Lecture 3-c

 Least Squares - Properties, Testing and Goodness of FitBrooks (4 ${ }^{\text {th }}$ edition): Chapters $3 \& 4$
© R. Susmel, 2023 (for private use, not to be posted/shared online).

Review - LS Estimation with Linear Algebra

- Model (with linear algebra notation):

$$
y=\mathbf{X} \beta+\varepsilon
$$

- Vectors will be column vectors: $\boldsymbol{y}, \boldsymbol{x}_{\boldsymbol{j}}$, and $\boldsymbol{\varepsilon}$ are $T \mathrm{x} 1$ vectors:

$$
\left.\begin{array}{lll}
\boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{T}
\end{array}\right] & \Rightarrow & \boldsymbol{y}^{\prime}=\left[\begin{array}{lll}
y_{1} & y_{2} & \ldots
\end{array} y_{\mathrm{T}}\right.
\end{array}\right] \quad \begin{array}{ll}
\boldsymbol{x}_{j}=\left[\begin{array}{c}
x_{j 1} \\
\vdots \\
x_{j T}
\end{array}\right] & \Rightarrow \\
\boldsymbol{x}_{j}^{\prime}=\left[\begin{array}{llll}
x_{j 1} & x_{j 2} & \ldots . & x_{j T}
\end{array}\right] \\
\boldsymbol{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{T}
\end{array}\right] & \Rightarrow \\
\boldsymbol{\varepsilon}^{\prime}=\left[\begin{array}{llll}
\varepsilon_{1} & \varepsilon_{2} & \ldots . & \varepsilon_{\mathrm{T}}
\end{array}\right]
\end{array}
$$

\mathbf{X} is a $T \mathrm{x} k$ matrix. $\quad \Rightarrow \quad \mathbf{X}=\left[\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots . . \boldsymbol{x}_{\mathrm{k}}\right]$

Review - LS Estimation with Linear Algebra

- Using linear algebra notation: $\quad \boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
\mathbf{X} is a $T \mathrm{x} k$ matrix. $\quad \Rightarrow \quad \boldsymbol{X}=\left[\begin{array}{cccc}x_{11} & x_{21} & \cdots & x_{k 1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1 T} & x_{2 T} & \cdots & x_{k T}\end{array}\right]$

$$
\boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right] \quad \text { (a } k \times 1 \text { vector) }
$$

- The whole system (for all i) is:

$$
\begin{gathered}
y_{1}=\beta_{1} x_{11}+\beta_{2} x_{12}+\ldots+\beta_{\mathrm{k}} x_{k 1}+\varepsilon_{1} \\
y_{2}=\beta_{1} x_{12}+\beta_{2} x_{22}+\ldots+\beta_{\mathrm{k}} x_{k 2}+\varepsilon_{2} \\
\ldots \ldots \quad \ldots \ldots \\
y_{T}=\beta_{1} x_{1 \mathrm{~T}}+\beta_{2} x_{2 \mathrm{~T}}+\ldots+\beta_{\mathrm{k}} x_{k \mathrm{~T}}+\varepsilon_{\mathrm{T}}
\end{gathered}
$$

Review - LS Estimation with Linear Algebra

- Assume functional form, $f(\mathbf{X}, \theta)$, is linear:

$$
y=\mathbf{X} \beta+\varepsilon
$$

- LS Objective function: $\mathrm{S}\left(x_{i}, \boldsymbol{\beta}\right)=\Sigma_{\mathrm{i}} \varepsilon_{i}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})$

$$
=\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \beta^{\prime} \mathbf{X}^{\prime} \mathbf{y}+\beta^{\prime} \mathbf{X}^{\prime} \mathbf{X} \beta
$$

- First derivative w.r.t. $\beta^{\prime}: \quad-2 \mathbf{X} \mathbf{y}+2 \mathbf{X} \mathbf{X} \beta \quad$ (a $k x 1$ vector)
- F.o.c. (normal equations): $\quad \mathbf{X}^{\prime} \boldsymbol{y}-\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathrm{b}=\mathbf{0} \quad \Rightarrow\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathrm{b}=\mathbf{X}^{\prime} \boldsymbol{y}$
- Assuming ($\mathbf{X}^{\mathbf{\prime}} \mathbf{X}$) is non-singular-i.e., invertible-, we solve for \mathbf{b} :

$$
\left.\Rightarrow \mathrm{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y} \quad \text { (a } k \times 1 \text { vector }\right)
$$

Note: \mathbf{b} is called the Ordinary Least Squares (OLS) estimator.
(Ordinary $=f(\mathbf{X}, \theta)$ is linear.)

Review - LS Estimation with Linear Algebra

- OLS estimator: $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{y} \quad$ (a $k \times 1$ vector)
- To derive \mathbf{b}, we have made few assumptions:

1. Model is linear -i.e., $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
2. The explanatory variables are independent - i.e., $\operatorname{rank}(\mathbf{X})=k$.

- To get properties for the OLS estimator, \mathbf{b}, we need assumptions about $\boldsymbol{\varepsilon}$ (its mean and variance-covariance matrix) and about how $\boldsymbol{\varepsilon}$ relates to \mathbf{X}.

Review - Rules for Expectations of a RV

- Let X denote a discrete $\mathrm{R} V$ with probability function $p(x)$, then the expected value of $X, E[X]$, is defined to be:

$$
\mathrm{E}[X]=\sum_{i} x_{i} p\left(x_{i}\right)
$$

and if X is continuous with probability density function $f(x)$:

$$
\mathrm{E}[\mathrm{X}]=\int_{-\infty}^{\infty} x f(x) d x
$$

- Rules:
- Rule 1. $\mathrm{E}[c]=c, \quad$ where c is a constant.
- Rule 2. $\mathrm{E}[c+d X]=c+d \mathrm{E}[X], \quad$ where $c \& d$ are constants.
- Rule 3. $\operatorname{Var}[X]=\mu_{2}^{0}=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-[E(X)]^{2}=\mu_{2}-\mu^{2}$
- Rule 4. $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$

Review - Rules for Expectations: Linear Model

- Suppose excess returns for asset $i, r_{i, t}-r_{f}$, are driven by the following linear model (DGP behind the CAPM):

$$
r_{i, t}-r_{f}=\alpha_{i}+\beta_{\mathrm{i}}\left(r_{m, t}-r_{f}\right)+\varepsilon_{i, t},
$$

where
$r_{m, t}-r_{f}=$ excess return on the market portfolio at time t.
$\varepsilon_{i, t}=$ idiosyncratic error term, with mean $0 \& \underline{\text { unrelated to }} r_{m, t}$.
Then,

$$
\begin{aligned}
& \mathrm{E}\left[r_{i}-r_{f}\right]=\mathrm{E}\left[\alpha_{i}\right]+\beta_{i} \mathrm{E}\left[r_{m, t}-r_{f}\right]+\mathrm{E}\left[\varepsilon_{i, t}\right] \quad \text { (by Rule 2) } \\
& \mathrm{E}\left[r_{i}-r_{f}\right]=\alpha_{i}+\beta_{i} \mathrm{E}\left[r_{m, t}-r_{f}\right]+\mathrm{E}\left[\varepsilon_{i, t}\right] \quad \text { (by Rule 1) } \\
& \mathrm{E}\left[r_{i}-r_{f}\right]=\alpha_{i}+\beta_{i} \mathrm{E}\left[r_{m, t}-r_{f}\right] \quad \text {-by mean } 0 \text { of } \varepsilon_{i, t}
\end{aligned}
$$

Also, by Rule 4 (\& assuming $\left.\operatorname{Cov}\left[r_{m, t}-r_{f}, \varepsilon_{i, t}\right]=0\right)$:

$$
\operatorname{Var}\left[r_{i}-r_{f}\right]=\beta_{i}{ }^{2} \operatorname{Var}\left[r_{m, t}-r_{f}\right]+\operatorname{Var}\left[\varepsilon_{i, t}\right]
$$

OLS - Assumptions

- Typical OLS Assumptions
(1) DGP: $y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots+\beta_{\mathrm{k}} x_{k i}+\varepsilon_{i}, \quad i=1,2, \ldots$, T \Rightarrow functional form known, but $\boldsymbol{\beta}$ is unknown.
(2) $\mathrm{E}\left[\varepsilon_{i}\right]=0 . \quad \Rightarrow$ expected value (mean) of the errors is 0.
(3) Explanatory variables $X_{1}, X_{2}, \ldots, X_{k}$, are given (\& non random)

$$
\Rightarrow \text { no correlation with } \varepsilon\left(\operatorname{Cov}\left(\varepsilon_{i}, X_{j}\right)=0\right. \text {.) }
$$

(4) The k explanatory variables are independent.
(5) $\operatorname{Var}\left[\varepsilon_{i}\right]=\mathrm{E}\left[\varepsilon_{i}^{2}\right]=\sigma^{2}<\infty$. (homoscedasticity $=$ same variance)
(6) $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\mathrm{E}\left[\varepsilon_{i} \varepsilon_{j}\right]=0$. (no serial/cross correlation)

- These are the assumptions behind the classical linear regression model (CLM).

LS - Assumptions with Linear Algebra Notation

- We rewrite the assumptions using linear algebra. We condition on \mathbf{X}, which allows \mathbf{X} to be a random variable (though, once we condition, \mathbf{X} becomes a matrix of numbers):
(A1) DGP: $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ (linear model) is correctly specified.
(A2) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0$
(A3) $\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}$
(A4) \mathbf{X} has full column $\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k-$, where $\mathrm{T} \geq k$.
- Assumption (A1) is called correct specification. We know how the data is generated. We call $\boldsymbol{y}=f(\mathbf{X}, \boldsymbol{\theta})+\boldsymbol{\varepsilon}$ the Data Generating Process.

Note: The errors, $\boldsymbol{\varepsilon}$, are called disturbances. They are not something we add to $f(\mathbf{X}, \boldsymbol{\theta})$ because we don't know precisely $f(\mathbf{X}, \boldsymbol{\theta})$. No. The errors are part of the DGP.

LS - Assumptions with Linear Algebra Notation

- Assumption (A2) is called regression.

From Assumption (A2) we get:
(i) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0 \quad \Rightarrow \mathrm{E}[\boldsymbol{y} \mid \mathbf{X}]=\mathrm{E}[\mathbf{X} \boldsymbol{\beta} \mid \mathbf{X}]+\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\mathbf{X} \boldsymbol{\beta}$

That is, the observed \mathbf{y} will equal $\mathrm{E}[\mathbf{y} \mid \mathbf{X}]+$ random variation.
(ii) Using rules of expectations (law of iterated expectations), we get:
(1) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0$

$$
\Rightarrow \mathrm{E}[\varepsilon]=0
$$

\Rightarrow The conditional expectation $=$ unconditional expectation
(2) $\operatorname{Cov}(\boldsymbol{\varepsilon}, \mathbf{X})=\mathrm{E}\left[(\boldsymbol{\varepsilon}-0)\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\right]=\mathrm{E}\left[\boldsymbol{\varepsilon} \mathbf{X}-\boldsymbol{\varepsilon} \mu_{\mathbf{x}}\right]$

$$
=\mathrm{E}[\mathbf{\varepsilon} \mathbf{X}]-\mu_{\mathbf{x}} \mathrm{E}[\boldsymbol{\varepsilon}]=\mathrm{E}[\mathbf{\varepsilon} \mathbf{X}]=0
$$

\Rightarrow That is, $\mathrm{E}[\boldsymbol{\varepsilon} \mathbf{X}]=0 \quad \Rightarrow \boldsymbol{\varepsilon} \perp \mathbf{X}$.
There is no information about $\boldsymbol{\varepsilon}$ in \mathbf{X} and vice-versa.

LS - Assumptions with Linear Algebra Notation

- Assumption (A3) gives the model a constant variance for all errors and no relation between the errors at different measurements/times. That is, we have a diagonal variance-covariance matrix:

$$
\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & \sigma^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma^{2}
\end{array}\right]=\sigma^{2} \mathbf{I}_{\mathrm{T}} \quad(T \times T) \text { matrix }
$$

This assumption implies
$\begin{array}{lll}\text { (i) homoscedasticity } & \Rightarrow \mathrm{E}\left[\varepsilon_{i}^{2} \mid \mathbf{X}\right]=\sigma^{2} & \text { for all } i . \\ \text { (ii) no serial/cross correlation } & \Rightarrow \mathrm{E}\left[\varepsilon_{i} \varepsilon_{j} \mid \mathbf{X}\right]=0 & \text { for } i \neq j .\end{array}$
It can be shown using the law of total variance that

$$
\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{\mathrm{T}} \quad \Rightarrow \operatorname{Var}[\boldsymbol{\varepsilon}]=\sigma^{2} \mathbf{I}_{\mathrm{T}}
$$

LS - Assumptions with Linear Algebra Notation

$$
\text { Note: } \begin{aligned}
\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}] & =\mathrm{E}\left[(\boldsymbol{\varepsilon}-\mathrm{E}[\boldsymbol{\varepsilon}])(\boldsymbol{\varepsilon}-\mathrm{E}[\boldsymbol{\varepsilon}])^{\prime} \mid \mathbf{X}\right] \\
& =\mathrm{E}\left[(\boldsymbol{\varepsilon}-\mathbf{0})(\boldsymbol{\varepsilon}-\mathbf{0})^{\prime} \mid \mathbf{X}\right] \\
& =\mathrm{E}\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mid \mathbf{X}\right] \\
& =\left[\begin{array}{cccc}
\mathrm{E}\left[\varepsilon_{1}^{2} \mid \mathbf{X}\right] & \mathrm{E}\left[\varepsilon_{2} \varepsilon_{1} \mid \mathbf{X}\right] & \cdots & \mathrm{E}\left[\varepsilon_{T} \varepsilon_{1} \mid \mathbf{X}\right] \\
\mathrm{E}\left[\varepsilon_{1} \varepsilon_{2} \mid \mathbf{X}\right] & \mathrm{E}\left[\varepsilon_{2}^{2} \mid \mathbf{X}\right] & \cdots & \mathrm{E}\left[\varepsilon_{T} \varepsilon_{2} \mid \mathbf{X}\right] \\
\vdots & \vdots & \vdots & \vdots \\
\mathrm{E}\left[\varepsilon_{1} \varepsilon_{T} \mid \mathbf{X}\right] & \mathrm{E}\left[\varepsilon_{2} \varepsilon_{T} \mid \mathbf{X}\right] & \cdots & \mathrm{E}\left[\varepsilon_{T}^{2} \mid \mathbf{X}\right]
\end{array}\right]= \\
& =\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & \sigma^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma^{2}
\end{array}\right]=\sigma^{2} \mathbf{I}_{\mathrm{T}}
\end{aligned}
$$

LS - Assumptions with Linear Algebra Notation

- From Assumption (A4) \Rightarrow the k independent variables in \mathbf{X} are linearly independent. Then, the $k \mathrm{x} k$ matrix $\mathbf{X}^{\prime} \mathbf{X}$ will also have full $\operatorname{rank}-$ i.e., $\operatorname{rank}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=k$.

$$
\Rightarrow \mathbf{X}^{\prime} \mathbf{X} \text { is invertible. }
$$

We need this result to solve a system of equations given by the $1^{\text {st_ }}$ order conditions of LS Estimation (normal equations):

$$
\mathbf{X}^{\prime} \boldsymbol{y}-\mathbf{b} \mathbf{X}^{\prime} \mathbf{X}=0
$$

Note: To get asymptotic results we need more assumptions about \mathbf{X}.

CLM: OLS - Summary

- Classical linear regression model (CLM) - Assumptions:
(A1) DGP: $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ is correctly specified.
(A2) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0$
(A3) $\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\mathrm{E}\left[(\boldsymbol{\varepsilon}-\mathbf{0})(\boldsymbol{\varepsilon}-\mathbf{0})^{\prime} \mid \mathbf{X}\right]=\mathrm{E}\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mid \mathbf{X}\right]=\sigma^{2} \mathbf{I}_{\mathrm{T}}$
(A4) \mathbf{X} has full column $\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k$, where $\mathrm{T} \geq k$.
- OLS estimator: bjective function:

$$
\begin{aligned}
S\left(x_{i}, \boldsymbol{\beta}\right)=\sum_{i=1}^{n} \varepsilon_{i}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon} & =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
& =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \beta^{\prime} \mathbf{X}^{\prime} \mathbf{y}+\beta^{\prime} \mathbf{X} \mathbf{X} \beta
\end{aligned}
$$

- f.o.c:

$$
-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X} \mathrm{b}=0
$$

Solving for $\mathbf{b} \quad \Rightarrow \mathrm{b}=\left(\mathbf{X}^{\mathbf{\prime}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y} \quad(k \times 1)$ vector
Q: Is b a minimum? Check second order condition!

OLS Estimation: Second Order Condition

$$
\frac{\partial^{2} \mathrm{~S}\left(x_{i}, \boldsymbol{\beta}\right)}{\partial \mathrm{b} \partial \mathrm{~b}^{\prime}}=2 \boldsymbol{X}^{\prime} \boldsymbol{X}=2\left[\begin{array}{cccc}
\sum_{i=1}^{n} x_{i 1}^{2} & \sum_{i=1}^{n} x_{i 1} x_{i 2} & \ldots & \sum_{i=1}^{n} x_{i 1} x_{i K} \\
\sum_{i=1}^{n} x_{i 2} x_{i 1} & \sum_{i=1}^{n} x_{i 2}^{2} & \ldots & \Sigma_{i=1}^{n} x_{i 2} x_{i K} \\
\ldots & \ldots & \ldots & \ldots \\
\sum_{i=1}^{n} x_{i K} x_{i 1} & \sum_{i=1}^{n} x_{i K} x_{i 2} & \ldots & \sum_{i=1}^{n} x_{i K}^{2}
\end{array}\right]
$$

If there were a single \mathbf{b}, we would require this to be positive, which it would be: $2 \boldsymbol{x}^{\prime} \boldsymbol{x}=2 \sum_{i=1}^{n} x_{i}^{2}>0$.

The matrix counterpart of a positive number is a positive definite (pd) matrix. We need \mathbf{X} ' \mathbf{X} to be pd.

A square matrix ($m \times m$) A "takes the sign" of the quadratic form, \mathbf{z} ' $\mathbf{A} \mathbf{z}$, where \mathbf{z} is an $m \times 1$ vector. Then, $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}$ is a scalar.

OLS Estimation: Second Order Condition

- A form is a polynomial expression in which each component term has a uniform degree. A quadratic form has a uniform $2^{\text {nd }}$ degree.

Examples:

$$
\begin{array}{ll}
9 x+3 y+2 z & \text { - 1st degree form. } \\
6 x^{2}+2 x y+2 y^{2} & -2 \text { nd degree (quadratic) form. } \\
\mathrm{d}^{2} \mathrm{z}=f_{x x} \mathrm{~d} x^{2}+2 f_{x y} \mathrm{~d} x \mathrm{~d} y+f_{y y} \mathrm{~d} y^{2} \quad \text { (quadratic form) }
\end{array}
$$

A quadratic form can be written in matrix notation as $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}$, where \mathbf{A} is $(m \mathbf{x} m) \mathbf{A}$ and \mathbf{z} is an $m \mathbf{x} 1$ vector. Then, $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}$ is a scalar.

The above quadratic form can be written as:

$$
\mathrm{q}=\left[\begin{array}{ll}
x & y
\end{array}\right] *\left[\begin{array}{ll}
6 & 1 \\
1 & 2
\end{array}\right] *\left[\begin{array}{l}
x \\
y
\end{array}\right]=6 x^{2}+2 x y+2 y^{2}
$$

Once we have $x \& y, \mathrm{q}$ is a number.

OLS Estimation: Second Order Condition

- Let q be a quadratic form. We say q is:

Positive definite (pd) if q is invariably positive ($\mathrm{q}>0$)
Positive semi-definite (psd) if q is invariably non-negative ($\mathrm{q} \geq 0$)
Negative semi-definite (nsd) if q is invariably non-positive ($\mathrm{q} \leq 0$)
Negative definite (nd) if q is invariably negative ($\mathrm{q}<0$)
Definition: Positive definite matrix
A matrix \mathbf{A} is positive definite (pd) if $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}>0$ for any \mathbf{z} (a $k \times 1$ vector).
For some matrices, it is easy to check. Let $\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X}$ (a $k x k$ matrix).
Then, $\quad \mathbf{z}^{\prime} \mathbf{A} \mathbf{z}=\mathbf{z}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \mathbf{z}=\boldsymbol{v}^{\prime} \boldsymbol{v}=\sum_{i=1}^{T} v_{i}^{2}>0 . \quad(\boldsymbol{v}=\mathbf{X z}$ is $T \mathrm{x} 1)$

$$
\Rightarrow \mathbf{X}^{\prime} \mathbf{X} \text { is } \mathrm{pd} \quad \Rightarrow \mathbf{b} \text { is a } \mathrm{min}!
$$

Technical note 1: In general, we need eigenvalues of \mathbf{A} to check this. If all the eigenvalues are positive, then \mathbf{A} is pd .
Technical note 2: If \mathbf{A} is pd, then \mathbf{A}^{-1} is also pd.

OLS Estimation: Second Order Condition

- Loosely speaking, a matrix is positive definite if the diagonal elements are positive and the off-diagonal elements are not too large in absolute value relative to the diagonal elements.

Remark: This is an informal way of looking at a pd matrix, but, keep in mind for later, that the diagonal elements are positive.

OLS Estimation - Properties of \mathbf{b}

- The OLS estimator of $\boldsymbol{\beta}$ in the CLM is
$\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \quad \Rightarrow \mathbf{b}$ is a (linear) function of the data $\left(y_{i}, x_{i}\right)$.
$\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon})=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}$ $\Rightarrow \mathbf{b}-\boldsymbol{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}$

Under the typical assumptions, we can establish properties for \mathbf{b}.

1) $E[\mathbf{b} \mid \mathbf{X}]=E[\boldsymbol{\beta} \mid \mathbf{X}]+E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\varepsilon} \mid \mathbf{X}\right]$

$$
=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\boldsymbol{\beta} \quad \text { (b is unbiased) }
$$

2) $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\mathrm{E}\left[(\mathbf{b}-\boldsymbol{\beta})(\mathbf{b}-\boldsymbol{\beta})^{\prime} \mid \mathbf{X}\right]=\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mid \mathbf{X}\right]$

$$
\begin{aligned}
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathrm{E}\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mid \mathbf{X}\right] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left\{\sigma^{2} \mathbf{I}_{\mathrm{T}}\right\} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad(k \mathbf{x} k) \text { matrix }
\end{aligned}
$$

OLS Estimation - Properties of b

3) Gauss-Markov Theorem: \mathbf{b} is BLUE (Best Linear Unbiased Estimator). No other linear \& unbiased estimator has a lower variance.
4) If we also assume: (A5) $\boldsymbol{\varepsilon} \mid \mathbf{X} \sim$ i.i.d. $\mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right)$, we derive the distribution of \mathbf{b} :
$\mathbf{b}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \quad \Rightarrow \mathbf{b}$ is a linear combination of normal variates

$$
\Rightarrow \mathbf{b} \mid \mathbf{X} \sim \text { i.i.d. } \mathrm{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

$\mathrm{SD}[\mathbf{b} \mid \mathbf{X}]=\operatorname{sqrt}\left(\right.$ diagonal elements of $\left.\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
Note: The marginal distribution of a multivariate normal is also normal, then

$$
\begin{aligned}
& \mathrm{b}_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}, v_{b, k}^{2}\right) \\
& \operatorname{Std} \operatorname{Dev}\left[\mathrm{b}_{k} \mid \mathbf{X}\right]=\operatorname{sqrt}\left\{\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k k}\right\}=v_{b, k}
\end{aligned}
$$

Remark: With (A5) we can do tests of hypothesis.

OLS Estimation - Properties of b

5) If (A5) is not assumed, we still can obtain a (limiting) distribution for \mathbf{b}. Under additional assumptions -mainly, the matrix $\mathbf{X}^{\prime} \mathbf{X}$ does not explode as T becomes large-, as $T \rightarrow \infty$,
(i) $\mathbf{b} \xrightarrow{p} \beta$
(b is consistent)
(ii) $\mathbf{b} \xrightarrow{a} \mathrm{~N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \quad$ (b is asymptotically normal)

- Properties (1)-(4) are called finite (or small) sample properties, they hold for every sample size.
- Properties (5.i) and (5.ii) are called asymptotic properties, they only hold when T is large (actually, as T tends to ∞).

Property (5.ii) is very important: When the errors are not normally distributed we still can do testing about β, but we rely on an "approximate distribution."

OLS Estimation - Fitted Values and Residuals

- OLS estimates $\boldsymbol{\beta}$ with \mathbf{b}. Now, we define fitted values as:

$$
\widehat{\boldsymbol{y}}=\mathbf{X} \mathbf{b} \quad \text { (what we expect } \boldsymbol{y} \text { to be, given observed } \mathbf{X} \text {) }
$$

Now we define the estimated error, \boldsymbol{e} :

$$
e=y-\widehat{y}
$$

\boldsymbol{e} represents the unexplained part of \mathbf{y}, what the regression cannot explain. They are usually called residuals.

Note that \mathbf{e} is uncorrelated (orthogonal) with $\mathbf{X} \quad \Rightarrow \varepsilon \perp \mathbf{X}$ $\boldsymbol{e}=\boldsymbol{y}-\mathbf{X b} \quad \Rightarrow \mathbf{X}^{\prime} \boldsymbol{e}=\mathbf{X}^{\prime}(\boldsymbol{y}-\mathbf{X b})=\mathbf{X}^{\prime} \boldsymbol{y}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}=\mathbf{0}$

Using \mathbf{e}, we can define a measure of unexplained variation:
Residual Sum of Squares (RSS) $=\boldsymbol{e}^{\prime} \boldsymbol{e}=\sum_{i} e_{i}{ }^{2}$

OLS Estimation - Var[b|X]

We use the variance to measure precision of estimates. For OLS:

$$
\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Example: One explanatory variable model.
(A1') DGP: $\boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{x}+\boldsymbol{\varepsilon}$
$\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2}\left[\begin{array}{cc}\sum_{i} 1 & \sum_{i} 1 x_{i} \\ \sum_{i} 1 x_{i} & \sum_{i} x_{i}^{2}\end{array}\right]^{-1}=\sigma^{2}\left[\begin{array}{cc}T & T \bar{x} \\ T \bar{x} & \sum_{i} x_{i}^{2}\end{array}\right]^{-1}$

$$
=\sigma^{2} \frac{1}{T\left(\sum_{i} x_{i}^{2}-T \bar{x}^{2}\right)}\left[\begin{array}{cc}
\sum_{i} x_{i}^{2} & -T \bar{x} \\
-T \bar{x} & T
\end{array}\right]
$$

$\operatorname{Var}\left[\mathrm{b}_{1} \mid \mathbf{X}\right]=\sigma^{2} \frac{\sum_{i} x_{i}^{2}}{T\left(\sum_{i} x_{i}^{2}-T \bar{x}^{2}\right)}=\sigma^{2} \frac{\sum_{i} x_{i}^{2} / T}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$
$\operatorname{Var}\left[\mathrm{b}_{2} \mid \mathbf{X}\right]=\sigma^{2} \frac{1}{\left(\sum_{i} x_{i}^{2}-T \bar{x}^{2}\right)}=\sigma^{2} \frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$

OLS Estimation - Var[b|X]

Example (continuation):
$\operatorname{Var}\left[\mathrm{b}_{1} \mid \mathbf{X}\right]=\sigma^{2} \frac{\sum_{i} x_{i}^{2}}{T\left(\sum_{i} x_{i}^{2}-T \bar{x}^{2}\right)}=\sigma^{2} \frac{\sum_{i} x_{i}^{2} / T}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$
$\operatorname{Var}\left[\mathrm{b}_{2} \mid \mathbf{X}\right]=\sigma^{2} \frac{1}{\left(\sum_{i} x_{i}^{2}-T \bar{x}^{2}\right)}=\sigma^{2} \frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$
$\operatorname{Covar}\left[\mathrm{b}_{1}, \mathrm{~b}_{2} \mid \mathbf{X}\right]=\sigma^{2} \frac{-\bar{x}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$

- In general, we do not know σ^{2}. It needs to be estimated. We estimate σ^{2} using the residual sum of squares (RSS):

$$
\mathrm{RSS}=\sum_{i} e_{i}^{2}
$$

The natural estimator of σ^{2} is $\hat{\sigma}^{2}=\mathrm{RSS} / T$. Given the LLN, this is a consistent estimator of σ^{2}. However, this not unbiased.

OLS Estimation - Var[b|X]

- The unbiased estimator of σ^{2} is s^{2} :

$$
s^{2}=\operatorname{RSS} /(T-k)=\sum_{i} e_{i}^{2} /(T-k)=\boldsymbol{e}^{\prime} \boldsymbol{e} /(T-k)
$$

To get $\mathrm{E}\left[S^{2}\right]$, we use a property of a RV with a χ_{v}^{2} distribution:

$$
\mathrm{E}\left[\chi_{v}^{2}\right]=v
$$

We know $\quad(T-k) s^{2} / \sigma^{2} \sim \chi_{T-k}^{2}$.

$$
\begin{array}{ll}
\Rightarrow & \mathrm{E}\left[\boldsymbol{e}^{\prime} \boldsymbol{e} / \sigma^{2} \mid \mathbf{X}\right]=(T-k) \\
\Rightarrow & \mathrm{E}\left[\boldsymbol{e}^{\prime} \boldsymbol{e} /(T-k) \mid \mathbf{X}\right]=\mathrm{E}\left[s^{2} \mid \mathbf{X}\right]=\sigma^{2}
\end{array}
$$

Note: $(T-k)$ is referred as a degrees of freedom correction.

- Then, the estimator of $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad$ (a $k \mathrm{x} k$ matrix)

$$
\Rightarrow \quad \operatorname{SE}\left[\mathrm{b}_{k} \mid \mathbf{X}\right]=\operatorname{sqrt}\left\{\left[\mathrm{s}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k k}\right\}=s_{b, k}
$$

OLS Estimation - Testing Only One Parameter

- We are interested in testing a hypothesis about one parameter in our linear model: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

1. Set H_{0} and H_{1} (about only one parameter): $\mathrm{H}_{0}: \beta_{k}=\beta_{k}^{0}$

$$
\mathrm{H}_{1}: \beta_{k} \neq \beta_{k}^{0}
$$

2. Appropriate $T(X)$: t-statistic. To derive the distribution of the test under H_{0}, we will rely on assumption (A5) $\boldsymbol{\varepsilon} \mid \mathbf{X} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right)$ (otherwise, results are only asymptotic).

Let $\mathrm{b}_{k}=$ OLS estimator of $\beta_{k} \operatorname{SE}\left[\mathrm{~b}_{k} \mid \mathbf{X}\right]=\operatorname{sqrt}\left\{\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k k}\right\}=s_{b, k}$
From assumption (A5), we know that

$$
\begin{aligned}
\mathrm{b}_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}, v_{b, k}^{2}\right) & \Rightarrow \text { Under } \mathrm{H}_{0}: \mathrm{b}_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}^{0}, s_{b, k}^{2}\right) . \\
& \Rightarrow \text { Under } \mathrm{H}_{0}: t_{k}=\left(\mathrm{b}_{k}-\beta_{k}^{0}\right) / s_{b, k} \mid \mathbf{X} \sim t_{T-k}
\end{aligned}
$$

OLS Estimation - Testing Only One Parameter

- We measure distance in standard error units:

$$
t_{k}=\frac{\mathrm{b}_{k}-\beta_{k}^{0}}{s_{b, k}}
$$

Note: t_{k} is an example of the W ald (normalized) distance measure. Most tests statistics in econometrics will use this measure.
3. Compute $t_{k}, \hat{\mathrm{t}}$, using $\mathrm{b}_{k}, \beta_{k}^{0}, s$, and $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. Get p-value $(\hat{\mathrm{t}})$.
4. Rule: Set an α level. If p-value $(\hat{t})<\alpha \quad \Rightarrow$ Reject $H_{0}: \beta_{k}=\beta_{k}^{0}$

Alternatively, if $|\hat{\mathrm{t}}|>t_{T-k, 1-\alpha / 2} \quad \Rightarrow$ Reject $\mathrm{H}_{0}: \beta_{k}=\beta_{k}^{0}$.

OLS Estimation - Testing Only One Parameter

- Special case: $H_{0}: \beta_{k}=0$

$$
H_{1}: \beta_{k} \neq 0 .
$$

Then,

$$
t_{k}=\frac{\mathrm{b}_{k}}{\operatorname{sqrt}\left\{\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k k}\right\}}=\frac{\mathrm{b}_{k}}{\mathrm{SE}\left[\mathrm{~b}_{k}\right]} \quad \Rightarrow t_{k} \sim t_{T-k}
$$

This special case of t_{k} is called the \boldsymbol{t}-value or t-ratio (also refer as the "t-stats"). That is, the t -value is the ratio of the estimated coefficient and its SE.

- The t-value is routinely reported in all regression packages. In the $\operatorname{lm}()$ function, it is reported in the third column of numbers.
- Usually, $\alpha=5 \%$, then if $\left|t_{k}\right|>1.96 \approx 2$, we say the coefficient b_{k} is "significant."

OLS Estimation - Testing the CAPM

Example: We test the CAPM for IBM using the time-series.
CAPM: $\quad \mathrm{E}\left[r_{i, t}-r_{f}\right]=\beta_{i} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right]$.
According to the CAPM, equilibrium expected excess returns are only determined by expected excess market returns -i.e., the CAPM is a one factor model (no constant or extra factors besides the market).

A linear data generating process (DGP) consistent with the CAPM is:

$$
r_{i, t}-r_{f}=\alpha_{i}+\beta_{i}\left(r_{m, t}-r_{f}\right)+\varepsilon_{i, t}, i=1, \ldots, N \& t=1, \ldots, T
$$

Thus, we test the CAPM by testing H_{0} (CAPM holds): $\alpha_{i=I B M}=0$

$$
\mathrm{H}_{1} \text { (CAPM rejected): } \alpha_{i=I B M} \neq 0
$$

SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")
x_ibm <- SFX_da\$IBM \# Extract IBM price data
x_Mkt_RF <- SFX_da\$Mkt_RF \# Extract Market excess returns (in \%)

OLS Estimation - Testing the CAPM

Example (continuation):

RF \# Extract risk free rate (in \%)	
$\mathrm{T}<-$ length(x_ibm)	\# Sample size
lr_ibm <- log(x_ibm[-1]/x_ibm[-T])	\# Log returns for IBM (lost one observation)
Mkt_RF <- x_Mkt_RF[-1]/100	\# Adjust size (take one observation out)
RF <- x_RF[-1]/100	
ibm_x $<-1 r$ libm - RF	\# Define excess returns for IBM
fit_ibm_capm <- lm(ibm_x \sim Mkt_RF)	\# OLS estimation with $l m$ package in R
> summary(fit_ibm_capm)	
Coefficients:	
Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept) -0.005791 $0.002487-2.329$ 0.0202*	
xMkt_RF 0.8957740 .05386716 .629 <2e-16 ***	

Signif. codes: $0^{\text {'***’ } 0.001 ~}{ }^{* * *} 0.01^{* *} 0.05$. 05^{\prime} ' 0.1 ' 1

$\mathrm{Q}:$ Is intercept $\left(\alpha_{i=I B M}\right)$ equal to 0? Check t-value: $t_{\alpha_{i}}=\frac{\alpha_{i=I B M}}{\operatorname{SE}\left[\alpha_{i=I B M}\right]}$

OLS Estimation - Testing the CAPM

Example (continuation):
We use the t-value: $\quad \hat{t}_{\alpha}=\frac{\alpha_{i=I B M}}{\operatorname{SE}\left[\alpha_{i=I B M}\right]}=\frac{-0.005791}{0.002487}=-2.329$

$$
\Rightarrow\left|\hat{t}_{\alpha}\right|>1.96 \quad \Rightarrow \text { Reject } H_{0}(C A P M) \text { at } 5 \% \text { level }
$$

Conclusion: The CAPM is rejected for IBM at the 5% level.
Note: You can also reject H_{0} by looking at the p-value of intercept.

Interpretation: Given that the intercept is significant (\& negative), IBM underperformed relative to what the CAPM expected:
$-r_{I B M, t}-r_{f}: \quad$ mean $\left(1 \mathrm{ibm} _\mathrm{x}\right)=-0.00073141$
$-r_{I B M, t}-r_{f}(\mathrm{CAPM}): \beta_{i} *$ mean $\left(M k t _R F\right)=0.895774 * 0.0056489$

$$
=0.0050601
$$

- Ex-post difference: -0.00073141-0.0050601 $=-0.00579151\left(\approx \alpha_{\text {IBM }}\right)$

OLS Estimation - Testing the CAPM: Remark

- We tested (\& rejected) the CAPM for one asset only, IBM. But, the CAPM should apply to all assets. Suppose we have N assets. Then, a test for the CAPM involves testing $N \alpha_{i}$'s:

$$
\begin{aligned}
& \mathrm{H}_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{N}=0 \\
& \mathrm{H}_{0}: \text { at least one } \alpha_{i} \neq 0 .
\end{aligned}
$$

- This test is a joint test. It requires a simultaneous estimation of N CAPM equations. Usually, since returns are estimated with a lot of noise, portfolios are used. Also, the estimation usually takes into account the possible change over time of beta coefficients.
- There are different ways to approach this simultaneous estimation, a common approach is a two-step estimation, popularly known as Fama-MacBeth (1973).

OLS Estimation - Testing the CAPM (CS)

The CAPM also tells a cross-section story for asset returns: Assets with higher β_{i} should get, on average, higher compensation.
CAPM (cross-section): $\quad \mathrm{E}\left[r_{i}-r_{f}\right]=\beta_{i} \lambda$
where λ, in equilibrium, is the market excess return (or factor return).
If we have β_{i} 's for N assets, we can estimate the security market line (SML), where we show the effect of β_{i} on $\mathrm{E}\left[r_{i}-r_{f}\right]$.

OLS Estimation - Testing the CAPM (CS)

Example (continuation):

IBM underperformed relative to what the CAPM expected by

$$
\alpha_{i=I B M}=-0.005791
$$

Then, according to the CAPM, IBM has been overvalued. The average, negative, performance (-0.00073) is the performance of a much safer asset, with a small, negative β !

$\begin{array}{r} \mathrm{E}\left[r_{i}-r_{f}\right] \\ \beta_{i} \mathrm{E}\left[r_{m}-r_{f}\right]=0.00506 \\ \mathrm{E}\left[r_{I B M}-r_{f}\right]=-0.00073 \end{array}$	

OLS Estimation - Testing the CAPM (CS)

Q: Which assets pay a higher return? The SML answers this question: Assets with the higher exposure to market risk -i.e., higher β_{i}.

A linear DGP consistent with the CAPM is:

$$
\left(r_{i}-r_{f}\right)=\alpha+\beta_{i} \lambda+\varepsilon_{i}, \quad i=1, \ldots, N
$$

Testing implication of the SML for the cross-section of stock returns:

$$
\begin{aligned}
& \mathrm{H}_{0} \text { (CAPM holds in the CS): } \alpha=0 \& \lambda=\mathrm{E}\left[r_{m, t}-r_{f}\right]>0 \\
& \mathrm{H}_{1} \text { (CAPM rejected in the CS): } \alpha \neq 0 \text { and/or } \lambda \neq \mathrm{E}\left[r_{m, t}-r_{f}\right]>0
\end{aligned}
$$

Note: Fama and French $(1992,1993)$ estimated variations of the DGP with more factors. They found that β was weakly significant or not significant ("Beta is dead") in explaining the C-S of stock returns. The debate about β \& what (\& how many) factors to include continues.

