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Lecture 6-a
Testing in the CLM & Model
Specification

Brooks (4™ edition): Chapters 3 & 4
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Review: Testing Hi: RB—-q =10

* Q: Is Rb — q close to 0? Two different approaches to this question.

Approach (1): We base the answer on the discrepancy vector:
m = Rb —q.

Then, we construct a Wald statistic:
W =m' (Varm|X])'m

Under H,, and assuming (A5) & estimating ¢” with & = e'e/(T - k):

W* = (Rb - q)' {R[ZX'X)"]R} (Rb - q)
F= W*// ~ F/,T—k'

d
If (A5) is not assumed, the results are only asymptotic: | * FF — X;
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Review: Testing H: RB — q = 0 with an F-Test

Approach (2): We base the answer on a model loss of fit when
restrictions are imposed. Then, we construct an F test to check if the
unrestricted RSS (RSSy) is different from the restricted RSS (RSSR).
Does it go down a lot? —i.e., significantly?

Steps:
1. Estimate Restricted Model, get RSSg
2. Estimate Unrestricted Model, get RSSy

RSSRp — RSSy

ﬁ
F = (CILQJS—S;]R)~ Fyr_k. (where | =lk; — kg)

(T-ky)

* The F-test constructed using a variable that can divide the data into
2 categories to compute RSSg & RSSy is usually referred as Chow test.

Review: Non-nested Models and Tests

* So far, all our tests (t-, F- & Wald tests) have been based on nested
models, where the R model is a restricted version of the U model.

Example:
Model U Y=XB+Wb+e (Unrestricted)
Model R Y=XB+ & (Restricted)

Model U becomes Model R under Hy: 6 = 0.

* Sometimes, we have two rival non-models -i.e., neither is a
restricted version of the other. How do we choose a model?

Example:
Model 1 Y=XB+Wéb+e
Model 2 Y=XB+Zy+E§
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Review: Non-nested Models and Tests

* Encompassing Test

We have:
Model1l Y=XB+ Wb +e
Model2 Y=XB+Zy+E

Then, the Encompassing Model (ME) is:
ME: Y=XB+Wé+Zy+e

Now test, separately, the hypotheses (1) 8 = 0 and (2) y = 0. That is,

F-test for Hy: y = 0: ME (U Model) vs Model 1 (R Model).
F-test for Hj: 8 = 0: ME (U Model) vs Model 2 (R Model).

Assuming the restrictions cannot be rejected, we prefer the model with
the lower F statistic for the test of restrictions.

Review: Non-nested Models and Tests

* J-Test
Two non-nested models:
Model 1: Y=XB+e
Model 2: Y=Zy+E
e Steps:

(1) Estimate Model 1 => obtain fitted values: Xb.
(2) Add Xb to the list of regressors in Model 2: 'Y =Zy +31Xb + &

(3) Do a #-test on L. Rejecting H: A=0 is evidence against Model 2 & in
favour of Model 1.

(4) Repeat the procedure (1)-(3) the other way round and do a ##esz on
L. Rejecting H: A=0 is evidence against Model 1 & for Model 2.

(5) Rank the models on the basis of this test.
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OLS Estimation - Assumptions

¢ CLM Assumptions

(A1) DGP:y =X B + gis correctly specified.

(A2) E[g|X] = 0

(A3) Var[e|X] = & I,

(A4) X has full column rank —rank(X)=k-, where T > k.

Q: What happens when (A1) is not correctly specified?

* We look at (Al). We have already studied what happens when we
impose restrictions in the DGP: If we impose a true restrictions,
estimation is unbiased & more efficient; a false restriction causes bias!

This short lecture: Are we omitting a relevant regressor? Are we
including an irrelevant variable? Can we test for omitted variables?

Specification Errors: Omitted & Irrelevant X’s

¢ Omitting relevant variables: Suppose the correct model (DGP) is
y=XB, +XB,+te —the “long regression,” with X, & X,.

But, we compute OLS omitting X, a true driver of y. That is,

y=XB, +¢ —the “short regression.”

Implication: Restricted estimator b* is biased, but more efficient.

¢ Irrelevant variables . Suppose the correct model is
y=XpB, +¢ —the “short regression,” with X
But, we estimate, ignoring the true restriction B, = 0:

y=XB, +XB,+e —the “long regression.”

Implication: Estimator b is unbiased, but inefficient.
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Trilogy of Asymptotic Tests: LR, Wald, and LM

¢ In practice, we rely on the asymptotic distribution of the Wald test.
da
That is, I = 7.

¢ There are two other popular tests that are asymptotically equivalent
—i.e., with same asymptotic distribution: the Likelihood Ratio (LR)
and the Lagrange Multiplier (LM) tests.

* LR test: Based on the (log) Likelibood. 1t needs two ML estimations:
- The unrestricted estimation, producing 8y,
- The restricted estimation, producing ox.
Then, the LR test:
LR = 2[log(L(Byy)) — log( L(BR))] — x}

Note: MLE requires assuming a distribution, usually, a normal.

The F Test: Are SMB and HML Priced Factors?

Example: We do a LR test to test if the SMB & HML FF factors are
significant, using monthly data 1973 — 2020 (T=569). That is,

Hy: Boas = Briag. =0
We use the function /est from the R package /ntest.

library(Imtest)

fit_ibm_ff3 <-1lm (ibm_x ~ Mkt RF + SMB + HML)
fit_ibm_capm <-Im (ibm_x ~ Mkt_RF)
Irtest(fit_ibm_£f3, fit_ibm_capm)

Likelihood ratio test

Model 1: ibm_x ~ Mkt_RF + SMB + HML
Model 2: ibm_x ~ Mkt_RF
#Df LogLik Df Chisq Pr(>Chisq)
1 5810.03
2 3805.30 -2 9.4616 = p-value is small: Reject H,
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Trilogy of Asymptotic Tests: LR, Wald, and LM

Technical note: The LR test is a consistent test. An asymptotic test
which rejects H, with probability one when the H, is true is called a
consistent test. That is, a consistent test has asymptotic power of 1. The
LR test is a consistent test.

* LM Test: It needs only one estimation: the restricted estimation,
producing BR. If the restriction is true, then the slope of the objective
function (say, the Likelihood) at 8%should be zero. The slope is called
the Score, S(éR). The LM test is based on a Wald test on S(QR) =0.

LM = $(8%) [Var(s(8®)15 (%) L 42

It turns out that there is a much simpler formulation for the LM test,
based on the residuals of the restricted model. We will present this
version of the test next.

|_u

LR

Trilogy of Asymptotic Tests: LR, Wald, and LM

LR/2

LM

Wald
—

of Oy, =87

In general, W > LR > LM.
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Testing Model Specification with an LM Test

* We can use the LM test to check for omitted vatiables, Hy: B = 0.
We have already presented LR & F tests of Hy: B = 0. Why use an LM
test? LM tests only use the restricted estimation, producing 8R.

¢ The simpler formulation of the LM test is based on the residuals of
the restricted model, ey.

Simple intuition. Everything that is omitted from (& belongs tol) a
model should appear in the residuals (eg). Suppose the true model is:

y=X\p, +7ZB,+¢
But, we omit the | variables, Z:
y=Xp +e
An LM test checks if eg can be explained by the | omitted variables Zi3

Testing Model Specification with an LM Test

* We use a simple regression of ey against Z (dimension JxT) to check
for the misspecification.

* LM test steps:
(1) Run restricted model (y = X B, + €). Get restricted residuals, ey.

(2) (Auxiliary Regression). Run the regression of ey on all the omitted
J variables, Z, and the k included variables, X. In our case:

epi = %y T oy Xy Tt o X Fypzgt ot NE tv;
= Keep the R? from this regression, RZg.

(3) Compute LM-statistic:
2 4
LM=T*Rzr = xj- 14
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Testing Model Specification with an LM Test

Technical Note: We include the original variables in (2), X, in the
auxiliary regression to get the convenient form for the LM-test, as
shown by Engle (1982).

* The LM Test is very general. It can be used in many settings, for
example, to test for nonlinearities, interactions among variables,
autocorrelation or heteroscedasticity (discussed later).

* Asymptotically speaking, the LM Test, the LR Test and the Wald
Test are equivalent —i.e., they have the same limiting distribution, X;
In small T, they can have different conclusions. In general, however,

we find: W > LR > LM. That is, the LM test is motre conservative
(cannot reject more often) and the Wald test is more aggressive.

Testing Model Specification with an LM Test

Example: We use an LM test to check if the standard CAPM for
IBM returns omits SMB and HML. (] = 2)

fit_ibm_capm <-1lm (ibm_x ~ Mkt_RF) # Restricted Model

resid_r <- fit_ibm_capm$residuals # extract residuals from R model
fit_Ilm <-Im (resid_r ~ Mkt_RF + SMB + HML) # auxiliary regression

> summary(fit_Im)

Coefficients:

Estimate  Std. Error t value Pr(>|t|)
(Intercept) 0.0007021 0.0024875 0.282 0.7779
Mkt_RF  0.0125253 0.0567221 0.221 0.8253
SMB -0.2124596 0.0841119 -2.526 0.0118 *
HML -0.1715002 0.0846817 -2.025 0.0433 *
Signif. codes: 0 “*** 0.001 ** 0.01 **0.05 0.1 <1
Residual standard error: 0.05848 on 565 degrees of freedom
Multiple R-squared: 0.01649, Adjusted R-squared: 0.01127
F-statistic: 3.158 on 3 and 565 DF, p-value: 0.02438
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Example (continuation):
R2_r <- summary(fit_lm)$r.squared
>R2 r

[1] 0.01649104

LM_test <-R2_r*T
> LM_test
[1] 9.383402

> qchisq(.95, df = 2)

[1] 5.991465

p_val <- 1 - pchisq(LM_test, df = 2)
> p_val

[1] 0.009171071

Testing Model Specification with an LM Test

# extracting R? from fit_lm

= LM_test > qchisq (.95,df=2) = Reject H,
# chi-squared (df=2) value at 5% level
# p-value of LM_test

=> p-value is small = Reject H,,

Note: In Lecture 5 we performed the same test with the Wald test
(using the F distribution), the p-value was 0.0091175. (This almost
exact coincidence is not always the case.)
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