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Lecture 5
Testing in the CLM

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2023 (for private use, not to be posted/shared online).

Review: Bootstrapping in the CLM Var[b]

• We use a bootstrap to estimate b, Var[b], and t-stats. We can also 
compute C.I. for b.

• Steps to bootstrap b in the CLM:

1.  Estimate CLM  using full sample (of size T) ⇒ get b

2.  Repeat B times:

- Draw T observations from the sample, with replacement

- Estimate  with mean of b(r).  

3.  Estimate variance with 

Vboot =  (1/B) [b(r) - b][b(r) - b]’

(Square root along the diagonal of Vboot gives SE[b(r)]).

4.  Estimate t-stats with 

t = meam(b(r)/SE[b(r)]
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• Comparing OLS and Bootstrap Estimation for the FF 3-factor 
model for IBM returns:

OLS Bootstrap Bias
(2)-(1)Coeff. (1) S.E. Coeff. (2) S.E.

x -0.00509 0.00249 -0.00501 0.00249 8.0765e-05

xMkt_RF 0.90829 0.05672 0.90684 0.06132 -0.0014571

xSMB -0.21246 0.08411 -0.21245 0.11080 1.9914e-06

xHML -0.17150 0.08468 -0.17099 0.09730 0.0005133

Review: Bootstrapping in the CLM

• Higher SE for the bootstrap: More conservative tests (less rejections 
of  H0).When in doubt, always use more conservative tests.

Review – OLS Assumptions

• CLM Assumptions

(A1) DGP: y = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X)=k-, where T ≥ k.

Q: What happens when we impose to the DGP (A1) a linear 
restrictions, R = q?

A: We get a restricted estimator  𝐛∗

Q: How do we test joint restrictions in the context of OLS?

A: We use Wald tests & F-tests.
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Review: OLS Subject to Linear Restrictions

• Restrictions: Theory imposes certain restrictions on parameters and 
provide the foundation of several tests. In this Lecture, we only 
consider linear restrictions, written as R = q.

Dimensions: 

R: Jx𝑘 - J = # of restrictions & 𝑘 = # of pars. 

: 𝑘x1

q: 𝑘x1

• We consider the following restrictions:

(1) Dropping  variables from model ( = 0). 

(2) Adding up conditions ( +  = 1). 

(3) Equality restrictions ( =  = 0).

• We have a programming problem:  
Minimize wrt  L* = (𝒚 – X)(𝒚 – X)    s.t. R = q

• The Lagrangean approach:
Min b, { L* = (𝒚 – X)(𝒚 – X) + 2  (R – q) }

• After (a lot of  algebra) we get:

Restricted LS estimator:   𝐛∗ = 𝐛 – (XX)-1R[R(XX)-1R]-1(Rb – q)
= 𝐛 + correction

• Properties:
1. Unbiased? 

- Yes, if  Theory is correct: E[𝐛∗|X] = E[𝐛|X] = 
- No, if  Theory is incorrect: E[𝐛∗|X] 

Review: OLS Subject to Linear Restrictions
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• Properties:

1. Unbiased?  Yes, if Theory is correct! E[𝐛∗|X] = 

2. Efficiency? Yes. Var[𝐛∗|X]  < Var[𝐛 |X]

3. A biased b* may be more “precise,” using metric MSE (=RSS/T)
MSE =RSS/T = Variance + Squared Bias

4. We can show that RSS never decreases with restrictions: 

ee = (𝒚 – X𝐛)(𝒚 – X𝐛) ≤ e*e* = (𝒚 – X𝐛∗)(𝒚 – X𝐛∗)

 Restrictions cannot increase R2  R2 ≥ R2* 

Restricted LS – R *2

Wald Statistic

• Most of our test statistics, including joint tests, are Wald statistics.

Wald = normalized distance measure. 

One parameter: 𝑡
  

SE[ ] = distance/unit

More than one parameter. 

Let z = (random vector – hypothesized value) be the distance 

W =  z [Var(z)]-1 z -a quadratic form, produces a number

Example: Let z = Rb – q, which under (A5) & H0: R = q

z ~ N(0, Var[z]) Var[z] = R [Var[𝐛|X]]-1 R

Then, if H0 is correct, W should be a small number, ideally close to 
zero. A large value would be evidence against H0. 

We need the distribution of W to determine how “far” is from zero.
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Wald Statistic

• Distribution of W ? We have a quadratic form.

– If z is normal and σ2 known, W ~ χ

– If z is normal and σ2 unknown, which we estimate with 

𝑠 = ee/(T - 𝑘), then W ~ F

– If z is not normal and we use 𝑠 to estimate the unknown σ2, 

we rely on asymptotic theory,  then W → χ

Abraham Wald (1902–1950, Hungary) 

• Q: Is Rb – q close to 0? Two different approaches to this question. 

Approach (1): We base the answer on the discrepancy vector:  

m = Rb – q.

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

to test if m is different from 0.

Approach (2): We base the answer on a model loss of fit when 
restrictions are imposed: RSS must increase and R2 must go down. 

Then, we construct an F test to check if the unrestricted RSS (𝑅𝑆𝑆 ) 
is different from the restricted RSS (𝑅𝑆𝑆 ).

Testing H0: R – q = 0
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Approach (1): Test H0 with W = m (Var[m|X])-1 m

Based on unrestricted OLS estimation we compute:  

m = Rb – q (under (A5) & H0: m ~ N(0, Var[m]))

Var[m|X] = R [2(XX)-1 ] R

Then, we compute the Wald statistic: 

W = (Rb – q) {R[2(XX)-1]R}-1 (Rb – q)

Under H0 and assuming (A5) & estimating 2 with 𝑠 = ee/(T - 𝑘):

W* = (Rb – q) {R[𝑠 (XX)-1]R}-1 (Rb – q)

F = W*/J ~ 𝐹 , .

If (A5) is not assumed, the results are only asymptotic: J F → χ

Review: Testing H0: R – q = 0 with a Wald Test

• Under H0 and assuming (A5) & estimating 2 with 𝑠 = ee/(T - 𝑘):

W* = (Rb – q) {R[𝑠 (XX)-1]R}-1 (Rb – q)

F = W*/J ~ 𝐹 , .

Technical note: Why the F distribution?

The F-distribution is a ratio of two independent χ and χ RV divided 

by their degrees of freedom: F = 
χ  ⁄

 ⁄
~  𝐹 ,

(1) Numerator: W = (Rb – q) {R[2(XX)-1]R}-1 (Rb – q) ~ χ

(2) Denominator: 𝑇 𝑘 ∗ 𝑠 /2 ~ χ

F = 
χ  ⁄

 ⁄
= 

(Rb – q) {R[2(XX)-1]R}-1 
(Rb – q) ]

∗ /2 ~ 𝐹 , .

Review: Testing H0: R – q = 0 with a Wald Test
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Example:  We test in the 3 FF factor model for IBM returns 
(T=569). Steps

1. H0: SMB = 0.2 and HML = 0.6.

H1: SMB 0.2 and/or HML 0.6.  J = 2

We define R (2x4) below and write m = R – q = 0:

0 0 1 0
0 0 0 1

∗






= 0.2
0.6

2. Test-statistic:  F = W*/J = (Rb – q) {R[𝑠 (XX)-1]R}-1 (Rb – q)

Distribution under H0: F = W*/2 ~ 𝐹 ,

(or asymptotic, 2*F → χ )

Review: Testing H0: R – q = 0 with a Wald Test

Example (continuation):  We use the R package car to test H0.

library(car)

linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="F") # “F”: exact test 

Linear hypothesis test

Hypothesis:

SMB = 0.2

HML = 0.6

Model 1: restricted model

Model 2: ibm_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq F    Pr(>F)    

1    567 2.2691                                  

2    565 1.9324  2   0.33667 49.217 < 2.2e-16 ***  reject H0 at 5% level

Review: Testing H0: R – q = 0 with a Wald Test
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Example (continuation): The asymptotic test uses test=“Chisq”.

> linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="Chisq") # Asymptotic F

Linear hypothesis test

Hypothesis:

SMB = 0.2

HML = 0.6

Model 1: restricted model

Model 2: ibm_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)    

1    567 2.2691                                   

2    565 1.9324  2   0.33667 98.433  < 2.2e-16 ***  reject H0 at 5% level

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

qf(.95, df1=J, df2=(T - k)) # asymptotic distribution (Chi-square-distribution) 

[1] 5.991465 F_t_asym > 5.991465 reject H0 at 5% level

Review: Testing H0: R – q = 0 with a Wald Test

Approach(2):  We know that imposing the restrictions leads to a loss 
of fit. R2 must go down.  Does it go down a lot?  –i.e., significantly? 

Recall (i) 𝐞∗= (𝒚 – X𝐛∗) = 𝒚 + (X𝐛 – X𝐛) – X𝐛∗ = e – X(𝐛∗ – 𝐛)
(ii) 𝐛∗= 𝐛 – (XX)-1R[R(XX)-1R]-1(R𝐛 – q)

 𝐞∗𝐞∗= 𝐞𝐞 + (𝐛∗ – 𝐛) XX (𝐛∗ – 𝐛)

Replacing (𝐛∗ – b) from (ii) in the above formula, we get:

𝐞∗𝐞∗– 𝐞𝐞 = (R𝐛 – q)[R(XX)-1R]-1(R𝐛 – q)

Note: 𝐞∗𝐞∗– 𝐞𝐞 is a quadratic form, then we can use a lot of results 
for quadratic forms to derive its asymptotic distribution.

• Recall, the F-distribution is a ratio of two independent χ and χ RV 

divided by their degrees of freedom: F = 
χ  ⁄

 ⁄
~  𝐹 ,

The F Test: H0: R – q = 0
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Then, to get to the F-test, we rely on two results:
– W = (Rb – q){R[2(XX)-1]R}-1(Rb – q) ~ χ  (if 2 is known)
– 𝐞𝐞/ 2 ~ χ . 

 𝐹 = 
(𝐞∗𝐞∗ – 𝐞𝐞)/J
[𝐞𝐞/(T – )] ~ 𝐹 , .

• We can write the F-test in terms of R2’s. Let 
R2 = unrestricted model = 1 – RSS/TSS
R*2 = restricted model fit = 1 – RSS*/TSS

Then, dividing and multiplying 𝐹 by TSS we get:

𝐹 = 
  ∗   ⁄

⁄
~ 𝐹 ,

or 𝐹 = 
  ∗ ⁄

⁄
~ 𝐹 , .

The F Test: H0: R – q = 0

10

• In the linear model, with a constant (X1 = 𝒊):
y = X  +  = 1 + X2 2 + X3 3 + ... + Xk k + 

• We want to test if  the slopes of   X2, ... , Xk are equal to zero. That is,

H0: β ⋯ β 0
H1: at least one β  0  J = 𝑘 – 1

• We have J = 𝑘 – 1. Then,
𝐹 = { (R2 – R*2)/(𝑘 – 1) } / [(1 – R2)/(𝑇 𝑘)] ~ 𝐹 , .

• For the restricted model,  R*2 = 0.


0 1 … 0
… … … …
0 0 0 1

𝛽
𝛽
. . .
𝛽

0
…
0

• We can write H0: R – q = 0

The F Test: H0: F-test of  Goodness of  Fit
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10

𝐹
𝑅 𝑘 1⁄

1 𝑅 𝑇 𝑘⁄

𝐸𝑆𝑆
𝑇𝑆𝑆 𝑘 1

𝑅𝑆𝑆
𝑇𝑆𝑆 𝑇 𝑘

𝐹
𝐸𝑆𝑆 𝑘 1⁄
𝑅𝑆𝑆 𝑇 𝑘⁄

• Recall ESS/TSS = 𝑅 & RSS/TSS = (1 – 𝑅 ), we compute 𝐹:

Then, 𝐹 = 
⁄

⁄
 ~ 𝐹 , .

• This test statistic is called the F-test of  goodness of  fit. It is reported in 
all regression packages as part of  the regression output. In R, the lm 
function reports it as “F-statistic.”

The F Test: H0: F-test of  Goodness of  Fit

10

Example: We want to test if  all the FF factors (Market, SMB, HML) 
are significant (J=3), using monthly data 1973 – 2020 (T=569). 
y <- ibm_x

T <- length(ibm_x)

x0 <- matrix(1,T,1)

x <- cbind(x0, Mkt_RF, SMB, HML)

k <- ncol(x)

b <- solve(t(x)%*% x)%*% t(x)%*%y # OLS regression

e <- y - x%*%b

RSS <- as.numeric(t(e)%*%e)

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) #R-squared

> R2 

[1] 0.338985

> F_goodfit <- (R2/(k-1))/((1-R2)/(T-k)) # F-test of  goodness of  fit.

> F_goodfit

[1] 96.58204  F_goodfit > F3,565,.05 = 2.62068  Reject H0.

The F Test: H0: F-test of  Goodness of  Fit
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32

• In the linear model 
y = X  +  = 1 + X2 2 + X3 3 + X4 4 + 

• We want to test if  the slopes X3, X4 are equal to zero. That is,
H0: 3 = 4 = 0
H1: 3 ≠ 0 or 4 ≠ 0 or both 3 and 4 ≠ 0

• We can use, F = (e*e* – ee)/J / [ee/(T – 𝑘)] ~ 𝐹 , .

• Define y = X  +  = 1 + X2 2 +  (RSSR)
y = 1 + X2 2 + X3 3 + X4 4 +  (RSSU)

𝐹 𝑘   𝑘 ,𝑇 𝑘
  

  

 

The F Test: General Case – Example

Example: We want to test if the additional FF factors (SMB, HML) 
are significant, using monthly data 1973 – 2020 (T=569). 

Unrestricted Model: 

(U) (𝑟 , – 𝑟 ) = 0 + 1 (𝑟 , – 𝑟 ) + 2 SMB + 3 HML +  

Hypothesis: H0: 2 = 3 = 0

H1: 2≠ 0 and/or 3 ≠ 0

Then, the Restricted Model:

(R) (𝑟 , – 𝑟 ) = 0 + 1 (𝑟 , – 𝑟 ) + 

Test: F = 
/

/
~ 𝐹 , . with J = 𝑘U – 𝑘R = 4 - 2 = 2

The F Test: Are SMB and HML Priced Factors?
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Example (continuation): The unrestricted model was already 
estimated in Lecture 3. For the restricted model:

y <- ibm_x

x0 <- matrix(1,T,1)

x_r <- cbind(x0,Mkt_RF) # Restricted X vector

k <- ncol(x)

T <- nrow(x)

k2 <- ncol(x_r)

b2 <- solve(t(x_r)%*% x_r)%*% t(x_r)%*%y # Restricted OLS regression

e2 <- y – x_r%*%b2

RSS2 <- as.numeric(t(e2)%*%e2)

> RSS = 1.932442 # RSSU

> RSS2 = 1.964844 # RSSR

> J <- k - k2 # J = degrees of freedom of numerator 

> F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k))

The F Test: Are SMB and HML Priced Factors?

Example (continuation): 
> F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k))

> F_test

[1] 4.736834

> qf(.95, df1=J, df2=(T-k)) # F2,565,.05 value (≈ 3)

[1] 3.011672  Reject H0.

> p_val <- 1 - pf(F_test, df1=J, df2=(T-k)) # p-value of F_test

> p_val

[1] 0.009117494  p-value is small  Reject H0.

The F Test: Are SMB and HML Priced Factors?
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Example (continuation): 

There is package in R, lmtest, that performs this test, waldtest, (and 
many others, used in this class). You need to install it first.

Note: The models need to be nested. For the waldtest, the default 
reports the F-test with the F distribution. 

library(lmtest)
fit_wU <- lm (ibm_x ~ Mkt_RF + SMB + HML)
fit_wR <- lm (ibm_x ~ Mkt_RF)
waldtest(fit_wU, fit_wR)

Wald test

Model 1: ibm_x ~ Mkt_RF + SMB + HML
Model 2: ibm_x ~ Mkt_RF

Res.Df Df F   Pr(>F)   
1    565                      
2    567 -2 4.7368 0.009117 **  p-value is small: Reject H0

The F Test: Are SMB and HML Priced Factors?

F-test: Two Categories & The Chow Test

• Suppose we are interested in the effect of  gender on CEO’s 
compensation. We have data on CEO’s compensation (y) and CEO’s 
gender, along with CEO’s experience (X1), sales of  the CEO’s 
company (X2), and profitability (X3). 

• We hypothesize that gender matter. Then, we estimate two models, 
one for each gender: 

M1 𝑦  =  +  X1,I +  X2,i +  X3,i +  for 𝑖 = Male
M2 𝑦 =  +  X1,I +  X2,i +  X3,i +  for 𝑖 ≠ Female

• Alternatively, we estimate only one model (“pooling”). That is, gender 
does not affect a CEO’s compensation. Then, we estimate:

Pooled 𝑦 = 0 + 1 X1,i+ 2 X2,i + 3 X3,i +  for all 𝑖

Q: Which model should we use? 26
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• We test H0 (No gender differences):  =  = 0

 =  = 1

 =  = 2

 =  = 3

H1 (gender differences): For at least 𝑘 (= 0, 1, 2, 3):  ≠ 

• An F-Test can be used to test H0: 

- The pooled estimation is the Restricted estimation

- The two estimations (by gender) are the Unrestricted estimation.

• The F-test constructed using a variable that can divide the data into 2 
categories to compute 𝑅𝑆𝑆  & 𝑅𝑆𝑆 is usually referred as Chow test. 

27

F-test: Two Categories & The Chow Test

• A Chow Test is used to test if  a variable that can divide the data into 
2 categories matters. That is, a Chow test checks if  we need only one 
model (“pooling”) for both categories or not. 

• Chow Test (an F-test)    –Chow (1960, Econometrica): 

(1) Run OLS with all the data, with no distinction between categories. 
(Pooled regression or Restricted regression). Keep RSSR.

(2) Run two separate OLS, one for each category (Unrestricted 
regression). Keep RSS1 and RSS2  RSSU = RSS1 + RSS2. 

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

𝐹
𝑅𝑆𝑆 𝑅𝑆𝑆 / 𝑘 𝑘

𝑅𝑆𝑆 / 𝑇 𝑘
𝑅𝑆𝑆 𝑅𝑆𝑆 𝑅𝑆𝑆 /𝑘
𝑅𝑆𝑆 𝑅𝑆𝑆 / 𝑇 2𝑘

28

F-test: Two Categories & The Chow Test
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Chow Test: Males or Females visit doctors more? 

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of  
Periods
Variables in the file are
Data downloaded from Journal of  Applied Econometrics Archive. This is an 
unbalanced panel with 7,293 individuals. There are altogether 27,326 
observations. The number of  observations ranges from 1 to 7 per 
family. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 
7=987). The dependent variable of  interest is

DOCVIS  =  number of  visits to the doctor in the observation period

HHNINC = household nominal monthly net income in German marks / 10000.
(4 observations with income=0 were dropped)

HHKIDS = children under age 16 in the household = 1; otherwise = 0
EDUC     = years of  schooling 
AGE        = age in years
MARRIED= marital status (1 = if  married)
WHITEC = 1 if  has “white collar” job 29

+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=HHNINC   Mean                 =   .3590541     |
|              Standard deviation   =   .1735639     |
|              Number of observs.   =      14243     |
| Model size   Parameters           =          5     |
|              Degrees of freedom   =      14238     |
| Residuals    Sum of squares       =   379.8470 |
|              Standard error of e  =   .1633352     |
| Fit          R-squared            =   .1146423     |
|              Adjusted R-squared   =   .1143936     |
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
|Constant|     .04169***       .00894        4.662   .0000            |
|AGE     |     .00086***       .00013        6.654   .0000     42.6528|
|EDUC    |     .02044***       .00058       35.528   .0000     11.7287|
|MARRIED |     .03825***       .00341       11.203   .0000      .76515|
|WHITEC  |     .03969***       .00305       13.002   .0000      .29994|
+--------+------------------------------------------------------------+

Chow Test: Males or Females visit doctors more? 

• OLS Estimation for Men only. Keep RSSM = 379.8470

30
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+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=HHNINC   Mean                 =   .3444951     |
|              Standard deviation   =   .1801790     |
|              Number of observs.   =      13083     |
| Model size   Parameters           =          5     |
|              Degrees of freedom   =      13078     |
| Residuals    Sum of squares       =   363.8789 |
|              Standard error of e  =   .1668045     |
| Fit          R-squared            =   .1432098     |
|              Adjusted R-squared   =   .1429477     |
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
|Constant|     .01191          .01158        1.029   .3036            |
|AGE     |     .00026*         .00014        1.875   .0608     44.4760|
|EDUC    |     .01941***       .00072       26.803   .0000     10.8764|
|MARRIED |     .12081***       .00343       35.227   .0000      .75151|
|WHITEC  |     .06445***       .00334       19.310   .0000      .29924|
+--------+------------------------------------------------------------+

Chow Test: Males or Females visit doctors more? 

• OLS Estimation for Women only. Keep RSSW = 363.8789

31

+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=HHNINC   Mean                 =   .3520836     |
|              Standard deviation   =   .1769083     |
|              Number of observs.   =      27326 |
| Model size   Parameters           =          5     |
|              Degrees of freedom   =      27321     |
| Residuals    Sum of squares       =   752.4767 | All
| Residuals    Sum of squares       =   379.8470 | Men
| Residuals    Sum of squares       =   363.8789 | Women
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
|Constant|     .04186***       .00704        5.949   .0000            |
|AGE     |     .00030***     .919581D-04     3.209   .0013     43.5257|
|EDUC    |     .01967***       .00045       44.180   .0000     11.3206|
|MARRIED |     .07947***       .00239       33.192   .0000      .75862|
|WHITEC  |     .04819***       .00225       21.465   .0000      .29960|
+--------+------------------------------------------------------------+

Chow Test = F = [(752.4767 – (379.847 + 363.8789))/5] / 
[(379.847 + 363.8789)/(27,326 – 10)] = 64.281 

F(5, 27311) = 2.214100  reject H0

Chow Test: Males or Females visit doctors more? 

32



RS - Lecture 5 – Joint Tests & Model Specification

17© Raul Susmel, 2023. Do not share/post online without written authorization.

• Suppose there is an event that we think had a big effect on the 
behaviour of  our model. Suppose the event occurred at time TSB.
We think that the before and after behaviour of  the model is 
significantly different. For example, the parameters are different before 
and after TSB. That is,

𝑦  =  +  X1,I +  X2,i +  X3,i +  for 𝑖 ≤ TSB

𝑦 =  +  X1,I +  X2,i +  X3,i +  for 𝑖 > TSB

The event caused structural change in the model. TSB separates the 
behaviour of  the model in two regimes/categories (“before” & “after”.) 

• A Chow test tests if  one model applies to both regimes:
𝑦 = 0 + 1 X1,i+ 2 X2,i + 3 X3,i +  for all 𝑖

• Under H0 (No structural change), the parameters are the same for all 𝑖.

F-Test: Structural Change & Chow Test

33

• We test H0 (No structural change):  =  = 0

 =  = 1

 =  = 2

 =  = 3

H1 (structural change): For at least 𝑘 (= 0, 1, 2, 3):  ≠ 

• What events may have this effect on a model? A financial crisis, a big 
recession, an oil shock, Covid-19, etc. 

• Testing for structural change is the more popular use of  Chow tests.

• Chow tests have many interpretations: tests for structural breaks, 
pooling groups, parameter stability, predictive power, etc. 

• One important consideration: T may not be large enough. 34

F-Test: Structural Change & Chow Test
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• We structure the Chow test to test H0 (No structural change), as usual. 

• Steps for Chow (Structural Change) Test: 

(1) Run OLS with all the data, with no distinction between regimes. 
(Restricted or pooled model). Keep RSSR.

(2) Run two separate OLS, one for each regime (Unrestricted model):

Before Date TSB. Keep RSS1. 

After Date TSB. Keep RSS2.  RSSU = RSS1 + RSS2. 

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

𝐹
𝑅𝑆𝑆 𝑅𝑆𝑆 / 𝑘 𝑘

𝑅𝑆𝑆 / 𝑇 𝑘
𝑅𝑆𝑆 𝑅𝑆𝑆 𝑅𝑆𝑆 /𝑘
𝑅𝑆𝑆 𝑅𝑆𝑆 / 𝑇 2𝑘

35

F-Test: Structural Change & Chow Test

Example: We test if  the Oct 1973 oil shock in quarterly GDP growth 
rates had an structural change on the GDP growth rate model.

We model GDP the growth rate with an AR(1) model, that is, GDP 
growth rate depends only on its own lagged growth rate:

𝑦 = β0 + β1 𝑦 + 

GDP_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/GDP_q.csv", head=TRUE, 
sep=",")
x_date <- GDP_da$DATE
x_gdp <- GDP_da$GDP
x_dummy <- GDP_da$D73
T <- length(x_gdp)
t_s <- 108 # TSB = Oct 1973

lr_gdp <- log(x_gdp[-1]/x_gdp[-T])
T <- length(lr_gdp)
lr_gdp0 <- lr_gdp[-1]
lr_gdp1 <- lr_gdp[-T]
t_s <- t_s -1 # Adjust t_s (we lost the first observation)

36

F-Test: Structural Change & Chow Test
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Example (continuation):
y <- lr_gdp0 
x1 <- lr_gdp1
T <- length(y)
x0 <- matrix(1,T,1)
x <- cbind(x0,x1)
k <- ncol(x)

# Restricted Model (Pooling all data)
fit_ar1 <- lm(lr_gdp0 ~ lr_gdp1) # Fitting AR(1) (Restricted) Model
e_R <- fit_ar1 $residuals # regression residuals, e
RSS_R <- sum(e_R^2) # RSS Restricted

> summary(fit_ar1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.011565   0.001145  10.097  < 2e-16 ***
lr_gdp1     0.244846   0.056687   4.319 2.14e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01296 on 294 degrees of  freedom
37

F-Test: Structural Change & Chow Test

Example (continuation):
# Unrestricted Model (Two regimes)

y_1 <- y[1:t_s]
x_u1 <- x[1:t_s,]
fit_ar1_1 <- lm(y_1 ~ x_u1 - 1) # AR(1) Regime 1
e1 <- fit_ar1_1$residuals # Regime 1 regression residuals, e
RSS1 <- sum(e1^2) # RSS Regime 1

kk = t_s+1 # Starting date for Regime 2
y_2 <- y[kk:T]
x_u2 <- x[kk:T,]
fit_ar1_2 <- lm(y_2 ~ x_u2 - 1) # AR(1) Regime 2
e2 <- fit_ar1_2$residuals # Regime 2 regression residuals, e
RSS2 <- sum(e2^2) #  RSS Regime 2

F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))
> F
[1] 4.877371
p_val <- 1 - pf(F, df1 = 2, df2 = T - 2*k)  # p-value of  F_test
> p_val
[1] 0.00824892  small p-values: Reject H0 (No structural change). 3

38

F-Test: Structural Change & Chow Test
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Example: 3 Factor Fama-French Model for IBM (continuation)
Q: Did the dot.com bubble (end of 2001) affect the structure of the FF 
Model? Sample: Jan 1973 – June 2020 (T = 569).

Pooled RSS = 1.9324

Jan 1973 – Dec 2001 RSS = RSS1 = 1.33068 (T = 342) 

Jan 2002 – June 2020 RSS = RSS2 = 0.57912 (T = 227)

𝐹 /  

/
= 

[1.9324  1.3307+ 0.57911)]/4
1.3307+ 0.57911)/(569 − 2∗4) = 1.6627

 Since F4,565,.05 = 2.39, we cannot reject H0

Constant Mkt – rf SMB HML RSS T

1973-2020 -0.0051 0.9083 -0.2125 -0.1715 1.9324 569

1973-2001 -0.0038 0.8092 -0.2230 -0.1970 1.3307 342

2002 – 2020 -0.0073 1.0874 -0.1955 -0.3329 0.5791 227
39

F-Test: Structural Change & Chow Test

Testing Model Specification: Nested Models

• In previous examples, we have two nested models, one is the 
restricted version of the other (Fama-French 3-factor model vs 
CAPM). In the case of omitted variables:

(U) y = X 1 + Z 2 +  –the “long regression,” 

(R) y = X 1 +  –the “short regression.” 

To test H0 (No omitted variables): 2 = 0, we can use the F-test: 

F = 
  /

/
~ FJ,T-K.

Example: We have performed this F-test to test if in the 3-factor FF 
model for IBM returns, SMB and HML were significant, which they 
were. That is, we showed that the usual CAPM formulation for IBM 
returns had omitted variables: SMB & HML.

40
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• So far, all our tests (t-, F- & Wald tests) have been based on nested 
models, where the R model is a restricted version of  the U model.

Example:  
Model U Y = Xβ + Wδ + ε (Unrestricted)
Model R Y = Xβ + ξ (Restricted)

Model U becomes Model R under H0: δ = 0.

• Sometimes, we have two rival models to choose between, where 
neither can be nested within the other -i.e., neither is a restricted 
version of  the other.

Example:  
Model 1 Y = Xβ + Wδ + ε
Model 2 Y = Xβ + Zγ + ξ

Testing Model Specification: Non-Nested Models

Example:  
Model 1 Y = Xβ + Wδ + ε
Model 2 Y = Xβ + Zγ + ξ

• If  the dependent variable is the same in both models (as is the case 
here), we can simply use Adjusted-R2 to rank the models and select 
the one with the largest Adjusted-R2.

• We can also use AIC and/or BIC to rank the models.

• But, we can also use more sophisticated, testing-based, methods. 

Testing Model Specification: Non-Nested Models
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• Testing-based Method 1: Encompassing

(1) Form a composite or encompassing model that nests both rival 
models −Model 1 & Model 2. This is the unrestricted Model, ME.

(2) Test the relevant restrictions of  each rival model against ME. We 
do two F-tests:

(i) Test ME (Unrestricted Model) against Model 1 (Restricted Model) 
(ii) Test ME (Unrestricted Model) against Model 2 (Restricted Model) 

• If  we reject the restrictions against one Model, say Model 1, and we 
cannot reject the restrictions against the other, Model 2, we are done: 
We select the Model that the F test do not reject restrictions (Model 2).

Assuming the restrictions cannot be rejected, we prefer the model with 
the lower F statistic for the test of  restrictions. 

Non-nested Models and Tests: Encompassing

Example: We have:
Model 1 Y = Xβ + Wδ + ε
Model 2 Y = Xβ + Zγ + ξ

Then, the Encompassing Model (ME) is:
ME: Y = Xβ + Wδ + Zγ + ε

Now test, separately, the hypotheses (1) δ = 0 and (2) γ = 0. That is, 

F-test for H0: γ = 0: ME (U Model) vs Model 1 (R Model).
F-test for H0: δ = 0: ME (U Model) vs Model 2 (R Model).

If  we reject H0: γ = 0 ⇒ We have evidence against Model 1 
If  we reject H0: δ = 0 ⇒ We have evidence against Model 2. 

Note: We test a hybrid model, a combination of  two models. Also, 
multicollinearity may appear.

Non-nested Models and Tests: Encompassing
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• Two of  the main theories to explain the behaviour of  exchange rates, 
St, are the International Fisher Effect (IFE) and the Purchasing 
Power Parity (PPP). We use the direct notation for St, that is, units of  
Domestic Currency per 1 unit of  Foreign currency.

• IFE states that, in equilibrium, changes in exchange rates (e) are 
driven by the interest rates differential between the domestic currency, 
id, and the foreign currency, if:. A DGP consistent with IFE is:

e = α1 + β1 (id – if) + ε1

• Relative PPP states that that, in equilibrium, e are driven by the 
inflation rates differential between the domestic Inflation rate, Id, and 
the foreign Inflation rate, If. A GDP consistent with IFE is:

e = α2 + β2 (Id – If) + ε2

• Theories are non-nested, use non-nested methods to pick a model. 

Non-nested Models and Tests: IFE or PPP?

Example: We apply hat drives log changes in exchange rates for the 
USD/GBP (e): (id – if) or (Id – If)?

Model 1 (IFE): e = α1 + β1 (id – if) + ε1

Model 2 (PPP): e = α2 + β2 (Id – If) + ε2

SF_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", head=TRUE, sep=",")
x_date <- SF_da$Date
x_S <- SF_da$GBPSP
x_F3m <- SF_da$GBP3M
i_us3 <- SF_da$Dep_USD3M
i_uk3 <- SF_da$Dep_UKP3M
cpi_uk <- SF_da$UK_CPI
cpi_us <- SF_da$US_CPI
T <- length(x_S)
int_dif <- (i_us3[-1] - i_uk3[-1])/100
lr_usdgbp <- log(x_S[-1]/x_S[-T])
I_us <- log(cpi_us[-1]/cpi_us[-T])
I_uk <- log(cpi_uk[-1]/cpi_uk[-T])
inf_dif <- (I_us - I_uk)

Non-nested Models and Tests: IFE or PPP?
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Example (continuation): Encompassing Model (U Model)
e = α + β1 (id – if) + β2 (Id – If) + ε1

# Encompassing Model and Test
fit_me <- lm(lr_usdgbp ~ int_dif + inf_dif)
> summary(fit_me)

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) -0.0009633 0.0016210 -0.594   0.5527  
int_dif -0.0278510 0.0741189 -0.376   0.7073 ⇒ cannot reject H0: β1 = 0.
inf_dif 0.7444711 0.3429106 2.171 0.0306 * ⇒ reject H0: β2 = 0.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02662 on 360 degrees of  freedom
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673 
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221

Note: Two F-tests are needed, but for the one variable case, the t-tests are equivalent.

Non-nested Models and Tests: IFE or PPP?

Example (continuation): The package in R, lmtest, performs this test,
encomptest. Recall you need to install it first: install.packages(“lmtest”).

Note: The test reported is an F-test ~ 𝐹 , , which, in this case with 
only one variable in each Model, is equal to (𝑡 )2

.

library(lmtest)
fit_m1 <- lm(lr_usdgbp ~ int_dif) # Restricted Model 1 (IFE)
fit_m2 <- lm(lr_usdgbp ~ inf_dif) # Restricted Model 2 (PPP)
> encomptest(fit_m1, fit_m2)

1: lr_usdgbp ~ int_dif
Model 2: lr_usdgbp ~ inf_dif
Model E: lr_usdgbp ~ int_dif + inf_dif

Res.Df Df F  Pr(>F)  
M1 vs. ME    360 -1 4.7134 0.03058 * ⇒ reject H0: β2 = 0. Check: (2.171))2 = 4.713
M2 vs. ME    360 -1 0.1412 0.70732

Non-nested Models and Tests: IFE or PPP?
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• Testing-based Method 1: Davidson-MacKinnon (1981)’s J-test.
We start with two non-nested models. Say,

Model 1: Y = Xβ + ε
Model 2: Y = Zγ + ξ

Idea: If  Model 2 is true, then the fitted values from the Model 1, when 
added to the 2nd equation, should be insignificant. 

• Steps:
(1) Estimate Model 1  obtain fitted values: Xb. 

(2) Add Xb to the list of  regressors in Model 2 
 Y = Zγ + λXb + ξ

(3) Do a t-test on λ. A significant t-value would be evidence against 
Model 2 and in favour of  Model 1. 

Non-nested Models and Tests: J-test

(4) Repeat the procedure for the models the other way round.
(4.1) Estimate Model 2  obtain fitted values: Zc. 
(4.2) Add Zc to the list of  regressors in Model 1: 

 Y = Xβ + λ Zc + ε
(4.3) Do a t-test on λ. A significant t-value would be evidence 
against Model 1 and in favour of  Model 2. 

(5) Rank the models on the basis of  this test.

• It is possible that we cannot reject both models. This is possible in 
small samples, even if  one model, say Model 2, is true.

• It is also possible that both t-tests reject H0 (λ ≠ 0 & λ ≠ 0). This is 
not unusual. McAleer’s (1995), in a survey, reports that out of  120 
applications all models were rejected 43 times. 

Non-nested Models and Tests: J-test
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• Situations:
(1) Both OK:  λ= 0 and λ= 0  get more data
(2) Only 1 is OK: λ≠ 0 and λ= 0 (Model 2 is OK) 

λ ≠ 0 and λ= 0 (Model 1 is OK)
(3) Both rejected: λ≠ 0 and λ ≠ 0  new model is needed.

Technical Note: As some of  the regressors in step (3) are stochastic, 
Davidson and MacKinnon (1981) show that the t-test is asymptotically
valid.

Non-nested Models and Tests: J-test

Example: Now, we test Model 1 vs Model 2, using the J-test.
Model 1 (IFE): e = α1 + β1 (id – if) + ε1

Model 2 (PPP): e = α2 + β2 (Id – If) + ε2

y <- lr_usdgbp
fit_m1 <- lm( y ~ int_dif)
summary(fit_m1)
y_hat1 <- fitted(fit_m1)
fit_J1 <- lm( y ~ inf_dif + y_hat1)
summary(fit_J1)

fit_m2 <- lm( y ~ inf_dif)
summary(fit_m2)
y_hat2 <- fitted(fit_m2)
fit_J2 <- lm( y ~ int_dif + y_hat2)
summary(fit_J2)

Non-nested Models: J-test – IFE or PPP?
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Example (continuation):
> fit_m1 <- lm( y ~ int_dif)
> y_hat1 <- fitted(fit_m1)
> fit_J1 <- lm(formula = y ~ inf_dif + y_hat1)
> summary(fit_J1)

Residuals:
Min        1Q    Median        3Q       Max 

-0.136310 -0.014168  0.000351  0.017227  0.092421 

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) 0.0001497 0.0025556   0.059   0.9533  
inf_dif 0.7444711 0.3429106   2.171   0.0306 *
y_hat1 1.2853298 3.4206106   0.376 0.7073 ⇒ cannot reject H0: λ=0. (Good for Model 2)
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02662 on 360 degrees of  freedom
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673 
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221

Non-nested Models: J-test – IFE or PPP?

Example (continuation):
> fit_m2 <- lm( y ~ inf_dif)
> y_hat2 <- fitted(fit_m2)
> fit_J2 <- lm(formula = y ~ int_dif + y_hat2)
> summary(fit_J2)

Residuals:
Min        1Q    Median        3Q       Max 

-0.136310 -0.014168  0.000351  0.017227  0.092421 

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) -0.0003045 0.0016409  -0.186   0.8529  
int_dif -0.0278510 0.0741189  -0.376   0.7073  
y_hat2 1.0066945 0.4636932   2.171 0.0306 * ⇒ Reject H0: λ=0. (Again, good for Model 2)
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02662 on 360 degrees of  freedom
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673 
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221

Non-nested Models: J-test – IFE or PPP?
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Example (continuation):
The lmtest package also performs this test. Recall that you need to 
install it first: install.packages(“lmtest”).

library(lmtest)
fit_m1 <- lm(lr_usdgbp ~ int_dif)
fit_m2 <- lm(lr_usdgbp ~ inf_dif)
> jtest(fit_m1, fit_m2)
J test

Model 1: lr_usdgbp ~ int_dif
Model 2: lr_usdgbp ~ inf_dif

Estimate Std. Error t value Pr(>|t|)  

M1 + fitted(M2)   1.0067     0.4637  2.1710 0.03058 * ⇒ Reject H0: λ=0. (Model 2 selected)
M2 + fitted(M1)   1.2853     3.4206  0.3758 0.70732

Non-nested Models: J-test – IFE or PPP?

• The J-test was designed to test non-nested models (one model is the 
true model, the other is the false model), not for choosing competing 
models –the usual use of  the test.  

• The J-test is likely to over reject the true (model) hypothesis when one 
or more of  the following features is present: 
i) A poor fit of  the true model.
ii) A low/moderate correlation between the regressors of  the 2 models.
iii) The false model includes more regressors than the correct model. 

Davidson and MacKinnon (2004) state that the J-test will over-reject, 
often quite severely in finite samples when the sample size is small or
where conditions (i) or (iii) above are obtained.

Non-nested Models: J-test – Remarks
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Testing Remarks: A word about α

• Ronald Fisher, before computers, tabulated distributions. He used a 
.10, .05, and .01 percentiles. These tables were easy to use and, thus, 
those percentile became the de-facto standard α for testing H0.

• “It is usual and convenient for experimenters to take 5% as a 
standard level of significance.” –Fisher (1934). 

• Given that computers are powerful and common, why is p = 0.051   
unacceptable, but p = 0.049 is great? There is no published work that 
provides a theoretical basis for the standard thresholds. 

• Rosnow and Rosenthal (1989): “ ... surely God loves .06 nearly as 
much as .05.”

Practical advise: In the usual Fisher’s null hypothesis (significance) 
testing, significance levels, α, are arbitrary.  Make sure you pick one, 
say 5%, and stick to it throughout your analysis or paper.

• Report p-values, along with CI’s. Search for economic significance.

Testing Remarks: A word about α
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Testing Remarks: A word about H0

• In applied work, we only learn when we reject H0; say, when the p-
value < α.  But, rejections are of two types: 

- Correct ones, driven by the power of the test. 

- Incorrect ones, driven by Type I Error (“statistical accident,” luck).

• It is important to realize that, however small the p-value, there is 
always a finite chance that the result is a pure accident. At the 5% 
level, there is 1 in 20 chances that the rejection of H0 is just luck.

• Since negative results are difficult to publish (publication bias), there is  
an unknown but possibly large number of false claims taken as truths.

Example: If α  0.05,  proportion of false H0=10%, and π = .50, 
47.4% of rejections are true H0 -i.e., “false positives.”

60

Model Specification:
Checking (A1)
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OLS Estimation - Assumptions

• CLM Assumptions

(A1) DGP: y = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X)=k-, where T ≥ k.

Q: What happens when (A1) is not correctly specified? 

• First, we look at (A1), in the context of linearity. Are we omitting a 
relevant regressor? Are we including an irrelevant variable? What 
happens when we impose restrictions in the DGP? 

• Second, in (A1), we allow some non-linearities in its functional form.

Specification Errors: Omitted Variables

• Omitting relevant variables:  Suppose the correct model (DGP) is 

y = X11 + X22 +  –the “long regression,” with X1 & X2.  

But, we compute OLS omitting X2. That is,

y = X11 +  –the “short regression.” 

We have two nested models: one model becomes the other, once a 
restriction is imposed. In the above case, the true model becomes “the 
short regression” by imposing the restriction 2 = 0.

• Q: What are the implications of using the wrong model, with omitted 
variables?

A: We already know the answer, we are imposing a wrong restriction: 
the restricted estimator, b*, is biased, but it is more efficient.
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Specification Errors: Omitted Variables

• Some easily proved results:

E[b1|X] = E [(X1X1)-1X1 y|X] = E [(X1X1)-1X1 (X11 + X22 + )|X]

= 1 + (X1X1)-1X1X22  1.  

Thus, unless X1X2 =0, b1 is biased.  The bias can be huge.  It can 
reverse the sign of a price coefficient in a “demand equation.”

(2) Var[b1|X] ≤ Var[b1.2|X], where b1.2 is the OLS estimator of 1 in 
the long regression (the true model). 

Thus, we get a smaller variance when we omit X2.  

Interpretation: Omitting X2 amounts to using extra information –i.e., 
2 = 0. We estimate a restricted model! Even if the information is 
wrong, it reduces the variance.  

(3) Mean Squared Error (MSE = RSS/T)
If we use MSE as precision criteria for selecting an estimator, b1 may 
be more “precise.”  

Precision  = Mean squared error (MSE) 
= Variance + Squared bias.

Smaller variance but positive bias.  If bias is small, a practitioner may 
still favor the short regression.

Note: Suppose X1X2 = 0.  Then the bias goes away.  Interpretation, 
the information is not “right,” it is irrelevant: b1 is the same as b1.2.

Specification Errors: Omitted Variables
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Example: We fit an ad-hoc model for U.S. short-term interest rates 
(iUS,t)  that includes inflation rate (IUS,t), changes in the USD/EUR (et), 
money growth rate (mUS,t), and unemployment (uUS,t), using monthly 
data from 1975:Jan - 2020:Jul. That is,

iUS,t = β0 + β1 IUS,t + β2 et + β3 mUS,t + β4 uUS,t + εi

Fger_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/FX_USA_GER.csv", head=TRUE, 
sep=",")
us_CPI <- Fger_da$US_CPI
us_M1 <- Fger_da$US_M1
us_i <- Fger_da$US_I3M
us_GDP <- Fger_da$US_GDP
ger_CPI <- Fger_da$GER_CPI
us_u <- Fger_da$US_UN
S_ger <- Fger_da$USD_EUR

T <- length(us_CPI)
us_I <- log(us_CPI[-1]/us_CPI[-T]) # US Inflation: (Log) Changes in CPI 
us_mg <- log(us_M1[-1]/us_M1[-T]) # US Money Growth: (Log) Changes in M1
e_ger <- log(S_ger[-1]/S_ger[-T]) #  (Log) Changes in USD/EUR

Specification Errors: Omitted Variables

Example (continuation): 
us_i_1 <- us_i[-1] # Adjust sample size of untransformed data 
us_u_1 <- us_u[-1] # Adjust sample size of untransformed data 
us_i_0 <- us_i[-T] # lagged interest rates, by removing T observation
xx_i <- cbind(us_I ,e_ger, us_mg, us_u_1) # X matrix
fit_i <- lm(us_i_1 ~ xx_i)
>  summary(fit_i)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 2.12516 0.52177 4.073 5.34e-05 ***
xx_i_us_I 410.03733 37.17344 11.030 < 2e-16 ***
xx_i_e_ger 8.90564 4.59915 1.936 0.053343 .  
xx_i_us_mg -50.07811 15.04907 -3.328 0.000935 ***  significant.
xx_i_us_u_1 0.22673 0.08346 2.717 0.006805 **  significant.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.113 on 542 degrees of freedom
Multiple R-squared:  0.2276,    Adjusted R-squared:  0.2219 
F-statistic: 39.93 on 4 and 542 DF,  p-value: < 2.2e-16

Specification Errors: Omitted Variables
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Example (continuation): Now, we include lagged interest rates
xx_i <- cbind(us_I ,e_ger, us_mg, us_u_1, us_i_0) # X matrix with lagged interest rates
fit_i <- lm(us_i_1 ~ xx_i)
>  summary(fit_i)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.101007 0.079458 1.271  0.20420 
xx_ius_I   16.367138 6.144709 2.664 0.00796 ** 
xx_ie_ger 3.112901 0.691673  4.501 8.3e-06 ***  now, significant.
xx_ius_mg  1.231633 2.284528 0.539  0.59003     now, not significant.
xx_ius_u_1 -0.015444 0.012632 -1.223  0.22199  now, not significant.
xx_i_us_i_0 0.22673 0.08346  2.717 0.006805 **  significant & huge effect on other coeff.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.113 on 542 degrees of freedom
Multiple R-squared:  0.2276,    Adjusted R-squared:  0.2219 

Note: Lagged iUS (iUS, t-1) is very significant & changes significance of 
other variables. It may point out to a general misspecification in (A1). 

Specification Errors: Omitted Variables

• Irrelevant variables . Suppose the correct model is 

y = X11 +  –the “short regression,” with X1

But, we estimate

y = X11 + X22 +  –the “long regression.”

Some easily proved results: Including irrelevant variables just reverse 
the omitted variables results: 

- It increases variance -the cost of not using information. 

- But, it does not create biases.

 Since the variables in X2 are truly irrelevant, then 2 = 0, 

so E[b1.2|X] = 1. 

Specification Errors: Irrelevant Variables
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9

Specification Errors: Irrelevant Variables

• A simple example  

Suppose the correct model is: y = 1 + 2 X2 + 
But, we estimate: y = 1 + 2 X2 + 3 X3 + 

• Unbiased: Given that 3 = 0  E[b2|X] = 2

• Efficiency:

𝑉𝑎𝑟 𝑏 𝑋
𝜎

∑ 𝑋 𝑋
1

1 𝑟 ,
  

𝜎
∑ 𝑋 𝑋

where 𝑟
,

is the correlation coefficient between X2 and X3.

Note: These are the results in general. Note that if  X2 & X3 are 
uncorrelated, there will be no loss of  efficiency after all.


