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Lecture 3-d
OLS – Goodness of Fit, and 

Introduction to MLE

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2022 (for private use, not to be posted/shared online).

• Classical linear regression model (CLM) - Assumptions:

(A1) DGP: y = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X) = 𝑘, where T ≥ 𝑘.

• Objective function: S(𝑥௜ , ) = ∑ ௜
ଶ

௜ = ′ = (𝒚 – X)′ (𝒚 – X)

First order condition: – 2 X′𝒚 + 2 X′X b = 0

Solving for b  b = (X′X)-1 X′y (𝑘x1) vector

• Finite Properties for b.

1) Unbiased: E[b|X] = 
2) Efficiency (& BLUE): Var[b|X] = σ2 (X′X)-1

3) If (A5) |X ~ i.i.d. N(0, σ2IT)  b|X ~ i.i.d. N(, σ2 (X’ X)-1)

Review: OLS – Summary
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• Asymptotic properties for b.

4) Consistent: b
௣
→ 

5) Asymptotic Normality: b
௔
→ N(, σ2 (X’ X)-1)

We use these asymptotic properties when we introduce more realistic 
assumptions about the data (X is an RV) and (A5) does not apply.

Review: OLS – Summary

• We want to test hypothesis about one parameter in our linear model: 
𝒚 = X + 

1. Set H0 and H1 (about only one parameter): H0: 𝑘 = ௞
଴

H1: 𝑘≠ ௞
଴

2. Appropriate T(X): t-statistic. Under H0: 

If (A5), 𝑡௞ = 
ୠೖ – ೖబ
௦್,ೖ

~ 𝑡்ି௞

Otherwise, 𝑡௞
ௗ
→𝑁ሺ0, 1ሻ

3. Compute 𝑡௞, t,̂ using b𝑘, ௞
଴ , s, and (X’X)-1. Get p-value(t)̂.

4. Rule: Set an α level. If p-value(t)̂ < α  Reject H0: 𝑘 = ௞
଴

Alternatively, if |t|̂> 𝑡்ି௞,ଵି஑/ଶ  Reject H0: 𝑘 = ௞
଴ .

Review: OLS  – Testing One Parameter  



RS - Financial Econometrics - Lecture 3-d

3

• Special case: H0: 𝑘 = 0
H1: 𝑘≠ 0.

Then,

𝑡௞ = 
ୠೖ

SE[ୠೖ] = t-value or t-ratio. 

• Usually, α = 5%, then if |𝑡௞| > 1.96 ≈ 2, we say the coefficient b𝑘 is 
“significant.”

Review: OLS  – Testing One Parameter  

Example: Using the 1-factor CAPM for IBM returns, we test if 
IBM’s market β = 1, that is, if IBM bears the same market risk as the 
market. Using the lm function previous estimation:
SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep
=",") 

x_ibm <- SFX_da$IBM # Extract IBM price data 

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)

x_RF <- SFX_da$RF # Extract risk free rate (in %)

T <- length(x_ibm) # Sample size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) #  Log returns for IBM (lost one observation)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

RF <- x_RF[-1]/100 # Adjust size (take one observation out )

ibm_x <- lr_ibm – RF # Define excess returns for IBM

fit_ibm_capm <- lm(ibm_x ~ Mkt_RF)# OLS estimation with lm package in R

Review: OLS  – Is IBM’s Beta equal to 1?
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Example (continuation):
> summary(fit_ibm_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005791   0.002487 -2.329   0.0202 *  

xMkt_RF 0.895774 0.053867  16.629   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

b_ibm <- fit_ibm_capm$coefficients # Extract from lm function OLS coefficients

SE_ibm <- sqrt(diag(vcov(fit_ibm_ff3)))# SE from fit_ibm (also a kx1 vector)

t_beta1 <- (b_ibm[2] - 1)/SE_ibm[2] # t-stat for H0: Beta1 - 1 
> t_beta1
[1] -1.934877  |𝑡̂1 = -1.934877|< 1.96  Cannot reject H0 at 5% level

p_val <- (1- pnorm(abs(t_beta1))) * 2 # pvalue for t_beta (adjusted b/c two sided test)

> p_val

[1] 0.0530  cannot reject H0: 𝐼𝐵𝑀 = 1 at 5% level, but borderline!

Review: OLS  – Is IBM’s Beta equal to 1?

Example (continuation): 

Conclusions: Cannot reject H0: 𝐼𝐵𝑀 = 1  IBM has a one-to-one 
risk relation with the market, but borderline test decision!

Note: You can get same results using linear algebra. From last class:
b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y  (OLS regression)

SE <- sqrt(diag(vcov(fit_ibm_capm))) # SE from fit_ibm (also a kx1 vector)

t_beta1 <- (b[2] - 1)/SE[2] # t-stat for H0: Beta1 - 1 

> t(b)

Mkt_RF

[1,] -0.005791039 0.895773564

> t(SE_b)

Mkt_RF

[1,] 0.002487 0.053867

> t_beta1
[1] -1.934877

Review: OLS  – Is IBM’s Beta equal to 1?
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Example: We test the CAPM for IBM using the time-series. 

CAPM: E[𝑟௜,௧ – 𝑟௙] = β௜ E[(𝑟௠,௧ – 𝑟௙)].

 equilibrium excess returns are only determined by excess market 
returns –i.e., the CAPM is a one factor model. There is no constant or 
extra factors besides the market. 

Then, there are two ways to test the CAPM:

1) Check if a constant is significant

2) Check if other factors are significant.

In this example, we check if a constant is significant; later, with the 3-
factor Fama-French model, we check if other factors are significant.

• Note: The CAPM was so well regarded, before the early 1980s, that 
any significant factor, beyond 𝑟௠,௧ – 𝑟௙, was considered an “anomaly.”

Review: Application – Testing the CAPM

Example (continuation): 

CAPM DGP: 
𝑟௜,௧ – 𝑟௙ = 𝛼௜ + β௜ (𝑟௠,௧ – 𝑟௙) + ௜,௧, 𝑖 = 1, ..., 𝑁 &  𝑡 = 1, …, 𝑇

Thus, we test the CAPM by testing H0 (CAPM holds): 𝛼௜ୀூ஻ெ= 0 

H1 (CAPM rejected): 𝛼௜ୀூ஻ெ≠ 0

SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",") 

x_ibm <- SFX_da$IBM # Extract IBM price data 

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)

x_RF <- SFX_da$RF # Extract risk free rate (in %)

T <- length(x_ibm) # Sample size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) #  Log returns for IBM (lost one observation)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

RF <- x_RF[-1]/100

Review: Application – Testing the CAPM
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Example (continuation): 
ibm_x <- lr_ibm – RF # Define excess returns for IBM

fit_ibm_capm <- lm(ibm_x ~ Mkt_RF) # OLS estimation with lm package in R

> summary(fit_ibm_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005791   0.002487 -2.329   0.0202 *  

xMkt_RF 0.895774 0.053867  16.629   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Q: Is 𝛼௜ୀூ஻ெ = 0? Compute the t-value of 𝛼௜ୀூ஻ெ:

𝑡̂α= 
ఈ೔స಺ಳಾ

SE[ఈ೔స಺ಳಾ] = 
−0.005791
0.002487  = -2.329 

 |𝑡̂α| > 1.96  Reject H0 (CAPM) at 5% level

Review: Application – Testing the CAPM

Example (continuation): 

Note: You can also reject H0 by looking at the p-value of intercept 

p-value(|𝑡̂α|= 2.329): 0.0202 < 𝛼 = 5%  Reject H0 at 5% level

Conclusion: The CAPM is rejected for IBM at the 5% level. 
Sometimes, we say the CAPM is “rejected in the time-series.”

Interpretation: Given that the intercept is significant (& negative), 
IBM underperformed relative to what the CAPM expected:

- 𝑟ூ஻ெ,௧ – 𝑟௙: mean(ibm_x) = -0.00073141

- 𝑟ூ஻ெ,௧ – 𝑟௙ (CAPM):  β௜ * mean(Mkt_RF) = 0.895774 * 0.0056489 

= 0.0050601

- Ex-post difference: -0.00073141 - 0.0050601 = -0.00579151 (≈ αIBM) 

Review: Application – Testing the CAPM



RS - Financial Econometrics - Lecture 3-d

7

Example (continuation):

IBM underperformed relative to what the CAPM expected by 

𝛼௜ୀூ஻ெ ൌ −0.005791

Then, according to the SML, IBM has been overvalued. The average, 
negative, performance (-0.00073) is the performance of a much safer 
asset, with a small, negative β (=-0.1295)!

β௜ (systematic risk)

(Undervalued securities)

E[𝑟ூ஻ெ – 𝑟௙] = -0.00073

SML

βூ஻ெ ൌ 0.895774

β௜ E[𝑟௠ – 𝑟௙] = 0.00506

(Overvalued securities)

E[𝑟௜ – 𝑟௙]

Review: Application – Testing the CAPM

• We tested (& rejected) the CAPM for one asset only, IBM. But, the 
CAPM should apply to all assets. Suppose we have 𝑁 assets. Then, a 
test for the CAPM involves testing 𝑁 𝛼௜’s:

H0: 𝛼ଵ = 𝛼ଶ = …. = 𝛼ே = 0

H1: at least one 𝛼௜ ≠ 0.

• This test is a joint test. It requires a simultaneous estimation of 𝑁
CAPM equations. 

• There are different ways to approach the test of the CAPM in the 
cross-section. Two popular methods are the 2-step procedure of 
Fama-MacBeth (1973) and the Likelihood Ratio test.

OLS Estimation – Testing the CAPM: Remark
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Q: Which assets pay a higher return? The SML answers this question: 
Assets with a higher exposure to market risk –i.e., higher β௜.

CAPM DGP (in the cross-section): 
(𝑟௜ – 𝑟௙) = α + β௜ 𝜆 + ௜, i = 1, ..., 𝑁

Testing implication of the SML for the cross-section of stock returns:

H0 (CAPM holds in the CS): α = 0 & 𝜆 = E[𝑟௠,௧ – 𝑟௙] > 0

H1 (CAPM rejected in the CS): α ≠ 0 and/or 𝜆 ≠ E[𝑟௠,௧ – 𝑟௙] > 0 

• Again, we have a joint test. There are different ways to approach 
this test, a common approach is a two-step estimation, popularly 
known as Fama-MacBeth (1973). 

OLS Estimation – Testing the CAPM (CS)

• Fama-MacBeth (1973) propose a well-known two-step approach to 
test the CAPM in the cross-section:

(1) Estimate β௜ using the time series (𝑇 observations) for each asset 𝑖.

𝑟௜,௧ - 𝑟௙,௧ = 𝛼௜ + β௜ (𝑟ெ,௧ - 𝑟௙,௧ሻ + ௜,௧, 𝑡 = 1, …, 𝑇  Get 𝑁 b௜ ’s.

(2) Using the 𝑁 b௜’s as regressors, estimate

 (𝑟̅௜ – 𝑟̅௙) = α + b௜ 𝜆 + ௜, 𝑖 = 1, ..., 𝑁

where (𝑟̅௜ – 𝑟̅௙) is the average excess return of asset 𝑖 in our sample.

The usual execution of almost all 2-step test procedures involves:

1) Since returns are estimated with a lot of noise, portfolios are used. 

2) The estimation takes into account the possible change over time of 
beta coefficients, by estimating the coefficients every 5 or 10 years.

OLS Estimation – Testing the CAPM (CS)
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Example: We test the CAPM, in the cross-section, using the 2-step 
Fama-McBeth method. We use returns of 25 Fama-French 
portfolios (sorted by Size (ME) and Book-to-Market), downloaded, 
along the 3-Fama-French factors from Ken French’s website. 

FF_p_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_25_portfolios.csv", 
head=TRUE, sep=",")

FF_f_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_3_factors.csv", head=TRUE, 
sep=",")

# Extract variables from imported data

Mkt_RF_fm <- FF_f_da$Mkt_RF # extract Market excess returns (in %)

HML_fm <- FF_f_da$HML # extract HML returns (in %)

SMB_fm <- FF_f_da$SMB # extract HML returns (in %)

RF_fm <- FF_f_da$RF # extract Risk-free rate (in %)

Y_p <- FF_p_da[,2:26] - RF_fm # Compute excess returns of 25 portfolios 

T <- length(HML_fm) # Number of observations (1926:July on) 

x0 <- matrix(1,T,1) # Vector of ones, represents constant in X

OLS Estimation – Testing the CAPM (CS)

Example (continuation):
x <- cbind(x0, Mkt_RF_fm) # Matrix X (Tx2)

k <- ncol(Y_p)

## First Pass

Allbs = NULL # Initialize empty (a space to put betas)

for (i in seq(1,k,1)){

y <- Y_p[,i]     # select Y (portfolio)

b <- solve(t(x)%*% x)%*% t(x)%*%y # OLS regression = (X'X)^(-1) X'y

Allbs =cbind(Allbs,b)  # accumulate b as rows

} 

beta_ret <- cbind(colMeans(Y_p),t(Allbs)) # Mean portfolio returns along alpha & beta estimates

cor(beta_ret[,1], beta_ret[,3]) # Correlation of mean portfolio return & beta

> cor(beta_ret[,1], beta_ret[,3])

[1] 0.3326008

plot(beta_ret[,1], beta_ret[,3], main="Scatterplot: Portfolio Returns & CAPM Beta",

xlab="Mean Portfolio Returns ", ylab="Market Beta", pch=19)

OLS Estimation – Testing the CAPM (CS)
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Example (continuation):

## Second Pass (CAPM)

fit_fm_capm_25 <- lm(beta_ret[,1] ~ beta_ret[,3])

> summary(fit_fm_capm_25)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)     0.3728     0.3113   1.198    0.243

beta_ret[, 3]   0.4289     0.2536   1.691 0.104  Not significant: Beta plays no role!

Conclusion: CAPM’s beta does not seem to be useful to explain expected returns.

OLS Estimation – Testing the CAPM (CS)

• Fama and French (1992, 1993) estimated variations of the DGP 
with more factors. They found that  was weakly significant or not 
significant, even with the wrong sign, in explaining the C-S of stock 
returns, which created a big splash in the literature (“Beta is dead”).  
(See next slides.)

• Other researchers dispute the “Beta is dead” finding, criticizing the 
selection of estimation period, construction of portfolios, number of 
factors, statistical problems like measurement error and incorrect SE, 
etc. 

• The debate about  & what (& how many) factors to include in the 
DGP continues.

OLS Estimation – Testing the CAPM (CS)
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• The CAPM is routinely rejected. A popular alternative is the 
empirically derived 3-Factor Fama-French Model (1993), which adds 
to the CAPM two (macro-) factors, related to firm’s characteristics: 

a) Size factor (SMB): It is measured as the difference between the 
returns on diversified portfolios of small stocks (small size portfolio) and 
big stocks (big size portfolio) = long Small & short Big

b) Value factor or book-to-market factor (HML): It is measured as 
the difference between the returns on diversified portfolios of high 
B/M stocks (high B/M portfolio) and low B/M stock (low B/M portfolio)
= long High & short Low.

• With these 3 Fama-French factors, the DGP becomes:

𝑟௜,௧ – 𝑟௙ = 𝛼௜ + βଵ (𝑟௠,௧ – 𝑟௙) + βଶ 𝑆𝑀𝐵௧ + βଷ 𝐻𝑀𝐿௧ +  ௜,௧.

The 3-Factor F-F Model

• Using monthly data from July 1927- July 2024 (98 years), we have 
the following returns for the macro-factors:

• The annualized average returns (& SD) for Market, SMB, and HML 
are, respectively, 8.21% (18.48%), 2.16% (11%) and 4.14% (12.36%). 
High premiums, but with high estimation uncertainty (high SD).

The 3-Factor F-F Model: Descriptive Statistics

(𝑟ெ,௧ - 𝑟௙,௧ሻ 𝑆𝑀𝐵௧ 𝐻𝑀𝐿௧
Min -29.1300 -17.2000 -13.8800 

Median 1.0600 0.0700 0.1200

Mean 0.6845 0.1801 0.3449 

Max 38.8500 36.5600 35.6100 

SD 5.33431 3.176139 3.568389
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• Below, we plot the SMB and HML cumulative returns:

• The SMB or size factor performed very well up to about 1982, 
generating over 600% returns. Then, on average, the reverse occurred:  
large-cap stocks outdid small caps.

The 3-Factor F-F Model: Size Factor (SMB) 

• Below, we plot HML (value factor) returns:

• The value factor performed extremely well up to financial crisis 
2008, generating over 4,500% returns. Value investing was very 
profitable. Since, then, on average, the pattern has changed. 

The 3-Factor F-F Model: Value Factor (HML) 
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• The three (macro-) factors are, in theory, “factor mimicking portfolios,” 
that is, portfolios with exposure only to the factor in question 
(market, size, or value), and no exposure to any other factor. 

The correlation matrix below show that, though not high, the 
correlations are not zero, especially with the market.

Mkt_RF SMB HML

Mkt_RF 1.00000 0.31507 0.22697

SMB 0.31507 1.00000 0.12044

HML 0.22697 0.12044 1.00000

The 3-Factor F-F Model: Factor Correlations

• Computation of factor portfolios in the Fama-French Models.

The portfolios are formed as follows:

Step 1. At the end of June of year 𝑡, sort the stock returns by attribute 
(size of Size, or B/M).

Step 2. Split the sorted assets by attribute into 3 equal/value-weighted 
portfolios (3 tercile portfolios). Split can be thinner (quintile portfolios) 
or based on more complicated sorts, for example, using 6 portfolios 
constructed by intersecting 2 size portfolios & 3 value portfolios.

Step 3. At the end of each month (week or day), from July of year t to 
June of year 𝑡 +1, based on the portfolios constructed in Step 1, 
compute the returns of each of the split portfolios.

Step 4 Form a “hedge portfolio”: long the top portfolio (say, top 
tercile) and short the bottom portfolio (say, bottom tercile).

The 3-Factor F-F Model: Factor Construction
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• 3-factor Fama-French DGP:

𝑟௜,௧ – 𝑟௙ = 𝛼௜ + βଵ (𝑟௠,௧ – 𝑟௙) + βଶ 𝑆𝑀𝐵௧ + βଷ 𝐻𝑀𝐿௧ +  ௜,௧,

under this model, the main drivers of expected returns are sensitivity 
to the market, sensitivity to size, and sensitivity to value stocks, as 
measured by the book-to-market ratio.

• Interpretation of coefficients (also called “factor loadings”):
- βଵ has the same interpretation as in the CAPM, it measures the 
relation between asset 𝑖 risk and market risk. 
- βଶ measures how tilted asset 𝑖 is towards small stock (in general, βଶ
> 0 means that returns of asset 𝑖 behaves like small stocks). 
- βଷmeasures how tilted asset 𝑖 is towards value stock (in general, βଷ
> 0 means that returns of asset 𝑖 behave like high book-to-market 
stocks).

The 3-Factor F-F Model: Interpretation

• Like the CAPM, the 3-factor FF model also produces an expected 
excess return for asset 𝑖:

E[𝑟௜,௧ – 𝑟௙] = βଵ E[𝑟௠,௧ – 𝑟௙] + βଶ E[𝑆𝑀𝐵௧] + βଷ E[𝐻𝑀𝐿௧] 

• A significant constant, 𝛼௜, in the linear 3-factor FF DGP is evidence 
against this model: something is missing. Then, we test the FF model 
for asset 𝑖:

H0 (3-factor FF model true) = 𝛼௜
H1 (3-factor FF model not true) = 𝛼௜

Using asset 𝑖’s time series, this test can be implemented by a simple t-
test on the estimated constant, 𝛼௜. 

• A cross-section test of the 3-factor FF model is a joint test: 
H0: 𝛼ଵ = 𝛼ଶ = …. = 𝛼ே = 0

H1: at least one 𝛼௜ ≠ 0.

The 3-Factor F-F Model: Expected Returns
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Example (continuation): Using the time-series, we test the 
significance of the 3-factor Fama-French model for IBM returns: 

SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,
sep=",") 

x_ibm <- SFX_da$IBM # Extract IBM price data 

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)

x_SMB <- SFX_da$SMB # Extract SMB factor returns (in %)

x_HML <- SFX_da$HML # Extract HML factor returns (in %)

x_RF <- SFX_da$RF # Extract Risk-free rate factor returns (in %)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

SMB <- x_SMB[-1]/100 # Adjust size (take one observation out )

HML <- x_HML[-1]/100 # Adjust size (take one observation out )

RF <- x_RF[-1]/100

OLS Estimation – The 3-factor F-F Model: IBM

Example (continuation): 
T <- length(x_ibm) # Sample size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) #  IBM log returns (lost one observation)

ibm_x <- lr_ibm - RF

fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML)

> summary(fit_ibm_ff3) # print lm results

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005089 0.002488  -2.046   0.0412 *  

Mkt_RF 0.908299 0.056722 16.013 <2e-16 ***

SMB       -0.212460 0.084112  -2.526   0.0118 *   significant at 5% level.

HML     -0.171500 0.084682  -2.025   0.0433 *   significant at 5% level.  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05848 on 565 degrees of freedom

OLS Estimation – The 3-factor F-F Model: IBM
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Example (continuation): 
Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005089 0.002488  -2.046   0.0412 *  

Mkt_RF 0.908299 0.056722 16.013 <2e-16 ***

SMB       -0.212460 0.084112  -2.526   0.0118 *   significant at 5% level.

HML     -0.171500 0.084682  -2.025   0.0433 *   significant at 5% level.  

Conclusion: Consistent with the 3-factor Fama-French model, 
Mkt_RF, SMB and HML are drivers of the expected returns for IBM. 
The signs of β2 & β3: IBM behaves like a large & low B/M firm.

Note 1: The constant is significant, that is, there is an “extra” 
component of expected returns not explained by the 3 F-F factors.

Note 2: The CAPM is also rejected for IBM, since there are, beyond 
the market factor, other significant factors.

OLS Estimation – The 3-factor F-F Model: IBM

y_hat <-fit_ibm_ff3$fitted.values # Extract from fit_ibm_ff3 fitted values

plot(ibm_x, type = "l", col = "blue", # Plot IBM returns

main = "IBM Returns: Actual Returns and Fitted Values", ylab = "Returns", xlab = "Time")

lines(y_hat, type = "l", col = "red") # Add fitted values to plot

legend("topleft",                                       # Add legend to plot

legend = c("Actual", "Fitted"),        col = c("blue", "red"),        lty = 1)

OLS Estimation – The 3-factor F-F Model: IBM

 Some periods with good fit –early & late periods- & some periods 
with poor fit –middle period. 
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Example: Using the estimated 3-factor F-F model for IBM returns, 
we test if IBM’s market β = 1, that is, if IBM bears the same market 
risk as the market. Using the previous estimation:

fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML)

b_ibm <- fit_ibm_ff3$coefficients # Extract from lm function OLS coefficients

SE_ibm <- sqrt(diag(vcov(fit_ibm_ff3)))# SE from fit_ibm (also a kx1 vector)

t_beta1 <- (b_ibm[2] - 1)/SE_ibm[2] # t-stat for H0: Beta1 - 1 

> t_beta1
[1] -1.616674

p_val <- (1- pnorm(abs(t_beta1))) * 2 # pvalue for t_beta (adjusted b/c two sided test)

> p_val
[1] 0.1059487  Cannot reject H0 at 5% level

OLS Estimation – Is IBM’s Beta equal to 1?

Example (continuation):

• Q: Is the market beta (1) equal to 1? That is,

H0: 1 = 1 vs.  

H1: 1 ≠ 1

Compute 𝑡௞ =
ୠೖ – ೖబ

Est. SE[ୠೖ]    𝑡̂1 = 
0.9082989 – 1
0.05672206  = -1.6167

 |𝑡̂1 | < 1.96  Cannot reject H0 at 5% level

Conclusions: IBM has a one-to-one risk relation with the 
market.

OLS Estimation – Is IBM’s Beta equal to 1?
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• An alternative test can be based on the theoretical implications that 
assets with higher exposure to factor risk –i.e., higher β௜’s – should 
have higher returns.

3-factor FF DGP (in the cross-section): 
(𝑟௜ – 𝑟௙) = α + βଵ 𝜆ଵ + βଶ 𝜆ଶ + β௜ 𝜆ଷ + ௜, 𝑖 = 1, ..., 𝑁

H0 (FF holds in the CS): α = 0 & 𝜆௝ > 0, 𝑗 = 1, 2, 𝑘 ൌ 3

H1 (FF rejected in the CS): α ≠ 0 and/or 

Note: In equilibrium, 𝜆ଵ=E[𝑟௠,௧ – 𝑟௙], 𝜆ଶ=E[𝑆𝑀𝐵௧] & 𝜆ଷ=E[𝐻𝑀𝐿௧].

• Again, a Fama-MacBeth (1973) two-step procedure is usually done:

1) First pass: Using the time series, estimate 𝑁 betas (bଵ, bଶ, bଷ).

2) Second pass: Using the cross section of returns, regress mean 
excess returns against a constant and the estimated betas.

The 3-Factor F-F Model: Two-step Test

• An alternative test can be based on the theoretical implications that 
assets with higher exposure to factor risk –i.e., higher β௜’s – should 
have higher returns.

3-factor FF DGP (in the cross-section): 
(𝑟௜ – 𝑟௙) = α + βଵ 𝜆ଵ + βଶ 𝜆ଶ + β௜ 𝜆ଷ + ௜, 𝑖 = 1, ..., 𝑁

H0 (FF holds in the CS): α = 0 & 𝜆௝ > 0, 𝑗 = 1, 2, 𝑘 ൌ 3

H1 (FF rejected in the CS): α ≠ 0 and/or 𝜆௝ ൑ 0,

Note: In equilibrium, 𝜆ଵ=E[𝑟௠,௧ – 𝑟௙], 𝜆ଶ=E[𝑆𝑀𝐵௧] & 𝜆ଷ=E[𝐻𝑀𝐿௧].

• Again, a Fama-MacBeth (1973) two-step procedure is usually done:

1) First pass: Using the time series, estimate 𝑁 betas (bଵ, bଶ, bଷ).

2) Second pass: Using the cross section of returns, regress mean 
excess returns against a constant and the estimated betas.

The 3-Factor F-F Model: Two-step Test
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Example: We test the 3-factor Fama-French model, in the cross-
section, using the 2-step Fama-McBeth method. We use returns of 25 
Fama-French portfolios (sorted by Size & BM), downloaded, along 
the 3-Fama-French factors from Ken French’s website. 
FF_p_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_25_portfolios.csv", 
head=TRUE, sep=",")

FF_f_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_3_factors.csv", head=TRUE, 
sep=",")

# Extract variables from imported data

Mkt_RF_fm <- FF_f_da$Mkt_RF # extract Market excess returns (in %)

HML_fm <- FF_f_da$HML # extract HML returns (in %)

SMB_fm <- FF_f_da$SMB # extract HML returns (in %)

RF_fm <- FF_f_da$RF # extract Risk-free rate (in %)

Y_p <- FF_p_da[,2:26] - RF_fm # Compute excess returns of 25 portfolios 

T <- length(HML_fm) # Number of observations (1926:July on) 

x0 <- matrix(1,T,1) # Vector of ones, represents constant in X

x <- cbind(x0, Mkt_RF, SMB, HML) # Regressors (vector of ones + 3 Factors)

The 3-Factor F-F Model: Testing Model (CS)

Example (continuation):
k <- ncol(Y_p)

## First Pass

Allbs = NULL # Initialize empty (a space to put betas)

for (i in seq(1,k,1)){

y <- Y_p[,i]     # select Y (portfolio)

b <- solve(t(x)%*% x)%*% t(x)%*%y # OLS regression = (X'X)^(-1) X'y

Allbs =cbind(Allbs,b)  # accumulate b as rows

} 

beta_ret <- cbind(colMeans(Y_p),t(Allbs)) # Mean portfolio returns along alpha & beta estimates

> cor(beta_ret)

Mkt_RF SMB     HML

1.000000 0.5242033 -0.2502789 0.26183205 0.69403377

0.524203 1.0000000 -0.7533964 -0.3289295 -0.02888856

Mkt_RF -0.250279 -0.7533967 1.0000000 0.1747401 0.11693857

SMB    0.261832 -0.328929 0.1747402 1.0000000 0.03922282

HML    0.694034 -0.028888 0.1169386 0.0392228 1.00000000

OLS Estimation – Testing the CAPM (CS)
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Example (continuation):
plot(beta_ret[,1], beta_ret[,3], main="Scatterplot: Portfolio Returns & Market Beta",

xlab="Mean Portfolio Returns ", ylab="Market Beta", pch=19)

OLS Estimation – Testing the CAPM (CS)

Example (continuation):

## Second Pass (CAPM)

fit_fm_ff3_25 <- lm(beta_ret[,1] ~ beta_ret[ , 3:5])

> summary(fit_fm_ff3_25)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)            1.98661 0.33046 6.012 5.76e-06 ***  Significant!

beta_ret[, 3:5]Mkt_RF -0.98579 0.32011 -3.080 0.00568 **  Negative! & significant

beta_ret[, 3:5]SMB   0.11140  0.04633 2.405 0.02550 *   Positive as expected

beta_ret[, 3:5]HML  0.37471  0.06393  5.861 8.11e-06 ***  Positive as expected

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Conclusion: The 3 factor FF model has a significant constant, which strong 
evidence against the model –i.e., something is missing. The negative coefficient of 
the market beta goes against theory. Question: Is Beta dead or the model is 
incorrect? 

OLS Estimation – Testing the CAPM (CS)
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• Questions: 
- How where these factors determined to be drivers of stock returns?
By looking at data characteristics, not theory. 

As seen in the previous graphs, by the mid-1990s there was evidence 
that small firms outperformed big firms and that high BM firms 
outperformed low BM firms. Thus, data mining issues are likely 
present.

- Are these 3 (or 5) factors the definitive number of factor?
No. There have been over 200 factors proposed! Big number, likely 
due to data mining. Feng, Giglio and Xiu (2020), who try to propose a 
method to select factors, call their paper “Taming the Factor Zoo.”

The 3-Factor F-F Model: Remarks

• In 2014, Fama and French added two additional factors to their 3-
factor model: RMW & CMA.
- RMW measures the return of the portfolio of most profitable firms 
(“robust”) minus the returns of a portfolio least profitable (“weak”).

- CMA measures the return of a portfolio of firms that invest 
“conservatively” minus a portfolio of firms that invest “aggressively”.

• Again, the 5-factor FF model produces expected excess returns:
E[𝑟௜,௧ – 𝑟௙] = βଵ E[𝑟௠,௧ – 𝑟௙] + βଶ E[𝑆𝑀𝐵௧] + βଷ E[𝐻𝑀𝐿௧] +

+ βସ E[𝑅𝑀𝑊௧] + βହ E[𝐶𝑀𝐴௧]

• There is debate regarding the validity of this extension, especially, 
outside the U.S. market.

The 5-Factor F-F Model: RMW & CMA
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• Disturbances and Residuals 
In the population: E[X′ ] = 0.
In the sample: X′𝒆 = X′(𝒚 – Xb) = X′𝒚 – X′X(X′X)-1X′ 𝒚 

= 0.

• We have two ways to look at 𝒚:
𝒚 = E[y|X] +  = Conditional mean + disturbance
𝒚 = Xb + 𝒆 = Projection (“fitted values”) + residual

OLS Estimation – Linear Algebra Interpretation

Results when X Contains a Constant Term

• Let the first column of X be a column of ones (𝒙ଵ = ί). That is,

X = 

1 𝑥ଶଵ ⋯ 𝑥௞ଵ
1 𝑥ଶଶ ⋯ 𝑥௞ଶ
⋮ ⋮ ⋱ ⋮
1 𝑥ଶ் ⋯ 𝑥௞்

• Recall  ί′ 𝒛 = ∑ 𝑧௜
்
௜ ,  where 𝒛 and ί are 𝑇x1 vectors. Then, 

(1) Residuals sum to zero.

Since X′ 𝒆 = 0

= 

1 1 ⋯ 1
𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶ்
⋮ ⋮ ⋱ ⋮
𝑥௞ଵ 𝑥௞ଶ ⋯ 𝑥௞்

* 

𝑒ଵ
𝑒ଶ
⋮
𝑒்

ൌ 0  ∑ 𝑒௜
்
௜ ൌ 0 

 x1′ 𝒆 = ί ′ 𝒆 = ∑ 𝑒௜
்
௜ ൌ 0  –the residuals sum to zero.
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Results when X Contains a Constant Term

(2) Regression line passes through the means

Recall we can write 𝒚 = fitted values + residuals

𝒚 = Xb + 𝒆

After some algebra, it can be shown that:

𝑦̄ ൌ 𝐱̄ᇱ𝐛

• That is, the regression line passes through the means.

Goodness of Fit of the Regression

• After estimating the model (A1), we would like to judge the adequacy 
of the model. There are two ways to do this:

- Visual: Plots of fitted values and residuals, histograms of residuals.

- Numerical measures: R2, Adjusted R2, AIC, BIC, etc. 

• Numerical measures. In general, they are simple and easy to 
compute. We call them goodness-of-fit measures. Most popular: R2.

• Definition: Variation

In the context of a model, we consider the variation of a variable as the 
movement of the variable, usually associated with movement of 
another variable.
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• Total variation = Total sum of squares (TSS) =  ∑ ሺ𝑦௜௜ െ 𝑦തሻଶ. 

We want to decompose TSS in two parts: one explained by the 
regression and one unexplained by the regression.

• TSS =  ∑ ሺ𝑦௜௜ െ 𝑦തሻଶ = ∑ ሺ𝑦௜௜ െ 𝑦ො௜ ൅ 𝑦ො௜ െ 𝑦തሻଶ

= ∑ ሺ𝑦௜௜ െ 𝑦ො௜ሻଶ + ∑ ሺ𝑦ො௜ െ 𝑦ത௜ ሻଶ + 2 ∑ ሺ𝑦௜௜ െ 𝑦ො௜ሻሺ𝑦ො௜ െ 𝑦തሻ

= ∑ 𝑒௜ଶ௜ + ∑ ሺ𝑦ො௜ െ 𝑦തሻଶ௜

since ∑ 𝑦௜ െ 𝑦ො௜ 𝑦ො௜ െ 𝑦ത ൌ ∑ 𝑒௜  𝑦ො௜ െ 𝑦ത ൌ 0௜௜  

Or TSS = RSS + SSR 

RSS: Residual Sum of Squares (also called SSE: SS of errors)

SSR: Regression Sum of Squares (also called ESS: explained SS)

Goodness of Fit of the Regression

• TSS = SSR + RSS

• We want to have a measure that describes the fit of a regression. 
Simplest measure: the standard error of the regression (SER)

SER = sqrt{RSS/(T െ 𝑘)}  SER depends on units. Not good!

• R-squared (R2)
1 = SSR/TSS + RSS/TSS
R2 = SSR/TSS = Regression variation/Total variation 
R2 = 1 – RSS/TSS

As introduced here, R2 lies between 0 and 1 (& it is independent of 
units of measurement!). It measures how much of total variation 
(TSS) is explained by regression (SSR): the higher R2, the better. 

A Goodness of  Fit Measure
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• R2 = SSR/TSS

Interpretation: The percentage of total variation (TSS) explained by 
the variation of regressors.

Note:  R2 is bounded by zero and one only if:
(a) There is a constant term in X.
(b) The line is computed by OLS.

• Main problem with R2: Adding regressors
It can be shown that R2 never falls when regressors (say z) are added 
to the regression. This occurs because RSS decreases with more 
“information” (in the sense of more regressors).

Problem: Judging a model based on R2 tends to over-fitting.

A Goodness of  Fit Measure

• Comparing Regressions

- Make sure the denominator in R2 is the same - i.e., same left hand 
side variable.  For example, when modeling sales, it is common to use 
log(Sales). Cannot compare R2 to the one with Sales. Loglinear will 
almost always appear to fit better, taking logs reduces variation. 

• Linear Transformation of data does not change R2.

- Based on X, b = (XX)-1X𝒚.

Suppose we work with X* = cX, instead (c is a constant). 

𝒚ෝ* = X* b* = cX (cX cX)-1cX𝒚 
= cX (c2 XX)-1 cX𝒚
= X(XX)-1 X𝒚 = Xb = 𝒚ෝ

 same fit, same residuals, same R2! 

A Goodness of  Fit Measure
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• R2 is modified with a penalty for number of parameters: Adjusted-R2

𝑅2 = 1 െ
(୘ ିଵ)
(୘ ି ௞) (1 – R2) = 1 െ

(୘ ିଵ)
(୘ ି ௞)

RSS
TSS = 1 െ  s2

TSS/(୘ ିଵ)
 maximizing 𝑅2  <=>  minimizing [RSS/(T െ  𝑘)] = s2

• Degrees of freedom –i.e., (T െ  𝑘)– adjustment assumes something about 
“unbiasedness.”

• 𝑅2 includes a penalty for variables that do not add much fit.  Can fall 
when a variable is added to the equation. 

• It will rise when a variable, say z, is added to the regression if and only
if the t-ratio on z is larger than one in absolute value.

Adjusted R-squared

• Theil (1957) shows that, under certain assumptions (an important one: 
the true model is being considered), if we consider several linear 
models: 

M1: 𝒚 = X1β1 + ଵ - true model

M2: 𝒚 = X2β2 + ଶ
M3: 𝒚 = X3β3 + ଷ

& choose the model with smaller s2 (or, larger Adjusted R2), we select 
the true model, M1, on average. 

• In this sense, we say that “maximizing Adjusted R2” is an unbiased
model-selection criterion.

Adjusted R-squared
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Other Goodness of Fit Measures

• There are other goodness-of-fit measures that also incorporate 
penalties for number of parameters (degrees of freedom). We 
minimize these measures.

• Information Criteria (IC)

- Amemiya: [𝒆𝒆/(T – 𝑘)] * (1 + 𝑘/T) = 𝑠ଶ * (1 + 𝑘/T) 

- Akaike Information Criterion (AIC)

AIC = -2/T(ln L – 𝑘) L: Likelihood

 if normality AIC = ln(𝒆𝒆/T) + (2/T) 𝑘 (+constants)

- Bayes-Schwarz Information Criterion (BIC)

BIC = -(2/T ln L – [ln(T)/T] 𝑘)

 if normality AIC = ln(𝒆𝒆/T) + [ln(T)/T] 𝑘 (+constants)

Goodness of Fit Measures – Example

Example: 3 Factor F-F Model (continuation) for IBM returns: 

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y  (OLS regression)

e <- y - x%*%b # regression residuals, e

k <- ncol(x) # Number of parameters estimated

RSS <- as.numeric(t(e)%*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared w/ TSS approximation

Adj_R2 <- 1 - (T-1)/(T-k)*(1-R2) # Adjusted R-squared  

AIC <- log(RSS/T) + 2*k/T # AIC under N(.,.) –i.e.,  under (A5)

> R2

[1] 0.338985  The 3 F-F factors explain 34% of the variability of IBM returns.

> Adj_R2

[1] 0.3354752

> AIC

[1] -5.671036
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Maximum Likelihood Estimation (MLE)

• Idea: Assume a particular distribution with unknown parameters. 
Maximum likelihood (ML) estimation chooses the set of parameters 
that maximize the likelihood of drawing a particular sample.

• Suppose we have a sample with 𝑁 realizations of a coin flip. The 
coin was flipped 𝑁=100 times: 60 heads (H)  & 40 tails (T). 

The RV (𝑋 = number of H & T from N coin flips) follows a binomial 
distribution, with parameter 𝑝, the probability of a head. MLE 
estimates 𝑝 as the probability that maximizes what we observed in our 
particular sample. In our case, MLE set 𝑝= 0.60.

• Formally speaking, we create a function that describes the probability 
of  the RV 𝑋 = 60: 𝐿 𝑋 ൌ 60 𝑝 ൌ ே

௫ 𝑝௫ 1 െ 𝑝 ேି௫

Then, we maximize 𝐿 𝑋 ൌ 60 𝑝 with respect to 𝑝.

Maximum Likelihood Estimation (MLE)

• More general, consider a sample (𝑋ଵ, 𝑋ଶ,... , 𝑋ே) which is drawn 
from a pdf 𝑓 𝑿 𝜃 where 𝜃 are 𝑘 parameters. Then, each 𝑋௜ ’s has a 
pdf 𝑓 𝑋௜ 𝜃 .

If the 𝑋௜ ’s are independent with 𝑓 𝑋௜ 𝜃 , the joint pdf for the whole 
sample (𝑋ଵ, 𝑋ଶ,... , 𝑋ே) is:

𝐿 𝑿 𝜃 ൌ 𝑓 𝑋ଵ,  𝑋ଶ, ..., 𝑋ே 𝜃 ൌ 𝑓 𝑋ଵ 𝜃 ∗ 𝑓 𝑋ଶ 𝜃 ∗ ⋯∗ 𝑓 𝑋ே 𝜃

 ൌ ∏ 𝑓ሺ𝑋௜|𝜃
ே
௜ୀଵ ሻ

The function 𝐿 𝑿 𝜃 is called the likelihood function. It represents how 
likely it is to get a particular sample from the model. 

This function 𝐿 𝑿 𝜃 can be maximized with respect to 𝜃 to produce 
maximum likelihood estimates: 𝜃෠ெ௅ா . 
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Maximum Likelihood Estimation (MLE)

• Assuming the 𝑋௜ ’s are independent with 𝑓 𝑋௜ 𝜃 , the joint pdf is:

𝐿 𝑿 𝜃 ൌ 𝑓 𝑋ଵ,  𝑋ଶ, ..., 𝑋ே 𝜃 ൌ 𝑓 𝑋ଵ 𝜃 ∗ 𝑓 𝑋ଶ 𝜃 ∗ ⋯∗ 𝑓 𝑋ே 𝜃

 ൌ ∏ 𝑓ሺ𝑋௜|𝜃
ே
௜ୀଵ ሻ

This function 𝐿 𝑿 𝜃 can be maximized with respect to 𝜃 to produce 
maximum likelihood estimates: 𝜃෠ெ௅ா . 

It is often easier to work with the Log of the likelihood function. That is,

ln 𝐿 𝑿 𝜃 = ∑ ln 𝑓 𝑋௜ 𝜃
ே
௜ୀଵ

Then, we maximize as usual:

1st-derivative ⇒ డ ୪୬ ௅ ௑ ఏሻ 

డఏ
ൌ ∑ డ ୪୬ ௙ሺ௑೔|ఏሻ 

డఏ
ே
௜ୀଵ

f.o.c. ⇒ డ ୪୬ ௅ ௑ ఏ෡ಾಽಶሻ 

డఏ
ൌ 0  𝜃෠ெ௅ா . 

Let the sample be X = {5, 6, 7, 8, 9, 10} drawn from a Normal(μ, 1).  
The probability of each of these points based on the unknown mean, 
μ, can be written as:

𝑓 5|𝜇 ൌ
1

2𝜋
exp െ

5 െ 𝜇 ଶ

2

𝑓 6|𝜇 ൌ
1

2𝜋
exp െ

6 െ 𝜇 ଶ

2
⋮

𝑓 10|𝜇 ൌ
1

2𝜋
exp െ

10 െ 𝜇 ଶ

2

Assume that the sample is independent. Then, the joint pdf  is given by:

𝐿 𝑋|𝜇 ൌ  𝑓 5|𝜇 *  𝑓 6|𝜇 * … * 𝑓 10|𝜇

MLE: Example I
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Then, the joint pdf function can be written as: 

𝐿 𝑋|𝜇 ൌ
1

2𝜋
଺
ଶൗ

exp െ
5 െ 𝜇 ଶ

2
െ

6 െ 𝜇 ଶ

2
െ⋯െ

10 െ 𝜇 ଶ

2

The value of  that maximizes the likelihood function of the sample 
can then be defined by max 

ఓ
𝐿 𝑋|𝜇 .

It easier to maximize the Log likelihood, ln 𝐿 𝑋|𝜇 :

max
ఓ

ln 𝐿 𝑋|𝜇 = െ଺
ଶ⁄ ln 2𝜋 + െ

ହିఓ మ

ଶ
െ

଺ିఓ మ

ଶ
െ ⋯െ

ଵ଴ିఓ మ

ଶ

1st-derivative ⇒ డ

డఓ
𝐾 െ ହ ି ఓ మ

ଶ
െ ଺ ି ఓ మ

ଶ
െ ⋯െ ଵ଴ ି ఓ మ

ଶ

f.o.c.  5 െ 𝜇̂ெ௅ா ൅ 6 െ 𝜇̂ெ௅ா ൅⋯൅ 10 െ 𝜇̂ெ௅ா ൌ 0

MLE: Example I

Then,  the first order conditions: 

5 െ 𝜇̂ெ௅ா ൅ 6 െ 𝜇̂ெ௅ா ൅⋯൅ 10 െ 𝜇̂ெ௅ா ൌ 0

Solving for μො୑୐୉:

    𝜇̂ெ௅ா ൌ  
5 ൅ 6 ൅ 7 ൅ 8 ൅ 9 ൅ 10

6
 ൌ  7.5 ൌ 𝑥

_

That is, the MLE estimator μො୑୐୉ is equal to the sample mean. This is 
good for the sample mean: MLE has very good properties!

MLE: Example I
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• ML estimation approach is general. All we need is to assume that the 
data we have follow a distribution. In our CLM context, we need a 
model (say, A1) and a pdf for the errors (say, normal) to use MLE. 
MLE picks the betas that maximize the likelihood. 

Remark: We like MLE because its estimators, 𝜃෠ெ௅ா , have very good 
properties.

• A lot of applications in finance and economics: Time series, 
volatility (GARCH and stochastic volatility) models, factor models of 
the term structure, switching models, option pricing, logistic models 
(mergers and acquisitions, default, etc.), trading models, etc.

• In general, we rely on numerical optimization to get MLEs.

Ronald A. Fisher, England (1890 – 1962)

MLE: Remarks 

Example (continuation):
negative_likelihood_n <- function(mu){   # R uses a minimization algorithm, change sign

sum(log(dnorm(x_6, mu, sd=1))) * (-1)

}

> negative_likelihood_n(mu)

[1] 183.0136

# Step 2 - Maximize (or Minimize negative Likelihood function)

results_n <- nlm(negative_likelihood_n, mu, stepmax=2) # nlm minimizes the function

> results_n # Show nlm results

$minimum

[1] 14.26363 <= The minimized value of function (-14.26363 is the max)

$estimate

[1] 7.5 <= The MLE for μ (=𝜇̂ெ௅ா).

$gradient

[1] -4.736952e-12 <= Should be very close to zero if we’re at a minimum

MLE: Example I – Code in R
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Example (continuation):
mu_max <- results_n$estimate # Extract estimates

> mu_max # Should be equal to mean

[1] 7.5

> likelihood_n(mu_max) # Check max value at mu_max

[1] -14.26363

MLE: Example I – Code in R


