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Lecture 3-c
Least Squares - Properties, 
Testing and Goodness of Fit 

Brooks (4th edition): Chapters 3 & 4

© R. Susmel, 2023 (for private use, not to be posted/shared online).

• Model (with linear algebra notation):

𝒚 = X  + 
• Vectors will be column vectors: 𝒚, 𝒙 , and  are Tx1 vectors: 

𝒚
𝑦
⋮
𝑦

 ⇒ 𝒚′ = [𝑦1 𝑦2 .... 𝑦T] 

𝒙
𝑥
⋮
𝑥

 ⇒ 𝒙 ′ = [𝑥 𝑥 .... 𝑥 ] 



⋮


 ⇒ ′ = [1 2 .... T]

X is a Tx𝑘 matrix. ⇒ X = [𝒙1 𝒙2 .... 𝒙k]

Review – LS Estimation with Linear Algebra
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• Using linear algebra notation: 𝒚 =  X  + 

X is a Tx𝑘 matrix. ⇒ X 
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

 = 

⋮


(a 𝑘x1 vector)

• The whole system (for all i) is:

𝑦 = β1 
x11 

+ β2  
x12 + ... + βk 

xk1 + ε1

𝑦 = β1 
x12 

+ β2 
x22 + ... + βk 

xk2 + ε2

....           ....             ....          ... 
𝑦  = β1 

x1T +
 β2 

x2T + ... + βk 
xkT + εT

Review – LS Estimation with Linear Algebra

• Assume functional form, f(X, θ), is linear: 

𝒚 =  X  + 

• LS Objective function: S(𝑥 , ) = Σi  = ′ = (𝒚 – X)′ (𝒚 – X)

= 𝒚′𝒚 – 2 ′X′y + ′X′X

• First derivative w.r.t. ′:     – 2 X′𝒚 + 2 X′X  (a 𝑘x1 vector)

• F.o.c. (normal equations): X′𝒚 – (X′X) b = 0  (X′X) b = X′𝒚

• Assuming (X′X) is non-singular –i.e., invertible-, we solve for b:
 b = (X′X)-1 X′𝒚 (a 𝑘x1 vector)

Note: b is  called the Ordinary Least Squares (OLS) estimator. 
(Ordinary = f(X, θ) is linear.)

Review – LS Estimation with Linear Algebra
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• OLS estimator: b = (X′X)-1 X′𝒚 (a 𝑘x1 vector)

• To derive b, we have made few assumptions:

1. Model is linear -i.e., 𝒚 = X  + 
2. The explanatory variables are independent –i.e., rank(X) = 𝑘.

• To get properties for the OLS estimator, b, we need assumptions 
about  (its mean and variance-covariance matrix) and about how 
relates to X.

Review – LS Estimation with Linear Algebra

• Let X denote a discrete RV with probability function p(x), then the 
expected value of X, E[X], is defined to be:

E[X] = ∑ 𝑥 𝑝 𝑥
and if  X is continuous with probability density function f(x):

E[X] = 𝑥 𝑓 𝑥 𝑑𝑥

• Rules:

- Rule 1. E[𝑐] = 𝑐, where c is a constant.

- Rule 2. E[𝑐 + 𝑑 X] = 𝑐 + 𝑑 E[X], where 𝑐 & 𝑑 are constants.

- Rule 3. Var[X] = 𝜇 𝐸 𝑋 𝜇 = 𝐸 𝑋 - 𝐸 𝑋 = 𝜇 𝜇

- Rule 4. Var[𝑎 X + 𝑏] = 𝑎  Var 𝑋

Review – Rules for Expectations of  a RV
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• Suppose excess returns for asset 𝑖, 𝑟 , – 𝑟 , are driven by the 
following linear model (DGP behind the CAPM):

𝑟 , – 𝑟 = 𝛼 + βi (𝑟 , – 𝑟 ) + ε , ,

where

𝑟 , – 𝑟 = excess return on the market portfolio at time t.

ε , = idiosyncratic error term, with mean 0 & unrelated to 𝑟 , .

Then,

E[𝑟 – 𝑟 ] = E[𝛼 ] + β E[𝑟 , – 𝑟 ] + E[ε , ] (by Rule 2)

E[𝑟 – 𝑟 ] = 𝛼 + β E[𝑟 , – 𝑟 ] + E[ε , ] (by Rule 1)

E[𝑟 – 𝑟 ] = 𝛼 + β E[𝑟 , – 𝑟 ] -by mean 0 of ε ,

Also, by Rule 4 (& assuming Cov[𝑟 , – 𝑟 , ε , ] = 0):

Var[𝑟 – 𝑟 ] = β Var[𝑟 , – 𝑟 ] + Var[ε , ]

Review – Rules for Expectations: Linear Model

• Typical OLS Assumptions

(1) DGP: 𝑦  = β1 𝑥   + β2 𝑥  + ... + βk 𝑥  + ε , 𝑖 = 1, 2, ...., 𝑇 
 functional form known, but  is unknown.

(2) E[ε ] = 0.  expected value (mean) of the errors is 0.

(3) Explanatory variables 𝑋 , 𝑋 , ..., 𝑋 , are given (& non random)

 no correlation with  (Cov(ε , 𝑋 ) = 0.) 

(4) The k explanatory variables are independent.

(5) Var[ε ] = E[ ] = σ2 < ∞. (homoscedasticity = same variance)

(6) Cov(ε , ε ) = E[ε  ε ] = 0. (no serial/cross correlation)

• These are the assumptions behind the classical linear regression model 
(CLM).

OLS – Assumptions



RS - Financial Econometrics - Lecture 3-c

5(c) RS 2023 - Not to be shared/posted online without written authorization

• We rewrite the assumptions using linear algebra. We condition on X, 
which allows X to be a random variable (though, once we condition, 
X becomes a matrix of numbers):

(A1) DGP: 𝒚 = X  +  (linear model) is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = σ2 IT

(A4) X has full column rank –rank(X)= 𝑘–, where T ≥ 𝑘.

• Assumption (A1) is called correct specification. We know how the data is 
generated. We call 𝒚 = f(X, θ) +  the Data Generating Process.

Note: The errors, , are called disturbances. They are not something we 
add to f(X, θ) because we don’t know precisely f(X, θ). No. The errors 
are part of the DGP.

LS – Assumptions with Linear Algebra Notation

• Assumption (A2) is called regression.  

From Assumption (A2) we get:

(i) E[|X] = 0  E[𝒚 |X] = E[X |X] + E[|X] = X 
That is, the observed y will equal E[y|X] + random variation. 

(ii) Using rules of expectations (law of iterated expectations), we get:

(1) E[|X] = 0  E[] = 0

 The conditional expectation = unconditional expectation

(2) Cov(, X) = E[( – 0)(X – μX)] = E[X –  μX] 
= E[X] - μX E[] = E[X] = 0 

 That is, E[X] = 0    X. 

There is no information about  in X and vice-versa.

LS – Assumptions with Linear Algebra Notation
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• Assumption (A3) gives the model a constant variance for all errors 
and no relation between the errors at different measurements/times. 
That is, we have a diagonal variance-covariance matrix: 

Var[|X] = Σ = 

σ 0 ⋯ 0
0 σ ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ

= 2 IT (TxT) matrix

This assumption implies

(i) homoscedasticity  E[ |X] = 2 for all 𝑖.

(ii) no serial/cross correlation  E[ ε  ε |X] = 0 for 𝑖 ≠ 𝑗.

It can be shown using the law of total variance that 

Var[|X] = 2IT  Var[] = 2 IT

LS – Assumptions with Linear Algebra Notation

Note: Var[|X] = E[( – E[]) ( – E[])′|X] (TxT) matrix

= E[( – 0) ( – 0)′|X] 

= E[ ′|X] 

= 

E[ |X] E[ ε  ε |X] ⋯ E[ ε  ε |X]

E[ ε  ε |X] E[ |X] ⋯ E[ ε  ε |X]
⋮ ⋮ ⋮ ⋮

E[ ε  ε |X] E[ ε  ε |X] ⋯ E[ |X]

= 

= 

σ 0 ⋯ 0
0 σ ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ σ

= 2 IT

LS – Assumptions with Linear Algebra Notation
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• From Assumption (A4)  the 𝑘 independent variables in X are 
linearly independent. Then, the 𝑘x𝑘 matrix X′X will also have full 
rank –i.e., rank(X′X) = 𝑘. 

 X′X is invertible. 

We need this result to solve a system of equations given by the 1st-
order conditions of LS Estimation (normal equations):

X′𝒚 – b X′X = 0

Note: To get asymptotic results we need more assumptions about X.

LS – Assumptions with Linear Algebra Notation

CLM: OLS – Summary

• Classical linear regression model (CLM) - Assumptions:

(A1) DGP: 𝒚 = X  +  is correctly specified. 

(A2) E[|X] = 0

(A3) Var[|X] = E[( – 0) ( – 0)′|X] = E[ ′|X] = σ2 IT

(A4) X has full column rank –rank(X) = 𝑘, where T ≥ 𝑘.

• OLS estimator: bjective function:

S(𝑥 , ) = Σ  = ′ = (𝒚 – X)′ (𝒚 – X)

= 𝒚′𝒚 – 2 ′X′𝒚 + ′X′X

• f.o.c: – 2 X′𝒚 + 2 X′X b = 0

Solving for b  b = (X′X)-1 X′𝒚 (𝑘x1) vector

Q: Is b a minimum? Check second order condition!
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𝜕 S(𝑥 , )

𝜕b𝜕b′
2𝑿′𝑿 2

Σ 𝑥 Σ 𝑥 𝑥 . . . Σ 𝑥 𝑥
Σ 𝑥 𝑥 Σ 𝑥 . . . Σ 𝑥 𝑥

. . . . . . . . . . . .
Σ 𝑥 𝑥 Σ 𝑥 𝑥 . . . Σ 𝑥

If there were a single b, we would require this to be positive, which it 
would be: 2 𝒙 𝒙 = 2∑ 𝑥 0.

The matrix counterpart of a positive number is a positive definite (pd) matrix.
We need X′X to be pd. 

A square matrix (mxm) A “takes the sign” of  the quadratic form, z′A z, where 
z is an mx1 vector. Then, z′A z is a scalar. 

OLS Estimation: Second Order Condition

• A form is a polynomial expression in which each component term 
has a uniform degree. A quadratic form has a uniform 2nd degree.

Examples:
9 𝑥 + 3 𝑦 + 2 𝑧 - 1st degree form.
6 𝑥2 + 2 𝑥 𝑦 + 2 𝑦2 - 2nd degree (quadratic) form.
d2z = 𝑓 d𝑥2 + 2 𝑓 d𝑥 d𝑦 + 𝑓 d𝑦2 (quadratic form)

A quadratic form can be written in matrix notation as z′A z , where A 
is (mxm) A and z is an mx1 vector. Then, z′A z is a scalar. 

The above quadratic form can be written as:

q = 𝑥  𝑦 ∗ 6 1
1 2

∗
𝑥
𝑦 = 6 𝑥2 + 2 𝑥 𝑦 + 2 𝑦2 

Once we have 𝑥 & 𝑦, q is a number.

OLS Estimation: Second Order Condition
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• Let q be a quadratic form. We say q is:
Positive definite (pd) if q is invariably positive (q > 0)
Positive semi-definite (psd) if q is invariably non-negative (q ≥ 0)
Negative semi-definite (nsd) if q is invariably non-positive (q ≤ 0)
Negative definite (nd) if q is invariably negative (q < 0)

Definition: Positive definite matrix

A matrix A is positive definite (pd) if z′A z > 0 for any z (a 𝑘x1 vector). 

For some matrices, it is easy to check. Let A = X′X (a 𝑘x𝑘 matrix).

Then, z′A z = z′X′X z = 𝒗′𝒗 = ∑ 𝑣 > 0. (𝒗 = Xz is Tx1)

⇒ X′X is pd ⇒ b is a min!

Technical note 1: In general, we need eigenvalues of A to check this. 
If all the eigenvalues are positive, then A is pd.

Technical note 2: If A is pd, then A-1 is also pd.

OLS Estimation: Second Order Condition

• Loosely speaking, a matrix is positive definite if the diagonal 
elements are positive and the off-diagonal elements are not too large 
in absolute value relative to the diagonal elements. 

Remark: This is an informal way of looking at a pd matrix, but, keep 
in mind for later, that the diagonal elements are positive.

OLS Estimation: Second Order Condition
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OLS Estimation – Properties of b

• The OLS estimator of  in the CLM is

b = (X′X)-1X′ y ⇒ b is a (linear) function of the data (𝑦 , 𝑥 ). 

b = (X′X)-1X′ y = (X′X)-1 X′(X + ) =  + (X′X)-1X′
 b –  = (X′X)-1X′

Under the typical assumptions, we can establish properties for b.

1) E[b|X] = E[|X] + E[(X′X)-1X′|X] 

=  + (X′X)-1X′ E[|X] =  (b is unbiased)

2) Var[b|X] = E[(b – ) (b – )′|X] = E[(X′X)-1 X′  ′ X(X′X)-1|X]

= (X′X)-1 X′ E[ ′|X] X(X′X)-1

= (X′X)-1 X′ {σ2 IT} X(X′X)-1 = σ2 (X′X)-1 X′X (X′X)-1

= σ2 (X′X)-1 (𝑘x𝑘) matrix

3) Gauss-Markov Theorem: b is BLUE (Best Linear Unbiased 
Estimator). No other linear & unbiased estimator has a lower variance.

4) If we also assume: (A5) |X ~ i.i.d. N(0, σ2 IT),

we derive the distribution of b:

b =  + (X′X)-1X′  b is a linear combination of normal variates 
 b|X ~ i.i.d. N(, σ2 (X′X)-1)

SD[b|X] = sqrt(diagonal elements of σ2 (X′X)-1)

Note: The marginal distribution of a multivariate normal is also 
normal, then 

b𝑘|X ~ N(𝑘, 𝑣 , )
Std Dev [b𝑘|X] = sqrt{[σ (X′X)-1]𝑘𝑘} = 𝑣 ,

Remark: With (A5) we can do tests of hypothesis. 

OLS Estimation – Properties of b
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5) If (A5) is not assumed, we still can obtain a (limiting) distribution 
for b. Under additional assumptions –mainly, the matrix X′X does not 
explode as 𝑇 becomes large–, as 𝑇→ ∞, 

(i)  b →  (b is consistent)

(ii) b → N(, σ2 (X′X)-1) (b is asymptotically normal)

• Properties (1)-(4) are called finite (or small) sample properties, they 
hold for every sample size.

• Properties (5.i) and (5.ii) are called asymptotic properties, they only 
hold when 𝑇 is large (actually, as 𝑇 tends to ∞). 

Property (5.ii) is very important: When the errors are not normally 
distributed we still can do testing about , but we rely on an 
“approximate distribution.”

OLS Estimation – Properties of b

• OLS estimates  with b. Now, we define fitted values as: 

𝒚 = X b (what we expect 𝒚 to be, given observed X)

Now we define the estimated error, 𝒆: 

𝒆 = 𝒚 – 𝒚
𝒆 represents the unexplained part of y, what the regression cannot 
explain. They are usually called residuals.

Note that e is uncorrelated (orthogonal) with X    X

𝒆 = 𝒚 – Xb  X′𝒆 = X′ (𝒚 – Xb) = X′𝒚 – X′X (X′X)-1 X′𝒚 = 0

Using e, we can define a measure of unexplained variation: 

Residual Sum of Squares (RSS) = 𝒆 𝒆 = ∑ 𝑒

OLS Estimation – Fitted Values and Residuals
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We use the variance to measure precision of estimates. For OLS: 
Var[b|X] = σ2 (X′X)-1

Example: One explanatory variable model. 

(A1’) DGP: 𝒚 = 1+ 2 𝒙 + 

Var[b|X] = σ2 (X′X)-1 σ2
∑ 1 ∑ 1𝑥
∑ 1𝑥 ∑ 𝑥

= σ2 𝑇 𝑇�̅�
𝑇�̅� ∑ 𝑥

= σ2
∑ ̅

∑ 𝑥 𝑇�̅�
𝑇�̅� 𝑇

Var[b1|X] = σ2 ∑

∑ ̅
σ2 ∑ /

∑ ̅

Var[b2|X] = σ2
∑ ̅

σ2
∑ ̅

OLS Estimation – Var[b|X]

Example (continuation):

Var[b1|X] = σ2 ∑

∑ ̅
σ2 ∑ /

∑ ̅

Var[b2|X] = σ2
∑ ̅

σ2
∑ ̅

Covar[b1, b2|X] = σ2 ̅

∑ ̅

• In general, we do not know σ2. It needs to be estimated. We 
estimate σ2 using the residual sum of squares (RSS):

RSS = ∑ 𝑒

The natural estimator of σ2 is σ2 = RSS/T.  Given the LLN, this is a 
consistent estimator of σ2. However, this not unbiased.

OLS Estimation – Var[b|X]
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• The unbiased estimator of 2 is 𝑠 :

𝑠 = RSS/ 𝑇 𝑘 = ∑ 𝑒 / 𝑇 𝑘 𝒆 𝒆/ 𝑇 𝑘

To get E[𝑠 ], we use a property of a RV with a 𝜒 distribution:
E[𝜒 ]  = 𝜐 

We know 𝑇 𝑘 𝑠 /2 ~ χ .
 E[𝒆 𝒆/2|X]  = 𝑇 𝑘
 E[𝒆 𝒆/ 𝑇 𝑘 |X] = E[𝑠 |X] = 2

Note: 𝑇 𝑘 is referred as a degrees of freedom correction.

• Then, the estimator of  Var[b|X] = 𝑠 (X′X)-1 (a 𝑘x𝑘
 
matrix)

 SE[b𝑘|X] = sqrt{[𝑠 (X′X)-1]𝑘𝑘} =  𝑠 ,

OLS Estimation – Var[b|X]

• We are interested in testing a hypothesis about one parameter in our 
linear model: y = X + 

1. Set H0 and H1 (about only one parameter): H0: 𝑘 = 
H1: 𝑘≠ 

2. Appropriate T(X): t-statistic. To derive the distribution of the test 
under H0, we will rely on assumption (A5) |X ~ N(0, σ2IT)  
(otherwise, results are only asymptotic). 

Let b𝑘 = OLS estimator of 𝑘 SE[b𝑘|X] = sqrt{[𝑠 (X′X)-1]𝑘𝑘} = 𝑠 ,

From assumption (A5), we know that

b𝑘 |X ~ N(𝑘, 𝑣 , )  Under H0: b𝑘 |X ~ N( , 𝑠 , ).
 Under H0: 𝑡 = (b𝑘 -  )/𝑠 , |X ~ 𝑡

OLS Estimation – Testing Only One Parameter  
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• We measure distance in standard error units:

𝑡 = 
 – 

,

Note: 𝑡 is an example of the Wald (normalized) distance measure. Most 
tests statistics in econometrics will use this measure.

3. Compute 𝑡 , t,̂ using b ,  , 𝑠, and (X’X)-1. Get p-value(t)̂.

4. Rule: Set an α level. If p-value(t)̂ < α  Reject H0: 𝑘 = 
Alternatively, if |t|̂> 𝑡 , /  Reject H0: 𝑘 =  .

OLS Estimation – Testing Only One Parameter  

• Special case: H0: 𝑘 = 0
H1: 𝑘≠ 0.

Then,

𝑡 = sqrt{[ (X′X)-1] } SE[ ] ⇒ 𝑡 ~ 𝑡 . 

This special case of 𝑡 is called the t-value or t-ratio (also refer as the 
“t-stats”). That is, the t-value is the ratio of the estimated coefficient 
and its SE. 

• The t-value is routinely reported in all regression packages. In the 
lm() function, it is reported in the third column of numbers.

• Usually, α = 5%, then if | 𝑡 |> 1.96 ≈ 2, we say the coefficient b𝑘 is 
“significant.”

OLS Estimation – Testing Only One Parameter  
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Example: We test the CAPM for IBM using the time-series. 

CAPM: E[𝑟 , – 𝑟 ] = β E[(𝑟 , – 𝑟 )].

According to the CAPM, equilibrium expected excess returns are only 
determined by expected excess market returns –i.e., the CAPM is a 
one factor model (no constant or extra factors besides the market).

A linear data generating process (DGP) consistent with the CAPM is: 
𝑟 , – 𝑟 = 𝛼 + β (𝑟 , – 𝑟 ) +  , , i = 1, ..., N &  𝑡 = 1, …, T

Thus, we test the CAPM by testing H0 (CAPM holds): 𝛼 = 0 

H1 (CAPM rejected): 𝛼 ≠ 0

SFX_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",") 

x_ibm <- SFX_da$IBM # Extract IBM price data 

x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %)

OLS Estimation – Testing the CAPM

Example (continuation): 
x_RF <- SFX_da$RF # Extract risk free rate (in %)

T <- length(x_ibm) # Sample size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) #  Log returns for IBM (lost one observation)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out )

RF <- x_RF[-1]/100

ibm_x <- lr_ibm – RF # Define excess returns for IBM

fit_ibm_capm <- lm(ibm_x ~ Mkt_RF) # OLS estimation with lm package in R

> summary(fit_ibm_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005791   0.002487 -2.329   0.0202 *  

xMkt_RF 0.895774 0.053867  16.629   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Q: Is intercept (𝛼 ) equal to 0? Check t-value: 𝑡 = SE[ ]

OLS Estimation – Testing the CAPM
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Example (continuation): 

We use the t-value: �̂�α= SE[ ]= 
-0.005791
0.002487  = -2.329 

 |�̂�α| > 1.96  Reject H0 (CAPM) at 5% level

Conclusion: The CAPM is rejected for IBM at the 5% level. 

Note: You can also reject H0 by looking at the p-value of intercept. 

Interpretation: Given that the intercept is significant (& negative), 
IBM underperformed relative to what the CAPM expected:

- 𝑟 , – 𝑟 : mean(ibm_x) = -0.00073141

- 𝑟 , – 𝑟  (CAPM):  β * mean(Mkt_RF) = 0.895774 * 0.0056489 

= 0.0050601

- Ex-post difference: -0.00073141 - 0.0050601 = -0.00579151 (≈ αIBM) 

OLS Estimation – Testing the CAPM

• We tested (& rejected) the CAPM for one asset only, IBM. But, the 
CAPM should apply to all assets. Suppose we have 𝑁 assets. Then, a 
test for the CAPM involves testing 𝑁 𝛼 ’s:

H0: 𝛼 = 𝛼 = …. = 𝛼 = 0

H0: at least one 𝛼 ≠ 0.

• This test is a joint test. It requires a simultaneous estimation of 𝑁
CAPM equations. Usually, since returns are estimated with a lot of 
noise, portfolios are used. Also, the estimation usually takes into 
account the possible change over time of beta coefficients.

• There are different ways to approach this simultaneous estimation, a 
common approach is a two-step estimation, popularly known as 
Fama-MacBeth (1973). 

OLS Estimation – Testing the CAPM: Remark
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The CAPM also tells a cross-section story for asset returns: Assets 
with higher β should get, on average, higher compensation.

CAPM (cross-section): E[𝑟 – 𝑟 ] = β 𝜆

where 𝜆, in equilibrium, is the market excess return (or factor return).

If we have β ’s for N assets, we can estimate the security market line 
(SML), where we show the effect of β on E[𝑟 – 𝑟 ].

OLS Estimation – Testing the CAPM (CS)

β (systematic risk)

(Overvalued securities)

SML

β 1

E[𝑟 – 𝑟 ]

E[𝑟 – 𝑟 ]
(Undervalued securities)

Example (continuation):

IBM underperformed relative to what the CAPM expected by 

𝛼 -0.005791

Then, according to the CAPM, IBM has been overvalued. The 
average, negative, performance (-0.00073) is the performance of a 
much safer asset, with a small, negative β!

OLS Estimation – Testing the CAPM (CS)

β (systematic risk)

(Undervalued securities)

E[𝑟 – 𝑟 ] = -0.00073

SML

β 0.895774

β E[𝑟 – 𝑟 ] = 0.00506

(Overvalued securities)

E[𝑟 – 𝑟 ]
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Q: Which assets pay a higher return? The SML answers this question: 
Assets with the higher exposure to market risk –i.e., higher β .

A linear DGP consistent with the CAPM is: 
(𝑟 – 𝑟 ) = α+ β 𝜆 +  , i = 1, ..., N

Testing implication of the SML for the cross-section of stock returns:

H0 (CAPM holds in the CS): α= 0  &  𝜆 = E[𝑟 , – 𝑟 ] > 0

H1 (CAPM rejected in the CS): α ≠ 0 and/or 𝜆 ≠ E [𝑟 , – 𝑟 ] > 0 

Note: Fama and French (1992, 1993) estimated variations of the DGP 
with more factors. They found that  was weakly significant or not 
significant (“Beta is dead”) in explaining the C-S of stock returns. The 
debate about  & what (& how many) factors to include continues.

OLS Estimation – Testing the CAPM (CS)


