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Lecture 3-d
OLS – Goodness of Fit, and 

Introduction to MLE

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2022 (for private use, not to be posted/shared online).

• Classical linear regression model (CLM) - Assumptions:

(A1) DGP: y = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X) = 𝑘, where T ≥ 𝑘.

• Objective function: S(𝑥 , ) = ∑  = ′ = (𝒚 – X)′ (𝒚 – X)

First order condition: – 2 X′𝒚 + 2 X′X b = 0

Solving for b  b = (X′X)-1 X′y (𝑘x1) vector

• Finite Properties for b.

1) Unbiased: E[b|X] = 
2) Efficiency (& BLUE): Var[b|X] = σ2 (X′X)-1

3) If (A5) |X ~ i.i.d. N(0, σ2IT)  b|X ~ i.i.d. N(, σ2 (X’ X)-1)

Review: OLS – Summary
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• Asymptotic properties for b.

4) Consistent: b → 

5) Asymptotic Normality: b → N(, σ2 (X’ X)-1)

We use these asymptotic properties when we introduce more realistic 
assumptions about the data (X is an RV) and (A5) does not apply.

Review: OLS – Summary

• We are interested in testing a hypothesis about one parameter in our 
linear model: y = X + 

1. Set H0 and H1 (about only one parameter): H0: 𝑘 = 
H1: 𝑘≠ 

2. Appropriate T(X): t-statistic. Under H0: 

If (A5), 𝑡 = 
 – 

,
~ 𝑡

Otherwise, 𝑡 →𝑁 0, 1

3. Compute 𝑡 , t,̂ using b𝑘,  , s, and (X’X)-1. Get p-value(t)̂.

4. Rule: Set an α level. If p-value(t)̂ < α  Reject H0: 𝑘 = 
Alternatively, if |t|̂> 𝑡 , /  Reject H0: 𝑘 =  .

Review: OLS  – Testing One Parameter  
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• Special case: H0: 𝑘 = 0
H1: 𝑘≠ 0.

Then,

𝑡 = SE[ ] = t-value or t-ratio. 

• Usually, α = 5%, then if | 𝑡 |> 1.96 ≈ 2, we say the coefficient b𝑘 is 
“significant.”

Review: OLS  – Testing One Parameter  

Example: We test the CAPM for IBM using the time-series. 

CAPM: E[𝑟 , – 𝑟 ] = β E[(𝑟 , – 𝑟 )].

According to the CAPM, equilibrium excess returns are only 
determined by excess market returns –i.e., the CAPM is a one factor 
model. There is no constant or extra factors besides the market.

Then, there are two ways to test the CAPM:

1) Check if a constant is significant

2) Check if other factors are significant.

In this example, we are going to check if a constant is significant. 

Review: OLS Estimation – Testing the CAPM
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Example (continuation): 

A linear data generating process (DGP) consistent with the CAPM is: 
𝑟 , – 𝑟 = 𝛼 + β (𝑟 , – 𝑟 ) +  , , i = 1, ..., N &  𝑡 = 1, …, T

Thus, we test the CAPM by testing H0 (CAPM holds): 𝛼 = 0 

H1 (CAPM rejected): 𝛼 ≠ 0

SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",") 

x_ibm <- SFX_da$IBM # Extract IBM price data 

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)

x_RF <- SFX_da$RF # Extract risk free rate (in %)

T <- length(x_ibm) # Sample size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) #  Log returns for IBM (lost one observation)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

RF <- x_RF[-1]/100

Review: OLS Estimation – Testing the CAPM

Example (continuation): 
ibm_x <- lr_ibm – RF # Define excess returns for IBM

fit_ibm_capm <- lm(ibm_x ~ Mkt_RF) # OLS estimation with lm package in R

> summary(fit_ibm_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005791   0.002487 -2.329   0.0202 *  

xMkt_RF 0.895774 0.053867  16.629   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Q: Is 𝛼 = 0? Compute the t-value of 𝛼 :

�̂�α= SE[ ] = 
−0.005791
0.002487  = -2.329 

 |�̂�α| > 1.96  Reject H0 (CAPM) at 5% level

Review: OLS Estimation – Testing the CAPM
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Example (continuation): 

 |�̂�α| > 1.96  Reject H0 (CAPM) at 5% level

Conclusion: The CAPM is rejected for IBM at the 5% level. 

Note: You can also reject H0 by looking at the p-value of intercept 

p-value: 0.0202. < 𝛼 = 5%  Reject H0 at 5% level

Interpretation: Given that the intercept is significant (& negative), 
IBM underperformed relative to what the CAPM expected:

- 𝑟 , – 𝑟 : mean(ibm_x) = -0.00073141

- 𝑟 , – 𝑟  (CAPM):  β * mean(Mkt_RF) = 0.895774 * 0.0056489 

= 0.0050601

- Ex-post difference: -0.00073141 - 0.0050601 = -0.00579151 (≈ αIBM) 

Review: OLS Estimation – Testing the CAPM

• We tested (& rejected) the CAPM for one asset only, IBM. But, the 
CAPM should apply to all assets. Suppose we have 𝑁 assets. Then, a 
test for the CAPM involves testing 𝑁 𝛼 ’s:

H0: 𝛼 = 𝛼 = …. = 𝛼 = 0

H0: at least one 𝛼 ≠ 0.

• This test is a joint test. It requires a simultaneous estimation of 𝑁
CAPM equations. 

• There are different ways to approach this test. Two popular 
methods are the 2-step procedure of Fama-MacBeth (1973) and the 
Likelihood Ratio test.

OLS Estimation – Testing the CAPM: Remark
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The CAPM also tells a cross-section story for asset returns: Assets 
with higher β should get, on average, higher compensation.

CAPM (cross-section): E[𝑟 – 𝑟 ] = β 𝜆

where 𝜆, in equilibrium, is the market excess return (or factor return).

If we have β ’s for N assets, we can estimate the security market line 
(SML), where we show the effect of β on E[𝑟 – 𝑟 ].

OLS Estimation – Testing the CAPM (SML)

β (systematic risk)

(Overvalued securities)

SML

β 1

E[𝑟 – 𝑟 ]

E[𝑟 – 𝑟 ]
(Undervalued securities)

Example (continuation):

IBM underperformed relative to what the CAPM expected by 

𝛼 −0.005791

Then, according to the CAPM, IBM has been overvalued. The 
average, negative, performance (-0.00073) is the performance of a 
much safer asset, with a small, negative β!

OLS Estimation – Testing the CAPM (SML)

β (systematic risk)

(Undervalued securities)

E[𝑟 – 𝑟 ] = -0.00073

SML

β 0.895774

β E[𝑟 – 𝑟 ] = 0.00506

(Overvalued securities)

E[𝑟 – 𝑟 ]
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Q: Which assets pay a higher return? The SML answers this question: 
Assets with the higher exposure to market risk –i.e., higher β .

A linear DGP consistent with the CAPM is: 
(𝑟 – 𝑟 ) = α+ β 𝜆 +  , i = 1, ..., 𝑁

Testing implication of the SML for the cross-section of stock returns:

H0 (CAPM holds in the CS): 𝛼 = 0 & 𝜆 = E[𝑟 , – 𝑟 ] > 0

H1 (CAPM rejected in the CS): 𝛼 ≠ 0 and/or 𝜆 ≠ E[𝑟 , – 𝑟 ] > 0 

• Again, we have a joint test. There are different ways to approach 
this simultaneous estimation, a common approach is a two-step 
estimation, popularly known as Fama-MacBeth (1973). 

OLS Estimation – Testing the CAPM (CS)

• Fama-French (1992, 1993) adapted Fama-MacBeth to produce a 
well-known two-step approach to test the CAPM in the cross-section:

(1) Estimate β using the time series (𝑇 observations) for each asset 𝑖.

𝑟 , - 𝑟 , = 𝛼 + β (𝑟 , - 𝑟 ,  +  , , 𝑡 = 1, …, 𝑇  Get 𝑁 b ’s.

(2) Using the 𝑁 b ’s as regressors, estimate

 (�̅� – �̅� ) = α + b 𝜆 +  , 𝑖 = 1, ..., 𝑁

where (�̅� – �̅� ) is the average excess return of asset 𝑖 in our sample.

The usual execution of almost all 2-step procedures involves:

1) Since returns are estimated with a lot of noise, portfolios are used. 

2) The estimation takes into account the possible change over time of 
beta coefficients, by estimating the coefficients every 5 or 10 years.

OLS Estimation – Testing the CAPM (CS)
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Example: We test the CAPM, in the cross-section, using the 2-step 
Fama-French method. We use returns of 25 Fama-French portfolios 
(sorted by Size (ME) and Book-to-Market), downloaded, along the 3-
Fama-French factors from Ken French’s website. 

FF_p_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_25_portfolios.csv", 
head=TRUE, sep=",")

FF_f_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_3_factors.csv", head=TRUE, 
sep=",")

# Extract variables from imported data

Mkt_RF_fm <- FF_f_da$Mkt_RF # extract Market excess returns (in %)

HML_fm <- FF_f_da$HML # extract HML returns (in %)

SMB_fm <- FF_f_da$SMB # extract HML returns (in %)

RF_fm <- FF_f_da$RF # extract Risk-free rate (in %)

Y_p <- FF_p_da[,2:26] - RF_fm # Compute excess returns of 25 portfolios 

T <- length(HML_fm) # Number of observations (1926:July on) 

x0 <- matrix(1,T,1) # Vector of ones, represents constant in X

OLS Estimation – Testing the CAPM (CS)

Example (continuation):
x <- cbind(x0, Mkt_RF_fm) # Matrix X (Tx2)

k <- ncol(Y_p)

## First Pass

Allbs = NULL # Initialize empty (a space to put betas)

for (i in seq(1,k,1)){

y <- Y_p[,i]     # select Y (portfolio)

b <- solve(t(x)%*% x)%*% t(x)%*%y # OLS regression = (X'X)^(-1) X'y

Allbs =cbind(Allbs,b)  # accumulate b as rows

} 

beta_ret <- cbind(colMeans(Y_p),t(Allbs)) # Mean portfolio returns along alpha & beta estimates

cor(beta_ret[,1], beta_ret[,3]) # Correlation of mean portfolio return & beta

> cor(beta_ret[,1], beta_ret[,3])

[1] 0.3326008

plot(beta_ret[,1], beta_ret[,3], main="Scatterplot: Portfolio Returns & CAPM Beta",

xlab="Mean Portfolio Returns ", ylab="Market Beta", pch=19)

OLS Estimation – Testing the CAPM (CS)



RS - Financial Econometrics - Lecture 3-d

9

Example (continuation):

## Second Pass (CAPM)

fit_fm_capm_25 <- lm(beta_ret[,1] ~ beta_ret[,3])

> summary(fit_fm_capm_25)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)     0.3728     0.3113   1.198    0.243

beta_ret[, 3]   0.4289     0.2536   1.691 0.104  Not significant: Beta plays no role!

Conclusion: CAPM’s beta does not seem to be useful to explain expected returns.

OLS Estimation – Testing the CAPM (CS)

• Fama and French (1992, 1993) estimated variations of the DGP 
with more factors. They found that  was weakly significant or not 
significant, even with the wrong sign, in explaining the C-S of stock 
returns, which created a big splash in the literature (“Beta is dead”).  

• Other researchers dispute the “Beta is dead” finding, criticizing the 
selection of estimation period, construction of portfolios, number of 
factors, statistical problems like measurement error and incorrect SE, 
etc. 

• The debate about  & what (& how many) factors to include in the 
DGP continues.

OLS Estimation – Testing the CAPM (CS)
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• The CAPM is routinely rejected. A popular alternative is the 
empirically derived 3-Factor Fama-French Model (1993), which adds 
two factors, related to firm’s characteristics, to the CAPM’s market 
excess return factor: 

a) Size factor (SMB) measured as returns of small (size portfolio) 
minus returns of big (size portfolio) = long Small & short Big

b) Value factor or book-to-market factor (HML), measured as returns 
of high (B/M portfolio) minus returns of low (B/M portfolio) = long 
High & short Low.

• The three factors are, in theory, “factor mimicking portfolios,” that is, 
portfolios with unit exposure to the factor in question (market, size, 
or value), and no exposure to any other factor. If significant any 
factor beyond the market is considered a “CAPM anomaly.”

OLS Estimation – The 3-Factor F-F Model

• Then, a linear DGP generating this model is:

𝑟 , – 𝑟 = 𝛼 + β (𝑟 , – 𝑟 ) + β  𝑆𝑀𝐵 + β 𝐻𝑀𝐿 +   , ,

under this model, the main drivers of expected returns are sensitivity 
to the market, sensitivity to size, and sensitivity to value stocks, as 
measured by the book-to-market ratio.

• Interpretation of coefficients (also called “factor loadings”):
- β has the same as the interpretation in the CAPM, it measures the 
relation between asset 𝑖 risk and market risk. 
- β measures how tilted asset 𝑖 is towards small stock (in general, β
> 0 means that returns of asset 𝑖 behaves like small stocks. 
- β measures how tilted asset 𝑖 is towards value stock (in general, β
> 0 means that returns of asset 𝑖 behave like high book-to-market 
stocks).

OLS Estimation – The 3-Factor F-F Model
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• Like the CAPM, the 3-factor FF model produces expected excess 
returns:

E[𝑟 , – 𝑟 ] = β E[𝑟 , – 𝑟 ] + β  E[𝑆𝑀𝐵 ] + β E[𝐻𝑀𝐿 ] 

A significant constant would be evidence against this model: 
something is missing in the model.

• Questions: 
- How where these factors determined to be drivers of stock returns?
By looking at data characteristics, not theory. Data mining issues are 
likely present.

- Are these 3 factors the definitive number of factor?
No. There have been over 200 factors proposed! Big number, likely 
due to data mining. Feng, Giglio and Xiu (2020), who try to propose a 
method to select factors, call their paper “Taming the Factor Zoo.”

OLS Estimation – The 3-Factor F-F Model

• In 2014, Fama and French added two additional factors to their 3-
factor model: RMW & CMA.
- RMW measures the return of the portfolio of most profitable firms 
(“robust”) minus the returns of a portfolio least profitable (“weak”).

- CMA measures the return of a portfolio of firms that invest 
“conservatively” minus a portfolio of firms that invest “aggressively”.

• Again, the 5-factor FF model produces expected excess returns:
E[𝑟 , – 𝑟 ] = β E[𝑟 , – 𝑟 ] + β  E[𝑆𝑀𝐵 ] + β E[𝐻𝑀𝐿 ] +

+ β E[𝑅𝑀𝑊 ] + β E[𝐶𝑀𝐴 ]

• There is debate regarding the validity of this extension, especially, 
outside the U.S. market.

OLS Estimation – The 3-Factor F-F Model
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• Computation of factor portfolios in the Fama-French Models.

The portfolios are formed as follows:

Step 1. At the end of June of year t, sort the stock returns by attribute 
(size of Size, B/M or Operating Profitability).

Step 2. Split the sorted assets by attribute into 3 equal/value-weighted 
portfolios (3 tercile portfolios). Split can be thinner (quintile portfolios) 
or based on more complicated sorts, for example, using 6 portfolios 
constructed by intersecting 2 size portfolios & 3 value portfolios.

Step 3. At the end of each month (week or day), from July of year t to 
June of year t+1, based on the portfolios constructed in Step 1, 
compute the returns of each of the split portfolios.

Step 4 Form a “hedge portfolio”: long the top portfolio (say, top 
tercile) and short the bottom portfolio (say, bottom tercile).

OLS Estimation – The 3-Factor F-F Model

Example (continuation): Now, using the time-series, we test the 
significance of the factors in the Fama-French (1993) model for IBM 
returns with. 

SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,
sep=",") 

x_SMB <- SFX_da$SMB

x_HML <- SFX_da$HML

x_RF <- SFX_da$RF

SMB <- x_SMB[-1]/100

HML <- x_HML[-1]/100

y <- ibm_x # Define y (IBM excess returns)

x1 <- Mkt_RF # Regressor 1 (Mkt_RF)

x2 <- SMB # Regressor 2 (SMB)

x3 <- HML # Regressor 3 (HML)

OLS Estimation – The 3-factor F-F Model: IBM
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Example (continuation):
T <- length(y) # New sample size (Original – 1 observation)

x0 <- matrix(1,T,1) # Define vector of ones (the constant in X)

x <- cbind(x0,x1,x2,x3) # Matrix X

k <- ncol(x) # Number of regressors (=rank(X)=k)

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y (OLS regression)

e <- y - x%*%b # regression residuals, e

k <- ncol(x) # number or regressors, k

RSS <- as.numeric(t(e)%*%e) # RSS

Sigma2 <- as.numeric(RSS/(T-k)) # Estimated σ2 = s2

SE_reg <- sqrt(Sigma2) # Estimated σ – Regression stand error

Var_b <- Sigma2*solve(t(x)%*% x) # Estimated Var[b|X] = s2 (X′X)-1

SE_b <- sqrt(diag(Var_b)) # SE[b|X] 

t_b <- b/SE_b # t-values

y_hat <- x%*%b # fitted values

OLS Estimation – The 3-factor F-F Model: IBM

Example (continuation):
> t(b)

Mkt_RF SMB        HML

[1,] -0.005088944 0.9082989 -0.2124596 -0.1715002  Negative signs of β2 & β3.

> t(SE_b)

Mkt_RF SMB        HML

[1,] 0.002487509 0.05672206 0.08411188 0.08468165

> t(t_b)

Mkt_RF SMB       HML

[1,] -2.045799 16.01315 -2.525917 -2.025235  all coefficients are significant (|t|>2).

Conclusion: Consistent with the 3-factor Fama-French model, 
Mkt_RF, SMB and HML are drivers of the expected returns for IBM. 
The signs of β2 & β3: IBM behaves like a large & low B/M firm.

Note: The constant is significant, that is, there is an “extra” 
component of expected returns not explained by the 3 F-F factors.

OLS Estimation – The 3-factor F-F Model: IBM
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Example (continuation):

You should get the same coefficients and S.E.’s using lm (use 
summary(.) to print results) and extracting information from lm: 

> summary(fit_ibm_ff3) # print lm results

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005089 0.002488  -2.046   0.0412 *  

Mkt_RF 0.908299 0.056722 16.013 <2e-16 ***

SMB       -0.212460 0.084112  -2.526   0.0118 *   significant at 5% level (against CAPM).

HML     -0.171500 0.084682  -2.025   0.0433 *   significant at 5% level (against CAPM). 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05848 on 565 degrees of freedom

Multiple R-squared:  0.3389,    Adjusted R-squared:  0.3354 

F-statistic: 96.55 on 3 and 565 DF,  p-value: < 2.2e-16

OLS Estimation – The 3-factor F-F Model: IBM

plot(y, type = "l", col = "blue", # Plot IBM returns

main = "IBM Returns: Actual Returns and Fitted Values", ylab = "Returns", xlab = "Time")

lines(y_hat, type = "l", col = "red") # Add fitted values to plot

legend("topleft",                                       # Add legend to plot

legend = c("Actual", "Fitted"),        col = c("blue", "red"),        lty = 1)

OLS Estimation – The 3-factor F-F Model: IBM

 Some periods with good fit –early & late periods- & some periods 
with poor fit –middle period. 
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Example: Using the 3-factor F-F model for IBM returns, we test if 
IBM’s market β = 1, that is, if IBM bears the same market risk as the 
market. Using the previous estimation:

> t(b)

Mkt_RF SMB        HML

[1,] -0.005088944 0.9082989 -0.2124596 -0.1715002

> t(SE_b)

Mkt_RF SMB        HML

[1,] 0.002487509 0.05672206 0.08411188 0.08468165

• Q: Is the market beta (1) equal to 1? That is,

H0: 1 = 1 vs.  

H1: 1 ≠ 1

Compute 𝑡 =
 – 

Est. SE[ ]    �̂�1 = 
0.9082989 – 1
0.05672206  = -1.6167

OLS Estimation – Is IBM’s Beta equal to 1?

Example (continuation):
�̂�1 = -1.6167 

 |�̂�1 | < 1.96  Cannot reject H0 at 5% level

Conclusions: IBM has a one-to-one risk relation with the market.

Note: You should get the same numbers using lm (use summary(.) to 
print results) and extracting information from lm: 

fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML)

b_ibm <- fit_ibm_ff3$coefficients # Extract from lm function OLS coefficients

SE_ibm <- sqrt(diag(vcov(fit_ibm_ff3)))# SE from fit_ibm (also a kx1 vector)

t_beta1 <- (b_ibm[2] - 1)/SE_ibm[2] # t-stat for H0: Beta1 - 1 
> t_beta1
[1] -1.616674

p_val <- (1- pnorm(abs(t_beta1))) * 2 # pvalue for t_beta (adjusted b/c two sided test)

> p_val
[1] 0.1059487

OLS Estimation – Is IBM’s Beta equal to 1?
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• Disturbances and Residuals 
In the population: E[X′ ] = 0.
In the sample: X′𝒆 = X′(𝒚 – Xb) = X′𝒚 – X′X(X′X)-1X′ 𝒚 

= 0.

• We have two ways to look at 𝒚:
𝒚 = E[y|X] +  = Conditional mean + disturbance
𝒚 = Xb + 𝒆 = Projection (“fitted values”) + residual

OLS Estimation – Linear Algebra Interpretation

Results when X Contains a Constant Term

• Let the first column of X be a column of ones (𝒙 = ί). That is,

X = 

1 𝑥 ⋯ 𝑥
1 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
1 𝑥 ⋯ 𝑥

• Recall  ί′ 𝒛 = ∑ 𝑧 ,  where 𝒛 and ί are 𝑇x1 vectors. Then, 

(1) Residuals sum to zero.

Since X′ 𝒆 = 0

= 

1 1 ⋯ 1
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

* 

𝑒
𝑒
⋮
𝑒

0  ∑ 𝑒  0 

 x1′ 𝒆 = ί ′ 𝒆 = ∑ 𝑒  0  –the residuals sum to zero.
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Results when X Contains a Constant Term

(2) Regression line passes through the means

Recall we can write 𝒚 = fitted values + residuals

𝒚 = Xb + 𝒆

Pre-multiply by ί′ : ί′ 𝒚 = ί′Xb + ί′ 𝒆

 ∑ 𝑦 = ∑ 𝑏1 
1 + 𝑏2 𝑥  + ... + 𝑏k 𝑥  + ∑ 𝑒

 ∑ 𝑦 = 𝑏1 
∑ 1 + 𝑏2 

∑ 𝑥  + ... + 𝑏k 
∑ 𝑥  

 ∑ 𝑦 = 𝑏1 
𝑇 + 𝑏2 

∑  𝑥  + ... + 𝑏k 
∑  𝑥  

Dividing both sides by 𝑇: 

∑ 𝑦 /𝑇 = 𝑏1 
+ 𝑏2 

∑  𝑥  /𝑇 + ... + 𝑏k 
∑  𝑥  /𝑇

�̄� = 𝑏1 
+ 𝑏2 

�̅� +⋯ 𝑏k �̅�
 �̄� �̄� 𝐛

• That is, the regression line passes through the means.

Goodness of Fit of the Regression

• After estimating the model (A1), we would like to judge the adequacy 
of the model. There are two ways to do this:

- Visual: Plots of fitted values and residuals, histograms of residuals.

- Numerical measures: R2, Adjusted R2, AIC, BIC, etc. 

• Numerical measures. In general, they are simple and easy to 
compute. We call them goodness-of-fit measures. Most popular: R2.

• Definition: Variation

In the context of a model, we consider the variation of a variable as the 
movement of the variable, usually associated with movement of 
another variable.
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• Total variation = Total sum of squares (TSS) =  ∑ 𝑦 𝑦 . 

We want to decompose TSS in two parts: one explained by the 
regression and one unexplained by the regression.

• TSS =  ∑ 𝑦 𝑦  = ∑ 𝑦 𝑦 𝑦 𝑦

= ∑ 𝑦 𝑦 + ∑ 𝑦 𝑦 + 2 ∑ 𝑦 𝑦 𝑦 𝑦

= ∑ 𝑒 + ∑ 𝑦 𝑦

since ∑ 𝑦 𝑦 𝑦 𝑦 ∑ 𝑒  𝑦 𝑦 0 

Or TSS = RSS + SSR 

RSS: Residual Sum of Squares (also called SSE: SS of errors)

SSR: Regression Sum of Squares (also called ESS: explained SS)

Goodness of Fit of the Regression

• TSS = SSR + RSS

• We want to have a measure that describes the fit of a regression. 
Simplest measure: the standard error of the regression (SER)

SER = sqrt{RSS/(T 𝑘)}  SER depends on units. Not 
good!

• R-squared (R2)
1 = SSR/TSS + RSS/TSS
R2 = SSR/TSS = Regression variation/Total variation 
R2 = 1 – RSS/TSS

As introduced here, R2 lies between 0 and 1 (& it is independent of 
units of measurement!). It measures how much of total variation 
(TSS) is explained by regression (SSR): the higher R2, the better. 

A Goodness of  Fit Measure
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• R2 = SSR/TSS

Interpretation: The percentage of total variation (TSS) explained by 
the variation of regressors.

Note:  R2 is bounded by zero and one only if:
(a) There is a constant term in X.
(b) The line is computed by OLS.

• Main problem with R2: Adding regressors
It can be shown that R2 never falls when regressors (say z) are added 
to the regression. This occurs because RSS decreases with more 
“information” (in the sense of more regressors).

Problem: Judging a model based on R2 tends to over-fitting.

A Goodness of  Fit Measure

• Comparing Regressions

- Make sure the denominator in R2 is the same - i.e., same left hand 
side variable.  For example, when modeling sales, it is common to use 
log(Sales). Cannot compare R2 to the one with Sales.  Loglinear will 
almost always appear to fit better, taking logs reduces variation. 

• Linear Transformation of data does not change R2.

- Based on X, b = (XX)-1X𝒚.

Suppose we work with X* = cX, instead (c is a constant). 

𝒚* = X* b* = cX (cX cX)-1cX𝒚 
= cX (c2 XX)-1 cX𝒚
= X(XX)-1 X𝒚 = Xb = 𝒚

 same fit, same residuals, same R2! 

A Goodness of  Fit Measure
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• R2 is modified with a penalty for number of parameters: Adjusted-R2

𝑅2 = 1
(  )
(   ) (1 – R2) = 1 

(  )
(   )

RSS
TSS = 1  s2

TSS/(  )
 maximizing 𝑅2  <=>  minimizing [RSS/(T  𝑘)] = s2

• Degrees of freedom –i.e., (T  𝑘)– adjustment assumes something about 
“unbiasedness.”

• 𝑅2 includes a penalty for variables that do not add much fit.  Can fall 
when a variable is added to the equation. 

• It will rise when a variable, say z, is added to the regression if and only
if the t-ratio on z is larger than one in absolute value.

Adjusted R-squared

• Theil (1957) shows that, under certain assumptions (an important one: 
the true model is being considered), if we consider several linear 
models: 

M1: 𝒚 = X1β1 +  - true model

M2: 𝒚 = X2β2 + 
M3: 𝒚 = X3β3 + 

& choose the model with smaller s2 (or, larger Adjusted R2), we select 
the true model, M1, on average. 

• In this sense, we say that “maximizing Adjusted R2” is an unbiased
model-selection criterion.

Adjusted R-squared
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Other Goodness of Fit Measures

• There are other goodness-of-fit measures that also incorporate 
penalties for number of parameters (degrees of freedom). We 
minimize these measures.

• Information Criteria (IC)

- Amemiya: [𝒆𝒆/(T – 𝑘)] * (1 + 𝑘/T) = 𝑠 * (1 + 𝑘/T) 

- Akaike Information Criterion (AIC)

AIC = -2/T(ln L – 𝑘) L: Likelihood

 if normality AIC = ln(𝒆𝒆/T) + (2/T) 𝑘 (+constants)

- Bayes-Schwarz Information Criterion (BIC)

BIC = -(2/T ln L – [ln(T)/T] 𝑘)

 if normality AIC = ln(𝒆𝒆/T) + [ln(T)/T] 𝑘 (+constants)

Goodness of Fit Measures – Example

Example: 3 Factor F-F Model (continuation) for IBM returns: 

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y  (OLS regression)

e <- y - x%*%b # regression residuals, e

k <- ncol(x) # Number of parameters estimated

RSS <- as.numeric(t(e)%*%e) # RSS

R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared w/ TSS approximation

Adj_R2 <- 1 - (T-1)/(T-k)*(1-R2) # Adjusted R-squared  

AIC <- log(RSS/T) + 2*k/T # AIC under N(.,.) –i.e.,  under (A5)

> R2

[1] 0.338985  The 3 F-F factors explain 34% of the variability of IBM returns.

> Adj_R2

[1] 0.3354752

> AIC

[1] -5.671036
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Maximum Likelihood Estimation

• Idea: Assume a particular distribution with unknown parameters. 
Maximum likelihood (ML) estimation chooses the set of parameters 
that maximize the likelihood of drawing a particular sample.

• Consider a sample (𝑋 , ... , 𝑋 ) which is drawn from a pdf 𝑓 𝑿|𝜃
where θ are parameters. If the 𝑋 ’s are independent with pdf 𝑓 𝑋 |𝜃
the joint probability of the whole sample is:

𝐿 𝑋|𝜃 = 𝑓 𝑋 , ... , 𝑋 |𝜃 = ∏ 𝑓 𝑋 |𝜃

The function 𝐿 𝑋|𝜃 –also written as 𝐿 𝑋; 𝜃 – is called the likelihood 
function. It represents how likely it is to get a particular sample from 
the model. This function 𝐿 𝑋|𝜃 can be maximized with respect to θ
to produce maximum likelihood estimates: 𝜃 .

• It is often convenient to work with the Log of the likelihood function. 
That is,

ln 𝐿 𝑋|𝜃 = ∑ ln 𝑓 𝑋 |𝜃

• ML estimation approach is general. We need a model (say, A1) and a 
pdf for the errors (say, normal) to apply ML. Now, if the model is not 
correctly specified, the estimates are sensitive to misspecification.

• A lot of applications in finance and economics: Time series, 
volatility (GARCH and stochastic volatility) models, factor models of 
the term structure, switching models, option pricing, logistic models 
(mergers and acquisitions, default, etc.), trading models, etc.

• In general, we rely on numerical optimization to get MLEs.

Ronald A. Fisher, England (1890 – 1962)

Maximum Likelihood Estimation
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• ML estimators (MLE) have very appealing properties:

(1) Efficiency. Under general conditions, they achieve lowest possible 
variance for an estimator. 

(2) Consistency. As the sample size increases, the MLE converges to the 
population parameter it is estimating:

𝜃  
      

θ

(3) Asymptotic Normality: As the sample size increases, the distribution 
of the MLE converges to the normal distribution.

𝜃  
  

 𝑁 𝜃, 𝑛 𝐈 𝜃 𝑥  = 𝑁 𝜃, 𝐈 𝜃 𝑋
where 𝐈 𝜃|𝑥 ) is the Information matrix for observation 𝑥 :

𝐸
𝛉 𝛉

𝐈 𝜃 𝑥 (kxk matrix)

Maximum Likelihood Estimation: Properties

and 𝐸
𝛉 𝛉

𝐈 𝜃 𝑋

is the information matrix for the whole sample.

(4) Invariance. The ML estimate is invariant under functional 
transformations. That is, if  𝜃 is the MLE of θ and if g(θ) is a 
function of θ, then g(𝜃 ) is the MLE of g(θ).

Example: Suppose we estimated 𝜎 -i.e., the MLE of 𝜎 . Then, 
𝜎 = sqrt(𝜎 )

(5) Sufficiency. If a single sufficient statistic exists for θ, the MLE of θ
must be a function of it. That is, 𝜃 depends on the sample 
observations only through the value of a sufficient statistic.

Maximum Likelihood Estimation: Properties
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Let the sample be X = {5, 6, 7, 8, 9, 10} drawn from a Normal(μ, 1).  
The probability of each of these points based on the unknown mean, 
μ, can be written as:

𝑓 5|𝜇
1

2𝜋
exp

5 𝜇
2

𝑓 6|𝜇
1

2𝜋
exp

6 𝜇
2

⋮

𝑓 10|𝜇
1

2𝜋
exp

10 𝜇
2

Assume that the sample is independent. Then, the joint pdf  is given by:

𝐿 𝑋|𝜇  𝑓 5|𝜇 *  𝑓 6|𝜇 * … * 𝑓 10|𝜇

ML Estimation: Example I

Then, the joint pdf function can be written as: 

𝐿 𝑋|𝜇
1

2𝜋
exp

5 𝜇
2

6 𝜇
2

⋯
10 𝜇

2

The value of  that maximizes the likelihood function of the sample 
can then be defined by max 𝐿 𝑋|𝜇 .

It easier to maximize the Log likelihood, ln L(X|μ):

max ln 𝐿 𝑋|𝜇 = ⁄ ln 2𝜋 + ⋯

1st-derivative ⇒ 𝐾 ⋯

f.o.c.  5 �̂� 6 �̂� ⋯ 10 �̂� 0

ML Estimation: Example I
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Then,  the first order  conditions: 

5 �̂� 6 �̂� ⋯ 10 �̂� 0

Solving for μ :

    �̂�  
5 6 7 8 9 10

6
  7.5   𝑥

_

That is, the MLE estimator μ  is equal to the sample mean. This is 
good for the sample mean: MLE has very good properties!

ML Estimation: Example I


