

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2020 (for private use, not to be posted/shared online).

Review: Testing H_0 : $R\beta - q = 0$ • Q: Is Rb - q close to 0? Two different approaches to this question. Approach (1): We base the answer on the discrepancy vector: $\mathbf{m} = Rb - q.$ Then, we construct a Wald statistic: $W = \mathbf{m}' (\operatorname{Var}[\mathbf{m} | \mathbf{X}])^{-1} \mathbf{m}$ Under H_0 and assuming (A5) & estimating σ^2 with $s^2 = \mathbf{e'e}/(T - k)$: $W^* = (\mathbf{Rb} - \mathbf{q})' \{\mathbf{R}[s^2(\mathbf{X'X})^{-1}]\mathbf{R}\}^{-1}(\mathbf{Rb} - \mathbf{q})$ $F = W^*/J \sim F_{J,T-k}.$ If (A5) is not assumed, the results are only asymptotic: $J * F \xrightarrow{d} \chi_J^2$

Review: Testing H_0 : $R\beta - q = 0$ with an F-Test

Approach (2): We base the answer on a model loss of fit when restrictions are imposed. Then, we construct an F test to check if the unrestricted RSS (RSS_U) is different from the restricted RSS (RSS_R). Does it go down a lot? –i.e., significantly?

Steps:

- 1. Estimate Restricted Model, get RSS_R
- 2. Estimate Unrestricted Model, get RSS_U

$$F = \frac{\frac{RSS_R - RSS_U}{(k_U - k_R)}}{\frac{RSS_U}{(T - k_U)}} \sim F_{J,T-k}. \quad (\text{where } J = k_U - k_R)$$

• The F-test constructed using a variable that can divide the data into 2 categories to compute $RSS_R \& RSS_U$ is usually referred as *Chow test*.

Review: Non-nested Models and Tests

• So far, all our tests (t-, F- & Wald tests) have been based on nested models, where the R model is a restricted version of the U model.

Example:

	Model U	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\boldsymbol{\delta} + \boldsymbol{\epsilon}$	(Unrestricted)	
	Model R	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\xi}$	(Restricted)	
Ν	Model U becomes M	Iodel R under $H_0: \delta = 0$.		
• r	• Sometimes, we have two rival non-models -i.e., neither is a restricted version of the other. How do we choose a model?			
I	Example:			
	Model 1	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\boldsymbol{\delta} + \boldsymbol{\epsilon}$		
	Model 2	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\xi}$		

Review: Non-nested Models and Tests			
	• J-Test		
	Two non-nested models:		
	Model 1: $Y = X\beta + \varepsilon$		
	Model 2: $Y = Z\gamma + \xi$		
	 Steps: (1) Estimate Model 1 ⇒ obtain fitted values: Xb. 		
	(2) Add Xb to the list of regressors in Model 2: $\mathbf{Y} = \mathbf{Z}\boldsymbol{\gamma} + \lambda \mathbf{X}\mathbf{b} + \boldsymbol{\xi}$		
	(3) Do a <i>t-test</i> on λ . Rejecting H ₀ : λ =0 is evidence against Model 2 & in favour of Model 1.		
	(4) Repeat the procedure (1)-(3) the other way round and do a <i>t-test</i> on λ . Rejecting H ₀ : λ =0 is evidence against Model 1 & for Model 2.		
	(5) Rank the models on the basis of this test.		

OLS Estimation - Assumptions

- CLM Assumptions
- (A1) DGP: $\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ is correctly specified.
- $(\mathbf{A2}) \ \mathbf{E}[\boldsymbol{\epsilon} \,|\, \mathbf{X}] = 0$
- (A3) $\operatorname{Var}[\boldsymbol{\varepsilon} | \mathbf{X}] = \sigma^2 \mathbf{I}_{\mathrm{T}}$
- (A4) **X** has full column rank $-\operatorname{rank}(\mathbf{X}) = k$ -, where $T \ge k$.

Q: What happens when (A1) is not correctly specified?

• We look at (A1). We have already studied what happens when we impose restrictions in the DGP: If we impose a true restrictions, estimation is unbiased & more efficient; a false restriction causes bias!

<u>This short lecture</u>: Are we omitting a relevant regressor? Are we including an irrelevant variable? Can we test for omitted variables?

Specification Errors: Omitted & Irrelevant X's • Omitting relevant variables: Suppose the correct model (DGP) is $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$ —the "long regression," with $X_1 \& X_2$. But, we compute OLS omitting X_2 , a true driver of y. That is, $y = X_1\beta_1 + \varepsilon$ —the "short regression." Implication: Restricted estimator b^* is **biased**, but **more efficient**. • Irrelevant variables . Suppose the correct model is $y = X_1\beta_1 + \varepsilon$ —the "short regression," with X_1 But, we estimate, ignoring the true restriction $\beta_2 = 0$: $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$ —the "long regression." Implication: Estimator b is **unbiased**, but **inefficient**.

Trilogy of Asymptotic Tests: LR, Wald, and LM

• In practice, we rely on the asymptotic distribution of the Wald test. That is, $W \xrightarrow{d} \chi_J^2$.

• There are two other popular tests that are asymptotically equivalent –i.e., with same asymptotic distribution: the Likelihood Ratio (**LR**) and the Lagrange Multiplier (**LM**) tests.

• LR test: Based on the (log) Likelihood. It needs two ML estimations:

- The unrestricted estimation, producing $\hat{\theta}_{ML}$,

- The restricted estimation, producing $\hat{\theta}^{R}$.

Then, the LR test:

$$LR = 2[\log(L(\hat{\theta}_{ML})) - \log(L(\hat{\theta}^R))] \xrightarrow{a} \chi_J^2$$

Note: MLE requires assuming a distribution, usually, a normal.

The F Test: Are SMB and HML Priced Factors?

Example: We do a LR test to test if the SMB & HML FF factors are significant, using monthly data 1973 – 2020 (T=569). That is,

H₀: $\beta_{SMB} = \beta_{HML} = 0$ We use the function *lrtest* from the R package *lmtest*.

```
library(Imtest)
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML)
fit_ibm_capm <- lm (ibm_x ~ Mkt_RF)
lrtest(fit_ibm_ff3, fit_ibm_capm)</pre>
```

Likelihood ratio test

Model 1: ibm_x ~ Mkt_RF + **SMB** + **HML** Model 2: ibm_x ~ Mkt_RF #Df LogLik Df Chisq Pr(>Chisq) 1 5 810.03 2 3 805.30 -2 **9.4616** 0.008819 **

 \Rightarrow p-value is small: Reject H₀

Trilogy of Asymptotic Tests: LR, Wald, and LM

<u>Technical note</u>: The LR test is a *consistent test*. An asymptotic test which rejects H_0 with probability one when the H_1 is true is called a *consistent test*. That is, a consistent test has asymptotic power of 1. The LR test is a consistent test.

• **LM Test:** It needs only one estimation: the restricted estimation, producing $\hat{\theta}^R$. If the restriction is true, then the slope of the objective function (say, the Likelihood) at $\hat{\theta}^R$ should be zero. The slope is called the Score, $S(\hat{\theta}^R)$. The LM test is based on a Wald test on $S(\hat{\theta}^R) = 0$.

$$LM = S(\hat{\theta}^R)' [Var(S(\hat{\theta}^R)]^{-1}S(\hat{\theta}^R) \xrightarrow{d} \chi_J^2]$$

It turns out that there is a much simpler formulation for the LM test, based on the residuals of the restricted model. We will present this version of the test next.

Testing Model Specification with an LM Test

• We can use the LM test to check for omitted variables, $H_0: \beta = 0$. We have already presented LR & F tests of $H_0: \beta = 0$. Why use an LM test? LM tests only use the restricted estimation, producing $\hat{\theta}^R$.

• The simpler formulation of the LM test is based on the residuals of the restricted model, \mathbf{e}_{R} .

<u>Simple intuition</u>. Everything that is omitted from (& belongs to!) a model should appear in the residuals (e_R). Suppose the true model is:

$$\mathbf{y} = \mathbf{X}_1 \mathbf{\beta}_1 + \mathbf{Z} \mathbf{\beta}_2 + \mathbf{\varepsilon}$$

But, we omit the *J* variables, **Z**:

$$y = X_1 \beta_1 + \varepsilon$$

An LM test checks if \mathbf{e}_{R} can be explained by the *J* omitted variables **Z**₃

Testing Model Specification with an LM Test

• We use a simple regression of \mathbf{e}_{R} against \mathbf{Z} (dimension JxT) to check for the misspecification.

• LM test steps:

(1) Run restricted model ($\mathbf{y} = \mathbf{X} \boldsymbol{\beta}_1 + \boldsymbol{\epsilon}$). Get restricted residuals, \mathbf{e}_{R} .

(2) (Auxiliary Regression). Run the regression of e_R on all the omitted J variables, Z, and the k included variables, X. In our case:

 $e_{R,i} = \alpha_0 + \alpha_1 x_{i,1} + \dots + \alpha_k x_{i,k} + \gamma_1 z_{i,1} + \dots + \gamma_J z_{i,J} + v_i$

- \Rightarrow Keep the R² from this regression, R_{eR}^2 .
- (3) Compute LM-statistic:

 $\mathrm{LM} = T * R_{eR}^2 \xrightarrow{d} \chi_J^2.$

14

Testing Model Specification with an LM Test

<u>Technical Note</u>: We include the original variables in (2), \mathbf{X} , in the auxiliary regression to get the convenient form for the LM-test, as shown by Engle (1982).

• The LM Test is very general. It can be used in many settings, for example, to test for nonlinearities, interactions among variables, autocorrelation or heteroscedasticity (discussed later).

• Asymptotically speaking, the LM Test, the LR Test and the Wald Test are equivalent –i.e., they have the same limiting distribution, χ_J^2 . In small *T*, they can have different conclusions. In general, however, we find: W > LR > LM. That is, the LM test is more conservative (cannot reject more often) and the Wald test is more aggressive.

15

