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Lecture 5
Testing in the CLM

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2023 (for private use, not to be posted/shared online).

Review: Bootstrapping in the CLM Var[b]

• We use a bootstrap to estimate b, Var[b], t-stats, and C.I. for b.

• Steps to bootstrap b in the CLM and get t-stats for b:

1.  Estimate CLM  using full sample (of size T) ⇒ get b

2.  Repeat B times:

- Draw T observations from the sample, with replacement

- Do OLS to compute bootstrapped 𝒃௥

- Estimate  with mean of bootstrapped b’s: 𝒃ഥ௥= 
∑ 𝒃ೝ
ಳ
ೝసభ

஻

3.  Estimate variance with: Vboot =  (1/B) [𝒃௥ െ b][𝒃௥ െ b]’

(Square root along the diagonal of Vboot gives SE[𝒃௥]).

4.  Estimate t-stats with: t = 𝒃௥/SE[𝒃௥]
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• Comparing OLS and Bootstrap Estimation for the FF 3-factor 
model for IBM returns:

OLS Bootstrap Bias
(2)-(1)Coeff. (1) S.E. Coeff. (2) S.E.

x -0.00509 0.00249 -0.00501 0.00249 8.0765e-05

xMkt_RF 0.90829 0.05672 0.90684 0.06132 -0.0014571

xSMB -0.21246 0.08411 -0.21245 0.11080 1.9914e-06

xHML -0.17150 0.08468 -0.17099 0.09730 0.0005133

Review: Bootstrapping in the CLM

• Higher SE for the bootstrap: More conservative tests (less rejections 
of  H0).When in doubt, always use more conservative tests.

Review – OLS with Restrictions

• CLM Assumptions

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X)=𝑘-, where T ≥ 𝑘.

• Now, we impose a linear restriction to the DGP (A1): R = q

Dimensions: 

R: Jx𝑘 - J = # of restrictions & 𝑘 = # of pars. 

: 𝑘x1

q: 𝑘x1

We do LS imposing restriction R = q: Get a restricted estimator: 𝐛∗
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Review – Restricted Estimation: Properties

• Restricted estimation produces 𝐛∗

𝐛∗ = 𝐛 – (XX)-1R[R(XX)-1R]-1(Rb – q)
= 𝐛 + correction

• Properties:
1. Unbiased?  

- Yes, if Theory is correct: E[𝐛∗|X] = E[𝐛|X] = 
- No, if Theory is incorrect: E[𝐛∗|X] ് 

2. Efficiency? Yes. Var[𝐛∗|X]  < Var[𝐛 |X]

3. We can show that RSS never decreases with restrictions: 

𝒆𝒆 = (𝒚 – X𝐛)(𝒚 – X𝐛) ≤ 𝒆∗𝒆∗= (𝒚 – X𝐛∗)(𝒚 – X𝐛∗)
 Restrictions cannot increase R2  R2 ≥ R2*

Review – Testing Restrictions: Wald Statistic

• Q: How do we test joint restrictions in the context of OLS?

A: We use Wald tests & F-tests.

• Wald statistic:

Let z = (vector of estimators – hypothesized value) be the distance 

W =  z [Var(z)]-1 z -a quadratic form, produces a number

Example: Let z = Rb – q, which under (A5) & H0: R = q

z ~ N(0, Var[z]) Var[z] = R [Var[𝐛|X]]-1 R

Then, if H0 is correct, W should be a small number, ideally close to 0. 
Distribution of 𝑊? 

– If z is normal, 𝑊 ~ 𝐹௃,்ି௞

– If z is not normal, using asymptotic theory, 𝑊
ௗ
→ χ௥௔௡௞ሾ௏௔௥ ௭ ሿ

ଶ
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• Q: Is Rb – q close to 0? Two different approaches to this question. 

Approach (1): We base the answer on the discrepancy vector:  

m = Rb – q (this is z above).

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

to test if m is different from 0.

Test H0 with 

𝑊*= (Rb – q) {R[𝑠ଶ(XX)-1]R}-1 (Rb – q)

F = 𝑊*/J ~ 𝐹௃,்ି௞ .

If (A5) is not assumed, the results are only asymptotic: J * F
ௗ
→ χ௃

ଶ

Review – Testing H0: R – q = 0 with 𝑾

Example:  We test in the 3 FF factor model for IBM returns 
(T=569). Steps

1. H0: SMB = 0.2 and HML = 0.6.

H1: SMB് 0.2 and/or HML് 0.6.  J = 2

We define R (2x4) below and write m = R – q = 0:

0 0 1 0
0 0 0 1

∗

ଵ
ெ௞௧
ௌெ஻
ுெ௅

= 0.2
0.6

2. Test-statistic:  F = W*/J = (Rb – q) {R[𝑠ଶ(XX)-1]R}-1 (Rb – q)

Distribution under H0: F = W*/2 ~ 𝐹ଶ,்ିସ

(or asymptotic, 2*F
ௗ
→ χଶ

ଶ)

Review – Testing H0: R – q = 0 with 𝑾
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Example (continuation):  We use the R package car to test H0.

library(car)

linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="F") # “F”: exact test 

Linear hypothesis test

Hypothesis:

SMB = 0.2

HML = 0.6

Model 1: restricted model

Model 2: ibm_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq F    Pr(>F)    

1    567 2.2691                                  

2    565 1.9324  2   0.33667 49.217 < 2.2e-16 ***  reject H0 at 5% level

Review – Testing H0: R – q = 0 with 𝑾

Example (continuation): The asymptotic test uses test=“Chisq”.

> linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="Chisq") # Asymptotic F

Linear hypothesis test

Hypothesis:

SMB = 0.2

HML = 0.6

Model 1: restricted model

Model 2: ibm_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)    

1    567 2.2691                                   

2    565 1.9324  2   0.33667 98.433  < 2.2e-16 ***  reject H0 at 5% level

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

qf(.95, df1=J, df2=(T - k)) # asymptotic distribution (Chi-square-distribution) 

[1] 5.991465 F_t_asym > 5.991465 reject H0 at 5% level

Review – Testing H0: R – q = 0 with 𝑾
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Approach(2):  We know that imposing the restrictions leads to a loss 
of fit: RSS must go up, R2 must go down.  Does R2 go down a lot?  –
i.e., significantly? 

We based the test on:

𝒆∗𝒆∗– 𝒆𝒆 = (R𝐛 – q)[R(XX)-1R]-1(R𝐛 – q)

 𝐹 =  
(𝒆∗𝒆∗ – 𝒆𝒆)/J
[𝒆𝒆/(T – ௞)] ~ 𝐹௃,்ି௞.

• We can write the F-test in terms of R2’s. Let 
R2 = unrestricted model = 1 – RSS/TSS
R*2 = restricted model fit = 1 – RSS*/TSS

After some algebra: 𝐹 = 
ሺோమ ି ோ∗మሻ ௃⁄

ሺଵିோమሻ ሺ்ି௞ሻ⁄
~ 𝐹௃,்ି௞.

Review – Testing H0: R – q = 0 with 𝑭

10

• In the linear model, with a constant (X1 = 𝒊):
𝒚 = X  +  = 1 + X2 2 + X3 3 + ... + Xk k + 

• We want to test if  the slopes of   X2, ... , Xk are equal to zero. That is,

H0: βଶ ൌ ⋯ ൌ β௞ ൌ 0
H1: at least one β௞ ്  0  J = 𝑘 – 1

• We have J = 𝑘 – 1. Then,
𝐹 = { (R2 – R2* )/(𝑘 – 1) } / [(1 – R2)/(𝑇 െ 𝑘)] ~ 𝐹௞ିଵ,்ି௞.

• For the restricted model, R2* = 0.


0 1 … 0
… … … …
0 0 0 1

𝛽ଵ
𝛽ଶ
. . .
𝛽௞

ൌ
0
…
0

• We can write H0: R – q = 0

The F-Test: Goodness-of-Fit Test (with 𝑭ሻ
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• This test statistic is called the F-test of  goodness of  fit. 

• It is reported in all regression packages as part of  the regression 
output. In R, the lm function reports it as “F-statistic.”

Then, 𝐹 = 
ோమ ሺ௞ିଵሻ⁄

ሺଵିோమሻ ሺ்ି௞ሻ⁄
 ~ 𝐹௞ିଵ,்ି௞.

The F-Test: Goodness-of-Fit Test (with 𝑭ሻ

10

Example: We want to test if  all the FF factors (Market, SMB, HML) 
are significant (J=3), using monthly data 1973 – 2020 (T=569). 
T <- length(ibm_x)

k <- 4

e <- fit_ibm_ff3$residuals # Extract residuals

y <- ibm_x - mean(ibm_x)

RSS <- sum(e^2)

R2 <- 1 - RSS/sum(y^2) #R-squared

> R2 

[1] 0.338985

> F_goodfit <- (R2/(k - 1))/((1 - R2)/(T - k)) # F-test of  goodness of  fit.

> F_goodfit

[1] 96.58204  F_goodfit > F3,565,.05 = 2.62068  Reject H0.

The F Test: H0: F-test of  Goodness of  Fit
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32

• In the linear model 
𝒚 = X  +  = 1 + X2 2 + X3 3 + X4 4 + 

• We want to test if  the slopes of  X3, X4 are equal to zero. That is,
H0: 3 = 4 = 0
H1: 3 ≠ 0 or 4 ≠ 0 or both 3 and 4 ≠ 0

• We use, 𝐹 =  
(𝒆∗𝒆∗ – 𝒆𝒆)/J
[𝒆𝒆/(T – ௞)] ~ 𝐹௃,்ି௞.

• Define 𝒚 = X  +  = 1 + X2 2 +  (RSSR)
𝒚 = 1 + X2 2 + X3 3 + X4 4 +  (RSSU)

𝐹ሺ𝑘௎ െ  𝑘ோ ,𝑇 െ 𝑘ሻ ൌ
ೃೄೄೃ ష ೃೄೄೆ
ሺೖೆ ష ೖೃሻ
ೃೄೄೆ
ሺ೅ష ೖೆሻ

The F Test: General Case – Example

Example: We want to test if the additional FF factors (SMB, HML) 
are significant, using monthly data 1973 – 2020 (T=569). 

Unrestricted Model: 

(U) (𝑟ூ஻ெ,௧ – 𝑟௙) = 0 + 1 (𝑟௠,௧ – 𝑟௙) + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧ + 𝜀௧

Hypothesis: H0: 2 = 3 = 0

H1: 2≠ 0 and/or 3 ≠ 0

Then, the Restricted Model:

(R) (𝑟ூ஻ெ,௧ – 𝑟௙) = 0 + 1 (𝑟௠,௧ – 𝑟௙) + 𝜀௧

Test: F = 
ሺோௌௌೃିோௌௌೆሻ/௃

ோௌௌೆ/ሺ்ି௞ೠሻ
~ 𝐹௃,்ି௞ , with J = 𝑘U – 𝑘R = 4 - 2 = 2

The F Test: Are SMB and HML Priced Factors?
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Example (continuation): The unrestricted 3-factor FF model was 
already estimated (fit_ibm_ff3). Same for the restricted model 
(fit_ibm_capm):

e_u <- fit_ibm_ff3$residuals # Unrestricted residuals

e_r <- fit_ibm_capm$residuals # Restricted residuals

T <- length(ibm_x)

k <- 4

k_r <- 2

RSS <- sum(e_u^2) # RSSU

RSS_r <- sum(e_r^2) # RSSR

> RSS = 1.932442 > RSS2 = 1.964844 

J <- k – k_r # J = degrees of freedom numerator 

F_test <- ((RSS_r - RSS)/J)/(RSS/(T-k))

The F Test: Are SMB and HML Priced Factors?

Example (continuation): 
> F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k))

> F_test

[1] 4.736834

> qf(.95, df1=J, df2=(T-k)) # F2,565,.05 value (≈ 3)

[1] 3.011672  Reject H0.

> p_val <- 1 - pf(F_test, df1=J, df2=(T-k)) # p-value of F_test

> p_val

[1] 0.009117494  p-value is small  Reject H0.

The F Test: Are SMB and HML Priced Factors?
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Example (continuation): 

There is package in R, lmtest, that performs this test, waldtest, (and 
many others, used in this class). You need to install it first.

Note: The models need to be nested. For the waldtest, the default 
reports the F-test with the F distribution. 

library(lmtest)
fit_wU <- lm (ibm_x ~ Mkt_RF + SMB + HML) # fit_ibm_ff3
fit_wR <- lm (ibm_x ~ Mkt_RF) # fit_ibm_capm
waldtest(fit_wU, fit_wR)

Wald test

Model 1: ibm_x ~ Mkt_RF + SMB + HML
Model 2: ibm_x ~ Mkt_RF
Res.Df Df F   Pr(>F)   

1    565                      
2    567 -2 4.7368 0.009117 **  p-value is small: Reject H0

The F Test: Are SMB and HML Priced Factors?

F-test: Two Categories & The Chow Test

• Suppose we are interested in the effect of  gender on CEO’s 
compensation. We have data on CEO’s compensation (y) and CEO’s 
gender, along with CEO’s experience (X1), sales of  the CEO’s 
company (X2), and profitability (X3). 

• We hypothesize that gender matter. Then, we estimate two models, 
one for each gender: 

M1 𝑦௜ = ଴ଵ + ଵଵ X1,I + ଶଵ X2,i + ଷଵ X3,i + ௜ for 𝑖 = Male
M2 𝑦௜ = ଴ଶ + ଵଶ X1,I + ଶଶ X2,i + ଷଶ X3,i + ௜ for 𝑖 ≠ Female

• Alternatively, we estimate only one model (“pooling”). That is, gender 
does not affect a CEO’s compensation. Then, we estimate:

Pooled 𝑦௜ = 0 + 1 X1,i+ 2 X2,i + 3 X3,i + ௜ for all 𝑖

Q: Which model should we use? 20
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• We test H0 (No gender differences): ଴ଵ = ଴ଶ = 0

ଵଵ = ଵଶ = 1

ଶଵ = ଶଶ = 2

ଷଵ = ଷଶ = 3

H1 (gender differences): For at least 𝑘 (= 0, 1, 2, 3): ௞
ଵ ≠ ௞

ଶ

• An F-Test can be used to test H0: 

- The pooled estimation is the Restricted estimation

- The two estimations (by gender) are the Unrestricted estimation.

• The F-test constructed using a variable that can divide the data into 2 
categories to compute 𝑅𝑆𝑆ோ  & 𝑅𝑆𝑆௎ is usually referred as Chow test. 

21

F-test: Two Categories & The Chow Test

• A Chow Test is used to test if  a variable that can divide the data into 
2 categories matters. That is, a Chow test checks if  we need only one 
model (“pooling”) for both categories or not. 

• Chow Test (an F-test)    –Chow (1960, Econometrica): 

(1) Run OLS with all the data, with no distinction between categories. 
(Pooled regression or Restricted regression). Keep RSSR.

(2) Run two separate OLS, one for each category (Unrestricted 
regression). Keep RSS1 and RSS2  RSSU = RSS1 + RSS2. 

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

𝐹 ൌ
ሺ𝑅𝑆𝑆ோ െ 𝑅𝑆𝑆௎ሻ/ሺ𝑘௎ െ 𝑘ோሻ

ሺ𝑅𝑆𝑆௎ሻ/ሺ𝑇 െ 𝑘௎ሻ
ൌ
ሺ𝑅𝑆𝑆ோ െ ሾ𝑅𝑆𝑆ଵ ൅ 𝑅𝑆𝑆ଶሿሻ/𝑘
ሺ𝑅𝑆𝑆ଵ ൅ 𝑅𝑆𝑆ଶሻ/ሺ𝑇 െ 2𝑘ሻ

22

F-test: Two Categories & The Chow Test
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Chow Test: Males or Females visit doctors more? 

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of  
Periods
Variables in the file are
Data downloaded from Journal of  Applied Econometrics Archive. This is an 
unbalanced panel with 7,293 individuals. There are altogether 27,322 
observations. The number of  observations ranges from 1 to 7 per 
family. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 
7=987). The dependent variable of  interest is

DOCVIS  =  number of  visits to the doctor in the observation period
GENDER_F = gender (1 = female)
HHNINC = household nominal monthly net income in German marks / 10000.

(4 observations with income=0 were dropped)
HHKIDS = children under age 16 in the household = 1; otherwise = 0
EDUC     = years of  schooling 
AGE        = age in years
MARRIED= marital status (1 = if  married)
WHITEC = 1 if  has “white collar” job 23

Chow Test: Males or Females visit doctors more? 

Health_Da <-
read.csv("https://www.bauer.uh.edu/rsusmel/4397/german_health.csv", 
head=TRUE, sep=",")

x_fem <- Health_Da$Gender_F

x_age <- Health_Da$age

x_edu <- Health_Da$educ

x_hhinc <- Health_Da$hhninc/100

x_hhkids <- Health_Da$hhkids

x_married <- Health_Da$married

x_white_col <- Health_Da$whitecollar

x_docvis <- Health_Da$docvis

fit_doc_vis <- lm (x_docvis ~  x_age +  x_edu + x_married + x_white_col + 
x_hhkids + x_hhinc)

summary(fit_doc_vis)
24
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Chow Test: Males or Females visit doctors more? 

• OLS Estimation for ALL. Keep RSSALL = 858,435 (= 5.606^2 * 27,315)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2.683700   0.249282  10.766  < 2e-16 ***
x_age 0.061810   0.003444  17.947  < 2e-16 ***
x_edu -0.118858   0.015573  -7.632 2.38e-14 ***
x_married -0.090716   0.089056  -1.019    0.308    
x_white_col -0.115412   0.076540  -1.508    0.132    
x_hhkids -0.492028   0.080014  -6.149 7.89e-10 ***
x_hhinc -0.015429   0.002046  -7.539 4.87e-14 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.606 on 27,315 degrees of  freedom
Multiple R-squared:  0.02949, Adjusted R-squared:  0.02928 
F-statistic: 138.3 on 6 and 27315 DF,  p-value: < 2.2e-16

Note: We compute RSSR, we impose there is no gender effect on the 
coefficients. 

RSSR = 𝑠ଶ  ∗ ሺ𝑇 െ 𝑘ሻ = 5.606^2 * 27,315 = 858,435 25

Chow Test: Males or Females visit doctors more? 

## Run a regression with only Women data. Use Allgen to collect relevant data for 
women only. We will do a for loop and keep data if  x_fem is greater than 0.

xx <- cbind(x_fem, x_docvis, x_age,  x_edu, x_married, x_white_col, x_hhkids, x_hhinc)

Allgen = NULL # Initialize empty (to collect variables by one sex (f/m) only)

i <- 1

T <- length(x_fem)

k <- ncol(xx)

for (i in 1:T) {

if  (xx[i,1] > 0) {

Allgen = rbind(Allgen, xx[i,2:k])

}

}  

y_g <- Allgen[,1] # Dependent variable: doctor’s visits by women only

x_g <- Allgen[,2:(k-1)] 26
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Chow Test: Males or Females visit doctors more? 

fit_doc_vis_f <- lm (y_g ~  x_g)
summary(fit_doc_vis_f)

• OLS Estimation for Women only. Keep RSSW = 478,894.2

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 2.999559   0.453506   6.614 3.88e-11 ***
x_gx_age 0.049366   0.005719   8.632  < 2e-16 ***
x_gx_edu -0.048141   0.027011  -1.782   0.0747 .  
x_gx_married -0.119853   0.133846  -0.895   0.3706    
x_gx_white_col -0.006734   0.124768  -0.054   0.9570    
x_gx_hhkids -0.636619   0.128844  -4.941 7.87e-07 ***
x_gx_hhinc -0.015651   0.003174  -4.932 8.25e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.052 on 13075 degrees of  freedom
Multiple R-squared:  0.01984, Adjusted R-squared:  0.01939 
F-statistic: 44.11 on 6 and 13075 DF,  p-value: < 2.2e-16

27

Chow Test: Males or Females visit doctors more? 

# Use above code, but  change for loop (now, keep data if  x_fem less than 1)

for (i in 1:T) {
if  (xx[i,1] < 1) {

Allgen = rbind(Allgen, xx[i,2:k])
}

}  

y_g <- Allgen[,1] # Dependent variable: doctor’s visits by women only
x_g <- Allgen[,2:(k-1)]

fit_doc_vis_m <- lm (y_g ~  x_g)
summary(fit_doc_vis_m)

28
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Chow Test: Males or Females visit doctors more? 

• OLS Estimation for Men only. Keep RSSM = 379.8470
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.801539   0.290792   6.195 5.98e-10 ***
x_gx_age 0.067656   0.004421  15.302  < 2e-16 ***
x_gx_edu -0.105462   0.018814  -5.605 2.12e-08 ***
x_gx_married 0.022278   0.121467   0.183 0.854480    
x_gx_white_col -0.367075   0.096300  -3.812 0.000139 ***
x_gx_hhkids -0.428916   0.102070  -4.202 2.66e-05 ***
x_gx_hhinc -0.015438   0.002629  -5.872 4.40e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.118 on 14233 degrees of  freedom
Multiple R-squared:  0.03602, Adjusted R-squared:  0.03561 

• Chow Test:

𝐹 ൌ ሺோௌௌೃ ି ሾோௌௌభାோௌௌమሿሻ/௞

ሺோௌௌభ ା ோௌௌమሻ/ሺ்ିଶ௞ሻ
ൌ  ሺ𝟖𝟓𝟖,𝟒𝟑𝟓 – 𝟑𝟕𝟐,𝟖𝟏𝟖.𝟏 ା 𝟒𝟕𝟖,𝟖𝟗𝟒.𝟐 ሿ/଻

ሺ𝟑𝟕𝟐,𝟖𝟏𝟖.𝟏 ା 𝟒𝟕𝟖,𝟖𝟗𝟒.𝟐ሻ/ሺ𝟐𝟕,𝟑𝟐𝟑 – ଵସሻ

= 31.1178  since F(7, 27309) = 2.009925  reject H0 at 5% level. 29

• Suppose there is an event that we think had a big effect on the 
behaviour of  our model. Suppose the event occurred at time TSB.
We think that the before and after behaviour of  the model is 
significantly different. For example, the parameters are different before 
and after TSB. That is,

𝑦௜ = ଴ଵ + ଵଵ X1,I + ଶଵ X2,i + ଷଵ X3,i + ௜ for 𝑖 ≤ TSB

𝑦௜ = ଴ଶ + ଵଶ X1,I + ଶଶ X2,i + ଷଶ X3,i + ௜ for 𝑖 > TSB

The event caused structural change in the model. TSB separates the 
behaviour of  the model in two regimes/categories (“before” & “after”.) 

• A Chow test tests if  one model applies to both regimes:
𝑦௜ = 0 + 1 X1,i+ 2 X2,i + 3 X3,i + ௜ for all 𝑖

• Under H0 (No structural change), the parameters are the same for all 𝑖.

F-Test: Structural Change & Chow Test

30
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• We test H0 (No structural change): ଴ଵ = ଴ଶ = 0

ଵଵ = ଵଶ = 1

ଶଵ = ଶଶ = 2

ଷଵ = ଷଶ = 3

H1 (structural change): For at least 𝑘 (= 0, 1, 2, 3): ௞
ଵ ≠ ௞

ଶ

• What events may have this effect on a model? A financial crisis, a big 
recession, an oil shock, Covid-19, etc. 

• Testing for structural change is the more popular use of  Chow tests.

• Chow tests have many interpretations: tests for structural breaks, 
pooling groups, parameter stability, predictive power, etc. 

• One important consideration: T may not be large enough. 31

F-Test: Structural Change & Chow Test

• We structure the Chow test to test H0 (No structural change), as usual. 

• Steps for Chow (Structural Change) Test: 

(1) Run OLS with all the data, with no distinction between regimes. 
(Restricted or pooled model). Keep RSSR.

(2) Run two separate OLS, one for each regime (Unrestricted model):

- Before Date TSB. Keep RSS1. 

- After Date TSB. Keep RSS2.  RSSU = RSS1 + RSS2. 

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

𝐹 ൌ
ሺ𝑅𝑆𝑆ோ െ 𝑅𝑆𝑆௎ሻ/ሺ𝑘௎ െ 𝑘ோሻ

ሺ𝑅𝑆𝑆௎ሻ/ሺ𝑇 െ 𝑘௎ሻ
ൌ
ሺ𝑅𝑆𝑆ோ െ ሾ𝑅𝑆𝑆ଵ ൅ 𝑅𝑆𝑆ଶሿሻ/𝑘
ሺ𝑅𝑆𝑆ଵ ൅ 𝑅𝑆𝑆ଶሻ/ሺ𝑇 െ 2𝑘ሻ

32

F-Test: Structural Change & Chow Test
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Example: 3 Factor Fama-French Model for IBM (continuation)
Q: Did the dot.com bubble (end of 2001, TSB = 348) affect the structure of 
the FF Model? Sample: January 1973 – December 2023 (T = 611).

Pooled RSS = 2.0826

Jan 1973 – Dec 2001 RSS = RSS1 = 1.3576 (T = 348) 

Jan 2002 – June 2020 RSS = RSS2 = 0.7076 (T = 263)

𝐹 ൌ ሾோௌௌೃିሺோௌௌభାோௌௌమሻሿ/௃ 

ሺோௌௌభାோௌௌమሻ/ሺ்ି௞ሻ
= 

[1.9324 ି ሺ1.3576+ 0.7076)]/4
ሺ1.3576+ 0.7076)/(611 − 2∗4) = 1.2744

 Since F4,611,.05 = 2.39, we cannot reject H0

Constant Mkt – rf SMB HML RSS T

1973-2020 -0.0049* 0.8857* -0.2281* -0.0582 2.0826 611

1973-2001 -0.0032 0.7994* -0.2196* -0.2294* 1.3576 342

2002 – 2023 -0.0054 0.9414* -0.2611* -0.0309& 0.7076 227 33

F-Test: Structural Change & Chow Test

Example (continuation): The R package sctrucchange estimates the 
Chow test. (As usual, you need to install package first.)

>library(sctrucchange)

> t_s <- 348

> sctest(ibm_x ~ Mkt_RF + SMB + HML, type = "Chow", point = t_s)

Chow test

data:  ibm_x ~ Mkt_RF + SMB + HML

F = 1.2744, p-value = 0.2787

34

F-Test: Structural Change & Chow Test
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Example: We test if  the Oct 1973 oil shock in quarterly GDP growth 
rates had an structural change on the GDP growth rate model.

We model GDP the growth rate with an AR(1) model, that is, GDP 
growth rate depends only on its own lagged growth rate:

𝑦௧ = 0 + 1 𝑦௧ିଵ + ௧
GDP_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/GDP_q.csv", head=TRUE, 
sep=",")
x_date <- GDP_da$DATE
x_gdp <- GDP_da$GDP
x_dummy <- GDP_da$D73
T <- length(x_gdp)
t_s <- 108 # TSB = Oct 1973

lr_gdp <- log(x_gdp[-1]/x_gdp[-T])
T <- length(lr_gdp)
lr_gdp0 <- lr_gdp[-1]
lr_gdp1 <- lr_gdp[-T]
t_s <- t_s -1 # Adjust t_s (we lost the first observation)

35

F-Test: Structural Change & Chow Test

Example (continuation):
y <- lr_gdp0 
x1 <- lr_gdp1
T <- length(y)
x0 <- matrix(1,T,1)
x <- cbind(x0,x1)
k <- ncol(x)

# Restricted Model (Pooling all data)
fit_ar1 <- lm(lr_gdp0 ~ lr_gdp1) # Fitting AR(1) (Restricted) Model
e_R <- fit_ar1 $residuals # regression residuals, e
RSS_R <- sum(e_R^2) # RSS Restricted

> summary(fit_ar1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.011565   0.001145  10.097  < 2e-16 ***
lr_gdp1     0.244846   0.056687  4.319 2.14e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01296 on 294 degrees of  freedom
36

F-Test: Structural Change & Chow Test
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Example (continuation):
# Unrestricted Model (Two regimes)

y_1 <- y[1:t_s]
x_u1 <- x[1:t_s,]
fit_ar1_1 <- lm(y_1 ~ x_u1 - 1) # AR(1) Regime 1
e1 <- fit_ar1_1$residuals # Regime 1 regression residuals, e
RSS1 <- sum(e1^2) # RSS Regime 1

kk = t_s+1 # Starting date for Regime 2
y_2 <- y[kk:T]
x_u2 <- x[kk:T,]
fit_ar1_2 <- lm(y_2 ~ x_u2 - 1) # AR(1) Regime 2
e2 <- fit_ar1_2$residuals # Regime 2 regression residuals, e
RSS2 <- sum(e2^2) #  RSS Regime 2

F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))
> F
[1] 4.877371
p_val <- 1 - pf(F, df1 = 2, df2 = T - 2*k)  # p-value of  F_test
> p_val
[1] 0.00824892  small p-values: Reject H0 (No structural change). 3

37

F-Test: Structural Change & Chow Test


