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Review: Maximum Likelihood Estimation

• We get an independent sample (𝑋ଵ, 𝑋ଶ,... , 𝑋ே). We assume we known 
where this sample is drawn from: A distribution with pdf 𝑓 𝑿 𝜃
where 𝜃 are 𝑘 parameters.

The joint pdf is given by:

𝐿 𝑿 𝜃 ൌ 𝑓 𝑋ଵ,  𝑋ଶ, ..., 𝑋ே 𝜃 ൌ 𝑓 𝑋ଵ 𝜃 ∗ 𝑓 𝑋ଶ 𝜃 ∗ ⋯∗ 𝑓 𝑋ே 𝜃

 ൌ ∏ 𝑓ሺ𝑋|𝜃
ே
ୀଵ ሻ

• 𝐿 𝑿 𝜃 : Likelihood function. It represents how likely it is to get a 
particular sample from the model. 

• We maximize L(X| θ) w.r.t. θ to get ML estimates: 𝜃ொ

• It is easier to work with the Log of the likelihood function: 
ln 𝐿 𝑋 𝜃 = ∑ ln 𝑓 𝑋 𝜃

ே
ୀଵ
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• ML estimators (MLE) have very appealing properties:

(1) Efficiency. Lowest Variance of any estimator of θ.

(2) Consistency: 𝜃ொ

→ θ

(3) Asymptotic Normality: 𝜃ொ  
  

 𝑁 𝜃, 𝐈ሺ𝜃 𝑋 ିଵ

where 𝐈ሺ𝜃|𝑋) is the information matrix for the whole sample. 

𝐸 డ ୪୭ 

డ𝛉

డ ୪୭ 

డ𝛉


ൌ 𝐈ሺ𝜃 𝑋

(4) Invariance. If 𝜃ொ is the MLE of θ g(𝜃ொ) is the MLE of 
g(θ).

Review: ML Estimation – Properties

• Suppose we assume, using the usual notation:

𝒚 ൌ 𝐗𝛃  𝛆, 𝛆 ~ 𝑁ሺ0,𝜎ଶ𝐈்ሻ
where we have 𝑘 explanatory, exogenous variables, 𝒙 ’s , that we treat 
as numbers. 𝛃 is a 𝑘x1 vector of unknown parameters. 

Then, the joint likelihood function becomes:

𝐿 ൌ ∏ ଵ

ଶగఙమ
exp െ

ఌ
మ

ଶఙమ
்
ୀଵ ൌ ሺ2𝜋𝜎ଶሻି்/ଶ ∏ exp െ

ఌ
మ

ଶఙమ
்
ୀଵ

• Taking logs to get the log likelihood function, a function of (𝜎ଶ,𝛃):

ln 𝐿 ൌ െ
𝑇
2

ln 2𝜋𝜎ଶ െ
1

2𝜎ଶ
𝜀

ଶ ൌ

்

ୀଵ

െ
𝑇
2

ln 2𝜋𝜎ଶ െ
ሺ𝐲 െ 𝐗𝛃ሻᇱሺ𝐲 െ 𝐗𝛃ሻ 

2𝜎ଶ

=  െ்

ଶ
ln 2𝜋𝜎ଶ െ 𝒚′𝒚 –𝟐 𝛃′𝐗′𝒚+𝛃′𝐗′𝐗𝛃

ଶఙమ

Review: ML Estimation – Linear Model
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• After taking f.o.c. and solving for 𝛃ொ  & 𝜎ොொ
ଶ :

𝛃ொ ൌ ሺ𝐗′𝐗ሻିଵ𝐗′𝒚

𝜎ොொ
ଶ ൌ

∑ 
మ

సభ

்
ൌ

∑ ሺ௬ ି 𝐗𝛃ಾಽಶሻమ

సభ

்

• Under (A5) –i.e., normality for the errors–, we have that 𝜷ொ = b.

• It can be shown (see notes) that Var[𝛃ொ] = 𝜎ොொ
ଶ  𝑋ᇱ𝑋 -1

Note: 𝜎ොொ
ଶ is biased, but as 𝑇 gets bigger, the differences between  

𝜎ොொ
ଶ and 𝑠ைௌ

ଶ become very small. Thus, with a big 𝑇 (& normality) 
the difference between Var[𝛃ொ] & Var[𝒃] should be minor.

Review: ML Estimation – Linear Model

Example: We estimate the 3 F-F factor model for IBM with ML and 
OLS.

• Summary: OLS vs MLE

OLS MLE

Coeff. (1) S.E. Coeff. (2) S.E.

Intercept -0.00509 0.00238 -0.00509 0.00237

Mkt_RF 0.86761 0.05425 0.86761 0.05406

SMB -0.68159 0.08045 -0.68159 0.08017

HML -0.22842 0.08100 -0.22842 0.08071

Review: ML Estimation – Linear Model

Same as expected Not so different
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Review: Data Problems

• Three data problems (in general, exogenous to data user):

(1) Missing Data – very common, especially in corporate finance.

- Detection: blanks, NA, etc. We know if the data has this issue.

- Usual solutions: Impute values (fill in blanks), use inverse 
weights (give more weight to “unrepresented” observations).

(2) Outliers - unusually high/low observations. 

- Detection: Visual (graphs for standardized residuals), Formal 
measures for Leverage and for influence (Dif Beta & Cook’s D). 

- Usual solutions: Transform data, remove outliers, Winsorization.

(3) Multicollinearity - High correlation in the explanatory variables. 

- Detection: VIF, Condition Index.

- Usual solutions: Not much to do. Be aware of problem.

Bootstrapping (Again!): Review

Idea: We use the data at hand -the empirical distribution (ED)- to 
estimate the variation of statistics that are themselves computed from 
the same data. Recall that, for large samples drawn from 𝐹, the ED 
approximates the CDF of 𝐹 very well.

• Bootstrap choice for an approximating distribution: The ED. 

⇒ The ED becomes a “fake population.”

John Fox (2005, UCLA): “The population is to the sample as the sample is to 
the bootstrap samples.”

• Suppose we have a dataset with 𝑁 i.i.d. observations drawn from 𝐹: 

{𝑥ଵ, 𝑥ଶ, …, 𝑥ே}

This sample becomes the “fake population.”



RS - OLS 2 (Bootstrapping and Testing)

5© 2023 R. Susmel. Do not share/post online without written authorization from author.

• We have a dataset with 𝑁 i.i.d. observations drawn from 𝐹: 

{𝑥ଵ, 𝑥ଶ, …, 𝑥ே} -“fake population.”

From the ED, F*, we sample with replacement 𝑁 observations, say: 

{𝑥ଵ
∗=𝑥ଵ, 𝑥ଶ

∗=𝑥ଵ, 𝑥ଷ
∗=𝑥, ..., 𝑥ே

∗ =𝑥ேିଵ} - a bootstrap sample

This is an empirical bootstrap sample, which is a resample of the same size 
𝑁 as the original data, drawn from F*. We will resample many times. 

Bootstrapping: Review - Resampling

Bootstrap resampling
Sample 

{x1, x2, x3, ..., xN}
Bootstrap samples (B)

• For any statistic θ computed from the original sample data, we can 
define a statistic θ* by the same formula, but using the resampled data. 

• We resample B times from 𝐹*.

• We compute B θ*, by resampling B times from 𝐹*. 

⇒ We have a collection of  θ*’s: {θଵ
∗ , θଶ

∗ , θଷ
∗ , ..., θ

∗ }.

From this collection of θ*’s, we learn about statistic θ: Compute 
moments, C.I.’s, etc. 

Bootstrap resampling
Sample 

{𝑥ଵ, 𝑥ଶ, …, 𝑥ே}
Bootstrap samples (B)

Compute θ* (θ*)

Bootstrapping: Review – Resampling B Times
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• Bootstrap Steps:

1. From the original sample, draw random sample with size 𝑁.

2. Compute statistic θ from the resample in 1: θଵ
∗ .

3. Repeat steps 1 & 2 B times  Get B statistics: {θଵ
∗ , θଶ

∗ , θଷ
∗ , ..., θ

∗ }

4. Compute moments, draw histograms, etc. for these B statistics.

• Results:

1. With a large enough B, the LLN allows us to use the θ*’s to estimate 
the distribution of  θ, F(θ).  
2. The variation in θ is well approximated by the variation in θ*.

Result 2 is the one we used in Lecture 2-d to estimate the size of  a C.I.

Bootstrapping: Review - Empirical Bootstrap

• Q: Why do we need a bootstrap?

- N is “small,” asymptotic assumptions do not apply.

- DGP assumptions are violated. 

- Distributions are complicated.

• Advantages and Disadvantage: 

- Only consistent results, no finite sample results. 

- Main appeal: Simplicity.

• The most common econometric applications are situations where you 
have a consistent estimator of  a parameter of  interest, but it is hard or 
impossible to calculate its standard error or its C.I.

Bootstrapping: Review - Why?
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• You are interested in the correlation between IBM’s returns (X) and 
S&P 500 returns (y). You have monthly data from 1973 (N = 588). 
You estimate the correlation coefficient, ρ, with its sample counterpart, 
r = 0.5894632. You find the correlation to be lower than expected.

Q: How reliable is this result? The distribution of r is complicated. 
You decide to use a bootstrap to study the distribution of r. Note that 
to compute r, we need to bootstrap pairs, then, we use a paired bootstrap.

• Randomly construct a sequence of B samples (all with N = 588). Say,

B1 = {(𝑥1, 𝑦1), (𝑥3, 𝑦3), (𝑥6, 𝑦6), (𝑥6, 𝑦6), ..., (𝑥1458, 𝑦1458)} ⇒ θଵ
∗= r1

B2 = {(𝑥5, 𝑦5), (𝑥7, 𝑦7), (𝑥11, 𝑦11), (𝑥12, 𝑦12), ..., (𝑥1486, 𝑦1486)} ⇒ θଶ
∗= r2

....

BB = {(𝑥2, 𝑦2), (𝑥2, 𝑦2), (𝑥2, 𝑦2), (𝑥3, 𝑦3), ..., (𝑥1499, 𝑦1499)} ⇒ θ
∗ = rB

Bootstrapping: Simple correlation example

• We have a collection of estimators of ρi’s: {r1, r2, r 3, ..., r B}. 

• Below, we do a histogram to get an approximation of the probability 
distribution and, then, we build an empirical C.I., defined by [rLB, rUB] 

 ρ ∈ [rLB, rUB ] with some probability

Bootstrapping: Simple correlation example

rUB
rLB
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Remarks: 

- We rely on the ED –i.e., observed data. We take it as our “fake 
population” and we sample from it B times.

- We have a collection of bootstrap subsamples. 

- The sample size of each bootstrap subsample is the same (N). Some 
elements are repeated.

Bootstrapping: Simple correlation example

Example: We bootstrap the correlation between the returns of IBM & 
the S&P 500, using monthly data 1973-2020, with B = 1,000. 

sim_size = 1000

lr_sp <- log(x_sp[-1]/x_sp[-T])

dat_spibm <- data.frame(lr_sp, lr_ibm)

library(boot)

# function to obtain the correlation coefficient from the data

cor_xy <- function(data, i) {

d <-data[i,]

return(cor(d$lr_sp,d$lr_ibm))

}

# bootstrapping with sim_size replications

boot.samps <- boot(data=dat_spibm, statistic=cor_xy,   R=sim_size)

# view stored bootstrap samples and compute mean

boot.samps # Print original ρ, bias and SE of bootstraps

mean(boot.samps$t) # our estimate of the correlation

Bootstrapping: Estimating the correlation, ρ
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Example (continuation): Output from R:
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = dat_spibm, statistic = cor_xy, R = sim_size)

Bootstrap Statistics :

original       bias    std. error

t1* 0.5894632 -0.001523914  0.03406313

> boot.samps$t[1:10] # show first 10 bootstrapped correlations coeff

[1] 0.5863186 0.5898572 0.6473122 0.6473249 0.5311525 0.5734280 0.6241236 0.5790740

[9] 0.5790095 0.5932918 

> mean(boot.samps$t) # our estimate of the correlation

[1] 0.5879392

> sd(boot.samps$t) # SD of the correlation estimate

[1] 0.03406313

Bootstrapping: Estimating the correlation, ρ

Bootstrapping: Histogram for ρ

Example (continuation): Output from R:
> # Elegant histogram
> hist(boot.samps$t,main="Histogram for Bootstrapped Correlations", 
+      xlab="Correlations", breaks=20)

• Simple 95% percentile method C.I. 
> new <- sort(boot.samps$t)
> new[25]
[1] 0.5151807
> new[975]
[1] 0.6495722

Note: You get same results using 
boot.ci(boot.samps, type = "perc")
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Example (continuation): Output from R:

• 95% C.I using empirical bootstrap method (preferred method.)
> boot.ci(boot.samps, type=“basic")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL : 

boot.ci(boot.out = boot.samps, type = “basic")

Intervals : 

Level     Percentile     

95%   ( 0.5293, 0.6637 )  

Calculations and Intervals on Original Scale

Bootstrapping: 95% Confidence Interval for ρ

Bootstrapping: How many bootstraps?

• Not clear. There are many theorems on asymptotic convergence, but 
there are no clear rules regarding B. There are some suggestions, from  

B = 100  (or even B = 25!) to B = 2,400.

Rule of thumb: Start with B = 100, then, try B = 1,000, and see if your 
answers have changed by much. Increase bootstraps until you get 
stability in your answers.
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Example: We bootstrap the correlation between IBM returns and 
S&P 500 returns, using B = 100.

Bootstrapping: How many bootstraps? 

sim_size <- 100
> # view bootstrap results
> boot.samps
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = dat_spibm, statistic = cor_xy, R = 
sim_size)

Bootstrap Statistics :
original      bias    std. error

t1* 0.5898636 -0.00115623  0.03449216
> mean(boot.samps$t)
[1] 0.5887074
> sd(boot.samps$t)
[1] 0.02885868

• Results do not change that much.

Example: We bootstrap the correlation between IBM returns and 
S&P 500 returns, using B = 25.

Bootstrapping: How many bootstraps? 

sim_size <- 25
> # view bootstrap results
> boot.samps
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = dat_spibm, statistic = cor_xy, R = 
sim_size)

Bootstrap Statistics :
original      bias    std. error

t1* 0.5898636 -0.00115623  0.03449216
> mean(boot.samps$t)
[1] 0.5847676
> sd(boot.samps$t)
[1] 0.03449216

• Results do not change that much.
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Bootstrapping: Linear Model – Var[b]

• Some assumptions in the CLM are not reasonable, say, (A3) or 
normality (A5). By assuming (A5), we also assume the sampling 
distribution of b. But if data is not normal, results are only asymptotic.

• We use a bootstrap to estimate the sampling distribution of b. It can 
give us a better idea of the small sample distribution. Then, we estimate 
the Var[b].

• Monte Carlo (MC=repeated sampling) method:

1.  Estimate model using full sample (of size T) ⇒ get b

2.  Repeat B times:

- Draw T observations from the sample, with replacement

- Estimate  with OLS b. (We have a vector of b’s, b(r).)  

3.  Estimate variance with 

Vboot =  (1/B) [b(r) - b][b(r) - b]’

• In the case of one parameter, say b1: Estimate variance with 

Varboot[b1] = (1/B) ∑ ሺb1,r – b1ሻ
ଶ

ୀଵ

• You can also estimate Var[b1] as the variance of b1 in the bootstrap

Varboot[b1] = (1/B) ∑ ሺb1,r 
– mean(b1(r)ሻሻ

ଶ
ୀଵ  

mean(b1(r)) = (1/B) ∑ b1(r)

ୀଵ

Note: Obviously, this method for obtaining standard errors of 
parameters is most useful when no formula has been worked out for 
the standard error (SE), or the formula is complicated –for example, in 
some 2-step estimation procedures– or the assumption behind the 
formula are not realistic.

Bootstrapping: Linear Model – Var[b]
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Example: We bootstrap the SE for b for IBM returns using the 3 FF 
Factor Model. We use the R package lmboot. (Install it first!) 

library(lmboot) # need to run before install.packages(“lmboot”)
y <- ibm_x
x <- cbind(x0, Mkt_RF, SMB, HML)
dat_yx <- data.frame(y, x) # lmboot needs an R data frame. We make one.

sim_size = 1000
ff3_b <- paired.boot(y ~ x-1, data=dat_yx, B=sim_size)

ff3_b$origEstParam # print OLS results (“original estimates”)

# Mean values for b
mean(ff3_b$bootEstParam[,1]) # print mean of  bootstrap samples for constant
mean(ff3_b$bootEstParam[,2]) # print mean of  bootstrap samples for Mkt_RF
mean(ff3_b$bootEstParam[,3]) # print mean of  bootstrap samples for SMB
mean(ff3_b$bootEstParam[,4]) # print mean of  bootstrap samples for HML

Bootstrapping: Linear Model – Var[b]

Example (continuation):

# Statistics for sampling distribution of  b
summary(ff3_b$bootEstParam) # distribution of  b

# SD of  parameter vector b
sd(ff3_b$bootEstParam[,1]) # print SD of  bootstrap samples for constant
sd(ff3_b$bootEstParam[,2]) # print SD of  bootstrap samples for Mkt_RF
sd(ff3_b$bootEstParam[,3]) # print SD of  bootstrap samples for SMB
sd(ff3_b$bootEstParam[,4]) # print SD of  bootstrap samples for HML

# bootstrap bias
ff3_b$origEstParam[1] - mean(ff3_b$bootEstParam[,1])
ff3_b$origEstParam[2] - mean(ff3_b$bootEstParam[,2])
ff3_b$origEstParam[3] - mean(ff3_b$bootEstParam[,3])
ff3_b$origEstParam[4] - mean(ff3_b$bootEstParam[,4])

Bootstrapping: Estimating Var[b]
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Example (continuation):

> ff3_b$origEstParam
[,1]

x       -0.005088944
xMkt_RF 0.908298898
xSMB -0.212459588
xHML -0.171500223

> summary(ff3_b$bootEstParam)
x                xMkt_RF xSMB xHML

Min. :-0.012159 Min. :0.7115 Min. :-0.5175 Min.   :-0.4699  
1st Qu. :-0.006731   1st Qu. :0.8669 1st Qu. :-0.2890 1st Qu. :-0.2362  
Median :-0.005074 Median :0.9087 Median :-0.2185 Median :-0.1690  
Mean   :-0.005008 Mean   :0.9068 Mean   :-0.2125 Mean  :-0.1710  
3rd Qu. :-0.003273 3rd Qu. :0.9492 3rd Qu. :-0.1415 3rd Qu. :-0.1086  
Max.   : 0.002293 Max.   :1.0854 Max.   : 0.1909 Max. : 0.2477  

> sd(ff3_b$bootEstParam[,1])
[1] 0.002493708

Bootstrapping: Estimating Var[b]

• From the B samples, we compute variances and SD as usual.

> ff3_b$bootEstParam[1:10,] # print the first 10 of  B=1,000 bootstrap samples

x   xMkt_RF xSMB xHML
[1,] -6.109007e-03 0.9186830 -0.1299534100 -0.163421636
[2,] -1.757503e-03 0.8333006 -0.2067565390 -0.147604991
[3,] -3.907573e-03 0.9746878 -0.2870744815 -0.169189619
[4,]  1.596103e-03 0.9185157 -0.2937731120 -0.296972497
[5,] -8.409239e-03 0.7309406 -0.0681714313 -0.149883639
[6,] -1.998929e-03 0.9133751 -0.3001713380 -0.315913280
[7,] -6.289286e-03 0.9441856 -0.2276894034 -0.058924929
[8,] -5.533354e-03 0.8210057 -0.2221866298 -0.078512341
[9,] -6.152301e-03 1.0389917 -0.2592958758 -0.237930809
[10,] -3.778058e-03 0.9544829 -0.1859554067 -0.217702583

Bootstrapping: Estimating Var[b]



RS - OLS 2 (Bootstrapping and Testing)

15© 2023 R. Susmel. Do not share/post online without written authorization from author.

> sd(ff3_b$bootEstParam[,2])
[1] 0.06132218
> sd(ff3_b$bootEstParam[,3])
[1] 0.1108
> sd(ff3_b$bootEstParam[,4])
[1] 0.09729972
> 

• Comparing OLS and Bootstrap

OLS Bootstrap Bias
(2)-(1)Coeff. (1) S.E. Coeff. (2) S.E.

x -0.00509 0.00249 -0.00501 0.00249 8.0765e-05

xMkt_RF 0.90829 0.05672 0.90684 0.06132 -0.0014571

xSMB -0.21246 0.08411 -0.21245 0.11080 1.9914e-06

xHML -0.17150 0.08468 -0.17099 0.09730 0.0005133

Bootstrapping: Estimating Var[b]

Bootstratp has higher SE,  more 
conservative tests: less H0 rejections

OLS Subject to Linear Restrictions

• Restrictions: Theory imposes certain restrictions on parameters and 
provide the foundation of several tests. In this Lecture, we only 
consider linear restrictions, written as R = q.

Dimensions: 

R: Jx𝑘 - J = # of restrictions & 𝑘 = # of pars. 

: 𝑘x1

q: 𝑘x1

• We consider the following restrictions:

(1) Dropping  variables from model (ௌெ = 0). 

(2) Adding up conditions (ௌெ + ுெ= 1). 

(3) Equality restrictions (ௌெ = ுெ= 0).
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OLS Subject to Linear Restrictions

Examples: Linear restrictions, written as R = q.

(1) Dropping  variables from the equation. That is, certain coefficients 
in  are forced to equal 0.  For example, in the 3-factor Fama-French 
factor model we force ௌெ = ுெ= 0, that is, we fit the traditional 
CAPM). 

Using the above notation:

R = q  0 0 1 0
0 0 0 1

∗

ଵ
ெ௧
ௌெ
ுெ

= 
ௌெ
ுெ

= 0
0

We have two restrictions (J=2): ௌெ = 0 &  ுெ= 0.

 R is a 2x4 matrix,  is a 4x1 vector, and q is a 2x1 vector. 

OLS Subject to Restrictions

Examples (continuation): 

(2)  Adding up conditions:  Sums of certain coefficients must equal 
fixed values. In a CAPM setting, the sum of all cross-sectional i’s 
should be equal to 1. For example, in the 3 Fama-French factor model, 
we force ௌெ + ுெ= 1.

R = q  0 0 1 1 ∗

ଵ
ெ௧
ௌெ
ுெ

= ௌெ   ுெ ൌ 1.

Note: From a theory point of view, not a very interesting restriction! 



RS - OLS 2 (Bootstrapping and Testing)

17© 2023 R. Susmel. Do not share/post online without written authorization from author.

OLS Subject to Restrictions

Examples (continuation): 

(3) Equality restrictions: Certain coefficients must equal other 
coefficients. Using real vs. nominal variables in equations. For 
example, in the 3 FF factor model, we force ௌெ = ுெ.

R = q  0 0 1 െ1 ∗

ଵ
ெ௧
ௌெ
ுெ

= 0.

Note: From a theory point of view, not a very interesting restriction! 

• Common formulation:  We minimize the error sum of squares, 
subject to the linear restrictions. That is, 

Minb {S(𝑥 , θ) = ∑ 𝑒ଶ

ୀଵ = 𝒆𝒆 = (𝒚 – X)′ (𝒚 – X)} s.t. R = q

Restricted Least Squares

• In many situations, restrictions can usually be imposed by solving 
them out. Suppose we have the following model:

𝑦 ൌ βଵ  𝑥ଵ βଶ  𝑥ଶ βଷ 𝑥ଷ + ε

(1) Dropping variables –i.e., force a coefficient to equal zero, say βଷ. 

Problem: Minβ  ∑ 𝑦 െ βଵ𝑥ଵ െ βଶ𝑥ଶ െ βଷ𝑥ଷ ଶ
ୀଵ  𝑠. 𝑡.  βଷ ൌ 0

 Minβ  ∑ 𝑦 െ βଵ𝑥ଵ െ βଶ𝑥ଶ ଶ
ୀଵ  

(2) Adding up. We impose: β1+ βଶ+ β3 = 1 ( β3 = 1 – β1 – βଶ) 
Then, substituting in model:

𝑦 െ 𝑥ଷ ൌ βଵ 𝑥ଵ െ 𝑥ଷ  βଶሺ𝑥ଶ െ 𝑥ଷሻ + ε . 

Problem:    Minβ ∑ ሺ𝑦 െ 𝑥ଷሻ െ βଵሺ𝑥ଵ െ 𝑥ଷሻ െ βଶሺ𝑥ଶ െ 𝑥ଷሻ ଶ
ୀଵ
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Restricted Least Squares
(3) Equality. Suppose we impose: βଶ = β3.
Then, 

𝑦 ൌ βଵ  𝑥ଵ βଶ  𝑥ଶ βଶ 𝑥ଷ + ε = βଵ 𝑥ଵ + βଶ (𝑥ଶ  𝑥ଷ) + ε

Problem:  Minβ  ∑ 𝑦 െ βଵ𝑥ଵ െ βଶ𝑥ଶ െ βଷ𝑥ଷ ଶ
ୀଵ  𝑠. 𝑡.  βଶ ൌ βଷ

Minβ ∑ 𝑦 െ βଵ  𝑥ଵെ βଶ ሺ𝑥ଶ  𝑥ଷሻ ଶ
ୀଵ

• Before setting the general restricted LS problem, we look at the 
simplest case: one explanatory variable (𝑥) and one restriction (𝑟β – 𝑞).

First, we set the Lagrangean (values of  Lagrange 𝜆 play no role):

minβ,λ  𝐿 β, 𝜆 ൌ ∑ 𝑦 െ  𝑥  β ଶ்
ୀଵ  2𝜆 (𝑟β – 𝑞)

Second, take f.o.c.:  


డ β, ఒ 

డβ ൌ 2∑ 𝑦 െ  𝑥  β െ𝑥  2𝜆 𝑟 ்


డ β, ఒ 

డఒ
ൌ 2 (𝑟β – 𝑞)

Then, the f.o.c. are:

െ∑ 𝑦 െ  𝑥 𝑏∗  𝑥  𝜆 𝑟 ்
 ൌ 0  ∑ 𝑦𝑥 െ 𝑥

ଶ 𝑏∗ ൌ 𝜆 𝑟 ்


2 ሺ𝑟 𝑏∗− 𝑞) ൌ 0  𝑟 𝑏∗− 𝑞 ൌ 0

Restricted LS: One Restriction, 𝑟β = 𝑞
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37

• From the 1st equation:
∑ 𝑦𝑥 
்
 െ 𝑏∗ ∑ 𝑥

ଶ்
 = 𝒙𝒚 െ 𝑏∗(𝒙𝒙) ൌ 𝜆 𝑟

 𝑏∗ = (𝒙𝒙)−1 𝒙𝒚 െ (𝒙𝒙)−1 
𝜆 𝑟

𝑏∗= 𝑏 – 𝑟 (𝒙𝒙)−1   Restricted OLS = OLS + “correction”

• Finally, solve for . Premultiply both sides by 𝑟 and then subtract 𝑞:
𝑟 𝑏∗ – 𝑞 = 𝑟 𝑏 – 𝑟ଶ (𝒙𝒙)−1  – 𝑞

0 = – 𝑟ଶ (𝒙𝒙)−1  + (𝑟𝑏 – 𝑞) 

Solving for    = [𝑟ଶ ((𝒙𝒙)−1 
]-1 (𝑟𝑏 – 𝑞)

• Substituting in 𝑏∗  𝑏∗= 𝑏 – (𝒙𝒙)−1 
𝑟 [𝑟ଶ (𝒙𝒙)−1 

]-1 (𝑟𝑏 – 𝑞)

This is the Restricted OLS estimator:

Restricted OLS = Unrestricted OLS + correction

Restricted LS: One Restriction, rβ = q

38

• 𝑏∗= 𝑏 – (𝒙𝒙)−1 
𝑟 [𝑟ଶ(𝒙𝒙)−1 

]-1 (𝑟𝑏 – 𝑞)

• Properties of  Restricted OLS.

Property 1. Taking expectations of  𝑏∗: 

E[𝑏∗|X] = E[𝑏 |X] – (𝒙𝒙)−1 
𝑟 [𝑟ଶ(𝒙𝒙)−1 

]-1 E[(𝑟𝑏 – 𝑞)|X]
= β – (𝒙𝒙)−1 

𝑟 [𝑟ଶ(𝒙𝒙)−1 
]-1 (𝑟β – 𝑞)

Implications:
If  the restriction is true –i.e., (𝑟β = 𝑞)  E[𝑏∗|X] = β
If  the restriction is not true –i.e., (𝑟β ≠ 𝑞)  E[𝑏∗|X] ≠ β

• Then, if  theory imposes a correct restriction, then, 𝑏∗ is unbiased:
E[𝑏∗|X] = β

In practice, if  restriction is true, the restricted and unrestricted 
estimators should be similar. 

Restricted LS: One Restriction – Properties
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• Recall the LM:  = [r2 (xx)-1]-1 (𝑟𝑏 – 𝑞)

Interpretation: If  theory is correct, the expected shadow price is 0!
E[|X] = [𝑟ଶ (xx)-1]-1 E[(𝑟𝑏 – 𝑞)|X] = 0 

That is, you would pay nothing to release the restriction.

Property 2. We can also compute the Var[𝑏∗]. It can be shown that

Var[𝑏∗|X]  = Var[𝑏|X] – σ2 (𝒙𝒙)−1 
𝑟 [𝑟ଶ(𝒙𝒙)−1 

]-1 𝑟 (𝒙𝒙)−1 

 Var[𝑏|X] – Var[𝑏∗|X] > 0.

 The restricted OLS estimator is more efficient!

Restricted LS: One Restriction – Properties

40

Remark from Properties 1 and 2: It is common to select an estimator 
based on the MSE (=RSS/T). The one with the lowest MSE is said 
to be more “precise.” 

We can decompose the MSE of  an estimator, 𝜃, as:
MSE[𝜃] = Variance[𝜃] + Squared biasሾ𝜃]

For an unbiased estimator, like 𝐛 MSE [𝐛] = Var[𝐛|X]

• Back to 𝐛∗. Suppose the theory is incorrect  𝐛∗ is biased. 

There may be situations (small bias, but much lower variance) where 
𝐛∗ is more “precise” (lower MSE) than 𝐛. 

It is possible that a practitioner may prefer imposing a wrong H0 to 
get a better MSE.

Restricted LS: One Restriction – Properties
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• All the results for the one variable case, can be extended for the 
general case, with J restrictions. We have a programming problem:  

Minimize wrt  L* = (𝒚 – X)(𝒚 – X)    s.t. R = q

• Form the Lagrangean, L* (the 2 multiplying  is for convenience).
Min β, L* = (𝒚′𝒚 – 2′X𝒚 + ′XX) + 2  (R – q)

f.o.c.:  

L*/  = -2X𝒚 + 2XX𝐛∗+ 2R = 0  -X(𝒚 – X𝐛∗) + R = 0
L*/ =  2(R𝐛∗– q) = 0  (R𝐛∗– q) = 0

where 𝐛∗is the restricted OLS estimator and  is the Jx1 vector of  
Lagrange multipliers.

After (a lot of  algebra) we get:

𝐛∗= 𝐛 – (XX)-1R [R(XX)-1R]-1(R𝐛 – q)

Restricted LS: General case, R = q

Restricted LS estimator:   𝐛∗ = 𝐛 – (XX)-1R [R(XX)-1R]-1(R𝐛 – q)
= 𝐛 + correction

• Properties:
1. Unbiased? 

- Yes, if Theory is correct! E[𝐛∗|X] = 

- No, if Theory is incorrect: E[𝐛∗|X] ് .

2. Efficiency?
Var[𝐛∗|X] = Var[b|X] – 2 (XX)-1R[R(XX)-1R]-1 R(XX)-1

 Var[𝐛∗|X]  < Var[b|X]

3. A biased 𝐛∗ may be more “precise,” using metric MSE (=RSS/T), 
recall that MSE = (Bias)2 + Variance

Restricted LS – Properties
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1. 𝐛∗ = 𝐛 – Cm, m = the “discrepancy vector” R𝐛 – q.  

C = (XX)-1R [R(XX)-1R]-1

Note: If m = 0  𝐛∗ = 𝐛. 

2. We can show that RSS never decreases with restrictions: 

𝒆𝒆 = (𝒚 – X𝐛)(𝒚 – X𝐛)  ≤  𝒆∗𝒆∗= (𝒚 – X𝐛∗)(𝒚 – X𝐛∗)
 RSS ≤ RSS* -RSS* = RSSR (Restricted RSS)

 R2 ≥ R2* (Recall, R2 = 1 – RSS/TSS)

That is, restrictions cannot increase R2.

Restricted LS – Interpretation

• Implications of restrictions (Theory). Two cases:

- Case 1:  Theory is correct: R – q = 0 (restrictions hold).

𝐛∗ is unbiased  &  Var[𝐛∗|X] ≤ Var[𝐛 |X]

- Case 2:  Theory is incorrect: R – q  0 (restrictions do not hold).

𝐛∗ is biased  &  Var[𝐛∗|X] ≤ Var[𝐛 |X].

• Interpretation

- The theory gives us information. 

Bad information produces bias (away from “the truth.”)

Any information, good or bad, makes us more certain of our 
answer. In this context, any information reduces variance.

Restricted LS - Interpretation
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• Fisher’s significance testing procedure relies on the p-value: the probability 
of observing a result at least as extreme as the test statistic, under H0.

• Fisher’s Idea 

1. Form H0 & decide on a significance level (α%) to compare your test 
results. 

2. Find T(X). Know (or derive) the distribution of T(X) under H0.

3. Collect a sample of data X = {𝑥ଵ, 𝑥ଶ, …, 𝑥்}. 

Compute the test-statistics T(X) used to test H0  Report its p-value. 

4. Rule: If p-value < α (say, 5%) ⟹ test result is significant: Reject H0.  
If the results are “not significant,” no conclusions are reached (no 
learning here). Go back gather more data or modify model.

Review – Significance Testing

• We are interested in testing a hypothesis about one parameter in the 
linear model: 𝒚 = X + 

1. Set H0 and H1 (about only one parameter): H0: 𝑘 = 


H1: 𝑘≠ 


2. Appropriate T(X): t-statistic. Under H0: 

If (A5) 𝑡= (𝑏 െ 
)/sb,k |X ~ 𝑡்ି

Otherwise, 𝑡
ௗ
→𝑁ሺ0, 1ሻ

3. Compute t𝑘, t,̂ using b𝑘, 
 , s, and (X’X)-1. Get p-value(t)̂.

4. Rule: Set an α level. If p-value(t)̂ < α  Reject H0: 𝑘 = 


Alternatively, if |t|̂> 𝒕𝑻ି𝒌,𝟏ି𝜶/𝟐  Reject H0: 𝑘 = 
 .

Review – Testing Only One Parameter  



RS - OLS 2 (Bootstrapping and Testing)

24© 2023 R. Susmel. Do not share/post online without written authorization from author.

• Special case: H0: 𝑘 = 0
H1: 𝑘≠ 0.

Then,

𝑡 = 
ೖ

sqrt{௦మ(X′X)−1]ೖೖ ൌ
ೖ

SE[ೖ] = t-value or t-ratio. 

• Usual α levels and 𝒕𝑻ି𝒌,𝟏ି𝜶/𝟐 –when 𝑇 > 30, 𝑡்ି,ଵି/ଶ  ൎ z1- α/2

α = 5%, then z1-α/2 = 1.96 -in R, z1-.05/2 = qnorm(0.975).

α = 2%, then z1-α/2 = 2.33 -in R, z1-.02/2 = qnorm(0.99).

α = 1%, then z1-α/2 = 2.58 -in R, z1-.01/2 = qnorm(0.995).

Review – Testing Only One Parameter  

Testing: The Expectation Hypothesis (EH) 

Example: EH states that forward/futures prices are good predictors 
of future spot rates: Et[S௧ା்] = F௧,்

Implication of EH: S௧ା் – F௧,் = unpredictable. 

That is, Et[S௧ା் – F௧,்] = Et[ε௧] = 0!

Empirical tests of the EH are based on a regression: 

(S௧ା் – F௧,்)/S௧ = α + β Z௧ + ε௧, (where Et[ε௧] = 0)

where Zt represents any economic variable that might have power to 
explain S௧, for example, interest rate differentials, (𝑖ௗ – 𝑖). 

Then, under EH, H0: α = 0 and β = 0.

vs H1: α ≠ 0 and/or β ≠ 0.
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Testing: The Expectation Hypothesis (EH) 

Example (continuation): We will informally test EH using exchange 
rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

SF_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", 
head=TRUE, sep=",")

summary(SF_da)

x_date <- SF_da$Date

x_S <- SF_da$GBPSP

x_F3m <- SF_da$GBP3M

i_us3 <- SF_da$Dep_USD3M

i_uk3 <- SF_da$Dep_UKP3M

T <- length(x_S)

prem <- (x_S[-1] - x_F3m[-T])/x_S[-1]

int_dif <- (i_us3 - i_uk3)/100

y <- prem

x <- int_dif[-T]

fit_eh <- lm( y ~ x)

Testing: The Expectation Hypothesis (EH) 

Example (continuation): We do two individual t-tests on α & β.
> summary(fit_eh)
Call:

lm(formula = y ~ x)

Residuals:

Min        1Q    Median        3Q       Max 

-0.125672 -0.014576 -0.000439  0.017356  0.094283 

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept) -0.0001854  0.0016219  -0.114  0.90906    constant not significant (|t|<2)

x         -0.2157540  0.0731553 -2.949  0.00339  **  slope is significant (|t|>2).  Reject H0

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02661 on 361 degrees of freedom

Multiple R-squared:  0.02353,   Adjusted R-squared:  0.02082 

F-statistic: 8.698 on 1 and 361 DF,  p-value: 0.003393
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Example (continuation): 95% C.I. for 𝑘:
Cn = [𝑏 േ 𝑡்ି,ଵିఈ/ଶ * Estimated SE(𝑏)]

Then,

Cn = [-0.215754 – 1.96 * 0.0731553,  -0.215754 + 1.96 * 0.0731553]

= [-0.3591384, -0.07236961] 

Since = 0 is not in Cn  with 95% confidence  Reject H0: 1 = 0
at 5% level.

Note: The EH is a joint hypothesis, it should be tested with a joint 
test!

Testing: The Expectation Hypothesis (EH) 

Testing a Hypothesis: Wald Statistic

• Most of our test statistics, including joint tests, are Wald statistics.

Wald = normalized distance measure. 
One parameter: 𝑡 = (𝑏 – 

)/𝑠, = distance/unit

More than one parameter. 

Let z = (random vector – hypothesized value) be the distance 

𝑊 =  z [Var(z)]-1 z -a quadratic form, produces a number

• Distribution of 𝑊? We have a quadratic form. Since σ2 is unknown, 
we use 𝑠ଶ, then:

– If z is normal, 𝑊 ~ 𝐹,்ି

– If z is not normal, we rely on asymptotic theory 

𝑊
ௗ
→ χሾ ௭ ሿ

ଶ

Abraham Wald (1902–1950, Hungary) 
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The General Linear Hypothesis:  H0: R – q = 0

• Suppose we are interested in testing J joint hypotheses.

Example:  We want to test that in the 3 FF factor model that the 
SMB and HML factors have the same coefficients, ௌெ= ுெ = 0.

We can write linear restrictions as H0: R – q = 0,

where R is a Jx𝑘 matrix and q a Jx1 vector.

In the above example (J=2), we write:

0 0 1 0
0 0 0 1

∗

ଵ
ெ௧
ௌெ
ுெ

=




• Q: Is Rb – q close to 0? There are two different approaches to this 
question. Both have in common the property of unbiasedness for b.

Approach (1): We base the answer on the discrepancy vector:  

m = Rb – q.

Then, we construct a Wald statistic:

𝑊 = m (Var[m|X])-1 m 

to test if m is different from 0.

Approach (2): We base the answer on a model loss of fit when 
restrictions are imposed: RSS must increase and R2 must go down. 

Then, we construct an F test to check if the unrestricted RSS (𝑅𝑆𝑆) 
is different from the restricted RSS (𝑅𝑆𝑆ோ).

The General Linear Hypothesis:  H0: R – q = 0
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Approach (1): Test H0 with 𝑊 = m (Var[m|X])-1 m

Based on unrestricted OLS estimation we compute:  

m = Rb – q (under (A5) & H0: m ~ N(0, Var[m]))

Var[m|X] = R [ଶ(XX)-1 ] R

Then, we compute the Wald statistic: 

𝑊 = (Rb – q) {R[ଶ(XX)-1]R}-1 (Rb – q)

Under H0 and assuming (A5) & estimating ଶ with 𝑠ଶ = 𝒆𝒆 /(T – 𝑘):

𝑊*= (Rb – q) {R[𝑠ଶ(XX)-1]R}-1 (Rb – q)

F = 𝑊*/J ~ 𝐹,்ି .

If (A5) is not assumed, the results are only asymptotic: J * F
ௗ
→ χ

ଶ

Wald Test Statistic for H0: R – q = 0 

• Under H0, assuming (A5) & estimating ଶ with 𝑠ଶ = 𝒆𝒆 /(T - 𝑘):

𝑊*= (Rb – q) {R[𝑠ଶ(XX)-1]R}-1 (Rb – q)

F = 𝑊*/J ~ 𝐹,்ି .

Technical note: Why the F distribution?

The F-distribution is a ratio of two independent χ
ଶand χ்

ଶ RV divided 

by their degrees of freedom: F = 
χమ ⁄


మ  ்⁄

~  𝐹,்

(1) Numerator: 𝑊 = (Rb – q) {R[ଶ(XX)-1]R}-1 (Rb – q) ~ χ
ଶ

(2) Denominator: 𝑇 െ 𝑘 ∗ 𝑠ଶ/ଶ~ χ்ି
ଶ

F = 
χమ ⁄


మ  ்⁄

= 
ሾ(Rb – q) {R[మ(XX)−1]R}−1 

(Rb – q) ] ൗ

ሾ ்ି ∗௦మ/మሿ ሺ்ିሻൗ
~ 𝐹,்ି .

Wald Test Statistic for H0: R – q = 0 
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Example:  We test in the 3 FF factor model for IBM returns 
(T=569). Steps

1. H0: SMB = 0.2 and HML = 0.6.

H1: SMB് 0.2 and/or HML് 0.6.  J = 2

We define R (2x4) below and write m = R – q = 0:

0 0 1 0
0 0 0 1

∗

ଵ
ெ௧
ௌெ
ுெ

= 0.2
0.6

2. Test-statistic:  F = 𝑊*/J = (Rb – q) {R[s2 (XX)-1]R}-1 (Rb – q)

Distribution under H0: Exact: F = 𝑊*/2 ~ 𝐹ଶ,்ିସ

Asymptotic: 2 * F
ௗ
→ χଶ

ଶ

Wald Test Statistic for H0: R – q = 0 

Example (continuation):  

3. Get OLS results, compute F, 𝐹.

4. Decision Rule: α ൌ 0.05 level. We reject H0 if  p-value(𝐹) < .05.

Or, reject H0, if  𝐹 > FJ=2,T - 4,.05.

Step 1. Define R (2x4) and q. write m = R – q = 0:

J <- 2 # number of restriction

R <- matrix(c(0,0,0,0,1,0,0,1), nrow=2) # matrix of restrictions

q <- c(.2, .6) # hypothesized values

Step 3. Do OLS and compute compute F, 𝐹.
fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML)

b <- fit_ibm_ff3$coefficients # Extract OLS coefficients

Var_b <- vcov(fit_ibm_ff3) # Extract Var[b]

m <- R%*%b - q # m = Estimated R*Beta - q

Wald Test Statistic for H0: R – q = 0 
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Example (continuation):  
Step 3. Do OLS and compute compute F, 𝐹.
Var_m <- R %*% Var_b %*% t(R) # Variance of m

det(Var_m) # check for non-singularity

W <- t(m)%*%solve(Var_m)%*%m # W = m’ Var[m] m

F_t <- as.numeric(W/J) # F-test statistic

> F_t

49.21676

F_t_asym <- as.numeric(J*F_t) # Chi-square-test statistic (asymptotic)

> F_t_asym

98.433

Wald Test Statistic for H0: R – q = 0 

Example (continuation):  
Step 4. Decision rule.

qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if e normal

[1] 3.011644 F_t > 3.011644  reject H0 at 5% level

p_val <- 1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under e normal

[1] 0 very low chance H0 is true.

> p_val <- 1 - pchisq(F_t_asym, df=J) # p-value(F_t) under asymptotic distrib.

> p_val

[1] 0 very low chance H0 is true.

Wald Test Statistic for H0: R – q = 0 
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Example (continuation):  You can use the R package car to test 
linear restrictions (linear H0).

install.packages("car")

library(car)

linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="F") # “F”: exact test 

Linear hypothesis test

Hypothesis:

SMB = 0.2

HML = 0.6

Model 1: restricted model

Model 2: ibm_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq F    Pr(>F)    

1    567 2.2691                                  

2    565 1.9324  2   0.33667 49.217 < 2.2e-16 ***  reject H0 at 5% level

Wald Test Statistic for H0: R – q = 0 

Example (continuation): The asymptotic test uses test=“Chisq”.

> linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="Chisq") # Asymptotic F

Linear hypothesis test

Hypothesis:

SMB = 0.2

HML = 0.6

Model 1: restricted model

Model 2: ibm_x ~ Mkt_RF + SMB + HML

Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)    

1    567 2.2691                                   

2    565 1.9324  2   0.33667 98.433  < 2.2e-16 ***  reject H0 at 5% level

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

qf(.95, df1=J, df2=(T - k)) # asymptotic distribution (Chi-square-distribution) 

[1] 5.991465 F_t_asym > 5.991465 reject H0 at 5% level

Wald Test Statistic for H0: R – q = 0 
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Example: Now, we do a joint test of the EH. H0: α = 0 and β = 0.

Using the R car package, but with fit_eh:
> linearHypothesis(fit_eh,c("(Intercept) = 0","x = 0"), test="F") # “F”: exact test, with F-distrib

Linear hypothesis test

Hypothesis:

(Intercept) = 0

x = 0

Model 1: restricted model

Model 2: y ~ x

Res.Df RSS Df Sum of Sq F  Pr(>F)  

1    363 0.27033                              

2    361 0.26432  2 0.0060075 4.1024 0.01731 *

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal

[1] 3.020661 F_t > 3.020661  reject H0 at 5% level

Wald Test Statistic for H0: Does EH hold?

Approach(2):  We know that imposing the restrictions leads to a loss 
of fit. R2 must go down.  Does it go down a lot?  –i.e., significantly? 

Recall (i) 𝒆∗= (𝒚 – X𝐛∗) = 𝒚 + (X𝐛 – X𝐛) – X𝐛∗ = 𝒆 – X(𝐛∗ – 𝐛)
(ii) 𝐛∗= 𝐛 – (XX)-1R[R(XX)-1R]-1(R𝐛 – q)

 𝒆∗𝒆∗= 𝒆𝒆 + (𝐛∗ – 𝐛) XX (𝐛∗ – 𝐛)

Replacing (𝐛∗ – b) from (ii) in the above formula, we get:

𝒆∗𝒆∗– 𝒆𝒆 = (R𝐛 – q)[R(XX)-1R]-1(R𝐛 – q)

Note: 𝒆∗𝒆∗ – 𝒆𝒆 is a quadratic form, then we can use a lot of results 
for quadratic forms to derive its asymptotic distribution.

• Recall, the F-distribution is a ratio of two independent χ
ଶand χ்

ଶ RV 

divided by their degrees of freedom: F = 
χమ ⁄


మ  ்⁄

~  𝐹,்

The F Test: H0: R – q = 0
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Then, to get to the F-test, we rely on two results:
– 𝑊 = (Rb – q){R[2(XX)-1]R}-1(Rb – q) ~ χ

ଶ (if 2 is known)
– 𝒆𝒆/ 2 ~ χ்ି

ଶ . 

 𝐹 = 
(𝒆∗𝒆∗ – 𝒆𝒆)/J
[𝒆𝒆/(T – )] ~ 𝐹,்ି.

• We can write the F-test in terms of R2’s. Let 
R2 = unrestricted model = 1 – RSS/TSS
R*2 = restricted model fit = 1 – RSS*/TSS

Then, dividing and multiplying 𝐹 by TSS we get:

𝐹 = 
ሺଵ ି ோ∗మሻ ି ሺଵିோమሻ ⁄

ሺଵିோమሻ ሺ்ିሻ⁄
~ 𝐹,்ି

or 𝐹 = 
ሺோమ ି ோ∗మሻ ⁄

ሺଵିோమሻ ሺ்ିሻ⁄
~ 𝐹,்ି.

The F Test: H0: R – q = 0

10

• In the linear model, with a constant (X1 = 𝒊):
y = X  +  = 1 + X2 2 + X3 3 + ... + Xk k + 

• We want to test if  the slopes of   X2, ... , Xk are equal to zero. That is,

H0: βଶ ൌ ⋯ ൌ β ൌ 0
H1: at least one β ്  0  J = 𝑘 – 1

• We have J = 𝑘 – 1. Then,
𝐹 = { (R2 – R2* )/(𝑘 – 1) } / [(1 – R2)/(𝑇 െ 𝑘)] ~ 𝐹ିଵ,்ି.

• For the restricted model, R2* = 0.


0 1 … 0
… … … …
0 0 0 1

𝛽ଵ
𝛽ଶ
. . .
𝛽

ൌ
0
…
0

• We can write H0: R – q = 0

The F Test: H0: F-test of  Goodness of  Fit
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10

𝐹 ൌ
𝑅ଶ ሺ𝑘 െ 1ሻ⁄

ሺ1 െ 𝑅ଶሻ ሺ𝑇 െ 𝑘ሻ⁄
ൌ

𝐸𝑆𝑆
𝑇𝑆𝑆 ሺ𝑘 െ 1ሻൗ

𝑅𝑆𝑆
𝑇𝑆𝑆 ሺ𝑇 െ 𝑘ሻൗ

𝐹 ൌ
𝐸𝑆𝑆 ሺ𝑘 െ 1ሻ⁄
𝑅𝑆𝑆 ሺ𝑇 െ 𝑘ሻ⁄

• Recall ESS/TSS = 𝑅ଶ & RSS/TSS = (1 – 𝑅ଶ), we compute 𝐹:

Then, 𝐹 = 
ோమ ሺିଵሻ⁄

ሺଵିோమሻ ሺ்ିሻ⁄
 ~ 𝐹ିଵ,்ି.

• This test statistic is called the F-test of  goodness of  fit. It is reported in 
all regression packages as part of  the regression output. In R, the lm 
function reports it as “F-statistic.”

The F Test: H0: F-test of  Goodness of  Fit

10

Example: We want to test if  all the FF factors (Market, SMB, HML) 
are significant (J=3), using monthly data 1973 – 2020 (T=569). 
T <- length(ibm_x)

k <- 4

e <- fit_ibm_ff3$residuals # Extract residuals

y <- ibm_x - mean(ibm_x)

RSS <- sum(e^2)

R2 <- 1 - RSS/sum(y^2) #R-squared

> R2 

[1] 0.338985

> F_goodfit <- (R2/(k-1))/((1-R2)/(T-k)) # F-test of  goodness of  fit.

> F_goodfit

[1] 96.58204  F_goodfit > F3,565,.05 = 2.62068  Reject H0.

The F Test: H0: F-test of  Goodness of  Fit
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32

• In the linear model 
y = X  +  = 1 + X2 2 + X3 3 + X4 4 + 

• We want to test if  the slopes X3, X4 are equal to zero. That is,
H0: 3 = 4 = 0
H1: 3 ≠ 0 or 4 ≠ 0 or both 3 and 4 ≠ 0

• We can use, F = (𝒆∗𝒆∗– 𝒆𝒆)/J / [𝒆𝒆 /(T – 𝑘)] ~ 𝐹,்ି .

• Define y = X  +  = 1 + X2 2 +  (RSSR)
y = 1 + X2 2 + X3 3 + X4 4 +  (RSSU)

𝐹ሺ𝑘 െ  𝑘ோ ,𝑇 െ 𝑘ሻ ൌ
ೃೄೄೃ ష ೃೄೄೆ
ሺೖೆ ష ೖೃሻ
ೃೄೄೆ
ሺష ೖೆሻ

The F Test: General Case – Example

Example: We want to test if the additional FF factors (SMB, HML) 
are significant, using monthly data 1973 – 2020 (T=569). 

Unrestricted Model: 

(U) (𝑟ூெ,௧ – 𝑟) = 0 + 1 (𝑟,௧ – 𝑟) + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧ + 𝜀௧

Hypothesis: H0: 2 = 3 = 0

H1: 2≠ 0 and/or 3 ≠ 0

Then, the Restricted Model:

(R) (𝑟ூெ,௧ – 𝑟) = 0 + 1 (𝑟,௧ – 𝑟) + 𝜀௧

Test: F = 
ሺோௌௌೃିோௌௌೆሻ/

ோௌௌೆ/ሺ்ିೠሻ
~ 𝐹,்ି , with J = 𝑘U – 𝑘R = 4 - 2 = 2

The F Test: Are SMB and HML Priced Factors?
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Example (continuation): The unrestricted 3-factor FF model was 
already estimated (fit_ibm_ff3). Same for the restricted model 
(fit_ibm_capm):

e_u <- fit_ibm_ff3$residuals # Unrestricted residuals

e_r <- fit_ibm_capm$residuals # Restricted residuals

T <- length(ibm_x)

k <- 4

k_r <- 2

RSS <- sum(e_u^2) # RSSU

RSS_r <- sum(e_r^2) # RSSR

> RSS = 1.932442 > RSS2 = 1.964844 

J <- k – k_r # J = degrees of freedom numerator 

F_test <- ((RSS_r - RSS)/J)/(RSS/(T-k))

The F Test: Are SMB and HML Priced Factors?

Example (continuation): 
> F_test <- ((RSS2 - RSS)/J)/(RSS/(T - k))

> F_test

[1] 4.736834

> qf(.95, df1=J, df2=(T-k)) # F2,565,.05 value (≈ 3)

[1] 3.011672  Reject H0.

> p_val <- 1 - pf(F_test, df1=J, df2=(T-k)) # p-value of F_test

> p_val

[1] 0.009117494  p-value is small  Reject H0.

The F Test: Are SMB and HML Priced Factors?



RS - OLS 2 (Bootstrapping and Testing)

37© 2023 R. Susmel. Do not share/post online without written authorization from author.

Example (continuation): 

There is package in R, lmtest, that performs this test, waldtest, (and 
many others, used in this class). You need to install it first.

Note: The models need to be nested. For the waldtest, the default 
reports the F-test with the F distribution. 

library(lmtest)
fit_wU <- lm (ibm_x ~ Mkt_RF + SMB + HML)
fit_wR <- lm (ibm_x ~ Mkt_RF)
waldtest(fit_wU, fit_wR)

Wald test

Model 1: ibm_x ~ Mkt_RF + SMB + HML
Model 2: ibm_x ~ Mkt_RF

Res.Df Df F   Pr(>F)   
1    565                      
2    567 -2 4.7368 0.009117 **  p-value is small: Reject H0

The F Test: Are SMB and HML Priced Factors?


