෠ோ) = 0. 

𝐿𝑀 ൌ 𝑆 θ෠ோ
ᇱ
ሾ𝑉𝑎𝑟ሺ𝑆 θ෠ோ ሿିଵ𝑆 θ෠ோ   

 ୢ 
  𝜒௃

ଶ

It turns out that there is a much simpler formulation for the LM test, 
based on the residuals of the restricted model. We will present this 
version of the test next. 

Trilogy of Asymptotic Tests: LR, Wald, and LM

In general, W > LR > LM.

Lu

LR

θ෠ெ௅ ൌ θ෠௎θ෠ோ

LR/2

Wald

LM

Trilogy of Asymptotic Tests: LR, Wald, and LM
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Testing Model Specification with an LM Test

• We can use the LM test to check for omitted variables, H0:  = 0. 
We have already presented LR & F tests of H0:  = 0. Why use an LM 
test? LM tests only use the restricted estimation, producing θ෠ோ. 

• The simpler formulation of the LM test is based on the residuals of 
the restricted model, eR. 

Simple intuition. Everything that is omitted from (& belongs to!) a 
model should appear in the residuals (eR). Suppose the true model is:

𝒚 = X11 + Z2 + 
But, we omit the J variables, Z: 

𝒚 = X11 + 
An LM test checks if eR can be explained by the J omitted variables Z.13

Testing Model Specification with an LM Test

• We use a simple regression of eR against Z (dimension JxT) to check 
for the misspecification.

• LM test steps:

(1) Run restricted model (y = X 1 + ). Get restricted residuals, eR.

(2) (Auxiliary Regression). Run the regression of eR on all the omitted 
J variables, Z, and the 𝑘

 
included variables, X. In our case:  

eR,i = α0 + α1 xi,1 + ...+ α𝑘 xi,𝑘 + γ1 zi,1+ .... + γJ zi,J + vi

 Keep the R2 from this regression, 𝑅௘ோ
ଶ . 

(3) Compute LM-statistic:

LM = T * 𝑅௘ோ
ଶ ௗ

→ χ௃
ଶ. 14



RS - Financial Econometrics - Lecture 5 & 6

8© R. Susmel, 2023. Do not post/share online without written permission 

Testing Model Specification with an LM Test

Technical Note: We include the original variables in (2), X, in the 
auxiliary regression to get the convenient form for the LM-test, as 
shown by Engle (1982).

• The LM Test is very general. It can be used in many settings, for 
example, to test for nonlinearities, interactions among variables, 
autocorrelation or heteroscedasticity (discussed later).

• Asymptotically speaking, the LM Test, the LR Test and the Wald 
Test are equivalent –i.e., they have the same limiting distribution, χ௃

ଶ.

In small T, they can have different conclusions. In general, however, 
we find: W > LR > LM. That is, the LM test is more conservative 
(cannot reject more often) and the Wald test is more aggressive.

15

Testing Model Specification with an LM Test

Example: We use an LM test to check if the standard CAPM for 
IBM returns omits SMB and HML. (J = 2)
fit_ibm_capm <- lm (ibm_x ~ Mkt_RF) # Restricted Model
resid_r <- fit_ibm_capm$residuals # extract residuals from R model
fit_lm <- lm (resid_r ~ Mkt_RF + SMB + HML) # auxiliary regression
> summary(fit_lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) 0.0007021 0.0024875   0.282   0.7779  
Mkt_RF 0.0125253 0.0567221   0.221   0.8253  
SMB      -0.2124596 0.0841119  -2.526   0.0118 *
HML     -0.1715002 0.0846817  -2.025   0.0433 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.05848 on 565 degrees of freedom
Multiple R-squared: 0.01649,   Adjusted R-squared:  0.01127 
F-statistic: 3.158 on 3 and 565 DF,  p-value: 0.02438

16
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Testing Model Specification with an LM Test

Example (continuation):
R2_r <- summary(fit_lm)$r.squared # extracting  R2 from fit_lm
> R2_r
[1] 0.01649104

LM_test <- R2_r * T
> LM_test
[1] 9.383402  LM_test > qchisq (.95,df=2)  Reject H0.

> qchisq(.95, df = 2) # chi-squared (df=2) value at 5% level
[1] 5.991465
p_val <- 1 - pchisq(LM_test, df = 2)  # p-value of LM_test
> p_val
[1] 0.009171071  p-value is small  Reject H0.

Note: In Lecture 5 we performed the same test with the Wald test 
(using the F distribution), the p-value was 0.0091175. (This almost 
exact coincidence is not always the case.)

17


