
RS - Financial Econometrics - MLE

1RS - Do not distribute, post online or share without consent from author.

1

Lecture 3-e
OLS – MLE & Data Problems

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2020 (for private use, not to be posted/shared online).

• OLS b = (X′X)-1 X′ 𝒚 (𝑘x1) vector

• Properties for b.

1) Unbiased: E[b|X] = 
2) Efficiency (& BLUE): Var[b|X] = σ2 (X′X)-1

3) If (A5) |X ~ i.i.d. N(0, σ2IT)  b|X ~ i.i.d. N(, σ2 (X’ X)-1)

4) Consistent: b
௣
→ 

5) Asymptotic Normality: b
௔
→ N(, σ2 (X’ X)-1)

• Testing H0 about b, with a t-test. For example, H0: 𝑘 = ௞
଴

H1: 𝑘≠ ௞
଴

𝑡௞ = 
ୠೖ – ೖబ

Est. SE[ୠೖ]  |X ~ 𝑡்ି௞

Review: OLS – Summary
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Review: Goodness of Fit of the Regression

• After estimating the model (A1), we would like to judge the adequacy 
of the model. There are two ways to do this:

- Visual: Plots of fitted values and residuals, histograms of residuals.

- Numerical measures: R2, Adjusted R2, AIC, BIC, etc. 

• Numerical measures. In general, they are simple and easy to 
compute. We call them goodness-of-fit measures. Most popular: R2.

• Definition: Variation

In the context of a model, we consider the variation of a variable as the 
movement of the variable, usually associated with movement of 
another variable.

• Total variation = Total sum of squares (TSS) =  ∑ ሺ𝑦௜௜ െ 𝑦തሻଶ. 

We want to decompose TSS in two parts: one explained by the 
regression and one unexplained by the regression.

• TSS =  ∑ ሺ𝑦௜௜ െ 𝑦തሻଶ = ∑ ሺ𝑦௜௜ െ 𝑦ො௜ ൅ 𝑦ො௜ െ 𝑦തሻଶ

= ∑ ሺ𝑦௜௜ െ 𝑦ො௜ሻଶ + ∑ ሺ𝑦ො௜ െ 𝑦ത௜ ሻଶ + 2 ∑ ሺ𝑦௜௜ െ 𝑦ො௜ሻሺ𝑦ො௜ െ 𝑦തሻ

= ∑ 𝑒௜ଶ௜ + ∑ ሺ𝑦ො௜ െ 𝑦തሻଶ௜

since ∑ 𝑦௜ െ 𝑦ො௜ 𝑦ො௜ െ 𝑦ത ൌ ∑ 𝑒௜  𝑦ො௜ െ 𝑦ത ൌ 0௜௜  

Or TSS = RSS + SSR 

RSS: Residual Sum of Squares (also called SSE: SS of errors)

SSR: Regression Sum of Squares (also called ESS: explained SS)

Review: Goodness of Fit of the Regression
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• TSS = SSR + RSS

• We want to have a measure that describes the fit of a regression. 
Simplest measure: the standard error of the regression (SER)

SER = 
RSS
୘ି௞

= s2  SER depends on units. Not good!

• R-squared (R2)
1 = SSR/TSS + RSS/TSS
R2 = SSR/TSS = Regression variation/Total variation 
R2 = 1 – RSS/TSS

As introduced here, R2 lies between 0 and 1 (& it is independent of 
units of measurement!). It measures how much of total variation 
(TSS) is explained by regression (SSR): the higher R2, the better. 

Review: R2

• R2 = 
SSR
TSS

Interpretation: The percentage of total variation (TSS) of 𝒚 explained 
by the variation of regressors.

Note:  R2 is bounded by zero and one only if:
(a) There is a constant term in X.
(b) The line is computed by OLS.

• Main problem with R2: Adding regressors

It can be shown that R2 never falls when regressors (say z) are added 
to the regression. This occurs because RSS decreases with more 
“information” (in the sense of more regressors).

Problem: Judging a model based on R2 tends to over-fitting.

Review: R2 – Sensitivity to Adding Regressors



RS - Financial Econometrics - MLE

4RS - Do not distribute, post online or share without consent from author.

• Comparing Regressions

- Make sure the denominator in R2 is the same - i.e., same left hand 
side variable.  For example, when modeling sales, it is common to use 
log(Sales). Cannot compare R2 to the one with Sales.  Loglinear will 
almost always appear to fit better, taking logs reduces variation. 

• Linear Transformation of data does not change R2.

- Get same R2 with X or with X* = cX.

• Interpretation: The percentage of total variation (TSS) of 
𝒚 explained by the variation of regressors.

• Main problem with R2: Adding regressors

Review: R2 – Remarks

• R2 is modified with a penalty for number of parameters: Adjusted-R2

𝑅2 = 1 െ
(୘ ିଵ)
(୘ ି ௞) (1 – R2) = 1 െ

(୘ ିଵ)
(୘ ି ௞)

RSS
TSS = 1 െ  s2

TSS/(୘ ିଵ)
 maximizing 𝑅2  <=>  minimizing [RSS/(T െ  𝑘)] = s2

• 𝑅2 includes a penalty for variables that do not add much fit.  Can fall 
when a variable is added to the equation. 

• It will rise when a variable, say z, is added to the regression if and only
if the t-ratio on z is larger than one in absolute value.

Adjusted R-squared
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• Theil (1957) shows that, under certain assumptions (an important one: 
the true model is being considered), if we consider several linear 
models: 

M1: 𝒚 = X1β1 + ଵ - true model

M2: 𝒚 = X2β2 + ଶ
M3: 𝒚 = X3β3 + ଷ

& choose the model with smaller s2 (or, larger Adjusted R2), we select 
the true model, M1, on average. 

• In this sense, we say that “maximizing Adjusted R2” is an unbiased
model-selection criterion.

Adjusted R-squared

Other Goodness of Fit Measures

• There are other goodness-of-fit measures that also incorporate 
penalties for number of parameters (degrees of freedom). We 
minimize these measures.

• Popular Information Criteria (IC)

- Akaike Information Criterion (AIC)

AIC = -2/T(ln L – 𝑘) L: Likelihood

 if normality AIC = ln(𝒆𝒆/T) + (2/T) 𝑘 (+constants)

- Bayes-Schwarz Information Criterion (BIC)

BIC = -(2/T ln L – [ln(T)/T] 𝑘)

 if normality AIC = ln(𝒆𝒆/T) + [ln(T)/T] 𝑘 (+constants)
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Goodness of Fit Measures – Example

Example: 3 Factor F-F Model (continuation) for IBM returns: 

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y  (OLS regression)

e <- y - x%*%b # regression residuals, e

k <- ncol(x) # Number of parameters estimated

RSS <- as.numeric(t(e)%*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared w/ TSS approximation

Adj_R2 <- 1 - (T-1)/(T-k)*(1-R2) # Adjusted R-squared  

AIC <- log(RSS/T) + 2*k/T # AIC under N(.,.) –i.e.,  under (A5)

> R2

[1] 0.338985  The 3 F-F factors explain 34% of the variability of IBM returns.

> Adj_R2

[1] 0.3354752

> AIC

[1] -5.671036

Maximum Likelihood Estimation (MLE)

• Idea: Assume a particular distribution with unknown parameters. 
Maximum likelihood (ML) estimation chooses the set of parameters 
that maximize the likelihood of drawing a particular sample.

Example: Suppose we have a sample with 𝑁 realizations of a coin 
flip. The coin was flipped 𝑁=100 times: 60 heads (H)  & 40 tails (T). 

We know the distribution of the RV 𝑋 = number of H & T from 𝑁
coin flips. It follows a binomial distribution, with parameter 𝑝, the 
probability of a head. 

𝑃ሾ𝑋 ൌ 𝑥,𝑁ሿ ൌ ே
௫  𝑝௫ 1 െ 𝑝 ேି௫

MLE estimates 𝑝 as the probability that maximizes what we observed 
in our particular sample. In our case, MLE set 𝑝 = 0.60.
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Maximum Likelihood Estimation (MLE)

Example (continuation):

𝑃ሾ𝑋 ൌ 𝑥,𝑁|𝑝ሿ ൌ
𝑁
𝑥

𝑝௫ 1 െ 𝑝 ேି௫

To check our intuition that 𝑝 = 0.60, we compute 𝑃ሾ𝑋 ൌ 60,𝑁 ൌ
100ሿ for different 𝑝:

𝑝 = 0.50 𝑃ሾ𝑋 ൌ 60,𝑁 ൌ 100 ሿ ൌ ଵ଴଴
଺଴ .50଺଴ .50 ସ଴ = 0.010844

𝑝 = 0.55 𝑃ሾ𝑋 ൌ 60,𝑁 ൌ 100 ሿ ൌ ଵ଴଴
଺଴ .55଺଴ .45 ସ଴ = 0.048803

𝑝 = 0.60 𝑃ሾ𝑋 ൌ 60,𝑁 ൌ 100 ሿ ൌ ଵ଴଴
଺଴ .60଺଴ .40 ସ଴ = 0.081219

𝑝 = 0.65 𝑃ሾ𝑋 ൌ 60,𝑁 ൌ 100 ሿ ൌ ଵ଴଴
଺଴ .65଺଴ .35 ସ଴ = 0.047392

𝑝 = 0.70 𝑃ሾ𝑋 ൌ 60,𝑁 ൌ 100 ሿ ൌ ଵ଴଴
଺଴ .70଺଴ .30 ସ଴ = 0.008491

It checks! Instead of  using trial & error, it will be easier to find 𝑝 that 
maximize 𝑃ሾ𝑋 ൌ 𝑥,𝑁|𝑝ሿ using standard calculus (⇒ 𝑝̂ெ௅ா = 𝑘/𝑁ሻ.

• Formally speaking, we create a function that describes the likelihood  
of  observing the sample results. In the coin flip example: 𝑋 = 𝑥:  

𝐿 𝑋 ൌ 𝑥,𝑁 𝑝 ൌ ே
௫  𝑝௫ 1 െ 𝑝 ேି௫

Then, we maximize 𝐿 𝑋 ൌ 𝑥,𝑁 𝑝 with respect to 𝑝.

• More general, let’s consider a sample (𝑋ଵ, 𝑋ଶ,... , 𝑋ே) which is drawn 
from a distribution (pdf) 𝑓 𝑿 𝜃 , where 𝜃 are 𝑘 unknown 
parameters. Then, each 𝑋௜ ’s has a pdf 𝑓 𝑋௜ 𝜃 .

If the 𝑋௜ ’s are independent with 𝑓 𝑋௜ 𝜃 , the joint pdf for the whole 
sample (𝑋ଵ, 𝑋ଶ,... , 𝑋ே) is:

𝐿 𝑿 𝜃 ൌ 𝑓 𝑋ଵ,  𝑋ଶ, ..., 𝑋ே 𝜃 ൌ 𝑓 𝑋ଵ 𝜃 ∗ 𝑓 𝑋ଶ 𝜃 ∗ ⋯∗ 𝑓 𝑋ே 𝜃

 ൌ ∏ 𝑓ሺ𝑋௜|𝜃
ே
௜ୀଵ ሻ

MLE: Maximizing Likelihood Function
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• Assuming the 𝑋௜ ’s are independent with 𝑓 𝑋௜ 𝜃 , the joint pdf is:

𝐿 𝑿 𝜃 ൌ 𝑓 𝑋ଵ 𝜃 ∗ 𝑓 𝑋ଶ 𝜃 ∗ ⋯∗ 𝑓 𝑋ே 𝜃 ൌ ∏ 𝑓ሺ𝑋௜|𝜃
ே
௜ୀଵ ሻ

The function 𝐿 𝑿 𝜃 is called the likelihood function. It represents how 
likely it is to get a particular sample from the model. This function 
𝐿 𝑿 𝜃 is maximized with respect to 𝜃 to obtain ML estimates: 𝜃෠ெ௅ா . 

It is often easier to work with the Log of the likelihood function. That is,

ln 𝐿 𝑿 𝜃 = ∑ ln 𝑓 𝑋௜ 𝜃
ே
௜ୀଵ

Then, we maximize as usual:

1st-derivative ⇒ డ ୪୬ ௅ ௑ ఏሻ 

డఏ
ൌ ∑ డ ୪୬ ௙ሺ௑೔|ఏሻ 

డఏ
ே
௜ୀଵ

f.o.c. ⇒ డ ୪୬ ௅ ௑ ఏ෡ಾಽಶሻ 

డఏ
ൌ 0  𝜃෠ெ௅ா . 

MLE: Maximizing Likelihood Function

Let the sample be X = {5, 6, 7, 8, 9, 10} drawn from a Normal(𝜇, 1).  
The probability of each of these points based on the unknown mean, 
𝜇, can be written as:

𝑓 5|𝜇 ൌ
1

2𝜋
exp െ

5 െ 𝜇 ଶ

2

𝑓 6|𝜇 ൌ
1

2𝜋
exp െ

6 െ 𝜇 ଶ

2
⋮

𝑓 10|𝜇 ൌ
1

2𝜋
exp െ

10 െ 𝜇 ଶ

2

Assume that the sample is independent. Then, the joint pdf  is given by:

𝐿 𝑋|𝜇 ൌ  𝑓 5|𝜇 *  𝑓 6|𝜇 * … * 𝑓 10|𝜇

MLE: Example I
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Then, the joint pdf function can be written as: 

𝐿 𝑋|𝜇 ൌ
1

2𝜋
଺
ଶൗ

exp െ
5 െ 𝜇 ଶ

2
െ

6 െ 𝜇 ଶ

2
െ⋯െ

10 െ 𝜇 ଶ

2

The value of  that maximizes the likelihood function of the sample 
can then be defined by max 

ఓ
𝐿 𝑋|𝜇 .

It easier to maximize the Log likelihood, ln 𝐿 𝑋|𝜇 :

max
ఓ

ln 𝐿 𝑋|𝜇 = െ଺
ଶ⁄ ln 2𝜋 + െ

ହିఓ మ

ଶ
െ

଺ିఓ మ

ଶ
െ ⋯െ

ଵ଴ିఓ మ

ଶ

1st-derivative ⇒ డ

డఓ
𝐾 െ ହ ି ఓ మ

ଶ
െ ଺ ି ఓ మ

ଶ
െ ⋯െ ଵ଴ ି ఓ మ

ଶ

f.o.c.  5 െ 𝜇̂ெ௅ா ൅ 6 െ 𝜇̂ெ௅ா ൅⋯൅ 10 െ 𝜇̂ெ௅ா ൌ 0

MLE: Example I

Then,  the first order conditions: 

5 െ 𝜇̂ெ௅ா ൅ 6 െ 𝜇̂ெ௅ா ൅⋯൅ 10 െ 𝜇̂ெ௅ா ൌ 0

Solving for μො୑୐୉:

    𝜇̂ெ௅ா ൌ  
5 ൅ 6 ൅ 7 ൅ 8 ൅ 9 ൅ 10

6
 ൌ  7.5 ൌ 𝑥

_

That is, the MLE estimator μො୑୐୉ is equal to the sample mean. This is 
good for the sample mean: MLE has very good properties!

Remark: In general, finding the MLE estimator, 𝜃෠ெ௅ா , analytically, 
like we do above for 𝜇̂ெ௅ா , is not feasible. We use numerical methods 
to solve the first order conditions for 𝜃෠ெ௅ா .

MLE: Example I
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• ML estimation approach is general. All we need is to assume that the 
data we have follow a distribution. In our CLM context, we need a 
model (say, A1) and a pdf for the errors (say, normal) to use MLE. 
MLE picks the betas that maximize the likelihood. 

Remark: We like MLE because its estimators, 𝜃෠ெ௅ா , have very good 
properties.

• A lot of applications in finance and economics: Time series, 
volatility (GARCH and stochastic volatility) models, factor models of 
the term structure, switching models, option pricing, logistic models 
(mergers and acquisitions, default, etc.), trading models, etc.

• In general, we rely on numerical optimization to get MLEs.

Ronald A. Fisher, England (1890 – 1962)

MLE: Remarks 

• ML estimators (MLE) have very appealing properties:

(1) Efficiency. Under general conditions, they achieve lowest possible 
variance for an estimator. 

(2) Consistency. As the sample size increases, the MLE converges to 
the population parameter it is estimating:

𝜃෠ெ௅ா
௣
→ θ

(3) Asymptotic Normality: As the sample size increases, the 
distribution of the MLE converges to the normal distribution.

𝜃෠ெ௅ா  
 ௔ 

 𝑁 𝜃, ሾ𝑁 𝐈ሺ𝜃 𝑥௜  ሿିଵ = 𝑁 𝜃, 𝐈ሺ𝜃 𝑋 ିଵ

where 𝐈ሺ𝜃|𝑥௜) is the Information matrix for observation 𝑥௜ :

𝐸 డ ୪୭୥ ௙ሺఏ ௫೔
డ𝛉

డ ୪୭୥ ௙ሺఏ ௫೔
డ𝛉

୘
ൌ 𝐈ሺ𝜃 𝑥௜ (𝑘x𝑘 matrix)

MLE: Properties



RS - Financial Econometrics - MLE

11RS - Do not distribute, post online or share without consent from author.

and 𝐸 డ ୪୭୥ ௅

డ𝛉

డ ୪୭୥ ௅

డ𝛉

୘
ൌ 𝐈ሺ𝜃 𝑋

is the information matrix for the whole sample.

 SE[𝜃෠ெ௅ா,௞|X] = sqrt{diagሺሾ𝐈ሺ𝜃 𝑋 ିଵሿ௞௞ሻሽ

(4) Invariance. The ML estimate is invariant under functional 
transformations. That is, if  𝜃෠ெ௅ா is the MLE of θ and if 𝑔ሺ𝜃ሻ is a 
function of θ, then 𝑔ሺ𝜃෠ெ௅ாሻ is the MLE of 𝑔ሺ𝜃ሻ.
Example: Suppose we estimated 𝜎ොெ௅ா

ଶ -i.e., the MLE of 𝜎ଶ. Then, 
𝜎ොெ௅ா = sqrt(𝜎ොெ௅ா

ଶ )

(5) Sufficiency. If a single sufficient statistic exists for θ, the MLE of 
θ must be a function of it. That is, 𝜃෠ெ௅ா depends on the sample 
observations only through the value of a sufficient statistic.

MLE: Properties

• We have a function, 𝑓 𝑋|𝜽 ൌ  ln 𝐿 𝑋 𝜽 , with 𝑘 unknown 
parameters. We use numerical optimization to estimate 𝜽.

Numerical optimization are algorithms that search over the parameter 
space of 𝜽 looking for the values that maximize/minimize 𝑓 𝑋|𝜽 . 

• Most common optimization algorithms are based on the Newton-
Raphson method (N-R). It is an iterative algorithm: 

- At iteration 𝑗 ൅ 1, based on information from the previous iteration 
𝑗, N-R updates the estimate of 𝜽. 

𝜽௝ାଵ= 𝜽௝ + update (update a function of 1st & 2nd derivatives

At iteration 𝑗=1, we input an initial guess) 

- N-R stops when the values of 𝜽 at 𝑗 is similar to the value at 𝑗 െ 1.

MLE: Numerical Optimization
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• In R, the functions optim & nlm do numerical optimization. Both 
minimize any non-linear function 𝑓 𝑋|θ . Recall that max 𝑓 𝑋|θ = 
min - 𝑓 𝑋|θ . Then, in practice, we numerically minimize the 
negative of the likelihood function, or  ln 𝐿 𝑋 𝜽 * (-1).

Example: In Example I, we numerically minimize ln 𝐿 𝑋 μ * (-1).

• To run optim or nlm, we need to specify: 
- Initial values for the parameters, θ0. 
- Function to be minimized (in Example I, ln 𝐿 𝑋 μ * (-1)).
- Data used. 
- Other optional inputs: Choice of method, Hessian calculated, etc.

• More on this topic in Lecture 10.

23

MLE: Numerical Optimization

Example: For X = {5, 6, 7, 8, 9, 10} ~ N(μ, 1), code to get 𝜇̂ெ௅ா . 
mu <- 0 # assumed mean (initial value, needed input to start minim.)

x_6 <- c(5, 6, 7, 8, 9, 10) # data

dnorm(5, mu, sd=1) # probability of observing a 5, assuming a N(mu=0, sd=1)

dnorm(x_6) # probability of observing each element in x_6  

l_f <- prod(dnorm(x_6)) # Likelihood function

log(l_f) # Log likelihood function

sum(log(dnorm(x_6))) # Alternative calculation of Log likelihood function

# Step 1 - Create Likelihood function

likelihood_n <- function(mu){ # Create a prob function with mu as an argument

sum(log(dnorm(x_6, mu, sd=1)))

}

> likelihood_n(mu) # print likelihood

[1] -183.0136

MLE: Numerical Optimization – Code in R
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Example (continuation):
negative_likelihood_n <- function(mu){   # R uses a minimization algorithm, change sign

sum(log(dnorm(x_6, mu, sd=1))) * (-1)

}

> negative_likelihood_n(mu)

[1] 183.0136

# Step 2 - Maximize (or Minimize negative Likelihood function)

results_n <- nlm(negative_likelihood_n, mu, stepmax=2) # nlm minimizes the function

> results_n # Show nlm results

$minimum

[1] 14.26363 <= The minimized value of function (-14.26363 is the max)

$estimate

[1] 7.5 <= The MLE for μ (=𝜇̂ெ௅ா).

$gradient

[1] -4.736952e-12 <= Should be very close to zero if we’re at a minimum

MLE: Numerical Optimization – Code in R

Example (continuation):
mu_max <- results_n$estimate # Extract estimates

> mu_max # Should be equal to mean

[1] 7.5

> likelihood_n(mu_max) # Check max value at mu_max

[1] -14.26363

MLE: Numerical Optimization – Code in R
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• To obtain the variance of 𝜃෠ெ௅ா we invert the information matrix 
for the whole sample 𝐈ሺ𝜃 𝑋 . Recall, 

𝜃෠ெ௅ா  
 ௔ 

 𝑁 𝜃, 𝐈ሺ𝜃 𝑋 ିଵ

where 𝐈ሺ𝜃|𝑋) is the Information matrix for the whole sample. It is 
generally calculated as:

𝐸 െ డమ ୪୬ ௅ሺఏ ௑

డ𝛉డ𝛉ᇱ
ൌ 𝐈ሺ𝜃 𝑋 , (𝑘x𝑘 matrix)

where the matrix of second derivatives is the Hessian matrix, H:

డమ ୪୬ ௅ሺఏ ௑

డ𝛉డ𝛉ᇱ
= H

• I(θ), the information matrix (negative expected value of Hessian), 
measures the shape of the likelihood function. Its inverse gives the 
variance of the MLE estimator:

MLE: Computing the MLE Variance

• The inverse gives the variance of the MLE estimator:

Var(𝜃෠ெ௅ா) = 𝐸 െ 𝐇 -1 = 𝐈ሺ𝜃ሻ-1

• We use numerical optimization packages (say, nlm in R), which 
minimize a function. Then, we minimize the negative log 𝐿ሺ𝜃 𝑋 and, 
thus, to get Var[𝜃෠ெ௅ா] we do not need to multiply H by (-1).

 SE[𝜃෠ெ௅ா,௞|X] = sqrt{diagሺሾHିଵሿ௞௞ሻሽ

Remark: To compute Var(𝜃෠ெ௅ா) we use the inverse of H, evaluated 
at 𝜃෠ெ௅ா , as the estimator of the variance. R calculates the Hessian in 
all optimization packages (for example, nlm). In Example I, to 
compute Var(𝜇̂ெ௅ா) we extract the Hessian from nlm with

coeff_hess <- results_n$hessian # Extract Hessian

MLE: Computing the MLE Variance
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Example: For X = {5, 6, 7, 8, 9, 10} ~ N(μ, 𝜎ଶ), code to get MLEs. 
mu <- 0 # assumed mean (initial value)

sig <- 1 # assumed sd (initial value)

x_6 <- c(5, 6, 7, 8, 9, 10)

# Step 1 - Create Likelihood function

likelihood_lf <- function(x){ # Create a prob function with mu & sig as arguments

mu <- x[1]

sig <- x[2]

sum(log(dnorm(x_6, mu, sd=sig)))

}

negative_likelihood_lf <- function(x){   # R uses a minimization algorithm, change sign

mu <- x[1]

sig <- x[2]

sum(log(dnorm(x_6, mu, sd=sig))) * (-1)

}

negative_likelihood_lf(x)

MLE: Example II - Estimating μ & σ2 In R

Example (continuation):
# Step 2 - Maximize Log Likelihood function (or Minimize negative Likelihood function)

results_lf <- nlm(negative_likelihood_lf, x, stepmax=4)  # nlm minimizes the function

> results_lf # displays nlm results

$minimum

[1] 11.72496 <=  Minimized value of function 

$estimate

[1] 7.500000 1.707825 <= MLEs for μ & σ2 (=𝜇̂ெ௅ா & 𝜎ොெ௅ா
ଶ )

$gradient

[1] -1.846772e-07 -7.986103e-08 <= ൎ 0 if we’re at a minimum

$code

[1] 1 <= ൌ 1 if we program  stopped at a minimum

$iterations

[1] 34 <= Number of iterations

MLE: Example II - Estimating μ & σ2 In R
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Example (continuation):
# Step 2 (continuation) - Maximize (or Minimize negative Likelihood function)

par_max <- results_lf$estimate # Extract estimates

> par_max # Should be equal to sample mean

[1] 7.500000 1.707825

> likelihood_lf(par_max) # Check max value of likelihood function

[1] -11.72496

# Step 3 – Standard Errors (by inverting the Hessian)

results_lf <- nlm(negative_likelihood_lf, x, stepmax=4 , hessian=TRUE)

coeff_hess <- results_lf$hessian # Extract Hessian

> coeff_hess # Show Hessian

[,1]          [,2]

[1,]  2.0571428731 -0.0009030531

[2,] -0.0009030531  4.1122292411

cov_lf <- solve(coeff_hess) # invert Hessian to get cov(MLEs)

MLE: Example II - Estimating μ & σ2 In R

Example (continuation):
# Step 3 (continuation) – Standard Errors (by inverting the Hessian)

cov_lf <- solve(coeff_hess) # Invert hess to get cov(MLE estimates)

> cov_lf # Show covariance

[,1]         [,2]

[1,] 0.4861111549 0.0001067493

[2,] 0.0001067493 0.2431771208

se_lf <- sqrt(diag(cov_lf)) # Compute S.E. of MLE estimates

> se_lf

[1] 0.6972167 0.4931299

# t-tests

> par_max[1]/se_lf[1] # t-ratio for mu

[1] 10.75706

par_max[2]/se_lf[2] # t-ratio for sigma2

[1] 3.463236

MLE: Example II - Estimating μ & σ2 In R
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• We write the CLM, assuming (A5), using matrix notation:

𝒚 ൌ 𝐗𝛃 ൅ 𝛆, 𝛆 ~ 𝑁ሺ0,𝜎ଶ𝐈்ሻ
where we have 𝑘 explanatory, exogenous variables, 𝒙௜ ’s , that we treat 
as numbers. 𝛃 is a 𝑘x1 vector of unknown parameters. 

Then, the joint likelihood function becomes:

𝐿 ൌ ∏ ଵ

ଶగఙమ
exp െ

ఌ೔
మ

ଶఙమ
்
௜ୀଵ ൌ ሺ2𝜋𝜎ଶሻି்/ଶ ∏ exp െ

ఌ೔
మ

ଶఙమ
்
௜ୀଵ

• Taking logs, we have the log likelihood function: 

ln 𝐿 ൌ െ
𝑇
2

ln 2𝜋𝜎ଶ െ
1

2𝜎ଶ
෍𝜀௜

ଶ ൌ

்

௜ୀଵ

െ
𝑇
2

ln 2𝜋𝜎ଶ െ
ሺ𝐲 െ 𝐗𝛃ሻᇱሺ𝐲 െ 𝐗𝛃ሻ 

2𝜎ଶ

=  െ்

ଶ
ln 2𝜋𝜎ଶ െ 𝒚′𝒚 –𝟐 𝛃′𝐗′𝒚+𝛃′𝐗′𝐗𝛃

ଶఙమ

MLE: Example III – CLM + Normal

• The joint likelihood function becomes: 

ln 𝐿 =  െ்

ଶ
ln 2𝜋𝜎ଶ െ 𝒚′𝒚 – ଶ 𝛃′𝐗′𝒚 + 𝛃′𝐗′𝐗𝛃

ଶఙమ

• We take 1st derivatives of the log likelihood w.r.t. β and 𝜎ଶ:
డ ୪୬ ௅

డఉ
ൌ െ ଵ

ଶ ఙమ
ሺെ2 𝐗′𝒚 ൅ 2 𝐗′𝐗𝛃) = 

ଵ

ఙమ
𝐗ᇱሺ𝒚 െ  𝐗𝛃ሻ

డ ୪୬ ௅

డఙమ
ൌ െ ்

ଶఙమ
െ ሺെ

∑ ఌ೔
మ೅

೔సభ

ଶఙర
ሻ  ൌ ଵ

ଶఙమ
ሾ
∑ ఌ೔

మ೅
೔సభ

ఙమ
െ 𝑇ሿ

Note: 
డ ୪୬ ௅

డఏ
is a (𝑘+1)x1 vector of first derivatives, where 𝜃=(𝛽, 𝜎ଶ). 

We set f.o.c.  (set 
డ ୪୬ ௅

డఏ
= 0) and, then, solve for that 𝜷෡ெ௅ா  and 𝜎ොெ௅ா

ଶ .

MLE: Example III – CLM + Normal
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• After some algebra, we get:

𝛃෡ெ௅ா ൌ ሺ𝐗′𝐗ሻିଵ𝐗′𝒚

𝜎ොெ௅ா
ଶ ൌ

∑ ௘೔
మ೅

೔సభ

்
ൌ

∑ ሺ௬೔ ି 𝐗೔𝛃෡ಾಽಶሻమ
೅
೔సభ

்

• Under (A5) –i.e., normality for the errors–, we have that 𝜷෡ெ௅ா = b.

• This is a good result for OLS b. ML estimators are: Efficient, 
consistent, asymptotically normal and invariant. 

• 𝜎ොெ௅ா
ଶ is biased, but given that it is an ML estimator, it is efficient, 

consistent and asymptotically normally distributed.

• It can be shown (see next slides) that Var[𝛃෡ெ௅ா] = 𝜎ොெ௅ா
ଶ  𝑿ᇱ𝑿 -1

MLE: Example III – CLM + Normal

• To get SE for 𝜃෠ெ௅ா , we invert the (𝑘+1)x(𝑘+1) information matrix:

𝐼ሺ𝜃|𝑋ሻ ൌ 𝐸ሾെ డ ୪୬ ௅

డఏడఏᇱ
ሿ ൌ

ሺ ଵ
ఙమ
𝑿′𝑿ሻ 0

0 ்

ଶఙర

Technical Note: It is block-diagonal, the inverse is the inverse of the 
diagonal blocks. Then,

𝐼ሺ𝜃|𝑋ሻ ିଵ ൌ
𝜎ଶሺ𝑿′𝑿ሻ ିଵ 0

0 ଶఙర

்

Var[𝛃෡ெ௅ா] = 𝜎ොெ௅ா
ଶ  ሺ𝑿′𝑿ሻ ିଵ

Var[𝜎ොெ௅ா
ଶ ] = 2 𝜎ොெ௅ா

ସ /T

MLE: Example III – Computing the Variance

R Note: to compute Var(𝜃෠ெ௅ா) we extract the Hessian from nlm with

coeff_hess <- lf$hessian # Extract Hessian from MLE object lf
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Example: We estimate the 3 F-F factor model for IBM.
SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")

x_ibm <- SFX_da$IBM

x_Mkt_RF<- SFX_da$Mkt_RF

x_SMB <- SFX_da$SMB

x_HML <- SFX_da$HML

x_RF <- SFX_da$RF

T <- length(x_ibm)

lr_ibm <- log(x_pfe[-1]/x_pfe[-T])

x0 <- matrix(1,T-1,1)

Mkt_RF <- x_Mkt_RF[-1]/100

SMB <- x_SMB[-1]/100

HML <- x_HML[-1]/100

RF <- x_RF[-1]/100

ibm_x <- lr_ibm - RF

X <- cbind(x0, Mkt_RF, SMB, HML)

MLE: 3-Factor F-F Model + Normal

Example (continuation): 
# Step 1 - Negative Likelihood function 

likelihood_lf <- function(theta, y ,X) {

N <- nrow(X)

k <- ncol(X)

beta <- theta[1:k]

sigma2 <- theta[k+1]^2

e <- y - X%*%beta

logl <- -.5*N*log(2*pi) - .5*N*log(sigma2) - ((t(e)%*%e)/(2*sigma2))

return(-logl) # Negative log likelihood

}

theta <- c(0,1,1,1,.1) # initial values

likelihood_lf(theta, ibm_x, X)

[,1]

[1,] -599.0825

MLE: 3-Factor F-F Model + Normal
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Example (continuation): 
# Step 2 - Maximize (or Minimize negative Likelihood function)

results_lf <- nlm(likelihood_lf, theta, hessian=TRUE, y=ibm_x, X=X) # nlm minimizes l_f

par_max <- results_lf$estimate # Extract estimates

> par_max # Should be equal to OLS results

[1] -0.0005907974  0.8676052091 -0.6815947799 -0.2284249895  0.0557422421

> likelihood_lf(par_max,ibm_x,X) # Check max value of likelihood function

[,1]

[1,] -835.3316

MLE: 3-Factor F-F Model + Normal

Example (continuation): 
# Step 3 - Compute S.E. by inverting Hessian

par_hess <- results_lf$hessian # Extract Hessian

> par_hess # Show Hessian matrix

[,1]         [,2]        [,3]        [,4]          [,5]

[1,] 183123.2131 1034.3403801 300.5280632 452.9161743 -3.243494e+02

[2,]   1034.3404  390.1995683  71.3131499 -55.6126338 -6.913297e-01

[3,]    300.5281   71.3131499 170.5839168 -26.9486009 -3.023956e-01

[4,]    452.9162  -55.6126338 -26.9486009 165.2938181 -2.928687e-01

[5,]   -324.3494   -0.6913297  -0.3023956  -0.2928687  3.629895e+05

cov_lf <- solve(par_hess) # invert Hessian to get covariance

se_lf <- sqrt(diag(cov_lf)) # Compute standard errors 

> se_lf

[1] 0.002370939 0.054063912 0.080170161 0.080713227 0.001659791

> (par_max[2] -1)/se_lf[2] # t-test for H0: beta=1

[1] -2.448857

MLE: 3-Factor F-F Model + Normal
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Example (continuation): 
# Compare with OLS results

> fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML)

> summary(fit_ibm_ff3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.0005903 0.0023793 -0.248  0.80416    

Mkt_RF 0.8676042 0.0542554 15.991  < 2e-16 ***

SMB -0.6815950 0.0804542 -8.472  < 2e-16 ***

HML -0.2284263 0.0809992 -2.820  0.00497 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05594 on 565 degrees of freedom

Multiple R-squared:  0.3519, Adjusted R-squared:  0.3485 

F-statistic: 102.3 on 3 and 565 DF,  p-value: < 2.2e-16

MLE: 3-Factor F-F Model + Normal

Example (continuation): 

• Summary: OLS vs MLE

OLS MLE

Coeff. (1) S.E. Coeff. (2) S.E.

Intercept -0.00509 0.00238 -0.00509 0.00237

Mkt_RF 0.86761 0.05425 0.86761 0.05406

SMB -0.68159 0.08045 -0.68159 0.08017

HML -0.22842 0.08100 -0.22842 0.08071

Same as expected

Note: 𝜎ොெ௅ா
ଶ is biased, but as 𝑇 gets bigger, the differences between  

𝜎ොெ௅ா
ଶ and 𝑠ை௅ௌ

ଶ become very small. Thus, with a big 𝑇(& normality) 
the difference between Var[𝛃෡ெ௅ா]  & Var[𝒃] should be minor. 

MLE: 3-Factor F-F Model + Normal
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Data Problems

• Three important data problems:

(1) Missing Data – very common, especially in cross sections and 
long panels. 

(2) Outliers - unusually high/low observations. 

(3) Multicollinearity - there is perfect or high correlation in the 
explanatory variables. 

• In general, data problems are exogenous to the researcher. We 
cannot change the data or collect more data.

“If  the data were perfect, collected from well-designed randomized experiments, 
there would hardly be room for a separate field of  econometrics.” Zvi
Griliches (1986, Handbook of  Econometrics) 

Missing Data

• General Setup
We have an indicator variable, s௜ :

If s௜ = 1, we observe Y௜ , 
If s௜ = 0, we do not observe Y௜ .

Note: We always observe the missing data indicator s௜ . 

• Suppose we are interested in the population mean 𝜃 = E[Y௜].

• With a lot of information -large T-, we can learn p = E[s௜] and 𝜇ଵ = 
E[Y௜| s௜ = 1], but nothing about 𝜇଴ = E[Y௜|s௜ = 0]. 

• We can write: 𝜃 = p ∗ 𝜇ଵ +(1 − p) ∗ 𝜇଴.

Problem: Even in large samples we learn nothing about 𝜇଴. Without 
additional information/assumptions we cannot say much about 𝜃.
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Missing Data

• Without additional information/assumptions there is no much we 
can say about 𝜃.

• Now, suppose the variable of interest is binary: Y௜ ∈ {0, 1}. We also 
have an explanatory variable of Y௜ , say W௜ .

• Then, the natural (not data-informed) lower and upper bounds for 
𝜇଴ are 0 and 1 respectively. This implies bounds on 𝜃:

𝜃 ∈ [𝜃LB, 𝜃UB] = [p ∗ 𝜇ଵ,  p ∗ 𝜇ଵ +(1 − p) * 1].

• These bounds are sharp, in the sense that without additional 
information we cannot improve on them. 

If from variable W௜ we can infer something about the missing  values, 
these bounds can be improved.

Missing Data: CLM

• Now, suppose we have the CLM: 𝑦௜ = 𝒙௜ ′  + ௜

• We use the selection indicator, s௜ , where s௜ = 1 if we can use 
observation 𝑖. After some algebra we get,

b =  + (∑ s௜ 𝒙௜ ′ 𝒙௜
்
௜ୀଵ /T)-1 (∑ s௜ 𝒙௜ ′௜்

௜ୀଵ /T)

• For unbiased (and consistent) results, we need E[s௜ 𝒙௜ ′ ௜] = 0, 

implied by E[௜| s௜ 𝒙௜ ′ ] = 0 (*)

In general, we find that when s௜ = ℎሺ𝒙௜ሻ, that is, the selection is a 
function of 𝒙௜ , we have an inconsistent OLS b. This situation is called 
selection bias.
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Missing Data: CLM

Example of Selection Bias: Determinants of Hedging.

A researcher only observes companies that hedge. Estimating the 
determinants of hedging from this population will bias the results!

• Q: When it is safe to ignore the problem? If missing observations 
are randomly (exogenously) “selected.” Rubin (1976) calls this 
assumption  “missing completely at random” (or MCAR).

In general, MCAR is rare. In general, it is more common to see 
“missing at random,” where missing data depends on observables (say, 
education, sex) but one item for individual i is NA (Not Available). 

If in the regression we “control” for the observables that influence 
missing data (not easy), it is OK to delete the whole observation for i.

Missing Data: Usual Solutions

Otherwise, we can:

a. Fill in the blanks –i.e., impute values to the missing data- with 
averages, interpolations, or values derived from a model. 

b. Use (inverse) probability weighted estimation. Here, we inflate or 
“over-weight” unrepresented subjects or observations. 

c. Heckman selection correction: Build a model for the selection 
function, ℎሺ𝒙௜ሻ.
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Outliers

• Many definitions: Atypical observations, extreme values, conditional 
unusual values, observations outside the expected relation, etc. 

• In general, we call an outlier an observation that is numerically 
different from the data. But, is this observation a “mistake,” say a 
result of measurement error, or part of the (heavy-tailed) distribution?

• In the case of normally distributed data, roughly 1 in 370 data points 
will deviate from the mean by 3*SD. Suppose T=1,000 and we see 9
data points deviating from the mean by more than 3*SD indicates 
outliers... Which of the 9 observations can be classified as an outlier?

Problem with outliers: They can affect estimates. For example, with 
small data sets, one big outlier can seriously affect OLS estimates.

• Informal identification method:

- Eyeball: Look at the observations away from a scatter plot.

Example: Plot residuals for the 3 FF factor model for IBM returns
x_resid <- residuals(fit_ibm_ff3)

plot(x_resid, typ ="l", col="blue", main ="IBM Residuals from 3 FF Factor Model", 
xlab="Date", ylab="IBM residuals")

Outliers: Identification

𝑥ො

Outliers?
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• Formal identifications methods:

- Standardized residuals, 𝑒௜/SD(𝑒௜):  Check for errors that are 2*SD (or 
more) away from the expected value.

Example: Plot standardized residuals for IBM residuals
x_stand_resid <- x_resid/sd(x_resid) # standardized residuals

plot(x_stand_resid, typ ="l", col="blue", main ="IBM Standardized Residuals from 3 FF 
Factor Model", xlab="Date", ylab="IBM residuals")

Outliers: Identification

𝑥ො

Outliers?

• Formal identifications methods:

- Leverage statistics: It measures the difference of an independent data 
point from its mean. High leverage observations can be potential 
outliers. Leverage is measured by the diagonal values of the P matrix:

ℎ௝ = 1/T + (𝑥௝ – 𝑥̄)/[(T – 1) 𝑠௫ଶ].

Note: An observation can have high leverage, but no influence.

- Influence statistics: 𝐷𝑖𝑓 𝑏𝑒𝑡𝑎. It measures how much an observation 
influences a parameter estimate, say 𝑏௝ . 𝐷𝑖𝑓 𝑏𝑒𝑡𝑎 is calculated by 
removing an observation, say 𝑖, recalculating 𝑏௝ , say 𝑏௝ െ𝑖 , taking 
the difference in betas and standardizing it. Then,  

𝐷𝑖𝑓 𝑏𝑒𝑡𝑎௝ሺି௜ሻ = 
∑ ሺ௕ೕ ି ௕ೕ ି௜ ሻ
ೖ
ೕసభ

ௌாሾ௕ೕሿ

Outliers: Identification – Leverage & Influence

𝑥ො
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• A related popular influence statistic is Distance D (as in Cook’s D). It 
measures the effect of deleting an observation, say 𝑖, on the fitted 
values, say 𝑦ො௝ . Using the previous notation we have:

𝐷௜ ൌ
∑ ሺ𝑦ො௝ െ 𝑦ො௝ െ𝑖 ሻ
்
௜ୀଵ

𝑘 ∗ 𝑀𝑆𝐸
where 𝑘 is the number of parameters in the model and MSE is mean 
square error of the regression model (MSE = RSS/T).

• The identification statistics are usually compared to some ad-hoc cut-

off values. For example, for Cook’s D, if 𝐷௜ > 4/T  observation 𝑖
is considered a (potential) highly influential point.

• The analysis can also be carried out for groups of observations. In 
this case, we look for blocks of highly influential observations.

𝑥ො

Outliers: Identification – Leverage & Influence

Outliers: Leverage & Influence

• Deleting the observation in the upper right corner has a clear effect 
on the regression line. This observation has leverage and influence.
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• General rules of thumb (ad-hoc thresholds) used to identify outliers:

Measure Value

abs(stand resid) > 2

leverage > (2 𝑘 +2)/T

abs(𝐷𝑖𝑓 𝑏𝑒𝑡𝑎) > 2/sqrt(T)

Cook's D > 4/T

In general, if we have 5% or less observations exceeding the ad-hoc 
thresholds, we tend to think that the data is OK.

Outliers: Summary of  Rules of  Thumb

Example: Cook’s D for IBM returns using the 3 FF Factor Model

y <- ibm_x

x <- cbind(x0, Mkt_RF, SMB, HML)
dat_xy <- data.frame(y, x)
fit_ibm_ff3 <- lm(y ~ x - 1)
cooksd <- cooks.distance(fit_ibm_ff3)
# plot cook's distance
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance") 
# add cutoff line
abline(h = 4*mean(cooksd, na.rm=T), col="red")  # add cutoff line
# add labels
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, 
na.rm=T), names(cooksd),""), col="red")  # add labels

# influential row numbers
influential <- as.numeric(names(cooksd)[(cooksd > 4*mean(cooksd, na.rm=T))])  
# print first 10 influential observations.

head(dat_xy[influential, ], n=10L)

Outliers: Example
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Example (continuation): Cook’s  D for IBM (3 Factor-Model)

Outliers: Example

Example (continuation): Cook’s  D for IBM (3 Factor-Model)

> # print first 10 influential observations.
>head(dat_xy[influential, ], n=10L) 

y V1  Mkt_RF SMB     HML
8   -0.16095068  1  0.0475  0.0294  0.0219
94   0.01266444  1  0.0959 -0.0345 -0.0835
227 -0.04237227  1 0.1084 -0.0224 -0.0403
237 -0.19083575  1  0.0102  0.0205 -0.0210
239 -0.30648638  1  0.0153  0.0164  0.0252
282  0.07787100  1 -0.0597 -0.0383  0.0445
286  0.20734626 1  0.0625 -0.0389  0.0117
291  0.15218986 1  0.0404 -0.0565 -0.0006
306  0.13928315  1 -0.0246 -0.0512 -0.0096
315  0.16196934 1  0.0433  0.0400  0.0253

Note: There are easier ways to plot Cook’s D and identify the 
suspect outliers. The package olsrr can be used for this purpose too.

Outliers: Example
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Example: Different tools to check for outliers for IBM returns
We will use the package olsrr --install it with install.packages().
install.packages(“olsrr”) 

library(olsrr) # need to install package olsrr
x_resid <- residuals(fit_ibm_ff3)
x_stand_resid <- x_resid/sd(x_resid) # standardized residuals
sum(x_stand_resid > 2) # Rule of thumb count (5% count is OK)
x_lev <- ols_leverage(fit_ibm_ff3) # leverage residuals
sum(x_lev > (2*k+2)/T) # Rule of thumb count (5% count is OK)
sum(cooksd > 4/T) # Rule of thumb count (5% count is OK)
ols_plot_resid_stand(fit_ibm_ff3) # Plot standardized residuals 
ols_plot_cooksd_bar(fit_ibm_ff3) # Plot Cook’s D measure
ols_plot_dffits(fit_ibm_ff3) # Plot Difference in fits
ols_plot_dfbetas(fit_ibm_ff3) # Plot Difference in betas

> sum(x_stand_resid > 2)
[1] 13 # 5%? = 13/569 = 0.0228
> sum(x_lev > (2*k+2)/T)
[1] 32 # 5%? = 32/569 = 0.0562
> sum(cooksd > 4/T)
[1] 38 # 5%? = 38/569 = 0.0668

Outliers: Example

Example (continuation):
>ols_plot_resid_stand(fit_ibm_ff3) # Plot Standardize residuals

Outliers: Example
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Example (continuation):
>ols_plot_cooksd_bar(fit_ibm_ff3) # Plot Cook’s D measure

Outliers: Example

Example (continuation):
>ols_plot_dfbetas(fit_ibm_ff3)

Outliers: Example

𝐷𝑖𝑓 𝑏𝑒𝑡𝑎
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• The histogram, Boxplot, and quantiles helps us see some potential 
outliers, but we cannot see which observations are potential outliers. 
For these, we can use Cook’s D, 𝐷𝑖𝑓 𝑏𝑒𝑡𝑎’s, standardized residuals 
and leverage statistics, which are estimated for each 𝑖.

Observation
Type           Proportion      Cutoff

Outlier            0.0228 2.0000 (abs(standardized residuals) > 2)
Outlier 0.1474 2/sqrt(𝑇)  (diffit > 2/sqrt(1038) = 0.0621)
Outlier 0.0668 4/𝑇 (cookd > 4/1038 = 0.00385)
Leverage     0.0562 (2 𝑘+2)/𝑇 (h=leverage > .00771)

Outliers: Application − Rules of  Thumb

• Typical solutions: 

- Use a non-linear formulation or apply a transformation (log, square 
root, etc.) to the data.

- Remove suspected observations. (Sometimes, there are theoretical 
reasons to remove suspect observations. Typical procedure in finance: 
remove public utilities or financial firms from the analysis.)

- Winsorization of the data (cut an α% of the highest and lowest 
observations of the sample).

- Use dummy variables. 

- Use LAD (quantile) regressions, which are less sensitive to outliers.

- Weight observations by size of residuals or variance (robust 
estimation).

• General rule: Present results with or without outliers.

Outliers: What to do?
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Multicollinearity

• The X matrix is singular (perfect collinearity) or near singular  
(multicollinearity).

• Perfect collinearity

Not much we can do. OLS will not work  X'X cannot be inverted. 
The model needs to be reformulated.

• Multicollinearity.  

OLS will work.  is still unbiased.  The problem is in (X'X)-1; that is, 
in the Var[b|X]. Let’s see the effect on the variance of particular 
coefficient, b𝑘. 

Recall the estimated Var[b𝑘|X] is the kth diagonal element of 
2(X’X)-1.

• Let define 𝑅௞.
ଶ as the R2 in the regression of 𝒙௞ on the other 

regressors, X𝑘. Then, we can show the estimated Var[b𝑘|X] is

Var[b𝑘|X] = 
௦మ

ሺଵିோೖ.
మ ሻ ∑ ሺ௫೔ೖ ି ௫ೖ

೙
೔సభ ሻమ

.

 the higher 𝑅௞.
ଶ –i.e., the fit between 𝒙௞ and the rest of the 

regressors–, the higher Var[b𝑘|X].  

• The ratio 
ଵ

ሺଵିோೖ.
మ ሻ

 is called the Variance Inflation Factor of regressor

𝑘, or VIF𝑘. It should be equal to 1 when 𝒙௞ is unrelated to the rest of 
the regressors (including a constant). The higher it is, the higher the 
linear correlation between 𝒙௞ and the rest of the regressors. 

• A common rule of thumb: If VIF𝑘 > 5, concern. 

Multicollinearity & VIF
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• Signs of Multicollinearity:

- Small changes in X produce wild swings in b.

- High R2, but b has low t-values –i.e., high standard errors

- “Wrong signs” or difficult to believe magnitudes in b.

• There is no cure for collinearity.  Estimating something else is not 
helpful; for example, transforming variables to eliminate 
multicollinearity, since we are interested in the effect of X on y, not 
necessarily the effect of f(X) on g(y).

Multicollinearity: Signs

Multicollinearity: VIF and Condition Index

• Popular measures to detect multicollinearity:

- VIF

- Condition number (based on singular values), or K#.

• Belsley (1991) proposes to calculate VIF and the condition number, 
using RX, the correlation matrix of the standardized regressors:

VIF𝑘 = diag(RX
-1)𝑘

Condition Index = κ𝑘 = sqrt(λ1/ λ𝑘)

where λ1> λ2 > ... > λp > ... are the ordered eigenvalues of RX.

• Belsley’s (1991) rules of thumb for κ𝑘:
- below 10 ⇒ good
- from 10 to 30 ⇒ concern 
- greater than 30 ⇒ trouble (>100,  a disaster!)



RS - Financial Econometrics - MLE

35RS - Do not distribute, post online or share without consent from author.

Multicollinearity: Example

Example: Check for multicollinearity for IBM returns 3-factor model
library(olsrr)
ols_vif_tol(fit_ibm_ff3)
ols_eigen_cindex(fit_ibm_ff3)

> ols_vif_tol(fit_ibm_ff3)
Variables Tolerance      VIF

1   xMkt_RF 0.8901229 1.123440
2   xSMB 0.9147320 1.093216
3   xHML 0.9349904 1.069530
> ols_eigen_cindex(fit_ibm_ff3)
Eigenvalue Condition Index  intercept    xMkt_RF xSMB xHML

1  1.4506645 1.000000 0.01557614 0.24313961 0.212001760 0.1518949
2  1.0692689    1.164770 0.66799183 0.01432250 0.001789253 0.2129328
3  0.7967889    1.349310 0.16184731 0.01239755 0.576432492 0.4107435
4  0.6832777   1.457085 0.15458473 0.73014033 0.209776495 0.2244287

Note: Multicollinearity does not seem to be a problem.

• Best approach:  Recognize the problem and understand its 
implications for estimation.

Note: Unless we are very lucky, some degree of multicollinearity will 
always exist in the data. The issue is: when does it become a problem? 

Multicollinearity: Remarks


