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Review: Maximum Likelihood Estimation

• We get an independent sample (𝑋 , 𝑋 ,... , 𝑋 ). We assume we known 
where this sample is drawn from: A distribution with pdf 𝑓 𝑿 𝜃
where 𝜃 are 𝑘 parameters.

The joint pdf is given by:

𝐿 𝑿 𝜃 𝑓 𝑋 ,  𝑋 , ..., 𝑋 𝜃 𝑓 𝑋 𝜃 ∗ 𝑓 𝑋 𝜃 ∗ ⋯∗ 𝑓 𝑋 𝜃

 ∏ 𝑓 𝑋 |𝜃
• 𝐿 𝑿 𝜃 : Likelihood function. It represents how likely it is to get a 
particular sample from the model. 

• We maximize L(X| θ) w.r.t. θ to get ML estimates: 𝜃

• It is easier to work with the Log of the likelihood function: 
ln 𝐿 𝑋 𝜃 = ∑ ln 𝑓 𝑋 𝜃
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• ML estimators (MLE) have very appealing properties:

(1) Efficiency. Lowest Variance of any estimator of θ.

(2) Consistency: 𝜃 → θ

(3) Asymptotic Normality: 𝜃  
  

 𝑁 𝜃, 𝐈 𝜃 𝑋
where 𝐈 𝜃|𝑋) is the information matrix for the whole sample. 

𝐸
𝛉 𝛉

𝐈 𝜃 𝑋

(4) Invariance. If 𝜃 is the MLE of θ g(𝜃 ) is the MLE of 
g(θ).

Review: ML Estimation – Properties

• Suppose we assume, using the usual notation:

𝒚 𝐗𝛃 𝛆, 𝛆 ~ 𝑁 0,𝜎 𝐈
where we have 𝑘 explanatory, exogenous variables, 𝒙 ’s , that we treat 
as numbers. 𝛃 is a 𝑘x1 vector of unknown parameters. 

Then, the joint likelihood function becomes:

𝐿 ∏ exp 2𝜋𝜎 / ∏ exp

• Taking logs, we have the log likelihood function: 

ln 𝐿
𝑇
2

ln 2𝜋𝜎
1

2𝜎
𝜀

𝑇
2

ln 2𝜋𝜎
𝐲 𝐗𝛃 𝐲 𝐗𝛃  

2𝜎

=  ln 2𝜋𝜎 𝒚′𝒚 –𝟐 𝛃′𝐗′𝒚+𝛃′𝐗′𝐗𝛃

Review: ML Estimation – Linear Model
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• After taking f.o.c. and solving for 𝛃 & 𝜎 :

𝛃 𝐗′𝐗 𝐗′𝒚

𝜎
∑ ∑   𝐗 𝛃

• Under (A5) –i.e., normality for the errors–, we have that 𝜷 = b.

• It can be shown (see notes) that Var[𝛃 ] = 𝜎  𝑋 𝑋 -1

Note: 𝜎 is biased, but as 𝑇 gets bigger, the differences between  
𝜎 and 𝑠 become very small. Thus, with a big 𝑇 (& normality) 
the difference between Var[𝛃 ] & Var[𝒃] should be minor.

Review: ML Estimation – Linear Model

Example: We estimate the 3 F-F factor model for IBM with ML and 
OLS.

• Summary: OLS vs MLE

OLS MLE

Coeff. (1) S.E. Coeff. (2) S.E.

Intercept -0.00509 0.00238 -0.00509 0.00237

Mkt_RF 0.86761 0.05425 0.86761 0.05406

SMB -0.68159 0.08045 -0.68159 0.08017

HML -0.22842 0.08100 -0.22842 0.08071

Review: ML Estimation – Linear Model

Same as expected Not so different
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Review: Data Problems

• Data problems are exogenous to the researcher. 

• Three data problems:

(1) Missing Data – very common, especially in cross sections and 
long panels. 

- Detection: blanks, NA, etc. We know if the data has this issue. 

(2) Outliers - unusually high/low observations. 

(3) Multicollinearity - there is perfect or high correlation in the 
explanatory variables. 

Outliers

• Many definitions: Atypical observations, extreme values, conditional 
unusual values, observations outside the expected relation, etc. 

• In general, we call an outlier an observation that is numerically 
different from the data. But, is this observation a “mistake,” say a 
result of measurement error, or part of the (heavy-tailed) distribution?

• In the case of normally distributed data, roughly 1 in 370 data points 
will deviate from the mean by 3*SD. Suppose T=1,000 and we see 9
data points deviating from the mean by more than 3*SD indicates 
outliers... Which of the 9 observations can be classified as an outlier?

Problem with outliers: They can affect estimates. For example, with 
small data sets, one big outlier can seriously affect OLS estimates.
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• Informal identification method:

- Eyeball: Look at the observations away from a scatter plot.

Example: Plot residuals for the 3 FF factor model for IBM returns
x_resid <- residuals(fit_ibm_ff3)

plot(x_resid, type ="l", col="blue", main ="IBM Residuals from 3 FF Factor Model", 
xlab="Date", ylab="IBM residuals")

Outliers: Identification

𝑥

Outliers?

• Formal identifications methods:

- Standardized residuals, 𝑒 /SD(𝑒 ):  Check for errors that are 2*SD (or 
more) away from the expected value.

Example: Plot standardized residuals for IBM residuals
x_stand_resid <- x_resid/sd(x_resid) # standardized residuals

plot(x_stand_resid, type ="l", col="blue", main ="IBM Standardized Residuals from 3 FF 
Factor Model", xlab="Date", ylab="IBM residuals")

Outliers: Identification

𝑥

Outliers?
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• Formal identifications methods:

- Leverage statistics: It measures the difference of an independent data 
point from its mean. High leverage observations can be potential 
outliers. Leverage is measured by the diagonal values of the P matrix:

ℎ = 1/ 𝑇 + (𝑥 – �̄�)/[(𝑇 – 1) 𝑠 ].

Note: An observation can have high leverage, but no influence.

- Influence statistics: 𝐷𝑖𝑓 𝑏𝑒𝑡𝑎. It measures how much an observation 
influences a parameter estimate, say 𝑏 . 𝐷𝑖𝑓 𝑏𝑒𝑡𝑎 is calculated by 
removing an observation, say 𝑖, recalculating 𝑏 , say 𝑏 𝑖 , taking 
the difference in betas and standardizing it. Then,  

𝐷𝑖𝑓 𝑏𝑒𝑡𝑎 = 
∑   

Outliers: Identification – Leverage & Influence

𝑥

• A related popular influence statistic is Distance D (as in Cook’s D). It 
measures the effect of deleting an observation, say 𝑖, on the fitted 
values, say 𝑦 . Using the previous notation we have:

𝐷
∑ 𝑦 𝑦 𝑖

𝑘 ∗ 𝑀𝑆𝐸
where 𝑘 is the number of parameters in the model and MSE is mean 
square error of the regression model (MSE = RSS/𝑇).

• The identification statistics are usually compared to some ad-hoc cut-

off values. For example, for Cook’s D, if 𝐷 > 4/𝑇  observation 𝑖
is considered a (potential) highly influential point.

• The analysis can also be carried out for groups of observations. In 
this case, we look for blocks of highly influential observations.

𝑥

Outliers: Identification – Leverage & Influence
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Outliers: Leverage & Influence

• Deleting the observation in the upper right corner has a clear effect 
on the regression line. This observation has leverage and influence.

• General rules of thumb (ad-hoc thresholds) used to identify outliers:

Measure Value

abs(stand resid) > 2

leverage > (2 𝑘 +2)/T

abs(𝐷𝑖𝑓 𝑏𝑒𝑡𝑎) > 2/sqrt(T)

Cook's D > 4/T

In general, if we have 5% or less observations exceeding the ad-hoc 
thresholds, we tend to think that the data is OK.

Outliers: Summary of  Rules of  Thumb
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Example: Cook’s D for IBM returns using the 3 FF Factor Model

y <- ibm_x

x <- cbind(x0, Mkt_RF, SMB, HML)
dat_xy <- data.frame(y, x)
fit_ibm_ff3 <- lm(y ~ x - 1)
cooksd <- cooks.distance(fit_ibm_ff3)
# plot cook's distance
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance") 
# add cutoff line
abline(h = 4*mean(cooksd, na.rm=T), col="red")  # add cutoff line
# add labels
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, 
na.rm=T), names(cooksd),""), col="red")  # add labels

# influential row numbers
influential <- as.numeric(names(cooksd)[(cooksd > 4*mean(cooksd, na.rm=T))])  
# print first 10 influential observations.

head(dat_xy[influential, ], n=10L)

Outliers: Example

Example (continuation): Cook’s  D for IBM (3 Factor-Model)

Outliers: Example
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Example (continuation): Cook’s  D for IBM (3 Factor-Model)

> # print first 10 influential observations.
>head(dat_xy[influential, ], n=10L) 

y V1  Mkt_RF SMB     HML
8   -0.16095068  1  0.0475  0.0294  0.0219
94   0.01266444  1  0.0959 -0.0345 -0.0835
227 -0.04237227  1 0.1084 -0.0224 -0.0403
237 -0.19083575  1  0.0102  0.0205 -0.0210
239 -0.30648638  1  0.0153  0.0164  0.0252
282  0.07787100  1 -0.0597 -0.0383  0.0445
286  0.20734626 1  0.0625 -0.0389  0.0117
291  0.15218986 1  0.0404 -0.0565 -0.0006
306  0.13928315  1 -0.0246 -0.0512 -0.0096
315  0.16196934 1  0.0433  0.0400  0.0253

Note: There are easier ways to plot Cook’s D and identify the 
suspect outliers. The package olsrr can be used for this purpose too.

Outliers: Example

Example: Different tools to check for outliers for IBM returns
We will use the package olsrr --install it with install.packages().
install.packages(“olsrr”) 

library(olsrr) # need to install package olsrr
x_resid <- residuals(fit_ibm_ff3)
x_stand_resid <- x_resid/sd(x_resid) # standardized residuals
sum(x_stand_resid > 2) # Rule of thumb count (5% count is OK)
x_lev <- ols_leverage(fit_ibm_ff3) # leverage residuals
sum(x_lev > (2*k+2)/T) # Rule of thumb count (5% count is OK)
sum(cooksd > 4/T) # Rule of thumb count (5% count is OK)
ols_plot_resid_stand(fit_ibm_ff3) # Plot standardized residuals 
ols_plot_cooksd_bar(fit_ibm_ff3) # Plot Cook’s D measure
ols_plot_dffits(fit_ibm_ff3) # Plot Difference in fits
ols_plot_dfbetas(fit_ibm_ff3) # Plot Difference in betas

> sum(x_stand_resid > 2)
[1] 13 # 5%? = 13/569 = 0.0228
> sum(x_lev > (2*k+2)/T)
[1] 32 # 5%? = 32/569 = 0.0562
> sum(cooksd > 4/T)
[1] 38 # 5%? = 38/569 = 0.0668

Outliers: Example
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Example (continuation):
>ols_plot_resid_stand(fit_ibm_ff3) # Plot Standardize residuals

Outliers: Example

Example (continuation):
>ols_plot_cooksd_bar(fit_ibm_ff3) # Plot Cook’s D measure

Outliers: Example
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Example (continuation):
>ols_plot_dfbetas(fit_ibm_ff3)

Outliers: Example

𝐷𝑖𝑓 𝑏𝑒𝑡𝑎

• The histogram, Boxplot, and quantiles helps us see some potential 
outliers, but we cannot see which observations are potential outliers. 
For these, we can use Cook’s D, 𝐷𝑖𝑓 𝑏𝑒𝑡𝑎’s, standardized residuals 
and leverage statistics, which are estimated for each 𝑖.

Observation
Type           Proportion      Cutoff

Outlier            0.0228 2.0000    (abs(standardized residuals) > 2)
Outlier 0.1474 2/sqrt(T)  (diffit > 2/sqrt(1038)=0.0621)
Outlier 0.0668 4/T (cookd > 4/1038=0.00385)
Leverage     0.0562 (2k+2)/T (h=leverage > .00771)

Outliers: Application − Rules of  Thumb
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• Typical solutions: 

- Use a non-linear formulation or apply a transformation (log, square 
root, etc.) to the data.

- Remove suspected observations. (Sometimes, there are theoretical 
reasons to remove suspect observations. Typical procedure in finance: 
remove public utilities or financial firms from the analysis.)

- Winsorization of the data (cut an α% of the highest and lowest 
observations of the sample).

- Use dummy variables. 

- Use LAD (quantile) regressions, which are less sensitive to outliers.

- Weight observations by size of residuals or variance (robust 
estimation).

• General rule: Present results with or without outliers.

Outliers: What to do?

Multicollinearity

• The X matrix is singular (perfect collinearity) or near singular  
(multicollinearity).

Perfect collinearity

Not much we can do. OLS will not work  X'X cannot be inverted. 
The model needs to be reformulated.

Multicollinearity
OLS will work.  is still unbiased.  The problem is in (X'X)-1; that is, 
in the Var[b|X]. Let’s see the effect on the variance of particular 
coefficient, b𝑘. 

Recall the estimated Var[b𝑘|X] is the 𝑘th diagonal element of 
2(X’X)-1.
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• Let define 𝑅 .as the R2 in the regression of 𝒙 on the other 
regressors, X𝑘. Then, we can show the estimated Var[b𝑘|X] is

Var[b𝑘|X] = 
. ∑   

.

 the higher 𝑅 . –i.e., the fit between 𝒙 and the rest of the 
regressors–, the higher Var[b𝑘|X].  

• The ratio 
.

 is called the Variance Inflation Factor of regressor

𝑘, or VIF𝒌. It should be equal to 1 when 𝒙 is unrelated to the rest of 
the regressors (including a constant). The higher it is, the higher the 
linear correlation between 𝒙 and the rest of the regressors. 

• A common rule of thumb: If VIF𝒌 > 5, concern. 

Multicollinearity & VIF

• Signs of Multicollinearity:

- Small changes in X produce wild swings in b.

- High R2, but b has low t-values –i.e., high standard errors

- “Wrong signs” or difficult to believe magnitudes in b.

• There is no cure for collinearity.  Estimating something else is not 
helpful; for example, transforming variables to eliminate 
multicollinearity, since we are interested in the effect of X on y, not 
necessarily the effect of f(X) on g(y).

Multicollinearity: Signs
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Multicollinearity: VIF and Condition Index

• Popular measures to detect multicollinearity:

- VIF

- Condition number (based on singular values), or K#.

• Belsley (1991) proposes to calculate VIF and the condition number, 
using RX, the correlation matrix of the standardized regressors:

VIF𝑘 = diag(RX
-1)𝑘

Condition Index = κ𝑘 = sqrt(λ1/ λ𝑘)

where λ1> λ2 > ... > λp > ... are the ordered eigenvalues of RX.

• Belsley’s (1991) rules of thumb for κ𝑘:
- below 10 ⇒ good
- from 10 to 30 ⇒ concern 
- greater than 30 ⇒ trouble (>100,  a disaster!)

Multicollinearity: Example

Example: Check for multicollinearity for IBM returns 3-factor model
library(olsrr)
ols_vif_tol(fit_ibm_ff3)
ols_eigen_cindex(fit_ibm_ff3)

> ols_vif_tol(fit_ibm_ff3)
Variables Tolerance      VIF

1   xMkt_RF 0.8901229 1.123440
2   xSMB 0.9147320 1.093216
3   xHML 0.9349904 1.069530
> ols_eigen_cindex(fit_ibm_ff3)
Eigenvalue Condition Index  intercept    xMkt_RF xSMB xHML

1  1.4506645 1.000000 0.01557614 0.24313961 0.212001760 0.1518949
2  1.0692689    1.164770 0.66799183 0.01432250 0.001789253 0.2129328
3  0.7967889    1.349310 0.16184731 0.01239755 0.576432492 0.4107435
4  0.6832777   1.457085 0.15458473 0.73014033 0.209776495 0.2244287

Note: Multicollinearity does not seem to be a problem.
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• Best approach:  Recognize the problem and understand its 
implications for estimation.

Note: Unless we are very lucky, some degree of multicollinearity will 
always exist in the data. The issue is: when does it become a problem? 

Multicollinearity: Remarks

Bootstrapping (Again!)

Idea: We use the data at hand -the empirical distribution (ED)- to 
estimate the variation of statistics that are themselves computed from 
the same data. Recall that, for large samples drawn from 𝐹, the ED 
approximates the CDF of 𝐹 very well.

• Bootstrap choice for an approximating distribution: The ED. 

⇒ The ED becomes a “fake population.”

John Fox (2005, UCLA): “The population is to the sample as the sample is to 
the bootstrap samples.”

• Suppose we have a dataset with 𝑁 i.i.d. observations drawn from 𝐹: 

{𝑥 , 𝑥 , …, 𝑥 }

This sample becomes the “fake population.”



RS - OLS 2 (Bootstrapping and Testing)

16© 2023 R. Susmel. Do not share/post online without written authorization from author.

• We have a dataset with 𝑁 i.i.d. observations drawn from 𝐹: 

{𝑥 , 𝑥 , …, 𝑥 } -“fake population.”

From the ED, F*, we sample with replacement 𝑁 observations, say: 

{𝑥∗=x1, 𝑥
∗=x1, 𝑥

∗=x7, ..., 𝑥
∗ =xN-10} - a bootstrap sample

This is an empirical bootstrap sample, which is a resample of the same size 
𝑁 as the original data, drawn from F*. But, we can resample many 
times from F*.

Bootstrapping: Resampling

Bootstrap resampling
Sample 

{x1, x2, x3, ..., xN}
Bootstrap samples (B)

• For any statistic θ computed from the original sample data, we can 
define a statistic θ* by the same formula, but using the resampled data. 

• We resample B times from 𝐹*.

• We compute B θ*, by resampling B times from 𝐹*. 

⇒ We have a collection of  θ*’s: {θ∗ , θ∗ , θ∗ , ..., θ∗ }.

From this collection of θ*’s, we learn about statistic θ: Compute 
moments, C.I.’s, etc. 

Bootstrapping: Fake Population & Resampling

Bootstrap resampling
Sample 

{x1, x2, x3, ..., xN}
Bootstrap samples (B)

Compute θ* (θ*)
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• Bootstrap Steps:

1. From the original sample, draw random sample with size 𝑁.

2. Compute statistic θ from the resample in 1: θ∗ .

3. Repeat steps 1 & 2 B times  Get B statistics: {θ∗ , θ∗ , θ∗ , ..., θ∗ }

4. Compute moments, draw histograms, etc. for these B statistics.

• Results:

1. With a large enough B, the LLN allows us to use the θ*’s to estimate 
the distribution of  θ, F(θ).  

2. The variation in θ is well approximated by the variation in θ*.

Result 2 is the one we used in Lecture 2-d to estimate the size of  a C.I.

Bootstrapping: Empirical Bootstrap - Results

• Q: Why do we need a bootstrap?

- N is “small,” asymptotic assumptions do not apply.

- DGP assumptions are violated. 

- Distributions are complicated.

• Advantages and Disadvantage: 

- Only consistent results, no finite sample results. 

- Main appeal: Simplicity.

• The most common econometric applications are situations where you 
have a consistent estimator of  a parameter of  interest, but it is hard or 
impossible to calculate its standard error or its C.I.

Bootstrapping: Why?
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• You are interested in the correlation between IBM’s returns (X) and 
S&P 500 returns (y). You have monthly data from 1973 (N = 588). 
You estimate the correlation coefficient, ρ, with its sample counterpart, 
r. You find the correlation to be low.

Q: How reliable is this result? The distribution of r is complicated. 
You decide to use a bootstrap to study the distribution of r.

• Randomly construct a sequence of B samples (all with N = 588). Say,

B1 = {(𝑥1, 𝑦1), (𝑥3, 𝑦3), (𝑥6, 𝑦6), (𝑥6, 𝑦6), ..., (𝑥1458, 𝑦1458)} ⇒ θ∗= r1
B2 = {(𝑥5, 𝑦5), (𝑥7, 𝑦7), (𝑥11, 𝑦11), (𝑥12, 𝑦12), ..., (𝑥1486, 𝑦1486)} ⇒ θ∗= r2

....

BB = {(𝑥2, 𝑦2), (𝑥2, 𝑦2), (𝑥2, 𝑦2), (𝑥3, 𝑦3), ..., (𝑥1499, 𝑦1499)} ⇒ θ∗ = rB

Bootstrapping: Simple correlation example

Remarks: 

- We rely on the ED –i.e., observed data. We take it as our “fake 
population” and we sample from it B times.

- We have a collection of bootstrap subsamples. 

- The sample size of each bootstrap subsample is the same (N). Some 
elements are repeated.

• Now, we have a collection of estimators of ρi’s: 

{r1, r2, r 3, ..., r B}. 

We can do a histogram and get an approximation of the probability 
distribution. We can calculate its mean, variance, C.I., etc.

Bootstrapping: Simple correlation example
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Example: We bootstrap the correlation between the returns of IBM & 
the S&P 500, using monthly data 1973-2020, with B = 1,000. 

sim_size = 1000

lr_sp <- log(x_sp[-1]/x_sp[-T])

dat_spibm <- data.frame(lr_sp, lr_ibm)

library(boot)

# function to obtain the correlation coefficient from the data

cor_xy <- function(data, i) {

d <-data[i,]

return(cor(d$lr_sp,d$lr_ibm))

}

# bootstrapping with sim_size replications

boot.samps <- boot(data=dat_spibm, statistic=cor_xy,   R=sim_size)

# view stored bootstrap samples and compute mean

boot.samps # Print original ρ, bias and SE of bootstraps

mean(boot.samps$t) # our estimate of the correlation

Bootstrapping: Estimating the correlation, ρ

Example (continuation): Output from R:
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = dat_spibm, statistic = cor_xy, R = sim_size)

Bootstrap Statistics :

original       bias    std. error

t1* 0.5894632 -0.001523914  0.03406313

> boot.samps$t[1:10] # show first 10 bootstrapped correlations coeff

[1] 0.5863186 0.5898572 0.6473122 0.6473249 0.5311525 0.5734280 0.6241236 0.5790740

[9] 0.5790095 0.5932918 

> mean(boot.samps$t) # our estimate of the correlation

[1] 0.5879392

> sd(boot.samps$t) # SD of the correlation estimate

[1] 0.03406313

Bootstrapping: Estimating the correlation, ρ
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Bootstrapping: Histogram for ρ

Example (continuation): Output from R:
> # Elegant histogram
> hist(boot.samps$t,main="Histogram for Bootstrapped Correlations", 
+      xlab="Correlations", breaks=20)

• Simple 95% percentile method C.I. 
> new <- sort(boot.samps$t)
> new[25]
[1] 0.5151807
> new[975]
[1] 0.6495722

Note: You get same results using 
boot.ci(boot.samps, type = "perc")

Example (continuation): Output from R:

• 95% C.I using empirical bootstrap method (preferred method.)
> boot.ci(boot.samps, type=“basic")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL : 

boot.ci(boot.out = boot.samps, type = “basic")

Intervals : 

Level     Percentile     

95%   ( 0.5293, 0.6637 )  

Calculations and Intervals on Original Scale

Bootstrapping: 95% Confidence Interval for ρ
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Bootstrapping: How many bootstraps?

• Not clear. There are many theorems on asymptotic convergence, but 
there are no clear rules regarding B. There are some suggestions, from  

B = 100  (or even B = 25!) to B = 2,400.

Rule of thumb: Start with B = 100, then, try B = 1,000, and see if your 
answers have changed by much. Increase bootstraps until you get 
stability in your answers.

Example: We bootstrap the correlation between IBM returns and 
S&P 500 returns, using B = 100.

Bootstrapping: How many bootstraps? 

sim_size <- 100
> # view bootstrap results
> boot.samps
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = dat_spibm, statistic = cor_xy, R = 
sim_size)

Bootstrap Statistics :
original      bias    std. error

t1* 0.5898636 -0.00115623  0.03449216
> mean(boot.samps$t)
[1] 0.5887074
> sd(boot.samps$t)
[1] 0.02885868

• Results do not change that much.
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Example: We bootstrap the correlation between IBM returns and 
S&P 500 returns, using B = 25.

Bootstrapping: How many bootstraps? 

sim_size <- 25
> # view bootstrap results
> boot.samps
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = dat_spibm, statistic = cor_xy, R = 
sim_size)

Bootstrap Statistics :
original      bias    std. error

t1* 0.5898636 -0.00115623  0.03449216
> mean(boot.samps$t)
[1] 0.5847676
> sd(boot.samps$t)
[1] 0.03449216

• Results do not change that much.

Bootstrapping: Linear Model – Var[b]

• Some assumptions in the CLM are not reasonable, say, (A3) or 
normality (A5). By assuming (A5), we also assume the sampling 
distribution of b. But if data is not normal, results are only asymptotic.

• We use a bootstrap to estimate the sampling distribution of b. It can 
give us a better idea of the small sample distribution. Then, we estimate 
the Var[b].

• Monte Carlo (MC=repeated sampling) method:

1.  Estimate model using full sample (of size T) ⇒ get b

2.  Repeat B times:

- Draw T observations from the sample, with replacement

- Estimate  with mean of b(r).  

3.  Estimate variance with 

Vboot =  (1/B) [b(r) - b][b(r) - b]’
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• In the case of one parameter, say b1: Estimate variance with 

Varboot[b1] = (1/B)r [b1(r) – b1 ]2

• You can also estimate Var[b1] as the variance of b1 in the bootstrap

Varboot[b1] = (1/B)r [b1(r) – mean(b1(r)) ]2;

mean(b1(r)) = (1/B)r b1

Note: Obviously, this method for obtaining standard errors of 
parameters is most useful when no formula has been worked out for 
the standard error (SE), or the formula is complicated –for example, in 
some 2-step estimation procedures– or the assumption behind the 
formula are not realistic.

Bootstrapping: Linear Model – Var[b]

Example: We bootstrap the SE for b for IBM returns using the 3 FF 
Factor Model. We use the R package lmboot. (Install it first!) 

library(lmboot) # need to run before install.packages(“lmboot”)
y <- ibm_x
x <- cbind(x0, Mkt_RF, SMB, HML)
dat_yx <- data.frame(y, x) # lmboot needs an R data frame. We make one.

sim_size = 1000
ff3_b <- paired.boot(y ~ x-1, data=dat_yx, B=sim_size)

ff3_b$origEstParam # print OLS results (“original estimates”)

# Mean values for b
mean(ff3_b$bootEstParam[,1]) # print mean of  bootstrap samples for constant
mean(ff3_b$bootEstParam[,2]) # print mean of  bootstrap samples for Mkt_RF
mean(ff3_b$bootEstParam[,3]) # print mean of  bootstrap samples for SMB
mean(ff3_b$bootEstParam[,4]) # print mean of  bootstrap samples for HML

Bootstrapping: Linear Model – Var[b]
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Example (continuation):

# Statistics for sampling distribution of  b
summary(ff3_b$bootEstParam) # distribution of  b

# SD of  parameter vector b
sd(ff3_b$bootEstParam[,1]) # print SD of  bootstrap samples for constant
sd(ff3_b$bootEstParam[,2]) # print SD of  bootstrap samples for Mkt_RF
sd(ff3_b$bootEstParam[,3]) # print SD of  bootstrap samples for SMB
sd(ff3_b$bootEstParam[,4]) # print SD of  bootstrap samples for HML

# bootstrap bias
ff3_b$origEstParam[1] - mean(ff3_b$bootEstParam[,1])
ff3_b$origEstParam[2] - mean(ff3_b$bootEstParam[,2])
ff3_b$origEstParam[3] - mean(ff3_b$bootEstParam[,3])
ff3_b$origEstParam[4] - mean(ff3_b$bootEstParam[,4])

Bootstrapping: Estimating Var[b]

Example (continuation):

> ff3_b$origEstParam
[,1]

x       -0.005088944
xMkt_RF 0.908298898
xSMB -0.212459588
xHML -0.171500223

> summary(ff3_b$bootEstParam)
x                xMkt_RF xSMB xHML

Min. :-0.012159 Min. :0.7115 Min. :-0.5175 Min.   :-0.4699  
1st Qu. :-0.006731   1st Qu. :0.8669 1st Qu. :-0.2890 1st Qu. :-0.2362  
Median :-0.005074 Median :0.9087 Median :-0.2185 Median :-0.1690  
Mean   :-0.005008 Mean   :0.9068 Mean   :-0.2125 Mean  :-0.1710  
3rd Qu. :-0.003273 3rd Qu. :0.9492 3rd Qu. :-0.1415 3rd Qu. :-0.1086  
Max.   : 0.002293 Max.   :1.0854 Max.   : 0.1909 Max. : 0.2477  

> sd(ff3_b$bootEstParam[,1])
[1] 0.002493708

Bootstrapping: Estimating Var[b]
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• From the B samples, we compute variances and SD as usual.

> ff3_b$bootEstParam[1:10,] # print the first 10 of  B=1,000 bootstrap samples

x   xMkt_RF xSMB xHML
[1,] -6.109007e-03 0.9186830 -0.1299534100 -0.163421636
[2,] -1.757503e-03 0.8333006 -0.2067565390 -0.147604991
[3,] -3.907573e-03 0.9746878 -0.2870744815 -0.169189619
[4,]  1.596103e-03 0.9185157 -0.2937731120 -0.296972497
[5,] -8.409239e-03 0.7309406 -0.0681714313 -0.149883639
[6,] -1.998929e-03 0.9133751 -0.3001713380 -0.315913280
[7,] -6.289286e-03 0.9441856 -0.2276894034 -0.058924929
[8,] -5.533354e-03 0.8210057 -0.2221866298 -0.078512341
[9,] -6.152301e-03 1.0389917 -0.2592958758 -0.237930809
[10,] -3.778058e-03 0.9544829 -0.1859554067 -0.217702583

Bootstrapping: Estimating Var[b]

> sd(ff3_b$bootEstParam[,2])
[1] 0.06132218
> sd(ff3_b$bootEstParam[,3])
[1] 0.1108
> sd(ff3_b$bootEstParam[,4])
[1] 0.09729972
> 

• Comparing OLS and Bootstrap

OLS Bootstrap Bias
(2)-(1)Coeff. (1) S.E. Coeff. (2) S.E.

x -0.00509 0.00249 -0.00501 0.00249 8.0765e-05

xMkt_RF 0.90829 0.05672 0.90684 0.06132 -0.0014571

xSMB -0.21246 0.08411 -0.21245 0.11080 1.9914e-06

xHML -0.17150 0.08468 -0.17099 0.09730 0.0005133

Bootstrapping: Estimating Var[b]

Bootstratp has higher SE,  more 
conservative tests: less H0 rejections
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OLS Subject to Linear Restrictions

• Restrictions: Theory imposes certain restrictions on parameters and 
provide the foundation of several tests. In this Lecture, we only 
consider linear restrictions, written as R = q.

Dimensions: 

R: Jx𝑘 - J = # of restrictions & 𝑘 = # of pars. 

: 𝑘x1

q: 𝑘x1

• We consider the following restrictions:

(1) Dropping  variables from model ( = 0). 

(2) Adding up conditions ( +  = 1). 

(3) Equality restrictions ( =  = 0).

OLS Subject to Linear Restrictions

Examples: Linear restrictions, written as R = q.

(1) Dropping  variables from the equation. That is, certain coefficients 
in  are forced to equal 0.  For example, in the 3-factor Fama-French 
factor model we force  =  = 0, that is, we fit the traditional 
CAPM). 

Using the above notation:

R = q  0 0 1 0
0 0 0 1

∗






= 

 = 0

0

We have two restrictions (J=2):  = 0 &   = 0.

 R is a 2x4 matrix,  is a 4x1 vector, and q is a 2x1 vector. 
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OLS Subject to Restrictions

Examples (continuation): 

(2)  Adding up conditions:  Sums of certain coefficients must equal 
fixed values. In a CAPM setting, the sum of all cross-sectional i‘s 
should be equal to 1. For example, in the 3 Fama-French factor model, 
we force  +  = 1.

R = q  0 0 1 1 ∗






=    1.

Note: From a theory point of view, not a very interesting restriction! 

OLS Subject to Restrictions

Examples (continuation): 

(3) Equality restrictions: Certain coefficients must equal other 
coefficients. Using real vs. nominal variables in equations. For 
example, in the 3 FF factor model, we force  =  .

R = q  0 0 1 1 ∗






= 0.

Note: From a theory point of view, not a very interesting restriction! 

• Common formulation:  We minimize the error sum of squares, 
subject to the linear restrictions. That is, 

Minb {S(xi, θ) = Σi ei
2 = e′e = (y – X)′ (y – X)} s.t. R = q
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Restricted Least Squares

• In practice, restrictions can usually be imposed by solving them out. 
Suppose we have the following model:

𝑦 β  𝑥 β  𝑥 β  𝑥 + ε

(1) Dropping variables –i.e., force a coefficient to equal zero, say β . 

Problem: Minβ  ∑ 𝑦 β 𝑥 β 𝑥 β 𝑥  𝑠. 𝑡.  β 0
Minβ  ∑ 𝑦 β 𝑥 β 𝑥  

(2) Adding up.  Suppose we impose: β1+ β2 + β3 = 1
Then, β3 = 1 – β1 – β2. Substituting in model:

(𝒚 – 𝒙 ) = β1(𝒙 – 𝒙 ) + β2(𝒙 – 𝒙 ) + ε. 

Problem:    Minβ ∑ 𝑦 𝑥 β 𝑥 𝑥 β 𝑥 𝑥

Restricted Least Squares

(3) Equality. Suppose we impose: β2 = β3.
Then, 𝒚 = β1 𝒙 + β2 𝒙 + β2𝒙 + ε = β1 𝒙 + β2 (x2 + 𝒙 ) + ε

Problem:  Minβ  ∑ 𝑦 β 𝑥 β 𝑥 β 𝑥  𝑠. 𝑡.  β β

Minβ ∑ 𝑦 β 𝑥 β 𝑥 𝑥
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• Before setting the general restricted LS problem, we look at the 
simplest case: one explanatory variable (x) and one restriction (𝑟β – 𝑞).

First, we set the Lagrangean (values of  Lagrange 𝜆 play no role):

minβ,λ  𝐿 β, 𝜆 ∑ 𝑦  𝑥  β 2𝜆 (𝑟β – 𝑞)

Second, take f.o.c.:  


β,  

β 2∑ 𝑦  𝑥  β 𝑥 2𝜆 𝑟 

β,  
2 (𝑟β – 𝑞)

Then, the f.o.c. are:

∑ 𝑦  𝑥  𝑏∗  𝑥 𝜆 𝑟 0  ∑ 𝑦 𝑥 𝑥  𝑏∗ 𝜆 𝑟 

𝜆 𝑟 𝑏∗− 𝑞) 0  𝑟 𝑏∗− 𝑞 0

Restricted LS: One Restriction, 𝑟β = 𝑞

58

• From the 1st equation:
∑ 𝑦 𝑥  𝑏∗ ∑ 𝑥 = 𝒙𝒚  𝑏∗(𝒙𝒙) 𝜆 𝑟

 𝑏∗ = (𝒙𝒙)−1 𝒙𝒚  (𝒙𝒙)−1 
𝜆 𝑟

𝑏∗= 𝑏 – 𝑟 (𝒙𝒙)−1   Restricted OLS = OLS + “correction”

• Finally, solve for . Premultiply both sides by 𝑟 and then subtract 𝑞:
𝑟 𝑏∗ – 𝑞 = 𝑟 𝑏 – 𝑟 (𝒙𝒙)−1  – 𝑞

0 = - 𝑟 (𝒙𝒙)−1  + (𝑟𝑏 – 𝑞) 

Solving for    = [𝑟 ((𝒙𝒙)−1 
]-1 (𝑟𝑏 – 𝑞)

• Substituting in 𝑏∗  𝑏∗= 𝑏 – (𝒙𝒙)−1 
𝑟 [𝑟 (𝒙𝒙)−1 

]-1 (𝑟𝑏 – 𝑞)

This is the Restricted OLS estimator:

Restricted OLS = Unrestricted OLS + correction

Restricted LS: One Restriction, rβ = q
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59

• 𝑏∗= 𝑏 – (𝒙𝒙)−1 
𝑟 [𝑟 (𝒙𝒙)−1 

]-1 (𝑟𝑏 – 𝑞)

• Properties of  Restricted OLS.

Property 1. Taking expectations of  𝑏∗: 

E[𝑏∗|X] = E[𝑏 |X] – (𝒙𝒙)−1 
𝑟 [𝑟 (𝒙𝒙)−1 

]-1 E[(𝑟𝑏 – 𝑞)|X]
= β – (𝒙𝒙)−1 

𝑟 [𝑟 (𝒙𝒙)−1 
]-1 (𝑟β – 𝑞)

Implications:
If  the restriction is true –i.e., (𝑟β – 𝑞)  E[𝑏∗|X] = β
If  the restriction is not true –i.e., (𝑟β ≠ 𝑞)  E[𝑏∗|X] ≠ β

• Then, if  theory imposes a correct restriction, then, 𝑏∗ is unbiased:
E[𝑏∗|X] = β

In practice, if  restriction is true, the restricted and unrestricted 
estimators should be similar. 

Restricted LS: One Restriction – Properties

60

• Recall the LM:  = [r2 (xx)-1]-1 (𝑟𝑏 – 𝑞)

Interpretation: If  theory is correct, the expected shadow price is 0!
E[|X] = [𝑟 (xx)-1]-1 E[(𝑟𝑏 – 𝑞)|X] = 0 

That is, you would pay nothing to release the restriction.

Property 2. We can also compute the Var[𝑏∗]. It can be shown that

Var[𝑏∗|X]  = Var[𝑏|X] – σ2 (𝒙𝒙)−1 
𝑟 [𝑟 (𝒙𝒙)−1 

]-1 𝑟 (𝒙𝒙)−1 

 Var[𝑏|X] – Var[𝑏∗|X] > 0.

 The restricted OLS estimator is more efficient!

Restricted LS: One Restriction – Properties
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61

Remark from Properties 1 and 2: It is common to select an estimator 
based on the MSE (=RSS/T). The one with the lowest MSE is said 
to be more “precise.” 

We can decompose the MSE of  an estimator, 𝜃, as:
MSE[𝜃] = Variance[𝜃] + Squared bias 𝜃]

For an unbiased estimator, like 𝐛 MSE [𝐛] = Var[𝐛|X]

• Back to 𝐛∗. Suppose the theory is incorrect  𝐛∗ is biased. 

There may be situations (small bias, but much lower variance) where 
𝐛∗ is more “precise” (lower MSE) than 𝐛. 

It is possible that a practitioner may prefer imposing a wrong H0 to 
get a better MSE.

Restricted LS: One Restriction – Properties

• All the results for the one variable case, can be extended for the 
general case, we have a programming problem:  

Minimize wrt  L* = (𝒚 – X)(𝒚 – X)    s.t. R = q

• Form the Lagrangean, L* (the 2 is for convenience).
Min β, L* = (𝒚 – X)(𝒚 – X) + 2  (R – q)

f.o.c.:  

L*/b = -2X(𝒚 – X𝐛∗+ 2R = 0  -X(𝒚 – X𝐛∗) + R = 0
L*/ =  2(R𝐛∗– q) = 0  (R𝐛∗– q) = 0

where 𝐛∗is the restricted OLS estimator.

After (a lot of  algebra) we get:

𝐛∗= 𝐛 – (XX)-1R [R(XX)-1R]-1(R𝐛 – q)

Restricted LS: General case, R = q
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Restricted LS estimator:   𝐛∗ = 𝐛 – (XX)-1R [R(XX)-1R]-1(R𝐛 – q)
= 𝐛 + correction

• Properties:
1. Unbiased? 

- Yes, if Theory is correct! E[𝐛∗|X] = 

- No, if Theory is incorrect: E[𝐛∗|X] .

2. Efficiency?
Var[𝐛∗|X] = Var[b|X] – 2 (XX)-1R[R(XX)-1R]-1 R(XX)-1

 Var[𝐛∗|X]  < Var[b|X]

3. A biased 𝐛∗ may be more “precise,” using metric MSE (=RSS/T)

Restricted LS – Properties

1. 𝐛∗ = 𝐛 – Cm, m = the “discrepancy vector” R𝐛 – q.  

C = (XX)-1R [R(XX)-1R]-1

Note: If m = 0  𝐛∗ = 𝐛. 

2.  = [R(XX)-1R]-1(Rb – q) = [R(XX)-1R]-1m  

When does  = 0? We usually think of  as a “shadow price.”

3. Combining results: 𝐛∗ = 𝐛 – (XX)-1R

4. We can show that RSS never decreases with restrictions: 

ee = (y – X𝐛)(y – X𝐛) ≤ e*e* = (y – X𝐛∗)(y – X𝐛∗)
 Restrictions cannot increase R2  R2 ≥ R2* 

Restricted LS - Interpretation
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• Two cases

- Case 1:  Theory is correct: R – q = 0 (restrictions hold).

𝐛∗ is unbiased  &  Var[𝐛∗|X] ≤ Var[𝐛 |X]

- Case 2:  Theory is incorrect: R – q  0 (restrictions do not hold).

𝐛∗ is biased  &  Var[𝐛∗|X] ≤ Var[𝐛 |X].

• Interpretation

- The theory gives us information. 

Bad information produces bias (away from “the truth.”)

Any information, good or bad, makes us more certain of our 
answer. In this context, any information reduces variance.

Restricted LS - Interpretation

• Fisher’s significance testing procedure relies on the p-value: the probability 
of observing a result at least as extreme as the test statistic, under H0.

• Fisher’s Idea 

1. Form H0 & decide on a significance level (α%) to compare your test 
results. 

2. Find T(X). Know (or derive) the distribution of T(X) under H0.

3. Collect a sample of data X = {𝑥 , 𝑥 , …, 𝑥 }. 

Compute the test-statistics T(X) used to test H0  Report its p-value. 

4. Rule: If p-value < α (say, 5%) ⟹ test result is significant: Reject H0.  
If the results are “not significant,” no conclusions are reached (no 
learning here). Go back gather more data or modify model.

Review – Significance Testing
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• We are interested in testing a hypothesis about one parameter in the 
linear model: y = X + 

1. Set H0 and H1 (about only one parameter): H0: 𝑘 = 
H1: 𝑘≠ 

2. Appropriate T(X): t-statistic. Under H0: 

If (A5) 𝑡 = (𝑏  )/sb,k |X ~ 𝑡

Otherwise, 𝑡 →𝑁 0, 1

3. Compute t𝑘, t,̂ using b𝑘,  , s, and (X’X)-1. Get p-value(t)̂.

4. Rule: Set an α level. If p-value(t)̂ < α  Reject H0: 𝑘 = 
Alternatively, if |t|̂> 𝒕𝑻 𝒌,𝟏 𝜶/𝟐  Reject H0: 𝑘 =  .

Review – Testing Only One Parameter  

• Special case: H0: 𝑘 = 0
H1: 𝑘≠ 0.

Then,

𝑡 = sqrt{ (X′X)−1]  SE[ ] = t-value or t-ratio. 

• Usual α levels and 𝒕𝑻 𝒌,𝟏 𝜶/𝟐 –when 𝑇 > 30, 𝑡 , /  z1- α/2

α = 5%, then z1-α/2 = 1.96 -in R, z1-.05/2 = qnorm(0.975).

α = 2%, then z1-α/2 = 2.33 -in R, z1-.02/2 = qnorm(0.99).

α = 1%, then z1-α/2 = 2.58 -in R, z1-.01/2 = qnorm(0.995).

Review – Testing Only One Parameter  
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Testing: The Expectation Hypothesis (EH) 

Example: EH states that forward/futures prices are good predictors 
of future spot rates: Et[S ] = F ,

Implication of EH: S – F , = unpredictable. 

That is, Et[S – F , ] = Et[ε ] = 0!

Empirical tests of the EH are based on a regression: 

(S – F , )/S = α + β Z + ε , (where Et[ε ] = 0)

where Zt represents any economic variable that might have power to 
explain S , for example, interest rate differentials, (𝑖 – 𝑖 ). 

Then, under EH, H0: α = 0 and β = 0.

vs H1: α ≠ 0 and/or β ≠ 0.

Testing: The Expectation Hypothesis (EH) 

Example (continuation): We will informally test EH using exchange 
rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

SF_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", 
head=TRUE, sep=",")

summary(SF_da)

x_date <- SF_da$Date

x_S <- SF_da$GBPSP

x_F3m <- SF_da$GBP3M

i_us3 <- SF_da$Dep_USD3M

i_uk3 <- SF_da$Dep_UKP3M

T <- length(x_S)

prem <- (x_S[-1] - x_F3m[-T])/x_S[-1]

int_dif <- (i_us3 - i_uk3)/100

y <- prem

x <- int_dif[-T]

fit_eh <- lm( y ~ x)
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Testing: The Expectation Hypothesis (EH) 

Example (continuation): We do two individual t-tests on α & β.
> summary(fit_eh)
Call:

lm(formula = y ~ x)

Residuals:

Min        1Q    Median        3Q       Max 

-0.125672 -0.014576 -0.000439  0.017356  0.094283 

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept) -0.0001854  0.0016219  -0.114  0.90906    constant not significant (|t|<2)

x         -0.2157540  0.0731553 -2.949  0.00339  **  slope is significant (|t|>2).  Reject H0

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02661 on 361 degrees of freedom

Multiple R-squared:  0.02353,   Adjusted R-squared:  0.02082 

F-statistic: 8.698 on 1 and 361 DF,  p-value: 0.003393

Example (continuation): 95% C.I. for 𝑘:
Cn = [𝑏  𝑡 , /  * Estimated SE(𝑏 )]

Then,

Cn = [-0.215754 – 1.96 * 0.0731553,  -0.215754 + 1.96 * 0.0731553]

= [-0.3591384, -0.07236961] 

Since = 0 is not in Cn  with 95% confidence  Reject H0: 1 = 0
at 5% level.

Note: The EH is a joint hypothesis, it should be tested with a joint 
test!

Testing: The Expectation Hypothesis (EH) 
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Testing a Hypothesis: Wald Statistic

• Most of our test statistics, including joint tests, are Wald statistics.

Wald = normalized distance measure. 
One parameter: t𝑘 = (bk –  )/s𝑏,𝑘 = distance/unit

More than one parameter. 

Let z = (random vector – hypothesized value) be the distance 

W =  z [Var(z)]-1 z -a quadratic form, produces a number

• Distribution of W ? We have a quadratic form.

– If z is normal and σ2 known, W ~ χ

– If z is normal and σ2 unknown, W ~ F

– If z is not normal and σ2 unknown, we rely on

asymptotic theory,  W → χ

Abraham Wald (1902–1950, Hungary) 

The General Linear Hypothesis:  H0: R – q = 0

• Suppose we are interested in testing J joint hypotheses.

Example:  We want to test that in the 3 FF factor model that the 
SMB and HML factors have the same coefficients, SMB = HML = 0.

We can write linear restrictions as H0: R – q = 0,

where R is a Jxk matrix and q a Jx1 vector.

In the above example (J=2), we write:

0 0 1 0
0 0 0 1

∗






=
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• Q: Is Rb – q close to 0? There are two different approaches to this 
question. Both have in common the property of unbiasedness for b.

(1) We base the answer on the discrepancy vector:  

m = Rb – q. 

Then, we construct a Wald statistic:

W = m (Var[m|X])-1 m 

to test if m is different from 0.

(2) We base the answer on a model loss of fit when restrictions are 
imposed: RSS must increase and R2 must go down. Then, we 
construct an F test to check if the unrestricted RSS (𝑅𝑆𝑆 ) is different 
from the restricted RSS (𝑅𝑆𝑆 ).

The General Linear Hypothesis:  H0: R – q = 0

Approach (1): To test H0, we calculate the discrepancy vector:  

m = Rb – q.

Then, we compute the Wald statistic:

W = m (Var[m|X])-1 m 

It can be shown that Var[m|X] = R[2(XX)-1]R. Then,

W = (Rb – q) {R[2(XX)-1]R}-1 (Rb – q)

Under H0 and assuming (A5) & estimating 2 with s2 = ee/(T - 𝑘):

W* = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)

F = W*/J ~ 𝐹 , .

If (A5) is not assumed, the results are only asymptotic: J * F → χ

Wald Test Statistic for H0: R – q = 0 
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Example:  We test in the 3 FF factor model for IBM returns 
(T=569). Steps

1. H0: SMB = 0.2 and HML = 0.6.

H1: SMB 0.2 and/or HML 0.6.  J = 2

We define R (2x4) below and write m = R – q = 0:

0 0 1 0
0 0 0 1

∗






= 0.2
0.6

2. Test-statistic:  F = W*/J = (Rb – q) {R[s2 (XX)-1]R}-1 (Rb – q)

Distribution under H0: Exact: F = W*/2 ~ 𝐹 ,

Asymptotic: 2 * F → χ

Wald Test Statistic for H0: R – q = 0 

Example (continuation):  

3. Get OLS results, compute F, 𝐹.

4. Decision Rule: α  0.05 level. We reject H0 if  p-value(𝐹) < .05.

Or, reject H0, if  𝐹 > FJ=2,T - 4,.05.

Step 1. Define R (2x4) and q. write m = R – q = 0:

J <- 2 # number of restriction

R <- matrix(c(0,0,0,0,1,0,0,1), nrow=2) # matrix of restrictions

q <- c(.2, .6) # hypothesized values

Step 3. Do OLS and compute compute F, 𝐹.

fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML)

b <- fit_ibm_ff3$coefficients # Extract OLS coefficients

Var_b <- vcov(fit_ibm_ff3) # Extract Var[b]

m <- R%*%b - q # m = Estimated R*Beta - q

Wald Test Statistic for H0: R – q = 0 
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Example (continuation):  
Step 3. Do OLS and compute compute F, 𝐹.

Var_m <- R %*% Var_b %*% t(R) # Variance of m

det(Var_m) # check for non-singularity

W <- t(m)%*%solve(Var_m)%*%m # W = m’ Var[m] m

F_t <- as.numeric(W/J) # F-test statistic

> F_t

49.21676

F_t_asym <- as.numeric(J*F_t) # Chi-square-test statistic (asymptotic)

> F_t_asym

98.433

Wald Test Statistic for H0: R – q = 0 

Example (continuation):  
Step 4. Decision rule.

qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if e normal

[1] 3.011644 F_t > 3.011644  reject H0 at 5% level

p_val <- 1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under e normal

[1] 0 very low chance H0 is true.

> p_val <- 1 - pchisq(F_t_asym, df=J) # p-value(F_t) under asymptotic distrib.

> p_val

[1] 0 very low chance H0 is true.

Wald Test Statistic for H0: R – q = 0 
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Example (continuation):  You can use the R package car to test 
linear restrictions (linear H0).

install.packages("car")

library(car)

linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="F") # “F”: exact test 

Linear hypothesis test

Hypothesis:

SMB = 0.2

HML = 0.6

Model 1: restricted model

Model 2: ibm_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq F    Pr(>F)    

1    567 2.2691                                  

2    565 1.9324  2   0.33667 49.217 < 2.2e-16 ***  reject H0 at 5% level

Wald Test Statistic for H0: R – q = 0 

Example (continuation): The asymptotic test uses test=“Chisq”.

> linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="Chisq") # Asymptotic F

Linear hypothesis test

Hypothesis:

SMB = 0.2

HML = 0.6

Model 1: restricted model

Model 2: ibm_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)    

1    567 2.2691                                   

2    565 1.9324  2   0.33667 98.433  < 2.2e-16 ***  reject H0 at 5% level

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

qf(.95, df1=J, df2=(T - k)) # asymptotic distribution (Chi-square-distribution) 

[1] 5.991465 F_t_asym > 5.991465 reject H0 at 5% level

Wald Test Statistic for H0: R – q = 0 
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Example: Now, we do a joint test of the EH. H0: α = 0 and β = 0.

Using the R car package, but with fit_eh:
> linearHypothesis(fit_eh,c("(Intercept) = 0","x = 0"), test="F") # “F”: exact test, with F-distrib

Linear hypothesis test

Hypothesis:

(Intercept) = 0

x = 0

Model 1: restricted model

Model 2: y ~ x

Res.Df RSS Df Sum of Sq F  Pr(>F)  

1    363 0.27033                              

2    361 0.26432  2 0.0060075 4.1024 0.01731 *

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal

[1] 3.020661 F_t > 3.020661  reject H0 at 5% level

Wald Test Statistic for H0: Does EH hold?


