Lecture 3-e OLS – MLE & Data Problems

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2020 (for private use, not to be posted/shared online).

Review: OLS – Summary • OLS $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$ (kx1) vector • Properties for \mathbf{b} . 1) Unbiased: $E[\mathbf{b} | \mathbf{X}] = \mathbf{\beta}$ 2) Efficiency (& BLUE): $Var[\mathbf{b} | \mathbf{X}] = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$ 3) If (A5) $\mathbf{\epsilon} | \mathbf{X} \sim i.i.d. N(\mathbf{0}, \sigma^2 \mathbf{I}_T) \implies \mathbf{b} | \mathbf{X} \sim i.i.d. N(\mathbf{\beta}, \sigma^2 (\mathbf{X}' \mathbf{X})^{-1})$ 4) Consistent: $\mathbf{b} \stackrel{p}{\rightarrow} \mathbf{\beta}$ 5) Asymptotic Normality: $\mathbf{b} \stackrel{a}{\rightarrow} N(\mathbf{\beta}, \sigma^2 (\mathbf{X}' \mathbf{X})^{-1})$ • Testing H₀ about \mathbf{b} , with a *t-test*. For example, $H_0: \beta_k = \beta_k^0$ $H_1: \beta_k \neq \beta_k^0$ $t_k = \frac{\mathbf{b}_k - \beta_k^0}{\text{Est. SE}[\mathbf{b}_k]} | \mathbf{X} \sim t_{T-k}$

• After estimating the model (A1), we would like to judge the adequacy of the model. There are two ways to do this:

- Visual: Plots of fitted values and residuals, histograms of residuals.

- Numerical measures: R², Adjusted R², AIC, BIC, etc.

• Numerical measures. In general, they are simple and easy to compute. We call them *goodness-of-fit* measures. Most popular: R².

• Definition: Variation

In the context of a model, we consider the *variation* of a variable as the movement of the variable, usually associated with movement of another variable.

Review: Goodness of Fit of the Regression

• Total variation = Total sum of squares (TSS) = $\sum_i (y_i - \bar{y})^2$.

We want to decompose TSS in two parts: one explained by the regression and one unexplained by the regression.

• TSS = $\sum_{i} (y_i - \bar{y})^2 = \sum_{i} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2$ = $\sum_{i} (y_i - \hat{y}_i)^2 + \sum_{i} (\hat{y}_i - \bar{y})^2 + 2 \sum_{i} (y_i - \hat{y}_i) (\hat{y}_i - \bar{y})$ = $\sum_{i} e_i^2 + \sum_{i} (\hat{y}_i - \bar{y})^2$

since $\sum_i (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) = \sum_i e_i (\hat{y}_i - \bar{y}) = 0$

$$Or \qquad TSS = RSS + SSR$$

RSS: Residual Sum of Squares (also called SSE: SS of errors) SSR: Regression Sum of Squares (also called ESS: *explained* SS)

Review: R²

• TSS = SSR + RSS

• We want to have a measure that describes the fit of a regression. Simplest measure: the standard error of the regression (SER)

SER =
$$\sqrt{\frac{\text{RSS}}{\text{T}-k}} = \sqrt{s^2}$$
 \implies SER depends on units. Not good!

R-squared (R²)
 1 = SSR/TSS + RSS/TSS
 R² = SSR/TSS = Regression variation/Total variation
 R² = 1 - RSS/TSS

As introduced here, R^2 lies between 0 and 1 (& it is independent of units of measurement!). It measures how much of total variation (**TSS**) is explained by regression (SSR): the higher R^2 , the better.

Review: R² – Remarks

Comparing Regressions

- Make sure the denominator in R^2 is the same - i.e., same left hand side variable. For example, when modeling sales, it is common to use log(Sales). Cannot compare R^2 to the one with Sales. Loglinear will almost always appear to fit better, taking logs reduces variation.

- Linear Transformation of data does not change R².
- Get same \mathbb{R}^2 with **X** or with $\mathbf{X}^* = \iota \mathbf{X}$.

• <u>Interpretation</u>: The percentage of total variation (TSS) of *y* explained by the variation of regressors.

Main problem with R²: Adding regressors

Adjusted R-squared

• R^2 is modified with a penalty for number of parameters: *Adjusted*- R^2

$$\overline{R}^{2} = 1 - \frac{(T-1)}{(T-k)} (1-R^{2}) = 1 - \frac{(T-1)}{(T-k)} \frac{RSS}{TSS} = 1 - \frac{s^{2}}{TSS/(T-1)}$$

$$\Rightarrow \text{maximizing } \overline{R}^{2} <=> \text{minimizing } [RSS/(T-k)] = s^{2}$$

• R^2 includes a penalty for variables that do not add much fit. Can fall when a variable is added to the equation.

• It will rise when a variable, say **z**, is added to the regression if and only if the *t-ratio* on **z** is larger than one in absolute value.

Adjusted R-squared

• Theil (1957) shows that, under certain assumptions (an important one: the true model is being considered), if we consider several linear models:

$$\begin{split} \mathbf{M}_1: \quad & \boldsymbol{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\epsilon}_1 & - \text{true model} \\ \mathbf{M}_2: \quad & \boldsymbol{y} = \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}_2 \\ \mathbf{M}_3: \quad & \boldsymbol{y} = \mathbf{X}_3 \boldsymbol{\beta}_3 + \boldsymbol{\epsilon}_3 \end{split}$$

& choose the model with smaller s^2 (or, larger Adjusted R²), we select the true model, M₁, on average.

• In this sense, we say that "maximizing Adjusted R²" is an *unbiased* model-selection criterion.

Other Goodness of Fit Measures • There are other goodness-of-fit measures that also incorporate penalties for number of parameters (degrees of freedom). We minimize these measures. • Popular Information Criteria (IC) • **Akaike Information Criterion (AIC)** $AIC = -2/T(\ln L - k)$ L: Likelihood \Rightarrow if normality AIC = $\ln(e'e/T) + (2/T)k$ (+constants) • **Bayes-Schwarz Information Criterion (BIC)** $BIC = -(2/T \ln L - [\ln(T)/T] k)$ \Rightarrow if normality AIC = $\ln(e'e/T) + [\ln(T)/T] k$ (+constants)

Maximum Likelihood Estimation (MLE)

• <u>Idea</u>: Assume a particular distribution with unknown parameters. Maximum likelihood (ML) estimation chooses the set of parameters that maximize the likelihood of drawing a particular sample.

Example: Suppose we have a sample with N realizations of a coin flip. The coin was flipped N=100 times: 60 heads (H) & 40 tails (T).

We know the distribution of the RV X = number of H & T from N coin flips. It follows a binomial distribution, with parameter p, the probability of a head.

$$P[X = x, N] = {N \choose x} p^{x} (1-p)^{N-x}$$

MLE estimates p as the probability that maximizes what we observed in our particular sample. In our case, MLE set p = 0.60.

Maximum Likelihood Estimation (MLE)

Example (continuation):

$$P[X = x, N|p] = {\binom{N}{x}} p^x (1-p)^{N-x}$$

To check our intuition that p = 0.60, we compute P[X = 60, N = 100] for different p: m = 0.50 P[X = (0, N = 100] = (100) $\Gamma 060 (\Gamma 0)40 = 0.0100$

MLE: Maximizing Likelihood FunctionFormally speaking, we create a function that describes the likelihood

of observing the sample results. In the coin flip example: X = x:

$$L(X = x, N|p) = {\binom{N}{x}} p^x (1-p)^{N-x}$$

Then, we maximize L(X = x, N|p) with respect to p.

• More general, let's consider a sample $(X_1, X_2, ..., X_N)$ which is drawn from a distribution (pdf) $f(\mathbf{X}|\theta)$, where θ are k unknown parameters. Then, each X_i 's has a pdf $f(X_i|\theta)$.

If the X_i 's are *independent* with $f(X_i|\theta)$, the joint pdf for the whole sample $(X_1, X_2, ..., X_N)$ is:

 $L(\boldsymbol{X}|\boldsymbol{\theta}) = f(X_1, X_2, ..., X_N|\boldsymbol{\theta}) = f(X_1|\boldsymbol{\theta}) * f(X_2|\boldsymbol{\theta}) * \cdots * f(X_N|\boldsymbol{\theta})$ $= \prod_{i=1}^N f(X_i|\boldsymbol{\theta})$

MLE: Example I

Let the sample be $X = \{5, 6, 7, 8, 9, 10\}$ drawn from a Normal(μ , 1). The probability of each of these points based on the unknown mean, μ , can be written as:

$$f(5|\mu) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(5-\mu)^2}{2}\right]$$
$$f(6|\mu) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(6-\mu)^2}{2}\right]$$
$$\vdots$$
$$f(10|\mu) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(10-\mu)^2}{2}\right]$$

Assume that the sample is *independent*. Then, the joint pdf is given by: $L(X|\mu) = f(5|\mu) * f(6|\mu) * \dots * f(10|\mu)$

MLE: Example I

Then, the joint pdf function can be written as:

$$L(X|\mu) = \frac{1}{(2\pi)^{6/2}} \exp\left[-\frac{(5-\mu)^{2}}{2} - \frac{(6-\mu)^{2}}{2} - \dots - \frac{(10-\mu)^{2}}{2}\right]$$

The value of μ that maximizes the likelihood function of the sample can then be defined by $\max_{\mu} L(X|\mu)$.

It easier to maximize the <i>Log likelihood</i> , $\ln L(X \mu)$:						
$\max_{\mu} \ln(L(X \mu$	$\iota)\big) = -\frac{6}{2} l$	$n(2\pi) + \left[\cdot \right]$	$-\frac{(5-\mu)^2}{2}$	$-\frac{(6-\mu)^2}{2}-\cdots$	$\cdot - \frac{(10-\mu)}{2}$	<u>.)</u> 2]
1 st -derivative	$\Rightarrow \frac{\partial}{\partial \mu} \Big[K -$	$\frac{(5-\mu)^2}{2}$	$\frac{(6-\mu)^2}{2}$	<u>(10 –</u> 2	$\frac{\mu^2}{2}$	
f.o.c. \Rightarrow	$(5 - \hat{\mu}_{MLE})$	_z) + (6 –	$\hat{\mu}_{MLE}$) +	···+ (10 –	$\hat{\mu}_{MLE}) =$	= 0

MLE: Example I

Then, the first order conditions: $(5 - \hat{\mu}_{MLE}) + (6 - \hat{\mu}_{MLE}) + \dots + (10 - \hat{\mu}_{MLE}) = 0$

Solving for $\boldsymbol{\hat{\mu}}_{MLE}\text{:}$

$$\hat{\mu}_{MLE} = \frac{5+6+7+8+9+10}{6} = 7.5 = \bar{x}$$

That is, the MLE estimator $\hat{\mu}_{MLE}$ is equal to the sample mean. This is good for the sample mean: MLE has very good properties!

<u>Remark</u>: In general, finding the MLE estimator, $\hat{\theta}_{MLE}$, analytically, like we do above for $\hat{\mu}_{MLE}$, is not feasible. We use numerical methods to solve the first order conditions for $\hat{\theta}_{MLE}$.

MLE: Remarks

• ML estimation approach is general. All we need is to assume that the data we have follow a distribution. In our CLM context, we need a model (say, **A1**) and a pdf for the errors (say, normal) to use MLE. MLE picks the betas that maximize the likelihood.

<u>Remark</u>: We like MLE because its estimators, $\hat{\theta}_{MLE}$, have very good properties.

• A lot of applications in finance and economics: Time series, volatility (GARCH and stochastic volatility) models, factor models of the term structure, switching models, option pricing, logistic models (mergers and acquisitions, default, etc.), trading models, etc.

• In general, we rely on numerical optimization to get MLEs.

Ronald A. Fisher, England (1890 - 1962)

MLE: Properties

- ML estimators (MLE) have very appealing properties:
- (1) **Efficiency.** Under general conditions, they achieve lowest possible variance for an estimator.
- (2) **Consistency.** As the sample size increases, the MLE converges to the population parameter it is estimating:

$$\hat{\theta}_{MLE} \xrightarrow{p} \theta$$

(3) **Asymptotic Normality:** As the sample size increases, the distribution of the MLE converges to the normal distribution.

$$\widehat{\theta}_{MLE} \xrightarrow{a} N(\theta, [N \mathbf{I}(\theta | x_i)]^{-1}) = N(\theta, \mathbf{I}(\theta | X)^{-1})$$

where $\mathbf{I}(\boldsymbol{\theta}|\boldsymbol{x}_i)$ is the *Information matrix* for observation \boldsymbol{x}_i :

$$E\left[\left(\frac{\partial \log f(\theta|x_i)}{\partial \theta}\right)\left(\frac{\partial \log f(\theta|x_i)}{\partial \theta}\right)^{\mathrm{T}}\right] = \mathbf{I}(\theta|x_i) \quad (k \ge k \text{ matrix})$$

MLE: Properties

$$E\left[\left(\frac{\partial \log L}{\partial \theta}\right)\left(\frac{\partial \log L}{\partial \theta}\right)^{\mathrm{T}}\right] = \mathbf{I}(\theta | X)$$

is the information matrix for the whole sample.

$$\Rightarrow \quad \operatorname{SE}[\widehat{\theta}_{MLE,k} | \mathbf{X}] = \operatorname{sqrt}\{\operatorname{diag}([\mathbf{I}(\theta | X)^{-1}]_{kk})\}$$

(4) Invariance. The ML estimate is invariant under functional transformations. That is, if θ̂_{MLE} is the MLE of θ and if g(θ) is a function of θ, then g(θ̂_{MLE}) is the MLE of g(θ).
Example: Suppose we estimated ô²_{MLE} -i.e., the MLE of σ². Then,

 $\hat{\sigma}_{MLE} = \operatorname{sqrt}(\hat{\sigma}_{MLE}^2)$

(5) **Sufficiency.** If a single sufficient statistic exists for θ , the MLE of θ must be a function of it. That is, $\hat{\theta}_{MLE}$ depends on the sample observations only through the value of a sufficient statistic.

MLE: Numerical Optimization

• We have a function, $f(X|\theta) = \ln L(X|\theta)$, with *k* unknown parameters. We use numerical optimization to estimate θ .

Numerical optimization are algorithms that search over the parameter space of $\boldsymbol{\theta}$ looking for the values that maximize/minimize $f(X|\boldsymbol{\theta})$.

• Most common optimization algorithms are based on the **Newton-Raphson method** (N-R). It is an iterative algorithm:

- At iteration j + 1, based on information from the previous iteration j, N-R updates the estimate of $\boldsymbol{\theta}$.

 $\boldsymbol{\theta}_{j+1} = \boldsymbol{\theta}_j + \text{update}$ (update a function of 1st & 2nd derivatives At iteration j=1, we input an initial guess)

- N-R stops when the values of $\boldsymbol{\theta}$ at *j* is similar to the value at j - 1.

MLE: Numerical Optimization

• In R, the functions *optim* & *nlm* do numerical optimization. Both **minimize** any non-linear function $f(X|\theta)$. Recall that max $f(X|\theta) = \min - f(X|\theta)$. Then, in practice, we numerically minimize the negative of the likelihood function, or $\ln L(X|\theta) * (-1)$.

Example: In Example I, we numerically minimize $\ln L(X|\mu) *$ (-1).

- To run *optim* or *nlm*, we need to specify:
- Initial values for the parameters, θ_0 .
- Function to be minimized (in Example I, $\ln L(X|\mu) * (-1)$).
- Data used.
- Other optional inputs: Choice of method, Hessian calculated, etc.
- More on this topic in Lecture 10.

23

MLE: Numerical Optimization - Code in R **Example:** For $X = \{5, 6, 7, 8, 9, 10\} \sim N(\mu, 1)$, code to get $\hat{\mu}_{MLE}$. mu <- 0 # assumed mean (initial value, needed input to start minim.) $x_6 \le c(5, 6, 7, 8, 9, 10)$ # data dnorm(5, mu, sd=1) # probability of observing a 5, assuming a N(mu=0, sd=1) dnorm(x_6) # probability of observing each element in x_6 $l_f \le prod(dnorm(x_6))$ # Likelihood function # Log likelihood function $log(l_f)$ sum(log(dnorm(x_6))) # Alternative calculation of Log likelihood function # Step 1 - Create Likelihood function likelihood_n <- function(mu){ # Create a prob function with mu as an argument $sum(log(dnorm(x_6, mu, sd=1)))$ } > likelihood_n(mu) # print likelihood [1] -183.0136

MLE: Computing the MLE Variance

• To obtain the variance of $\hat{\theta}_{MLE}$ we invert the information matrix for the whole sample $I(\theta|X)$. Recall,

$$\hat{\theta}_{MLE} \xrightarrow{a} N(\theta, \mathbf{I}(\theta|X)^{-1})$$

where $I(\theta|X)$ is the *Information matrix* for the whole sample. It is generally calculated as:

$$E\left[-\left(\frac{\partial^2 \ln L(\theta|X)}{\partial \theta \partial \theta'}\right)\right] = \mathbf{I}(\theta|X), \qquad (k \times k \text{ matrix})$$

where the matrix of second derivatives is the Hessian matrix, H:

$$\frac{\partial^2 \ln L(\theta|X)}{\partial \theta \partial \theta'} = \mathbf{H}$$

• $I(\theta)$, the *information matrix* (negative expected value of Hessian), measures the shape of the likelihood function. Its inverse gives the variance of the MLE estimator:

MLE: Computing the MLE Variance

• The inverse gives the variance of the MLE estimator:

$$\operatorname{Var}(\boldsymbol{\theta}_{MLE}) = E[-\mathbf{H}]^{-1} = \mathbf{I}(\boldsymbol{\theta})^{-1}$$

• We use numerical optimization packages (say, *nlm* in R), which minimize a function. Then, we *minimize* the *negative* log $L(\theta|X)$ and, thus, to get $Var[\hat{\theta}_{MLE}]$ we do not need to multiply **H** by (-1).

$$\Rightarrow \qquad \text{SE}[\hat{\theta}_{MLE,k} | \mathbf{X}] = \text{sqrt}\{\text{diag}([\mathbf{H}^{-1}]_{kk})\}$$

<u>Remark</u>: To compute $\operatorname{Var}(\hat{\theta}_{MLE})$ we use the inverse of **H**, evaluated at $\hat{\theta}_{MLE}$, as the estimator of the variance. R calculates the Hessian in all optimization packages (for example, *nlm*). In Example I, to compute $\operatorname{Var}(\hat{\mu}_{MLE})$ we extract the Hessian from *nlm* with

coeff_hess <- results_n\$hessian</th># Extract Hessian

```
MLE: Example II - Estimating \mu \& \sigma^2 \ln R
Example: For X = \{5, 6, 7, 8, 9, 10\} \sim N(\mu, \sigma^2), code to get MLEs.
mu <- 0
                            # assumed mean (initial value)
sig <- 1
                            # assumed sd (initial value)
x_6 \le c(5, 6, 7, 8, 9, 10)
# Step 1 - Create Likelihood function
likelihood_lf <- function(x) { # Create a prob function with mu & sig as arguments
mu <- x[1]
sig <-x[2]
sum(log(dnorm(x_6, mu, sd=sig)))
}
negative_likelihood_lf <- function(x) { # R uses a minimization algorithm, change sign
mu <- x[1]
sig \leq x[2]
sum(log(dnorm(x_6, mu, sd=sig))) * (-1)
}
negative_likelihood_lf(x)
```


MLE: Example III – CLM + Normal

• We write the CLM, assuming (A5), using matrix notation: $y = X\beta + \varepsilon$, $\varepsilon \sim N(0, \sigma^2 I_T)$

where we have k explanatory, exogenous variables, x_i 's, that we treat as numbers. β is a kx1 vector of unknown parameters.

Then, the joint likelihood function becomes:

$$L = \prod_{i=1}^{T} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\varepsilon_i^2}{2\sigma^2}\right) = (2\pi\sigma^2)^{-T/2} \prod_{i=1}^{T} \exp\left(-\frac{\varepsilon_i^2}{2\sigma^2}\right)$$

• Taking logs, we have the log likelihood function:

$$\ln L = -\frac{T}{2}\ln 2\pi\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^{T}\varepsilon_i^2 = -\frac{T}{2}\ln 2\pi\sigma^2 - \frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{2\sigma^2}$$
$$= -\frac{T}{2}\ln 2\pi\sigma^2 - \frac{\mathbf{y}'\mathbf{y} - 2\,\mathbf{\beta}'\mathbf{X}'\mathbf{y} + \mathbf{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta}}{2\sigma^2}$$

MLE: Example III – CLM + Normal

• The joint likelihood function becomes:

$$\ln L = -\frac{T}{2} \ln 2 \pi \sigma^2 - \frac{y'y - 2 \beta' x'y + \beta' x' x \beta}{2\sigma^2}$$

• We take 1st derivatives of the log likelihood w.r.t. β and σ^2 :

$$\frac{\partial \ln L}{\partial \beta} = -\frac{1}{2\sigma^2} (-2 \mathbf{X}' \mathbf{y} + 2 \mathbf{X}' \mathbf{X} \boldsymbol{\beta}) = \frac{1}{\sigma^2} \mathbf{X}' (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})$$
$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{T}{2\sigma^2} - (-\frac{\sum_{i=1}^T \varepsilon_i^2}{2\sigma^4}) = \left(\frac{1}{2\sigma^2}\right) \left[\frac{\sum_{i=1}^T \varepsilon_i^2}{\sigma^2} - T\right]$$

Note:
$$\frac{\partial \ln L}{\partial \theta}$$
 is a $(k+1)$ x1 vector of first derivatives, where $\theta = (\beta, \sigma^2)$.

We set f.o.c. (set
$$\frac{\partial \ln L}{\partial \theta} = 0$$
) and, then, solve for that $\hat{\beta}_{MLE}$ and $\hat{\sigma}_{MLE}^2$.

MLE: Example III – CLM + Normal

• After some algebra, we get:

$$\boldsymbol{\beta}_{MLE} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$\hat{\sigma}_{MLE}^2 = \frac{\sum_{i=1}^T e_i^2}{T} = \frac{\sum_{i=1}^T (y_i - \mathbf{X}_i \hat{\boldsymbol{\beta}}_{MLE})^2}{T}$$

• Under (A5) –i.e., normality for the errors–, we have that $\hat{\beta}_{MLE} = \mathbf{b}$.

• This is a good result for OLS **b**. ML estimators are: Efficient, consistent, asymptotically normal and invariant.

• $\hat{\sigma}_{MLE}^2$ is biased, but given that it is an ML estimator, it is efficient, consistent and asymptotically normally distributed.

• It can be shown (see next slides) that $\operatorname{Var}[\widehat{\boldsymbol{\beta}}_{MLE}] = \widehat{\sigma}_{MLE}^2 (\boldsymbol{X}' \boldsymbol{X})^{-1}$

MLE: Example III – Computing the Variance

• To get SE for $\hat{\theta}_{MLE}$, we invert the (k+1)x(k+1) information matrix:

$$I(\theta|X) = E\left[-\frac{\partial \ln L}{\partial \theta \partial \theta'}\right] = \begin{bmatrix} (\frac{1}{\sigma^2} X' X) & 0\\ 0 & \frac{T}{2\sigma^4} \end{bmatrix}$$

<u>Technical Note</u>: It is block-diagonal, the inverse is the inverse of the diagonal blocks. Then,

$$\operatorname{Var}[\boldsymbol{\beta}_{MLE}] = \hat{\sigma}_{MLE}^2 (\boldsymbol{X}'\boldsymbol{X})^{-1}$$
$$I(\boldsymbol{\theta}|\boldsymbol{X})^{-1} = \begin{bmatrix} \sigma^2 (\boldsymbol{X}'\boldsymbol{X})^{-1} & 0\\ 0 & \frac{2\sigma^4}{T} \end{bmatrix} - \operatorname{Var}[\hat{\sigma}_{MLE}^2] = 2 \hat{\sigma}_{MLE}^4 / T$$
$$\frac{R \operatorname{Note:}}{\operatorname{to compute}} \operatorname{Var}(\hat{\boldsymbol{\theta}}_{MLE}) \text{ we extract the Hessian from } nlm \text{ with coeff_hess} <- \operatorname{lf} \text{ lishessian} \qquad \# \operatorname{Extract} \operatorname{Hessian} \operatorname{from MLE object} \operatorname{lf}$$

MLE: 3-Factor F-F Model + Normal

Example (continuation):

Step 2 - Maximize (or Minimize negative Likelihood function)
results_lf <- nlm(likelihood_lf, theta, hessian=TRUE, y=ibm_x, X=X) # nlm minimizes l_f
par_max <- results_lf\$estimate # Extract estimates
> par_max # Should be equal to OLS results
[1] -0.0005907974 0.8676052091 -0.6815947799 -0.2284249895 0.0557422421
> likelihood_lf(par_max,ibm_x,X) # Check max value of likelihood function
[,1]
[1,] -835.3316

Example (continuation)	:
# Step 3 - Compute S.E. by inverting	Hessian
par_hess <- results_lf\$hessian	# Extract Hessian
> par_hess	# Show Hessian matrix
[,1] [,2] [,3]	[,4] [,5]
[1,] 183123.2131 1034.3403801 300.5	280632 452.9161743 -3.243494e+02
[2,] 1034.3404 390.1995683 71.313	1499 -55.6126338 -6.913297e-01
[3,] 300.5281 71.3131499 170.5839	0168 -26.9486009 -3.023956e-01
[4,] 452.9162 -55.6126338 -26.9486	5009 165.2938181 -2.928687e-01
[5,] -324.3494 -0.6913297 -0.30239	056 -0.2928687 3.629895e+05
cov_lf <- solve(par_hess)	# invert Hessian to get covariance
<pre>se_lf <- sqrt(diag(cov_lf))</pre>	# Compute standard errors
> se_lf	-
	170161 0 080713227 0 001659791

Data Problems

"If the data were perfect, collected from well-designed randomized experiments, there would hardly be room for a separate field of econometrics." Zvi Griliches (1986, Handbook of Econometrics)

• Three important data problems:

(1) **Missing Data** – very common, especially in cross sections and long panels.

(2) Outliers - unusually high/low observations.

(3) **Multicollinearity** - there is perfect or high correlation in the explanatory variables.

• In general, data problems are exogenous to the researcher. We cannot change the data or collect more data.

Missing Data General Setup We have an indicator variable, s_i: If s_i = 1, we observe Y_i, If s_i = 0, we do not observe Y_i. Note: We always observe the missing data indicator s_i. Suppose we are interested in the population mean θ = E[Y_i]. With a lot of information -large T-, we can learn p = E[s_i] and μ₁ = E[Y_i | s_i = 1], but nothing about μ₀ = E[Y_i | s_i = 0]. We can write: θ = p * μ₁ + (1 - p) * μ₀. Problem: Even in large samples we learn nothing about μ₀. Without additional information/assumptions we cannot say much about θ.

Missing Data

• Without additional information/assumptions there is no much we can say about θ .

• Now, suppose the variable of interest is binary: $Y_i \in \{0, 1\}$. We also have an explanatory variable of Y_i , say W_i .

• Then, the natural (not data-informed) lower and upper bounds for μ_0 are 0 and 1 respectively. This implies bounds on θ :

$$\theta \in [\theta_{\text{LB}}, \theta_{\text{UB}}] = [p * \mu_1, p * \mu_1 + (1 - p) * 1].$$

• These bounds are *sharp*, in the sense that without additional information we cannot improve on them.

If from variable W_i we can infer something about the missing values, these bounds can be improved.

Missing Data: CLM

• Now, suppose we have the CLM: $y_i = x_i' \beta + \varepsilon_i$

• We use the selection indicator, s_i , where $s_i = 1$ if we can use observation *i*. After some algebra we get,

$$\mathbf{b} = \boldsymbol{\beta} + (\sum_{i=1}^{T} s_i \mathbf{x}_i' \mathbf{x}_i / T)^{-1} (\sum_{i=1}^{T} s_i \mathbf{x}_i' \varepsilon_i / T)$$

• For unbiased (and consistent) results, we need $E[s_i \ \mathbf{x}_i' \ \mathbf{\varepsilon}_i] = 0$, implied by $E[s_i \ \mathbf{x}_i'] = 0$ (*)

In general, we find that when $s_i = h(x_i)$, that is, the selection is a function of x_i , we have an inconsistent OLS **b**. This situation is called *selection bias*.

Missing Data: CLM

Example of Selection Bias: Determinants of Hedging. A researcher only observes companies that hedge. Estimating the determinants of hedging from this population will bias the results!

• Q: When it is safe to ignore the problem? If missing observations are randomly (exogenously) "selected." Rubin (1976) calls this assumption "*missing completely at random*" (or MCAR).

In general, MCAR is rare. In general, it is more common to see "*missing at random*," where missing data depends on observables (say, education, sex) but one item for individual *i* is NA (Not Available).

If in the regression we "control" for the observables that influence missing data (not easy), it is OK to delete the whole observation for *i*.

Missing Data: Usual Solutions

Otherwise, we can:

a. Fill in the blanks –i.e., *impute* values to the missing data- with averages, interpolations, or values derived from a model.

b. Use (inverse) probability weighted estimation. Here, we inflate or "over-weight" unrepresented subjects or observations.

c. Heckman selection correction: Build a model for the selection function, $h(x_i)$.

Outliers

• Many definitions: Atypical observations, extreme values, conditional unusual values, observations outside the expected relation, etc.

• In general, we call an *outlier* an observation that is numerically different from the data. But, is this observation a "mistake," say a result of measurement error, or part of the (heavy-tailed) distribution?

• In the case of normally distributed data, roughly 1 in 370 data points will deviate from the mean by 3*SD. Suppose T=1,000 and we see 9 data points deviating from the mean by more than 3*SD indicates outliers... Which of the 9 observations can be classified as an outlier?

<u>Problem with outliers</u>: They can affect estimates. For example, with small data sets, one big outlier can seriously affect OLS estimates.

Outliers: Identification - Leverage & Influence

• Formal identifications methods:

- *Leverage statistics*: It measures the difference of an independent data point from its mean. High leverage observations can be potential outliers. Leverage is measured by the diagonal values of the **P** matrix:

$$h_j = 1/T + (x_j - \bar{x})/[(T-1) s_x^2].$$

Note: An observation can have high leverage, but no influence.

- *Influence statistics:* Dif beta. It measures how much an observation influences a parameter estimate, say b_j . Dif beta is calculated by removing an observation, say i, recalculating b_j , say $b_j(-i)$, taking the difference in betas and standardizing it. Then,

$$Dif \ beta_{j(-i)} = \frac{\sum_{j=1}^{k} (b_j - b_j(-i))}{SE[b_j]}$$

Outliers: Identification – Leverage & Influence

• A related popular influence statistic is *Distance D (as in Cook's D)*. It measures the effect of deleting an observation, say i, on the fitted values, say \hat{y}_i . Using the previous notation we have:

$$D_{i} = \frac{\sum_{i=1}^{T} (\hat{y}_{j} - \hat{y}_{j}(-i))}{k * MSE}$$

where *k* is the number of parameters in the model and MSE is mean square error of the regression model (MSE = RSS/T).

• The identification statistics are usually compared to some ad-hoc cut-

off values. For example, for Cook's D, if $D_i > 4/T \Rightarrow$ observation *i* is considered a (potential) highly influential point.

• The analysis can also be carried out for groups of observations. In this case, we look for blocks of highly influential observations.

Outliers: Summary of Rules of Thumb

• General rules of thumb (ad-hoc thresholds) used to identify outliers:

Measure	Value
abs(stand resid)	> 2
leverage	> (2 k + 2)/T
abs(<i>Dif beta</i>)	> 2/sqrt(T)
Cook's D	> 4/ <i>T</i>

In general, if we have 5% or less observations exceeding the ad-hoc thresholds, we tend to think that the data is OK.

Ex	ample (continuation): Cook's D for IBM (3 Factor-Model)
> # >he	print first 10 influential observations. ad(dat_xy [influential,], n=10L)
	y V1 Mkt_RF SMB HML
8 -	0.16095068 1 0.0475 0.0294 0.0219
94	0.01266444 1 0.0959 -0.0345 -0.0835
227	-0.04237227 1 0.1084 -0.0224 -0.0403
237	-0.19083575 1 0.0102 0.0205 -0.0210
239	-0.30648638 1 0.0153 0.0164 0.0252
282	0.07787100 1 -0.0597 -0.0383 0.0445
286	0.20734626 1 0.0625 -0.0389 0.0117
291	0.15218986 1 0.0404 -0.0565 -0.0006
306	0.13928315 1 -0.0246 -0.0512 -0.0096
315	0.16196934 1 0.0433 0.0400 0.0253

Outliers: Application - Rules of Thumb

• The histogram, Boxplot, and quantiles helps us see some potential outliers, but we cannot see which observations are potential outliers. For these, we can use Cook's D, *Dif beta*'s, standardized residuals and leverage statistics, which are estimated for each *i*.

01	•
()hser	vation
00301	vauon

Туре	Proportion	Cutoff
Outlier	0.0228	2.0000 (abs(standardized residuals) > 2)
Outlier	0.1474	2/sqrt(T) (diffit > $2/sqrt(1038) = 0.0621$)
Outlier	0.0668	4/T (cookd > $4/1038 = 0.00385$)
Leverage	0.0562	(2 k+2)/T (h=leverage > .00771)

Outliers: What to do?

• Typical solutions:

- Use a non-linear formulation or apply a transformation (log, square root, etc.) to the data.

- Remove suspected observations. (Sometimes, there are theoretical reasons to remove suspect observations. Typical procedure in finance: remove public utilities or financial firms from the analysis.)

- Winsorization of the data (cut an α % of the highest and lowest observations of the sample).

- Use dummy variables.

- Use LAD (quantile) regressions, which are less sensitive to outliers.

- Weight observations by size of residuals or variance (robust estimation).

• <u>General rule</u>: Present results with or without outliers.

Multicollinearity

• The **X** matrix is *singular* (perfect collinearity) or *near singular* (*multicollinearity*).

• Perfect collinearity

Not much we can do. OLS will not work \Rightarrow **X'X** cannot be inverted. The model needs to be reformulated.

• Multicollinearity.

OLS will work. $\boldsymbol{\beta}$ is still unbiased. The problem is in $(\mathbf{X'X})^{-1}$; that is, in the Var[**b** | **X**]. Let's see the effect on the variance of particular coefficient, **b**_k.

Recall the estimated $\operatorname{Var}[\mathbf{b}_k | \mathbf{X}]$ is the *k*th diagonal element of $\sigma^2(\mathbf{X'X})^{-1}$.

Multicollinearity & VIF

• Let define R_{k}^2 as the R² in the regression of \boldsymbol{x}_k on the other regressors, \mathbf{X}_k . Then, we can show the estimated Var[b_k | **X**] is

 $\operatorname{Var}[\mathbf{b}_k \,|\, \mathbf{X}] = \frac{s^2}{\left[(1 - R_{k.}^2) \sum_{i=1}^n (x_{ik} - \overline{x}_k)^2\right]}.$

 \Rightarrow the higher R_{k}^2 –i.e., the fit between \mathbf{x}_k and the rest of the regressors–, the higher Var[b_k | **X**].

• The ratio $\frac{1}{(1-R_k^2)}$ is called the Variance Inflation Factor of regressor k, or VIF_k. It should be equal to 1 when \boldsymbol{x}_k is unrelated to the rest of the regressors (including a constant). The higher it is, the higher the linear correlation between \boldsymbol{x}_k and the rest of the regressors.

• A common rule of thumb: If $VIF_k > 5$, concern.

Multicollinearity: Signs

- Signs of Multicollinearity:
 - Small changes in X produce wild swings in b.
 - High R², but **b** has low t-values -i.e., high standard errors
 - "Wrong signs" or difficult to believe magnitudes in b.

• There is no *cure* for collinearity. Estimating something else is not helpful; for example, transforming variables to eliminate multicollinearity, since we are interested in the effect of X on y, not necessarily the effect of f(X) on g(y).

Multicollinearity: VIF and Condition Index • Popular measures to detect multicollinearity: - VIF - Condition number (based on singular values), or K#. • Belsley (1991) proposes to calculate VIF and the condition number, using R_x, the correlation matrix of the standardized regressors: $\operatorname{VIF}_k = \operatorname{diag}(\mathbf{R}_{\mathbf{X}}^{-1})_k$ Condition Index = $\varkappa_k = \operatorname{sqrt}(\lambda_1 / \lambda_k)$ where $\lambda_1 > \lambda_2 > ... > \lambda_p > ...$ are the ordered eigenvalues of R_X . • Belsley's (1991) rules of thumb for \varkappa_k : - below 10 ⇒ good - from 10 to 30 ⇒ concern - greater than 30 \Rightarrow trouble (>100, a disaster!)

Multicollinearity: Example							
Example: (Example: Check for multicollinearity for IBM returns 3-factor model						
library(olsrr)							
ols_vif_tol(fit_	_ibm_ff3)						
ols_eigen_cinc	ols_eigen_cindex(fit_ibm_ff3)						
> ols_vif_tol(f Variables 1 xMkt_RF 2 xSMB	it_ibm_ff3) Tolerance 0.8901229 0.9147320	VIF 0 1.123440 0 1.093216					
3 xHML	5 xHML 0.9349904 1.069530						
<pre>> ols_eigen_cindex(fit_ibm_ff3)</pre>							
Eigenvalue C	ondition Ind	ex intercept	xMkt_RF	xSMB	xHML		
1 1.4506645	1.000000	0.01557614	0.24313961	0.212001760	0.1518949		
2 1.0692689	1.164770	0.66799183	0.01432250	0.001789253	0.2129328		
3 0.7967889	1.349310	0.16184731	0.01239755	0.576432492	0.4107435		
4 0.6832777	1.457085	0.15458473	0.73014033	0.209776495	0.2244287		
Note: Multicollinearity does not seem to be a problem							

Multicollinearity: Remarks

• Best approach: Recognize the problem and understand its implications for estimation.

<u>Note</u>: Unless we are very lucky, some degree of multicollinearity will always exist in the data. The issue is: when does it become a problem?