Lecture 3-b Least Squares - Review of Linear Algebra

Brooks (4 ${ }^{\text {th }}$ edition): Chapter 3

C R. Susmel, 2022 (for private use, not to be posted/shared online).

Review - First Four Classes: Summary

- Defined a random variable (say, stock returns) and how to describe its distribution with moments (mean, variance, skewness, etc).
- Testing hypothesis $\left(\mathrm{H}_{0}\right)$ about the behavior of the RV. For example, the mean return of the S\&P 500 is $0\left(\mathrm{H}_{0}: \mu=0\right)$.
- Building Confidence Intervals: Assuming a distribution or a bootstrap. For example, compute a C.I. for Transaction Exposure in FX Markets and compute a $\operatorname{VaR}(1-\alpha)$.
- Basic R and simple applications.

Modeling a Dependent Variable as a Function

- So far, we focused on one RV only, say stock returns and learning about its distribution, for example, using descriptive statistics. In econometrics, we usually care about a functional relation between y, the dependent variable, and \boldsymbol{x}, a set (a vector!) of explanatory variables.
- In this lecture, we will linearly relate y to $x \&$ an error term, ε :

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}, \quad i=1,2, \ldots ., N
$$

where $\alpha \& \beta$ are parameters to be estimated and ε_{i} is the error term or disturbance. We think of ε_{i} as the effect of individual variation that is not "controlled for" with x_{i}. The disturbance, ε_{i}, is part of the model.

- We call the above equation the Data Generating Process (DGP).

Review - Linear Model: One Variable Case

- DGP: (linear): $\quad y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}, \quad i=1,2, \ldots ., N$.

If we assume $\mathrm{E}\left[\varepsilon_{i}\right]=0$, we have:

$$
\mathrm{E}\left[y_{i}\right]=\alpha+\beta \mathrm{E}\left[x_{i}\right]
$$

Example: The CAPM posits a relation between the excess return of asset $i, y_{i}=r_{i, t}-r_{f}$, and the excess return of the market, $x_{i}=$ $r_{m, t}-r_{f}$. In equilibrium, the CAPM states:

$$
\mathrm{E}\left[\left(r_{i, t}-r_{f}\right)\right]=\beta_{i} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right],
$$

where β_{i} is the sensitivity of asset i to market risk.
CAPM DGP: $y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}, \quad i=1,2, \ldots ., N$.
where $\alpha \& \beta$ are parameters to be estimated. Once we estimate $\alpha \& \beta$, we can test the CAPM for IBM, since according to the CAPM $\alpha=0$.

Review - Linear Model: Multivariate Case

- In the CAPM example, we have that i 's excess returns are only explained by the market. But, we could have used more variables, for example the 3 factors in the standard Fama-French model: Market, SMB (size factor), and HML (book-to-market).

The 3-factor FF model represents a multivariate model for IBM returns:

$$
y_{i}=\alpha+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\beta_{3} x_{3, i}+\varepsilon_{i}
$$

- Though not necessary correct, we usually think of y as the endogenous variable and x as the exogenous, determined "outside" the model.

Goal: Estimation of population parameters $\alpha \& \beta$ to learn the DGP.

Review - Least Squares Estimation

- We relate a dependent variable y to a set of k explanatory variables \boldsymbol{x}. This function depends on unknown parameters, $\boldsymbol{\theta}$, which we want to estimate. The relation between \boldsymbol{y} and \boldsymbol{x} is not exact; there is an error, ε. We have T observations of y and \boldsymbol{x}.

$$
y_{i}=f\left(x_{1, i}, x_{2, i}, \ldots, x_{k, i} ; \boldsymbol{\theta}\right)+\varepsilon_{i}, \quad i=1,2, \ldots ., T .
$$

- The functional form, $f\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$, is dictated by theory or experience. In this class, we mainly work with the linear case:

$$
f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)=\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\beta_{3} x_{3, i}+\ldots+\beta_{k} x_{k, i} .
$$

- Now, we estimate the vector $\boldsymbol{\beta}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$ by minimizing

$$
\mathrm{S}(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{i}^{T} \varepsilon_{i}^{2}=\sum_{i}^{T}\left(y_{i}-\beta_{1} x_{1, i}-\beta_{2} x_{2, i}-\cdots-\beta_{k} x_{k, i}\right)^{2}
$$

We call this estimator the Ordinary Least Squares (OLS) estimator.

Review - OLS for One Variable: Derivation

- LS estimation can be applied to any functional form. In this class, we use a linear function. In this lecture, we derive the OLS formulas for the simplest case: one explanatory variable. Then,

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\varepsilon_{i} \quad \text { (two parameters } \Rightarrow k=2 \text {) }
$$

Objective function:

$$
\begin{aligned}
& \quad \mathrm{S}\left(\boldsymbol{x} ; \beta_{1}, \beta_{2}\right)=\sum_{i}^{T} \varepsilon_{i}^{2}=\sum_{i}^{T}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}= \\
& =\left\{y_{1}-\beta_{1}-\beta_{2} x_{1}\right)^{2}+\left\{y_{2}-\beta_{1}-\beta_{2} x_{2}\right)^{2}+\ldots+\left\{y_{T}-\beta_{1}-\beta_{2} x_{T}\right)^{2}
\end{aligned}
$$

Taking first derivatives with respect to $\beta_{1} \& \beta_{2}$:

$$
\begin{array}{ll}
\left(\beta_{1}\right): 2 \sum_{i}^{T}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)(-1) & \Rightarrow-2 \sum_{i}^{T}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right) \\
\left(\beta_{2}\right): 2 \sum_{i}^{T}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)\left(-x_{i}\right) & \Rightarrow-2 \sum_{i}^{T}\left(y_{i} x_{i}-\beta_{1} x_{i}-\beta_{2} x_{i}^{2}\right)
\end{array}
$$

Review - OLS \& One Variable Case: Derivation

- Now, we set f.o.c.'s
$\left(\beta_{1}\right): \sum_{i}^{T}\left(y_{i}-\mathrm{b}_{1}-\mathrm{b}_{2} x_{i}\right)=0$
$\left(\beta_{2}\right): \sum_{i}^{T}\left(y_{i} x_{i}-\mathrm{b}_{1} x_{i}-\mathrm{b}_{2} x_{i}^{2}\right)=0$
Since we have $k=2$, the f.o.c.'s form a 2 x 2 system of equations, the normal equations.
- Next, we solve for $b_{1} \& b_{2}$, the OLS estimators.

From (1): $\quad \sum_{i}^{T} y_{i}-\sum_{i}^{T} \mathrm{~b}_{1}-\mathrm{b}_{2} \sum_{i}^{T} x_{i}=0$

$$
\Rightarrow \mathrm{b}_{1}=\bar{y}-\mathrm{b}_{2} \bar{x}
$$

From (2): $\sum_{i}^{T} y_{i} x_{i}-\left(\bar{y}-\mathrm{b}_{2} \bar{x}\right) \sum_{i}^{T} x_{i}-\mathrm{b}_{2} \sum_{i}^{T} x_{i}^{2}=0=0$

$$
\begin{aligned}
& \Rightarrow \sum_{i}^{T} y_{i} x_{i}-\bar{y} \sum_{i}^{T} x_{i}-\mathrm{b}_{2}\left(\sum_{i}^{T} x_{i}^{2}-\bar{x} \sum_{i}^{T} x_{i}\right)=0 \\
& \Rightarrow \mathrm{~b}_{2}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\operatorname{cov}\left(y_{i}, x_{i}\right)}{\operatorname{var}\left(x_{i}\right)}
\end{aligned}
$$

Review - OLS \& One Variable Case: CAPM

- Interpretation of coefficients
- b_{1} estimates the constant of the regression: IBM excess returns in excess of Market excess returns. In the CAPM, it should be $0\left(=\alpha_{\mathrm{i}}\right)$.
- b_{2} estimates the slope of the regression. In the CAPM: β_{i}

$$
\frac{\delta y_{i}}{\delta x_{i}}=\beta_{\mathrm{i}}=\frac{\operatorname{cov}\left(r_{i=I B M, t}-r_{f}, r_{m, t}-r_{f}\right)}{\operatorname{var}\left(r_{m, t}-r_{f}\right)}
$$

That is, if Market excess returns increase by one 1%, then IBM excess returns are expected to increase by $\mathrm{b}_{2}\left(=\beta_{\mathrm{j}}\right)$ units (say, $\left.\mathrm{b}_{2} \%\right)$. The $\beta_{\text {IBM }}$ also tells us if IBM is riskier $\left(\beta_{\text {IBM }}>1\right)$ or safer $\left(\beta_{\text {IBM }}<1\right)$ than the market.

Review - OLS \& One Variable Case: CAPM

- Conditional Prediction

Suppose analysts estimate that Market excess returns are 10%, then, we estimate (or predict, given the 10% value for Market excess returns):

Predicted [IBM excess returns $\left.\mid\left(r_{m, t}-r_{f}\right)=.10\right]=\mathrm{b}_{1}+\mathrm{b}_{2} * .10$.

We will call the Predicted $y_{i}=\hat{y}_{\mathrm{i}}=$ fitted value.

Review - OLS: CAPM - R Estimation

Example (continuation):
> summary(fit_ibm_capm)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|) \quad b_{1}$
(Intercept) -0.005791 ${ }^{〔} 0.002487-2.329 \quad 0.0202 *$
xMkt_RF $0.895774 \longleftarrow 0.05386716 .629<2 \mathrm{e}-16$ ***

Signif. codes: $0{ }^{\text {'***’ }} 0.001^{\text {'**’ }} 0.01^{{ }^{*} *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.05887 on 567 degrees of freedom
Multiple R-squared: 0.3278, Adjusted R-squared: 0.3266
F-statistic: 276.5 on 1 and 567 DF, p-value: $<2.2 \mathrm{e}-16$
Interpretation of b_{1} :
$\mathrm{b}_{1}=$ constant. The additional IBM return, after excess market returns are incorporated, is -0.58%. Under the CAPM, b_{1} should be close to 0.

Review - OLS: CAPM - R Estimation

Example (continuation):
Interpretation of b_{2} :
$\mathrm{b}_{2}=$ slope. If market excess returns increase by 1%, IBM excess returns increase by 0.90%. The estimate of $\beta_{\text {IBM }}(\beta<1)$ implies that IBM is less volatile ("safer") than the market.

Conditional prediction of IBM excess returns:
Suppose market excess returns increase are 10%, then we predict IBM excess returns $=-0.005791+0.895774 * .10=0.08378(8.38 \%)$.

Note: According to the CAPM, IBM underperformed:

- IBM excess returns (CAPM) $=0.895774 *$ mean $\left(M k t _R F\right)$

$$
=0.895774 * 0.0056489=0.0050601
$$

- IBM excess returns (sample) $=$ mean $\left(i b m _x\right)=-0.00073141$

Review - OLS: Multivariate Case

- The CAPM is a particular case of what in financial theory we call "factor models." Factors represent the systematic component that drives the cross-section of returns over time. For example, a k-factor model for excess returns is given by:

$$
r_{i, t}-r_{f}=\alpha_{i}+\beta_{1} f_{1, t}+\beta_{2} f_{2, t}+\ldots+\beta_{\mathrm{k}} f_{k, t}+\varepsilon_{i, t}
$$

where $f_{j, t}$ is the j (common) factor at time t, and constant over i, and $\varepsilon_{i, t}$ represents the idiosyncratic component of asset i.

- The higher the exposure -i.e., β_{i} - the higher the expected compensation.
- The CAPM has only one factor: market excess returns ("the market").

Review - OLS: Multivariate Case

- LS is a general estimation method. It allows any functional form for the relation between y_{i} and x_{i}. and it allows y_{i} to be related to many explanatory variables, like multi-factor models for excess returns.

In this lecture, we cover the case where $f\left(x_{i}, \theta\right)$ is linear. We assume a linear system with k independent variables and T observations. That is,

$$
y_{i}=\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\ldots+\beta_{k} x_{k, i}+\varepsilon_{\mathrm{i}}, \quad i=1,2, \ldots ., T
$$

The whole system (for all i) is:

$$
\begin{gathered}
y_{1}=\beta_{1} x_{11}+\beta_{2} x_{12}+\ldots+\beta_{\mathrm{k}} x_{k 1}+\varepsilon_{1} \\
y_{2}=\beta_{1} x_{12}+\beta_{2} x_{22}+\ldots+\beta_{\mathrm{k}} x_{k 2}+\varepsilon_{2} \\
\quad \ldots . \quad \ldots . . \quad \ldots . \quad \ldots \\
y_{T}=\beta_{1} x_{1 \mathrm{~T}}+\beta_{2} x_{2 \mathrm{~T}}+\ldots+\beta_{\mathrm{k}} x_{k \mathrm{~T}}+\varepsilon_{\mathrm{T}}
\end{gathered}
$$

Review - OLS: Multivariate Case

- It is cumbersome to write the whole system. Using linear algebra, we can rewrite the system in a more compact and simplify derivations.

Example: Using vector \& matrix notation, we write the system as:

$$
y=f(\mathbf{X}, \boldsymbol{\theta})+\boldsymbol{\varepsilon}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

Notation: $\mathbf{y}, \boldsymbol{\beta} \& \boldsymbol{\varepsilon}$ are vectors:

$$
y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{T}
\end{array}\right], \quad \varepsilon=\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{T}
\end{array}\right], \quad \& \quad \beta=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]
$$

\mathbf{X} is a matrix: $\quad \boldsymbol{X}=\left[\begin{array}{cccc}x_{11} & x_{21} & \cdots & x_{k 1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1 T} & x_{2 T} & \cdots & x_{k T}\end{array}\right]$

Linear Algebra: Brief Review - Matrix

- Life (\& notation) becomes easier with linear Algebra. Concepts:
- A Matrix.

A matrix is a set of elements, organized into rows and columns

> columns

$$
\text { rows }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- a and d are the diagonal elements.
- b and c are the off-diagonal elements.
- Matrices are like plain numbers in many ways: they can be added, subtracted, and, in some cases, multiplied and inverted (divided).

Linear Algebra: Matrices and Vectors

Examples:

$$
A=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right] ; \quad b=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]
$$

- Dimensions of a matrix: numbers of rows by numbers of columns. The Matrix \mathbf{A} is a 2×2 matrix, b is a 1×3 matrix.
- A matrix with only 1 column or only 1 row is called a vector.
- If a matrix has an equal numbers of rows and columns, it is called a square matrix. Matrix A, above, is a square matrix.
- Usual Notation: Upper case letters $\quad \Rightarrow$ matrices

Lower case $\quad \Rightarrow$ vectors

Linear Algebra: Matrices - Information

- Information is described by data. A tool to organize the data is a list, which we call a vector. Lists of lists are called matrices. That is, we organize the data using matrices, say, \mathbf{X}.
- We think of the elements of \mathbf{X} as data points ("data entries",
"observations"), in economics, we usually have numerical data.
- We store the data in rows. In a $T x k$ matrix, \mathbf{X}, over time we build a database:

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{k 1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1 T} & x_{2 T} & \cdots & x_{k T}
\end{array}\right] \quad \text { row } 1=k \text { entries at time } 1
$$

- Once the data is organized in matrices it can be easily manipulated: multiplied, added, etc. (This is what Excel does very well).

Linear Algebra: Matrices in Econometrics

- We want to estimate a model: $y=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. We collect data, T (or N) observations, on a dependent variable, \boldsymbol{y}, and on k explanatory variables, \mathbf{X}.
- Usual notation: vectors are column vectors: $\mathrm{y} \& \boldsymbol{x}_{\boldsymbol{j}}$ are $T \mathrm{x} 1$ vectors:

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{T}
\end{array}\right] \quad \& \quad \boldsymbol{x}_{j}=\left[\begin{array}{c}
x_{j 1} \\
x_{j 2} \\
\vdots \\
x_{j T}
\end{array}\right] \quad j=1, \ldots, k
$$

\mathbf{X} is a $T_{\mathrm{x}} k$ matrix: $\quad \boldsymbol{X}=\left[\begin{array}{cccc}x_{11} & x_{21} & \cdots & x_{k 1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1 T} & x_{2 T} & \cdots & x_{k T}\end{array}\right]$
Its columns are the $k T \mathrm{x} 1$ vectors $\boldsymbol{x}_{\boldsymbol{j}}$. It is common to treat \boldsymbol{x}_{1} as vector of ones, i.

Linear Algebra: Matrices in Econometrics

- In general, we import matrices (information) to our programs.

Example: In R, we use the read function, usually followed by the type of data we are importing. Below, we import a comma separated values (csv) file with monthly CPIs and exchange rates for 20 different countries, then we use the read.csv function:

```
PPP_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/ppp_m.csv",head=TRUE,sep=
",")
The names() function describes the headers of the file imported (41 headers):
> names(PPP_da)
[1] "Date" "BG_CPI" "IT_CPI" "GER_CPI" "UK_CPI"
[6] "SWED_CPI" "DEN_CPI" "NOR_CPI" "IND_CPI" "JAP_CPI"
[11] "KOR_CPI" "THAI_CPI" "SING_CPI" "MAL_CPI" "KUW_CPI"
[16] "SUAD_CPI" "CAN_CPI" "MEX_CPI" "US_CPI" "EGY_CPI"
[...]
```


Linear Algebra: Matrices in Econometrics

Example (continuation):

The summary() function provides some stats of variables imported:

```
>summary(PPP_da)
    Date BG_CPI IT_CPI GER_CPI
1/15/1971: 1 Min. : 19.77 Min. : 5.90 Min. : 31.20
1/15/1972: 1 1st Qu.: 49.32 1st Qu.: 32.25 1st Qu.: 57.17
1/15/1973: 1 Median:69.91 Median:67.30 Median:75.30
1/15/1974: 1 Mean :67.92 Mean :60.14 Mean :72.29
1/15/1975: }1\mathrm{ 3rd Qu.: 89.40 3rd Qu.: }89.65 3rd Qu.: 91.17
1/15/1976: 1 Max. :109.71 Max. :103.50 Max. :106.60
(Other) :588
```

We extract a variable from the matrix by the name of file followed by $\$$ and the header of variable:

```
x_chf <- PPP_da$CHF_USD # extract CHF/USD exchange rate data
```

We can transform the vector x_chf. For example, for \% changes:
lr_chf $<-\log \left(x _c h f[-1] / x _c h f[-T]\right) \quad$ \# create \log returns (changes) for the CHF/USD

Linear Algebra: Special Matrices

- Identity Matrix, I: A square matrix with 1's along the
diagonal and 0's everywhere else. Similar to scalar "1": $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ $\mathbf{A} * \mathbf{I}=\mathbf{A}$
- Null matrix, 0: A matrix in which all elements are 0's.

Similar to scalar " 0 ":
$\mathrm{A} * 0=0$
\Rightarrow off-diagonal elements are zero.

- Both are examples of symmetric and idempotent matrices.
- Symmetric: $\quad \mathbf{A}=\mathbf{A}^{\mathrm{T}}$
- Idempotent: $\mathbf{A}=\mathbf{A}^{2}=\mathbf{A}^{3}=\ldots$R. Susmel, 2022 (for private use, not to be posted/shared online).

Linear Algebra: Multiplication

- We want to multiply two matrices: $\mathbf{A} * \mathbf{B}$. But, multiplication of matrices requires a conformability condition.
- Conformability condition: The column dimensions of the lead matrix \mathbf{A} must be equal to the row dimension of the lag matrix \mathbf{B}.
- If \mathbf{A} is an $(m \times \boldsymbol{n})$ and \mathbf{B} an $(\boldsymbol{n} \times \boldsymbol{p})$ matrix (\mathbf{A} has the same number of columns as \mathbf{B} has rows), then we define the product of $\mathbf{A B}$:
$\mathbf{A B}=\mathbf{C}$ is $(m \times p)$ matrix with its $i k^{\text {th }}$ element is $c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}$.
- What are the dimensions of the vector, matrix, and result?

$$
\left.\begin{array}{rl}
\boldsymbol{a} \mathbf{B} & =\left[a_{11} a_{12}\right]\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]=\boldsymbol{c}=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13}
\end{array}\right] \\
& =\left[a_{11} b_{11}+a_{12} b_{21}\right.
\end{array} a_{11} b_{12}+a_{12} b_{22} \quad a_{11} b_{13}+a_{12} b_{23}\right] . ~ \$
$$

- Dimensions: $a(1 \times 2), \mathrm{B}(2 \times 3) \Rightarrow c(1 \times 3)$

Linear Algebra: Multiplication

Example: We want to multiply $\mathbf{A}(2 \times 2)$ and $\mathbf{B}(2 \times 2)$, where \mathbf{A} has elements $a_{i j}$ and \mathbf{B} has elements $b_{j k}$. Recall the $i k^{\text {th }}$ element is

$$
c_{i k}=\sum_{j=1}^{n=2} a_{i j} b_{j k}
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right]
$$

$$
\mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]
$$

$\mathbf{C}=\left[\begin{array}{ll}2 & 1 \\ 7 & 9\end{array}\right] *\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]=\left[\begin{array}{cc}\mathbf{4}=2 * 1+1 * 2 & \mathbf{3}=2 * 0+1 * 3 \\ \mathbf{2 5}=7 * 1+9 * 2 & \mathbf{2 7}=7 * 0+9 * 3\end{array}\right]$ $C_{2 \times 2}=A_{2 \times 2} * B_{2 \times 2}$

- Dimensions: $A(2 \mathrm{x} 2), \mathrm{B}(2 \mathrm{x} 2) \Rightarrow \mathrm{C}(2 \mathrm{x} 2)$, a square matrix.

Linear Algebra: Multiplication

Example: We want to multiply $\mathbf{X}(2 \times 2)$ and $\boldsymbol{\beta}(2 \times 1)$, where \mathbf{X} has elements $x_{i j}$ and \mathbf{b} has elements β_{j} :

$$
\mathbf{X}=\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{12} & x_{22}
\end{array}\right] \quad \& \quad \boldsymbol{\beta}=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]
$$

We compute

$$
y=X \beta
$$

Recall the $i^{\text {th }}$ element is

$$
y_{i}=\sum_{j=1}^{n=2} x_{i j} \beta_{j}
$$

Then,

$$
\boldsymbol{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{12} & x_{22}
\end{array}\right] *\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{11} \beta_{1}+x_{21} \beta_{2} \\
x_{12} \beta_{1}+x_{22} \beta_{2}
\end{array}\right]
$$

- Dimensions: $\mathbf{X}(2 \mathrm{x} 2), \boldsymbol{\beta}(2 \mathrm{x} 1) \Rightarrow \boldsymbol{y}(2 \mathrm{x} 1)$, a row vector.

Linear Algebra: Transpose

- The transpose of a matrix \mathbf{A} is another matrix \mathbf{A}^{T} (also written \mathbf{A}^{\prime}) created by any one of the following equivalent actions: -write the rows (columns) of \mathbf{A} as the columns (rows) of \mathbf{A}^{T} - reflect \mathbf{A} by its main diagonal to obtain \mathbf{A}^{T}

Example: $\quad A=\left[\begin{array}{rrr}3 & 8 & -9 \\ 1 & 0 & 4\end{array}\right] \Rightarrow A^{\prime}=\left[\begin{array}{rr}3 & 1 \\ 8 & 0 \\ -9 & 4\end{array}\right]$

- If \mathbf{A} is a $m \times n$ matrix $\quad \Rightarrow \mathbf{A}^{T}$ is a $n \times m$ matrix.
- $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
- Conformability changes unless the matrix is square.
- $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$

Linear Algebra: Transpose - Example (X')

- In econometrics, an important matrix is $\mathbf{X}^{\prime} \mathbf{X}$. Recall \mathbf{X} (usually, the matrix of k independent explanatory variables):

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{k 1} \\
x_{12} & x_{22} & \cdots & x_{k 2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1 T} & x_{2 T} & \cdots & x_{k T}
\end{array}\right] \quad \text { a (Tx } k \text {) matrix }
$$

Then,

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 T} \\
x_{21} & x_{22} & \cdots & x_{2 T} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k 1} & x_{k 2} & \cdots & x_{k T}
\end{array}\right] \quad \text { a }(k \times T) \text { matrix }
$$

Linear Algebra: Math Operations

- Addition, Subtraction, Multiplication

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]} & \text { Just add elements } \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right]} & \text { Just subtract elements } \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]} & \begin{array}{l}
\text { Multiply each row by } \\
\text { each column and add }
\end{array} \\
k\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right] & \begin{array}{l}
\text { Multiply each element } \\
\text { by the scalar }
\end{array}
\end{array}
$$

Linear Algebra: Math Operations - Examples

- Matrix addition
- Matrix multiplication

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right]+\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] } & =\left[\begin{array}{cc}
5 & 2 \\
7 & 11
\end{array}\right] \\
A_{2 \times 2}+B_{2 \times 2} & =C_{2 \times 2}
\end{aligned}
$$

- Matrix subtraction

$$
\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
5 & 6
\end{array}\right]
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right] \times\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right] } & =\left[\begin{array}{cc}
4 & 3 \\
25 & 27
\end{array}\right] \\
A_{2 \times 2} \times B_{2 \times 2} & =C_{2 \times 2}
\end{aligned}
$$

- Scalar multiplication

$$
\frac{1}{8}\left[\begin{array}{ll}
2 & 4 \\
6 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 / 4 & 1 / 2 \\
3 / 4 & 1 / 8
\end{array}\right]
$$

Linear Algebra: Math Operations - $\varepsilon^{\prime} \varepsilon$

- In LS estimation, we minimize a sum of square errors

$$
\mathrm{S}\left(x_{i}, \boldsymbol{\beta}\right)=\sum_{i=1}^{T} \varepsilon_{i}^{2}
$$

Since $\boldsymbol{\varepsilon}$ is $T \times 1$ vector, we use linear algebra to write the sum of squares of its elements as (dot product of $2 T \times 1$ vectors):

$$
\mathrm{S}\left(x_{i}, \boldsymbol{\beta}\right)=\sum_{i=1}^{T} \varepsilon_{i}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}
$$

Check:

$$
\boldsymbol{\varepsilon}^{\prime} \varepsilon=\left[\begin{array}{lll}
\varepsilon_{1} & \varepsilon_{2} \ldots . & \varepsilon_{T}
\end{array}\right] *\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{T}
\end{array}\right]=\left[\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots .+\varepsilon_{T}^{2}\right]=\sum_{i=1}^{T} \varepsilon_{i}^{2}
$$

Thus, we pick $\boldsymbol{\beta}$ to minimize:

$$
S\left(x_{i}, \boldsymbol{\beta}\right)=\varepsilon^{\prime} \varepsilon=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})
$$

Linear Algebra: Math Operations - $\mathbf{X}^{\prime} \mathbf{X}$

- A special matrix in econometrics, $\mathbf{X}^{\prime} \mathbf{X}$ (a $k \times k$ matrix, with $k=2$):
- $\boldsymbol{X}(T \mathrm{x} 2)=\left[\begin{array}{cc}x_{11} & x_{21} \\ x_{12} & x_{22} \\ \vdots & \vdots \\ x_{1 T} & x_{2 T}\end{array}\right]$
- $\boldsymbol{X}^{\prime}(2 \mathrm{x} T)=\left[\begin{array}{llll}x_{11} & x_{12} & \cdots & x_{1 T} \\ x_{21} & x_{22} & \cdots & x_{2 T}\end{array}\right] \quad$ Sum of squares of $x_{i}(i=1,2)$
$\boldsymbol{X}^{\prime} \boldsymbol{X}(2 \mathrm{x} 2)=\left[\begin{array}{cc}\sum_{i=1}^{T} x_{1 i}^{2} & \sum_{i=1}^{T} x_{2 i} x_{1 i} \\ \sum_{i=1}^{T} x_{1 i} x_{2 i} & \sum_{i=1}^{T} x_{2 i}^{2}\end{array}\right]=\sum_{i=1}^{T}\left[\begin{array}{cc}x_{1 i}^{2} & x_{2 i} x_{1 i} \\ x_{2 i} x_{1 i} & x_{2 i}^{2} \uparrow\end{array}\right]$
$=\sum_{i=1}^{T}\left[\begin{array}{l}x_{1 i} \\ x_{2 i}\end{array}\right]\left[\begin{array}{ll}x_{1 i} & x_{2 i}\end{array}\right] \quad$ Sum of cross products of $x_{1} x_{2}$
$=\sum_{i=1}^{T} x_{i} x_{i}{ }^{\prime}$

Linear Algebra: Math Operations - X' X

- In general, with a $k x k \mathbf{X}^{\prime} \mathbf{X}$ matrix:
- $\boldsymbol{X}(T \mathrm{x} k)=\left[\begin{array}{cccc}x_{11} & x_{21} & \cdots & x_{k 1} \\ x_{12} & x_{22} & \cdots & x_{k 2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1 T} & x_{2 T} & \cdots & x_{k T}\end{array}\right] \& \boldsymbol{X}^{\prime}=\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 T} \\ x_{21} & x_{22} & \cdots & x_{2 T} \\ \vdots & \vdots & \ddots & \vdots \\ x_{k 1} & x_{k 2} & \cdots & x_{k T}\end{array}\right]$
- $\boldsymbol{X}^{\prime} \boldsymbol{X}(k \times k)=\left[\begin{array}{cccc}\sum_{i=1}^{T} x_{1 i}^{2} & \sum_{i=1}^{T} x_{1 i} x_{2 i} & \cdots & \sum_{i=1}^{T} x_{1 i} x_{k i} \\ \sum_{i=1}^{T} x_{2 i} x_{1 i} & \sum_{i=1}^{T} x_{2 i}^{2} & \cdots & \sum_{i=1}^{T} x_{2 i} x_{k i} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{T} x_{k i} x_{1 i} & \sum_{i=1}^{T} x_{k i} x_{2 i} & \cdots & \sum_{i=1}^{T} x_{k i}^{2}\end{array}\right]=$

$$
=\sum_{i=1}^{T}\left[\begin{array}{ccc}
x_{1 i}^{2} & \cdots & x_{1 i} x_{k i} \\
\vdots & \ddots & \vdots \\
x_{k i} x_{1 i} & \cdots & x_{k i}^{2}
\end{array}\right] \quad \text { (a symmetric matrix) }
$$

Linear Algebra: Inverse of a Matrix

- Identity matrix: AI = A, where $I_{j}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right]$

Notation: \boldsymbol{I}_{j} is a $\boldsymbol{j} \mathbf{x} \boldsymbol{j}$ identity matrix.

- Given $\mathbf{A}(m \times n)$, the matrix $\mathbf{B}(n \times m)$ is a right-inverse for \mathbf{A} iff $\mathbf{A B}=\mathbf{I}_{\mathrm{m}}$
- Given $\mathbf{A}(m \times n)$, the matrix $\mathbf{C}(n \times m)$ is a left-inverse for \mathbf{A} iff $\mathbf{C A}=\mathbf{I}_{\mathrm{n}}$
- Theorem: If $\mathbf{A}(m \times n)$, has both a right-inverse \mathbf{B} and a left-inverse \mathbf{C}, then $\mathbf{C}=\mathbf{B}=\mathbf{A}^{-1}$

Note:

- If \mathbf{A} has both a right and a left inverse, it is a square matrix ($\boldsymbol{m}=\boldsymbol{n}$). It is called invertible. We say "the matrix \mathbf{A} is non-singular."
- This matrix, \mathbf{A}^{-1}, is unique.
- If $\operatorname{det}(\mathbf{A}) \neq 0 \quad \Rightarrow \mathbf{A}$ is non-singular.

Linear Algebra: Symmetric Matrices

Definition:

$$
\text { If } \mathbf{A}^{\prime}=\mathbf{A} \text {, then } \mathbf{A} \text { is called a symmetric matrix. }
$$

- In many applications, matrices are often symmetric. For example, in statistics the correlation matrix and the variance covariance matrix.
- Symmetric matrices play the same role as real numbers do among the complex numbers.
- We can do calculations with symmetric matrices like with numbers: for example, we can solve $\mathbf{B}^{2}=\mathbf{A}$ for \mathbf{B} if \mathbf{A} is symmetric matrix (\& \mathbf{B} is square root of \mathbf{A}.) This is not possible in general.
- $\mathbf{X} \mathbf{X}$ is symmetric. It plays a very important role in econometrics.

Linear Algebra: Operations in \mathbf{R}

- Many ways to create a vector (c, 2:7, seq, rep, etc) or a matrix (c, cbind, rbind). We use $\mathbf{c}()$, the combine function:

```
v1<-c(1, 3, 8)
# a (3x1) vector (vectors are usually treated as a column list)
> v1
[1]138
A <- matrix(c(1, 2, 3, 7, 8, 9), ncol = 3) # a (2x3) matrix
A
    [,1] [,2] [,3]
[1,] 1 1 3 8
[2,] 2 7 7 9
B <- matrix (c(1, 3, 1, 1, 2, 0), nrow = 3)
>B
    [,1] [,2]
[1,] 1 1
[2,] 3 2
[3,] }1
```


Linear Algebra: Operations in \mathbf{R}

- Now, we use rbind to create \mathbf{A} and cbind to create \mathbf{B}
$\mathrm{v} 1<-\mathrm{c}(1,3,8)$
\# a (3x1) vector
$\mathrm{v} 2<-\mathrm{c}(2,7,9)$
A $<-\operatorname{rbind}(\mathrm{v} 1, \mathrm{v} 2)$
$>$ A $\quad \#$ a (2×3) matrix
[,1] [,2] [,3]
v1 $1 \begin{array}{lll}1 & 3\end{array}$
$\begin{array}{llll}\mathrm{v} 2 & 2 & 7 & 9\end{array}$
v3 $<-\mathrm{c}(1,3,1)$
v4 <- c(1, 2, 0)
B $<-\operatorname{cbind}(\mathrm{v} 3, \mathrm{v} 4)$
$>$ B \# a (3x2) matrix
v3 v4
[1,] 11
[2,] 32
[3,] 10R. Susmel, 2022 (for private use, not to be posted/shared online).

Linear Algebra: Operations in \mathbf{R}

- Matrix addition/subtraction: +/- -element by element.
- Matrix multiplication: \%*\%
$\mathrm{C}<-\mathrm{A} \% * \% \mathrm{~B} \quad$ \#A is 2 x 3 ; B is $3 \times 2 \Rightarrow \mathrm{C}$ is 2×2
> C
[1] [,2]
[1,] $18 \quad 7$
[2, $32 \quad 16$
- Scalar multiplication: *
$>2 * \mathrm{C} \quad$ \# elementwise multiplication of C by scalar 2
[1] [,2]
$[1]$,
[2,] 6432

Note: Usually, matrices will be data -i.e., read as input.

Linear Algebra: Operations in \mathbf{R}

- Dot product " \bullet " is a function that takes pairs of vectors and produces a number. For vectors $\mathbf{c} \& \mathbf{z}$, it is defined as:

$$
\boldsymbol{c} \cdot \mathbf{z}=\boldsymbol{c}^{\prime} \mathbf{z}=\mathbf{z}^{\prime} \boldsymbol{c}=c_{1} * z_{1}+c_{2} * z_{2}+\ldots+c_{n} * z_{n}=\sum_{i=1}^{n} c_{i} z_{i}
$$

- Dot product with 2 vectors: v1 - v2 produces a sum of the elementwise multiplied elements of both vectors

$$
>\mathrm{t}(\mathrm{v} 1) \% * \% \mathrm{v} 2 \quad \# \mathrm{v} 1<-\mathrm{c}(1,3,8) \& \mathrm{v} 2<-\mathrm{c}(2,7,9)
$$

[1]
[1,] 95

- Dot product with a vector itself: v1 • v1 produces a sum of the square elements of vector

[^0]
Linear Algebra: Operations in \mathbf{R}

- Dot product with \boldsymbol{i} (a vector of ones): sum of elements of vector
$\mathrm{i}<-\mathrm{c}(1,1,1) \quad$ \# define a unit vector
$>\mathrm{t}(\mathrm{i}) \% * 0 \mathrm{v} 1 \quad \# \mathrm{v} 1<-\mathrm{c}(1,3,8)$
[1]
[1,] 12
- Product of 2 vectors: $\mathrm{v} 1 \& \mathrm{t}(\mathrm{v} 2)$: A (3x3) matrix.
$>\mathrm{v} 1 \% * \% \mathrm{t}(\mathrm{v} 2) \quad \# \mathrm{v} 2<-\mathrm{c}(2,7,9) \quad-\mathrm{a}(3 \mathrm{x} 1)$ vector $\mathrm{x}(1 \times 3)$ vector
[1] [2] [3]
$\begin{array}{llll}{[1,]} & 2 & 7 & 9\end{array}$
$\begin{array}{llll}{[2,]} & 6 & 21 & 27\end{array}$
[3,] $16 \quad 56 \quad 72$

Property of dot product: If the dot product of two vectors is equal to zero, then the vectors are orthogonal (perpendicular or " \perp ") vectors. We interpret this as "the vectors are uncorrelated."

Linear Algebra: Operations in \mathbf{R}

- Matrix transpose: \mathbf{t}

- $\mathbf{X}^{\prime} \mathbf{X} \quad$ (a symmetric matrix)
$>\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B} \quad$ \# command crossprod (B) is more efficient
[,1] [,2]
[1,] $11 \quad 7$
[2,] $7 \quad 5$
- Determinant: det
$>\operatorname{det}(\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B}) \quad \#$ Matrix has to be square. If $\operatorname{det}(\mathbf{A})=0=>\mathbf{A}$ non-invertible
[1] 6R. Susmel, 2022 (for private use, not to be posted/shared online).

Linear Algebra: Operations in \mathbf{R}

- $\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}$: Inverse: solve
$>$ solve $(\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B}) \quad$ \#Matrix inside solve () has to be square
[,1] [,2]
[1,] $0.8333333-1.166667$
[2,] -1.1666667 1.833333
- Take the diagonal elements of a matrix A: $\operatorname{diag}()$
$>\operatorname{diag}($ solve $(\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B}))$
[1] 0.83333331 .833333
- Square root of (positive) elements of a matrix A: sqrt()
$>\operatorname{sqrt}(\operatorname{diag}(\operatorname{solve}(\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B})))$
v3 v4
0.91287091 .3540064

Linear Algebra: Example 1 - Linear DGP

- There is a functional form relating a dependent variable, y, and k explanatory variables, \mathbf{X}. The functional form is linear, but it depends on k unknown parameters, $\boldsymbol{\beta}$. The relation between \boldsymbol{y} and \mathbf{X} is not exact. There is an error, $\boldsymbol{\varepsilon}$. We have T observations of \boldsymbol{y} and \mathbf{X}.
- Then, the data is generated according to:

$$
y_{i}=\sum_{j=1}^{k} x_{j i} \beta_{j}+\varepsilon_{i} \quad i=1,2, \ldots ., T .
$$

Or

$$
\boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{T}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{k 1} \\
x_{21} & x_{22} & \cdots & x_{k 1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1 T} & x_{2 T} & \cdots & x_{k T}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{T}
\end{array}\right]
$$

Or using matrix notation:

$$
\mathrm{y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon
$$

Linear Algebra: Example 1 - Linear DGP

- Model: $\quad \boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
where $\boldsymbol{y} \& \boldsymbol{\varepsilon}$ are (Tx1); \mathbf{X} is (Tx $\boldsymbol{k})$; and $\boldsymbol{\beta}$ is ($(\mathrm{x} 1)$.
- We call this relation data generating process (DGP).
- Our goal this lecture: Estimate the unknown vector $\boldsymbol{\beta}$.

Linear Algebra: Example 2 - Linear System

- Assume an economic model as system of linear equations with: $a_{i j}$ parameters, where $i=1, . ., m$ rows, $j=1, . .$, n columns x_{i} endogenous variables (n), d_{i} exogenous variables and constants (m).

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=d_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=d_{2} \\
\ldots \ldots \quad \ldots . \\
\ldots . . \quad \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=d_{m}
\end{array}\right.
$$

- We can write this system using linear algebra notation: $\mathbf{A} \mathbf{x}=\boldsymbol{d}$

$$
\begin{aligned}
& \qquad\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\cdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
\ldots \\
d_{m}
\end{array}\right] \quad \boldsymbol{d}=(m \times 1) \text { column vector } \\
& \mathbf{A}=(m \times n) \text { matrix } \\
& \text { - } \mathrm{Q}: \text { What is the nature of the set of solutions to this system? }
\end{aligned}
$$

Linear Algebra: Example 2 - Linear System

- System of linear equations: $\quad \mathbf{A x}=\boldsymbol{d}$
where
$\mathbf{A}=(m \times n)$ matrix of parameters
$\mathbf{x}=$ column vector of endogenous variables ($n \times 1$)
$\boldsymbol{d}=$ column vector of exogenous variables and constants ($m \times 1$)
- Solve for \mathbf{x}^{*}
- Theorem: Given $\mathbf{A}(m \times n)$ invertible. Then, the equation $\mathbf{A x}=\boldsymbol{d}$ has one and only one solution for every $\boldsymbol{d}(m \times 1)$. That is, there is a unique x^{*}.

$$
\Rightarrow \mathbf{x}^{*}=\mathbf{A}^{-1} \boldsymbol{d}
$$

Example: In practice, we avoid computing \mathbf{A}^{-1}, we solve a system.
A <- matrix $(c(1,1,5,7,9,11,10,10,14)$, ncol = 3) $\quad \# \operatorname{check} \operatorname{det}(A)$ for singularity $(\operatorname{det}(A)=-72)$ $\mathrm{d}<-\mathrm{c}(2,5,2)$
$>$ solve(A,d)
[1] -0.7222222 $1.5000000-0.7777778$

Linear Algebra: Linear Dependence and Rank

- A set of vectors is linearly dependent if any one of them can be expressed as a linear combination of the remaining vectors; otherwise, it is linearly independent.
- Formal definition: Linear independence (LI)

The set $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ is called a linearly independent set of vectors iff

$$
c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\ldots .+c_{k} \boldsymbol{u}_{k}=\mathbf{0} \quad \Rightarrow c_{1}=c_{2}=\ldots=c_{k}=0 .
$$

Notes:

- Dependence prevents solving a system of equations (A is not invertible). More unknowns than independent equations.
- The number of linearly independent rows or columns in a matrix is the rank of a matrix $(\operatorname{rank}(\mathbf{A}))$.
- If $\mathbf{A}, \mathrm{a}(k \times k)$ square matrix, has $\operatorname{rank}(\mathbf{A})=k$, then \mathbf{A} is invertible.

Linear Algebra: Linear Dependence and Rank

Examples:
(1) $\quad v_{1}^{\prime}=\left[\begin{array}{ll}5 & 12\end{array}\right]$
$v_{2}^{\prime}=\left[\begin{array}{ll}10 & 24\end{array}\right]$
$\boldsymbol{A}=\left[\begin{array}{cc}5 & 10 \\ 12 & 24\end{array}\right]=\left[\begin{array}{l}v_{1}^{\prime} \\ v_{2}^{\prime}\end{array}\right] \quad$ (a 2×2 matrix)
$2 v_{1}^{\prime}-v_{2}^{\prime}=\mathbf{0} \quad \Rightarrow \operatorname{rank}(\boldsymbol{A})=1 \quad \Rightarrow$ cannot invert \mathbf{A}
(2) $v_{1}=\left[\begin{array}{l}2 \\ 7\end{array}\right] ; v_{2}=\left[\begin{array}{l}1 \\ 8\end{array}\right] ; v_{3}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$;
$A=\left[\begin{array}{lll}2 & 1 & 4 \\ 7 & 8 & 5\end{array}\right]$
$3 v_{1}^{\prime}-2 v_{2}^{\prime}=\left[\begin{array}{ll}6 & 21\end{array}\right]-\left[\begin{array}{ll}2 & 16\end{array}\right]$
$=\left[\begin{array}{ll}4 & 5\end{array}\right]=v_{3}{ }^{\prime}$
$3 v_{1}^{\prime}-2 v_{2}^{\prime}-v_{3}^{\prime}=\mathbf{0} \quad \Rightarrow \operatorname{rank}(\boldsymbol{A})=2$

Linear Algebra: Rules for Vector Derivatives

(1) Linear function: $\boldsymbol{y}=f(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{\gamma}+\omega$
where \boldsymbol{x} and $\boldsymbol{\gamma}$ are k-dimensional vectors and ω is a constant.

- We derive the gradient in matrix notation as follows:

1. Convert to summation notation: $\quad f(\boldsymbol{x})=\sum_{i}^{k} x_{i} \gamma_{i}$
2. Take partial derivative w.r.t. $x_{j}: \quad \frac{\partial}{\partial x_{j}}\left[\sum_{i}^{k} x_{i} \gamma_{i}\right]=\gamma_{j}$
3. Put all the partial derivatives in a vector:

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{k}}
\end{array}\right]=\left[\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{k}
\end{array}\right]
$$

4. Convert to matrix notation: $\quad \nabla f(\boldsymbol{x})=\gamma$

Linear Algebra: Rules for Vector Derivatives

(2) Quadratic form: $\quad \mathrm{q}=f(\boldsymbol{x})=\boldsymbol{x}^{\prime}$ A \boldsymbol{x}
where \boldsymbol{x} is $k \times 1$ vector and \mathbf{A} is a $k \times k$ matrix, with $a_{j i}$ elements.

- Convert \boldsymbol{x} ' $\mathrm{A} \boldsymbol{x}$ to summation notation:

$$
f(\boldsymbol{x})=\boldsymbol{x}^{\prime}\left[\begin{array}{c}
\sum_{j}^{k} a_{j 1} x_{j} \\
\vdots \\
\sum_{j}^{k} a_{j k} x_{j}
\end{array}\right]=\sum_{i}^{k} \sum_{j}^{k} x_{i} a_{j i} x_{j}
$$

- After taking derivatives and some algebra:

If \mathbf{A} is symmetric, then $\nabla f(\boldsymbol{x})=\left(\mathbf{A}^{\prime}+\mathbf{A}\right) \boldsymbol{x}=2 \mathbf{A} \boldsymbol{x}$

Least Squares Estimation with Linear Algebra

- Let's assume a linear system with k independent variables and T observations. That is,

$$
y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots+\beta_{\mathrm{k}} x_{k i}+\varepsilon_{i}, \quad i=1,2, \ldots ., T
$$

The whole system (for all i) is:

$$
\begin{gathered}
y_{1}=\beta_{1} x_{11}+\beta_{2} x_{21}+\ldots+\beta_{\mathrm{k}} x_{k 1}+\varepsilon_{1} \\
y_{2}=\beta_{1} x_{12}+\beta_{2} x_{22}+\ldots+\beta_{\mathrm{k}} x_{k 2}+\varepsilon_{2} \\
\ldots \ldots . \quad \ldots . \quad \ldots . \quad \ldots \\
y_{T}=\beta_{1} x_{1 T}+\beta_{2} x_{2 T}+\ldots+\beta_{\mathrm{k}} x_{k T}+\varepsilon_{2}
\end{gathered}
$$

Using linear algebra we can rewrite the system as:

$$
y=X \beta+\varepsilon
$$

Least Squares Estimation with Linear Algebra

- Using linear algebra notation: $\quad \boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

Vectors will be column vectors: $\mathbf{y}, \mathbf{x}_{\mathrm{j}}$, and $\boldsymbol{\varepsilon}$ are $T \mathrm{x} 1$ vectors:

$$
\begin{aligned}
& \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{T}
\end{array}\right] \quad \Rightarrow \quad \boldsymbol{y}^{\prime}=\left[\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{T}
\end{array}\right] \\
& \boldsymbol{x}_{\boldsymbol{j}}=\left[\begin{array}{c}
x_{j 1} \\
\vdots \\
x_{j T}
\end{array}\right] \quad \Rightarrow \quad \boldsymbol{x}_{\mathrm{j}}^{\prime}=\left[\begin{array}{llll}
x_{j 1} & x_{j 2} & \ldots & x_{j T}
\end{array}\right] \\
& \varepsilon=\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{T}
\end{array}\right] \quad \Rightarrow \quad \varepsilon^{\prime}=\left[\begin{array}{lll}
\varepsilon_{1} & \varepsilon_{2} & \ldots . \\
\left.\varepsilon_{\mathrm{T}}\right]
\end{array}\right] \\
& \mathbf{X} \text { is a } T \mathrm{x} k \text { matrix. } \quad \Rightarrow \quad \mathbf{X}=\left[\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots, \boldsymbol{x}_{k}\right]
\end{aligned}
$$

Least Squares Estimation with Linear Algebra

- Assume $f(\mathbf{X}, \theta)$ is linear: $\quad f(\mathbf{X}, \theta)=\mathbf{X} \boldsymbol{\beta}$
- Objective function: $\mathrm{S}\left(x_{i}, \boldsymbol{\beta}\right)=\Sigma_{\mathrm{i}} \varepsilon_{i}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})$
$=y^{\prime} \boldsymbol{y}-y^{\prime} \mathrm{X} \beta-\beta^{\prime} \mathrm{X}^{\prime} \boldsymbol{y}+\beta^{\prime} \mathrm{X}^{\prime} \mathrm{X} \beta$
$=\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \beta^{\prime} \mathbf{X}^{\prime} \mathbf{y}+\beta^{\prime} \mathbf{X}^{\prime} \mathbf{X} \beta$
- First derivative w.r.t. $\beta: \quad-2 \mathbf{X} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X} \beta$ (a $k x 1$ vector)
- F.o.c. (normal equations): $\quad \mathbf{X}^{\prime} \boldsymbol{y}-\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b}=\mathbf{0} \quad \Rightarrow\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b}=\mathbf{X}^{\prime} \boldsymbol{y}$
- Assuming ($\mathbf{X}^{\prime} \mathbf{X}$) is non-singular-i.e., invertible-, we solve for \mathbf{b} :

$$
\left.\Rightarrow \mathrm{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \quad \text { (a } k \times 1 \text { vector }\right)
$$

Note: \mathbf{b} is called the Ordinary Least Squares (OLS) estimator.
(Ordinary $=f(\mathbf{X}, \theta)$ is linear)

Least Squares Estimation with Linear Algebra

- \mathbf{X} is a $T \mathrm{x} k$ matrix. Its columns are the $k T \mathrm{x} 1$ vectors $\boldsymbol{x}_{\boldsymbol{k}}$. It is common to treat \mathbf{x}_{1} as vector of ones:

$$
\boldsymbol{x}_{1}=\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 T}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] \quad \Rightarrow \quad x_{1}^{\prime}=\left[\begin{array}{llll}
1 & 1 & \ldots . & 1
\end{array}\right]=i^{\prime}
$$

This vector of ones represent the usual constant in the model.

Note: Recall the dot product: Post-multiplying a vector (1xT) $\boldsymbol{x}_{\boldsymbol{k}}$ by \boldsymbol{i} (or $i^{\prime} \boldsymbol{x}_{\boldsymbol{k}}$) produces a scalar, the sum of all the elements of vector $\boldsymbol{x}_{\boldsymbol{k}}$: $\boldsymbol{x}_{k}{ }^{\prime} \boldsymbol{i}=i^{\prime} \boldsymbol{x}_{k}=x_{k 1}+x_{k 2}+\ldots .+x_{k T}=\sum_{i}^{T} x_{k i}$

OLS Estimation - Example in R: IBM returns

Example: CAPM Model for IBM monthly returns:
SFX_da <- read.csv("http:/ /www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv", head=TRUE, sep=",")
x _ibm <- SFX_da\$IBM
x_Mkt_RF <- SFX_da\$Mkt_RF \# Market (CRSP) excess returns (in \%)
x _RF $<$ - SFX_da\$RF \# Risk-free rate (in \%)
$\mathrm{T}<-$ length(x_ibm) \# Data size
lr_ibm <- $\log \left(x _i b m[-1] / x _i b m[-T]\right)$
Mkt_RF <- x_Mkt_RF[-1]/100
RF $<-\mathrm{x} _$RF $[-1] / 100$
ibm_x $<-$ lr_ibm - RF \# IBM Excess returns
$\mathrm{T}<$ - length (ibm_x) \# Data size adjusted by 1 observation
$\mathrm{x} 0<-\operatorname{matrix}(1, \mathrm{~T}, 1) \quad$ \# vector of $1 \mathrm{~s}(\mathrm{Tx} 1)$
$\mathrm{x}<-\operatorname{cbind}(\mathrm{x} 0$, Mkt_RF) \# Matrix $\mathbf{X}(\mathrm{Tx} 2)$

OLS Estimation - Example in R: IBM returns

Example (continuation): CAPM Model for IBM returns:

$\mathrm{b}<-\operatorname{solve}\left(\mathrm{t}(\mathrm{x})^{\%} \% * \% \mathrm{x}\right) \% * \% \mathrm{t}(\mathrm{x})^{\%} \% * \% \mathrm{y} \quad \quad \# \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ (OLS regression)
$>b$
[,1]
-0.005791039
Mkt_RF 0.895773564

Note: We got these coefficient before, using the $\operatorname{lm}()$ function: fit_ibm_capm $<-\operatorname{lm}\left(x _i b m \sim M k t _R F\right)$

[^0]: $>\mathrm{t}(\mathrm{v} 1) \% * \% \mathrm{v} 1$
 [1]
 [1,] 74

