RS - Financial Econometrics - Lecture 3-c

Lecture 3-c
Least Squares - Properties,
Testing and Goodness of Fit

Brooks (4™ edition): Chapters 3 & 4
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Review — LS Estimation with Linear Algebra

* Model (with linear algebra notation):
y =XB+e

* Vectors will be column vectors: ¥, Xj, and € are Tx1 vectors:

3’.1
: ‘ = Y=Yy Vil

y =
yr
le
— H [
x=|: = Xj' = [Xj1 Xj2 e Xj7]
ij
€1
e=|: = g =1[g & ... &
er
X is a Txk matrix. = X =[x x,..x]
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Review — LS Estimation with Linear Algebra

* Using linear algebra notation: y=XB+e

X11 X221 vt Xk
X is a Txk matrix. = X=|: : - :
X1t Xor v Xkt

P
B= [ : ] (a kx1 vector)
Pk

¢ The whole system (for all /) is:

V1= Brxp By xpp e Brxy g
V2= Bixppt Byxy o+ Brxpy €y

yr=Bixirs ByXor T o T BeXyr T Ep

Review — LS Estimation with Linear Algebra

* Assume functional form, X, 0), is linear:
y=XPB+e

* LS Objective function: ~ S(x;, B) = =, &% = e's = (y — XP)' (y — XP)
=yy-2pXy+ pXXp

* First derivative w.r.t. B —2Xy +2XX [ (a kx1 vector)
* F.o.c. (normal equations): X'y - XX)b=0 = XX)b=X'"y

* Assuming (X'X) is non-singular —i.e., invertible-, we solve for b:
=b=XX"1X'y (a kx1 vector)

Note: b is called the Ordinary Least Squares (OLS) estimator.
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Review — LS Estimation with Linear Algebra

* OLS estimator: b = XX)! X'y (a kx1 vector)

* To derive b, we have made few assumptions:
1. Model is linear -i.e.,,y =X B + €
2. The explanatory variables are independent —i.e., rank(X) = k.

* To get properties for the OLS estimator, b, we need assumptions
about € (its mean and variance-covariance matrix) and about how €
relates to X.

Review — Rules for Expectations of a RV

* Let X denote a discrete R1” with probability function p(x), then the
expected value of X, E[X], is defined to be:

E[X] =2; xp(x;)

and if X is continnons with probability density function f{x):
E[X] = [ x f(x)dx
* Rules:
- Rule 1. E[c] = ¢, where ¢is a constant.
-Rule 2. E[c +d X] = ¢ +d E[X], where ¢ & d are constants.
- Rule 3. Var[X] = g = E[(X — p)?] = E[X?] = [E(X)]? = pp — 1°
- Rule 4. Var[a X + b] = a? Var[X]
- Rule 5. Var[aX + bY +c] = a?Var[X] + b?Var[Y] + 2ab Cov[X,Y]
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Review — Rules for Expectations: Linear Model

* Suppose we have the CAPM DGP:

Tie =17 = & + B Fme —77) T it
where the error term, €; ¢, has zero mean (E[€g; ;| = 0), variance equal to
Var[g; ¢] and unrelated to 73, ¢ — 7.

Then, using rules of expectation, we derive E[r; ; — 1] & Var[r; — 17]:

E[r; —17] = E[a;] + Bi E[rym,e — 77] + E[gi¢] (by Rule 2)
E[T'l' — T'f] =aq; + Bi E[rm,t — T'f] + E[Si,t] (by Rule 1)
E[r; —17] = a; + B; E[r,e — 17l -by E[g;¢] = 0

Also, by Rule 5 & assuming Cov|[ry, ¢ — 17, €;¢] = 0):
Varlr; — 15] = Bi® Vat[ry e — 17] + Var[g; ]

Review — Rules for Expectations: Linear Model

Example: We compute E[rj=;pm — 77| & Var[tj=;py — 17] for IBM,
using OLS estimates for a; & B; & Var[g; ¢] and sample estimates for
E[rm,e —17] & Vat[ry, ¢ —17].

Estimates:
b, (Intercept) = -0.00579, b, = 0.89577, & Est. Var[g; ;] = 0.003484
Mean [ry ¢ — 17] = 0.0056489, & Estimated Var[ty,  — 1¢] = 0.002148

Then,
E[r; —17] = -0.00579 + 0.89577 * 0.0056489 = -0.000729 (-0.0729%)

Varlr; — 15] = Bi® Vat[ry e — 17] + Var[g; ]
= 0.895772 * 0.002148 + 0.003484 = .0052076
= SD[r; — 7] = sqrt(.0052076) = 0.07216 (7.22%)
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OLS — Assumptions

¢ Typical OLS Assumptions
M) DGP: y; =By xq; Byxg+ ot Bexte, i1=1,2,..,T

= functional form known, but B is unknown.
2) Elg;] = 0. = expected value (mean) of the errors is 0.

(3) Explanatory variables X, X5, ..., X, are given (& non random)
= no correlation with € (Cov(g;, Xj) = 0.)

(4) The k explanatory variables are independent.

(5) Var[g;] = E[e?] = 02 < . (homoscedasticity = same variance)

L

(6) Cov(g;, €) = E[g; €] = 0. (no serial/cross correlation)

* These are the assumptions behind the classical linear regression model
(CLM).

LS — Assumptions with Linear Algebra Notation

* We rewrite the assumptions using linear algebra. We condition on X,
which allows X to be a random variable (though, once we condition,
X becomes a matrix of numbers):

(A1) DGP: y = X B + € (linear model) is correctly specified.
(A2) E[g|X] = 0

(A3) Var[e| X] = o* I

(A4) X has full column rank —rank(X)= k—, where T = k.

* Assumption (Al) is called correct specification. We know how the data is
generated. We call y = X, 0) + € the Data Generating Process.

Note: The errors, g, are called disturbances. They are not something we
add to X, 0) = X B because we don’t know precisely X, 0). No. The
errors are part of the DGP.
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LS — Assumptions with Linear Algebra Notation

* Assumption (A2) is called regression.

We start with the DGP: y=XB+e
Then, from (A2) E[e|X] =0
= E[y|X] = EXB|X] + E[¢|X] =X

That is, the observed y will equal E[y | X] + random variation.

(i) Using rules of expectations (law of iterated expectations), we get:
(1) Ele|X]=0 = Ele] =0
= The conditional expectation = unconditional expectation.
Also, from (A2), it can be shown that E[eX] = 0 =elX

(2) Cov(e, X) = E[(e - )X — py)] = E[eX — & py]
= B[eX] — pxF[e] = E[eX] = 0

There is no information about € in X and vice-versa.

LS — Assumptions with Linear Algebra Notation
¢ Assumption (A3) Var[e|X] = 621,
That is, the (conditional) variance of the errors is given by:
Var[e|X] = E[(e - E[¢]) € — E[e])'| X] (TxT) mattix
=E[€-0) (e-0)[X]
= Ele&'|X]
[ E[e|X] E[e;&|X] - Elerg|X]
_|Ele1&2|X]  E[g3|X] -+ E[er&|X]
Ele; er|X] E[gzer|X] -+ E[e}|X]
0> 0 - 0
2.
L0 0 - o?
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LS — Assumptions with Linear Algebra Notation

* Assumption (A3) gives the model a constant variance for all errors
and no relation between the errors at different measurements/times.
That is, we have a diagonal variance-covariance matrix:

o2 0 - 0
Varg|x]=2=|0 v 0=otr (IxT) marrix
0 0 - o2
This assumption implies
() homoscedasticity = E[Sl2 |X] = o2 forall i.
(ii) 70 serial/ cross correlation = E[g & [X]=0 fori#j.

It can be shown using the law of total variance that
Var[e|X] = o’ = Varg] = 621,

LS — Assumptions with Linear Algebra Notation

* From Assumption (A4) = the k independent vatiables in X are
linearly independent. Then, the kxk matrix X'X will also have full
rank —i.e., rank(X'X) = k.

= X'X is invertible.

We need this result to solve a system of equations given by the 1%-
order conditions of LS Estimation (normal equations):

X'y -XXb=0

Note: To get asymptotic results we need more assumptions about X.
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CLM: OLS — Summary

e Classical linear regression model (CLM) - Assumptions:
(A1) DGP: y =X B + € is correctly specified.
(A2) Efe|X] = 0
(A3) Varle|X] = B[~ 0) € - 0)'|X] = E[e ¢'|X] = * I,
(A4) X has full column rank —rank(X) = k, where T = k.

* OLS estimator: bjective function:
S(xi, B) =Ei8f = e = (v - XB)' (v - XP)
=Yy -2pXy+ pXXp
* fo.c -2Xy+2XXb=0

Solving for b =b=XX"1X'y (kx1) vector

Q: Is b a minimum? Yes, 2 X'X is a positive definite matrix.

OLS Estimation: Second Order Condition

2 T T
, i=1%i1 Li1Xi1Xiz -0 Dizg X1 Xik
04S(x; T T .2 T
975, B) l’,B> = 2x'X = 2| Zi=1Xi2Xi1  Zi=1Xiz - Zi=1XipXik
T T T 2
Yic1XigXi1  Zi=1XikXiz --  Zi=1Xig

If there were a single b, we would require this to be positive, which
it would be: 2 x'x =2Y1_, x? > 0.

The matrix counterpart of a positive number is a positive definite (pd)
matrix. We need X'X to be pd, which it can be shown it is.

¢ Loosely speaking, a matrix is positive definite if the diagonal
elements are positive (remember this) and the off-diagonal elements
are not too large in absolute value relative to the diagonal elements.
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OLS Estimation — Properties of b

* The OLS estimator of B in the CLM is
b=XX)!X'y = bisa (linear) function of the data (y;, x;).
b=XX)' X'y = XX)! XXp + ¢)
= XX)I1XX B+ XX)'Xe =B+ XX)'X'e
= b-PB = XX)'X'e

Under the typical assumptions, we can establish properties for b.

1) E[b|X] = E[B|X] + E[XX) X'¢ | X]
=B+ XX)'X' L[g|X] =B (b is unbiased)

2) Var[b|X] = E[(b - B) (b B)'|X] = B[XX)" X' & & X(XX)! | X]
= XX)! X' e ¢'| X] XXX) !
= (XX)1 X {01} XXX = o2 (KK)! XX (XX
= o2 (X'X)! (kxk) matrix

OLS Estimation — Properties of b

3) Gauss-Markov Theorem: b is BLUE (Best Linear Unbiased
Estimator). No other linear & unbiased estimator has a lower variance.

4) If we also assume:  (A5) €| X ~ iid N(0, 6> 1),
we derive the distribution of b:
b=p+ XX)'X'e = bisalinear combination of normal variates
= b|X ~iid NP, o XX)1)
SD[b|X] = sqrt(diagonal elements of o> (X'X) 1)

Note: The marginal distribution of a multivariate normal is also
normal, then

by | X ~ N(By, Ut2>,k)
Std Dev [by |X] = sqrt{[c* XX) "]} = Vp

Remark: With (A5) we can do (exact) tests of hypothesis.
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OLS Estimation — Properties of b

5) If (A5) is not assumed, we still can obtain a (limiting) distribution
for b. Under additional assumptions —mainly, the matrix X'X does not
explode as T becomes large—, as T— o0,

@ b LA B (b is consistent)
(i) b 5 N, o? XX) 1) (b is asymptotically normal)

* Properties (1)-(4) are called finite (or small) sample properties, they
hold for every sample size.

* Properties (5.1) and (5.1i) are called asymptotic properties, they only
hold when T is large (actually, as T tends to ®).

Property (5.1i) is very important: When the errors are not normally
distributed we still can do testing about B, but we rely on an
“approximate distribution.”

OLS Estimation — Fitted Values and Residuals

* OLS estimates B with b. Now, we define fitted values as:

y=Xb (what we expect Y to be, given observed X)
Now we define the estimated error, e:

e=y-y
e represents the unexplained part of y, what the regression cannot
explain. They are usually called residuals.

Note that e is uncorrelated (orthogonal) with X =>elX
e=y-Xb =Xe=X(y-Xb)=Xy-XXXX)'Xy=0

Using e, we can define a measure of unexplained variation:
Residual Sum of Squares (RSS) = e'e = Y}, e;?
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OLS Estimation — Var[b | X]

We use the variance to measure precision of estimates. For OLS:

Var[b|X] = o* (XX)"

Example: One explanatory variable model.
(A1) DGP:y =B,+ B,x + &

1 Yx] " T Tx 1!
V. = 62 (XX)! = 2 l L= — 2 _ ]
arb|X] = 0" XX)" =0 Izi 1%, X;x7 TX X;xf

:GZ;F:ixiz —Tf]
TERx}-Ta) | —Tx T

3 x? S x2/T
—g2—2t7t G2 &t/
Var[b, [ X] = o T -T2 0 Sxi-%2 0

—_ 2 1 = 52 L
Var[b2|X] =0 (Zixiz —1%%) — O Zi(xi_jc)z > ()

OLS Estimation — Var[b | X]

Example (continuation):

_ . x? Y.x2/T ..
Var[b, | X] = ¢? —T(Zix:z _lez) = ¢ Z—i(inl—f)z (positive)

1 1 .
Vat[b,|X] = ¢? Gt o’ 5 ) (positive)

-X

-2
Covat[b,, b,| X] = o HETESE

(sign depends on X)

* In general, we do not know o2 It needs to be estimated. We
estimate o using the residual sum of squates (RSS):

RSS=Y;e;2=¢€'e

The natural estimator of 62is 62 = RSS/T. Given the LLN, this is a
consistent estimator of o°. However, this not unbiased.
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OLS Estimation — Var[b | X]

* The unbiased estimator of 62 is $2:

2 _ RSS _ 3ie?
(T-k)  (T-k)

* Then, the estimator of Var[b|X] = s?(X'X)"! (a kxk matrix)
= SE[b,|X] = sqre{[s*XX) |} = Spk

OLS Estimation — Testing Only One Parameter

* We are interested in testing a hypothesis about one parameter in our
linear model: y =X B+ &

1. Set H, and H, (about only one parameter): Hy: B, = BY
Hy: B # Br

2. Appropriate T(X): t-statistic. We derive the distribution of the test
under H, using assumption (A5) €| X ~ N(0, ¢°1,)
We use by, (OLS) to estimate 3, . From assumption (A5) we get
by |X ~ N(By, vj ) = Under Hy: by | X ~ NBg, S 1.
=t = (b= Br)/Spje | X ~ tr—

Technical Note: If (A5) does not hold, we rely on asymptotic
distributions for the estimators & tests.
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OLS Estimation — Testing Only One Parameter
3. Compute ty, 1, using by, BY, s, and (X’X)1. Get p-value(d).

4. Rule: Set an o level. If p—m/m(f) <a = Reject Hy: B, = Bg
Alternatively, if |f| > tT—k,l—a/z = Reject H;: B, = Bg

OLS Estimation — Testing Only One Parameter

* Special case: Hy: 3, =0
H;: B, # 0.
Then,
- by _ by
T sqre{[s2XX) T, SE[by]

= tk ~ tT—k'

This special case of ty, is called the #-value or f-ratio (also refer as the
“t-stats”). That is, the t-value is the ratio of the estimated coefficient
and its SE.

¢ The t-value is routinely reported in all regression packages. In the
Im() function, it is reported in the third column of numbers.

¢ Usually, o = 5%, then if | £, |> 1.96 = 2, we say the coefficient b, is
“significant.”’

(c) RS 2023 - Not to be shared/posted online without written authorization



RS - Financial Econometrics - Lecture 3-c

OLS Estimation — Is IBM’s Beta equal to 17

Example: Using the 1-factor CAPM for IBM returns, we test if
IBM’s market 3 = 1, that is, if IBM bears the same market risk as the
market. Using the /# function previous estimation:

SFX_da <-

read.csv("http:/ /www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv" ,head=TRUE,sep
=

x_ibm <- SFX_da$IBM # Extract IBM price data

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)

x_RF <- SFX_da$RF # Extract risk free rate (in %o)

T <- length(x_ibm) # Sample size

Ir_ibm <-log(x_ibm[-1]/x_ibm[-T]) = # Log returns for IBM (lost one obsetvation)
Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

RF <-x_RF[-1]/100 # Adjust size (take one observation out )
ibm_x <-Ir_ibm — RF # Define excess returns for IBM

fit_ibm_capm <- Im(ibm_x ~ Mkt_RF)# OLS estimation with /» package in R

OLS Estimation — Is IBM’s Beta equal to 17

Example (continuation):
> summary(fit_ibm_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.005791 0.002487 -2.329 0.0202 *
xMkt_RF 0.895774 0.053867 16.629 <2e-16 ***

Signif. codes: 0 ¥ 0.001 ** 0.01 **0.05 0.1 <’ 1

b_ibm <- fit_ibm_capmS$coefficients # Extract from Im function OLS coefficients
SE_ibm <- sqrt(diag(vcov(fit_ibm_£f3)))# SE from fit_ibm (also a £x1 vector)
t_betal <- (b_ibm[2] - 1)/SE_ibm[2] = # t-stat for H Beta, - 1

> t_betal

[1] -1.934877 = |, =-1.934877 | < 1.96 = Cannot reject Hj at 5% level

p_val <- (1- pnorm(abs(t_betal))) *2  # pvalue for t_beta (adjusted b/c two sided test)
> p_val
[110.0530 = cannot reject Hy: By = 1 at 5% level, but bordetline!
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OLS Estimation — Is IBM’s Beta equal to 17

Example (continuation):

Conclusions: Cannot reject Hy: B3 = 1 = IBM has a one-to-one
risk relation with the market, but borderline test decision!

Note: You can get same results using linear algebra. From last class:
b <- solve(t(x)%o*% x)%*% t(x)%*%y #b = XX)'X'y (OLS regression)

SE <- sqrt(diag(vcov(fit_ibm_capm))) # SE from fit_ibm (also a £x1 vector)

t_betal <- (b[2] - 1)/SE[2] # t-stat for Hj: Beta, - 1

> t(b)
Mkt_RF
[1,] -0.005791039 0.895773564

> t(SE_b)
Mkt_RF
[1,] 0.002487 0.053867

> t_betal
[1] -1.934877

OLS Estimation — Testing the CAPM

Example: Now, we test the CAPM for IBM using the time-series.
CAPM: E[ri,t — Tf] = Bi E[(Tm,t — Tf)]
According to the CAPM, equilibrium expected excess returns are only

determined by expected excess market returns —i.e., the CAPM is a
one factor model (no constant or extra factors besides the market).

CAPM DGP:
ri,t —Tf =q; + Bi (T'm't —Tf) + gi,ta = 1, ,N & t= 1, ceey T

Thus, we test the CAPM by testing H, (CAPM holds): a;—;gp= 0
H, (CAPM rejected): aj=jpy# 0

SFX_da <-

read.csv("http:/ /www.bauer.uh.edu/rsusmel /4397 /Stocks_FX_1973.csv",head=TRUE,sep=",")
x_ibm <- SFX_da$IBM # Extract IBM price data

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)
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OLS Estimation — Testing the CAPM

Example (continuation):

x_RF <- SFX_da$RF # Extract risk free rate (in %)

T <- length(x_ibm) # Sample size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) # Log returns for IBM (lost one observation)
Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

RF <- x_RF[-1]/100

ibm_x <-Ir_ibm — RF # Define excess returns for IBM

fit_ibm_capm <- Im(ibm_x ~ Mkt_RF) # OLS estimation with /» package in R

> summary(fit_ibm_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.005791  0.002487 -2.329 0.0202 *
xMkt_RF 0.895774 0.053867 16.629 <2e-16 ***

Signif. codes: 0 “***0.001 “* 0.01 * 0.05 > 0.1 “* 1

Q: Is intercept (@;=rpy) equal to 0? Check t-value: ty, = —SE"‘[i;'BM ]
i=IBM

OLS Estimation — Testing the CAPM

Example (continuation):

»  aimm _ —0.005791
b= SElaiimm] 0.002487 _ 23%

= |t,| >1.96 = Reject H, (CAPM) at 5% level

We use the t-value:

Conclusion: The CAPM is rejected for IBM at the 5% level.

Note: You can also reject H, by looking at the p-value of intercept.

Interpretation: Given that the intercept is significant (& negative),
IBM underperformed relative to what the CAPM expected:

-TiBM,t — TF: mean(ibm_x) = -0.00073141
- Tigm,e — 15 (CAPM): B; * mean(Mkt_RF) = 0.895774 * 0.0056489
=0.0050601

- Ex-post difference: -0.00073141 - 0.0050601 = -0.00579151 (= oy,
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OLS Estimation — Testing the CAPM: Remark

* We tested (& rejected) the CAPM for one asset only, IBM. But, the
CAPM should apply to the cross-section of asset returns: IBM, Ford,
Apple, Exxon, etc. Suppose we have N assets in the cross-section.
Then, a test for the CAPM involves testing N a; ’s:

Hya,=a,=....=ay =0
H,: at least one a; # 0.

* This test is a joint test. It requires a simultaneous estimation of N
CAPM equations. Usually, since returns are estimated with a lot of
noise, portfolios are used. Also, the estimation usually takes into
account the possible change over time of beta coefficients.

* There are different ways to do this join test. A common approach is
a two-step estimation, popularly known as Fama-MacBeth (1973).

OLS Estimation — Testing the CAPM (CS)

According to the CAPM, in the cross-section of asset returns, assets
with higher B; should get, on average, higher compensation.

CAPM (cross-section): Elry—17] =B 4

where A, in equilibrium, is the market excess return (or factor return).

If we have B;’s for N assets, we can estimate the security market line
(SML), where we show the effect of B; on E[r; —17].

[ri = 7%l (Undervalued securities)

El —1p] [ s i SML

t (Overvalued securities)

Pm =1 B (systematic risk)
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OLS Estimation — Testing the CAPM (CS)

Example (continuation):

IBM underperformed relative to what the CAPM expected by
ai=igm = —0.005791

Then, according to the CAPM, IBM has been overvalued. The

average, negative, performance (-0.00073) is the performance of a
much safer asset, with a small, negative B (=-0.1295)!

Efr — .
[ri — 77l (Undervalued securities) SML

Bi E[fy — 17] = 0.00506 |~ i

(Overvalued securities)

Elrians — 7] = 0.00073 P = 0895774 g (systematic risk)
IBM — - Y

OLS Estimation — Testing the CAPM (CS)

Q: Which assets pay a higher return? The SML answers this question:
Assets with a higher exposure to market risk —i.e., higher f;.

A linear cross-sectional DGP consistent with the CAPM is:
(Ti—Tf):(X+ BiA+8i7 i=1,..,.N

Testing implication of the SML for the cross-section of stock returns:
H, (CAPM holds in the CS): ¢ =0 & A=E[ry —17] >0
H, (CAPM rejected in the CS): a # 0 and/or A # E [Ty e —17] > 0

Note: Fama and French (1992, 1993) estimated variations of the DGP
with more factors. They found that B was weakly significant or not
significant (“Beta is dead”) in explaining the C-S of stock returns.
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OLS Estimation — Testing the CAPM (CS)

* Fama-MacBeth (1973) proposed a well-known two-step approach
to test the CAPM in the cross-section:
(1) Estimate B; using the time series (T observations) for each asset 1.

Tie =Tre =@ B ("mye - Tre) T €16, t=1,...,T = Get Nby’s.

(2) Using the N b;’s as regressors, estimate
(fl-—r_'f):a+bi/1+si, izl,...,N

where (7; — 75) is the average excess return of asset I in our sample.

The usual execution of almost all 2-step procedures involves:
1) Since returns are estimated with a lot of noise, portfolios are used.

2) The estimation takes into account the possible change over time of
beta coefficients, by estimating the 3;’s every 5 or 10 years.

OLS Estimation — Testing the CAPM (CS)

Example: We test the CAPM, in the cross-section, using the 2-step
Fama-MacBeth method. We use returns of 25 Fama-French
portfolios (sorted by Size (ME) and Book-to-Market), downloaded,
along the 3-Fama-French factors from Ken French’s website.
FF_p_da <- read.csv("https:/ /www.bauer.uh.edu/rsusmel /4397 /FF_25_portfolios.csv",

head=TRUE, sep=",")
FF_f da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_3_factors.csv", head=TRUE,

Scp:"’">

# Extract variables from imported data

Mkt_RF_fm <- FF_f da$Mkt_RF # extract Market excess returns (in %)
HMI,_fm <- FF_f_da$HML # extract HML returns (in %)

SMB_fm <- FF_f_da$SMB # extract HML returns (in %)

RF_fm <- FF_f da$RF # extract Risk-free rate (in %)

Y_p <- FF_p_da[,2:26] - RF_fm # Compute excess returns of 25 portfolios
T <- length(HML_fm) # Number of observations (1926:July on)
x0 <- matrix(1,T,1) # Vector of ones, represents constant in X
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OLS Estimation — Testing the CAPM (CS)

Example (continuation):

x <- cbind(x0, Mkt_RF_fm) # Matrix X (Tx2)

k <- ncol(Y_p)

## First Pass (CAPM Betas)

Allbs = NULL # Initialize empty (a space to put betas)

for (iin seq(1,k,1)){
y<-Y_pli] # selectY (portfolio)
b <- solve(t(x)%o*% x)%*% t(x)%*%y  # OLS regression = (X'X)"(-1) X'y
Allbs =cbind(Allbs,b) # accumulate b as rows

}

beta_ret <- cbind(colMeans(Y_p),t(Allbs)) # Mean portfolio returns along alpha & beta estimates

cor(beta_ret[,1], beta_ret[,3]) # Correlation of mean portfolio return & beta

> cor(beta_ret[,1], beta_ret[,3])
[1] 0.3326008

plot(beta_ret[,1], beta_ret[,3], main="Scatterplot: Portfolio Returns & CAPM Beta",
xlab="Mean Portfolio Returns ", ylab="Market Beta", pch=19)

OLS Estimation — Testing the CAPM (CS)

Example (continuation):

Scatterplot: Portfollo Returns & CAPM Beta
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## Second Pass (CAPM-SML only)
fit_fm_capm_25 <- Im(beta_ret[,1] ~ beta_ret[,3])

> summary(fit_fm_capm_25)

Cocfficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.3728  0.3113 1.198 0.243
beta_ret[, 3] 0.4289 0.2536 1.691 0.104 = Not significant: Beta plays no role!

Conclusion: CAPM’s beta does not seem to be useful to explain expected returns.
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OLS Estimation — Testing the CAPM (CS)

* Fama and French (1992, 1993) estimated variations of the DGP
with more factors. They found that § was weakly significant or not
significant, even with the wrong sign, in explaining the C-S of stock
returns, which created a big splash in the literature (“Beta is dead”).

¢ Other researchers dispute the “Beta is dead” finding, criticizing the
selection of estimation period, construction of portfolios, number of
factors, statistical problems like measurement error and incorrect SE,
etc.

* The debate about B & what (& how many) factors to include in the
DGP continues.

OLS Estimation — Testing Multi-factor Models

* Fama-French (1992, 1993) generalized Fama-MacBeth two-step

approach to test f3; in multi-factor models in the cross-section. In

their 3-factor model:

(1) First pass

Using the time series (T observations), run a regression with the 3

Fama-French factors (Market, SMB, HML) to estimate 3 B;'s for each

asseti =1,...,N.

Tie -Tre = & T By "mye - T5e) + B,y SMBy + Bz HMLy + g, t =1,...,T
= GCtN bl = [bl,i’ szl‘, b3,i]'

(2) Second pass

Using the N b;’s as regressors, estimate

(fi—ff) :O(-i-bl‘i 7\1 + bZ,i 7\2 +b3,i 7\3 +8i, i= 1,...,N

where (7; — 77) is the average excess return of asset { in our sample.
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