RS - Lec 3 - Regression & LInear Algebra

Lecture 3-b
Least Squares — Review of
Linear Algebra

Brooks (4™ edition): Chapter 3
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Review — Overall Summary

¢ In the first four lectures, we focused on studying one RV at a time,
say stock returns, and learning about its distribution, for example,
using descriptive statistics and testing hypothesis about its moments.

¢ Last class we changed the focus to functional linear relations between
RVs: y (dependent variable) & x (vector of explanatory variables):

Yi=a+Bixg;+Prxg; Tt Brxpi g i=1,2,..,N
where o & the 3’s ate parameters to be estimated and g; is the etror

term or disturbance. We think of €; as the effect of individual { variation
that is not “controlled for” with the x;’s. €; is part of the model.

* We call the above equation the Data Generating Process (DGP).
The DGP represents the model that generates the observed data.
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Review — Linear Model: One Variable Case

* DGP: (linear): Vi = atBx teg, =12 ..

If we assume E[g;] = 0, we have:
Elyi] = a + B E[x;].

Example: The CAPM relates excess return of asset I, ¥; = 1y = 1, to
the excess return of the market, x; = 1y ¢ = 7. In equilibrium:

E[(rye = )] = Bi El(me — 77)],
where f; is the sensitivity of asset i to market risk.
CAPM DGP: y; = a+Bx; + g, i=12,..,N.

where a & [} ate parameters to be estimated. Once we estimate a & 3,
we can test the CAPM for IBM, since according to the CAPM a = 0.

Review — Linear Model: Multivariate Case

¢ In the CAPM DGP, only “the market” explains excess returns for
any asset {. But, there are other models (DGPs) for excess returns with
more explanatory variables, for example, the 3-factor Fama-French
model: Market, SMB (size factor), and HML (book-to-market).

The 3-factor FIF model represents a multivariate model for asset i:

Fama-French DGP: y; =a + B, x1; +Byxp; + By x3; + &

¢ Though not necessary correct, we usually think of y as the endogenons
variable and X as the exogenous variable determined “outside” the
model.

Goal: Estimation of population parameters a & f3 to learn the DGP.
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Review — Least Squares Estimation

* We start with a model, a linear DGP:

Vi =By xi TBaxo; tByxg o Brxg T E
we estimate its parameters by Ordinary Least Squares (OLS). That is we

estimate the vector B = {B}, B,, ..., B;} by minimizing
2
S(x; 8) = Xizq &7 = i (Vi — By %0 — Bz X, — = Br Xi1)

* We take first derivatives with respect to 3, B, ..., Bg. Then, we set
them equal to 0 & get k f.o.c. Finally, we solve for b (OLS estimator).

* For the k = 2, and assuming x; ; = 1, the f.o.c. are:
Bo: Z{i—b,—byx) =0 Q)
B T 0 xi— by x; = b, x) =0

Review — OLS & One Variable Case: Derivation

* Next, we solve for b; & b,, the OLS estimators.
b, =y—b,¥

_ Y-y xi _ cov(yi, X))

2 Y- mx var(x)

* Interpretation of coefficients

- b, estimates the constant of the regression: IBM excess returns in
excess of Market excess returns. In the CAPM, it should be 0 (= «;).

- b, estimates the s/pe of the regression. In the CAPM: f3;

Syi _ B; = cov(Ti=iM,t — Tf, Tmt —Tf)
6x; t var(rme-7f)

That is, if Market excess returns increase by one 1%, then IBM excess

returns are expected to increase by b, (= ;) units (say, b,%).
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Review — OLS & One Variable Case: CAPM

* Interpretation of coefficients

- b, estimates the constant of the regression: IBM excess returns in
excess of Market excess returns. In the CAPM, it should be 0 (= «;).

- b, estimates the s/gpe of the regression. In the CAPM: B;

Syi _ B; = cov(ri=ipm,c — Tf "mit ~Tf)
6x; t var(rme-1f)

That is, if Market excess returns increase by one 1%, then IBM excess
returns are expected to increase by b, (= ;) units (say, b,%). The
Bipy also tells us if IBM is riskier (Bygy >1) ot safer (Bygy <1) than the
market.

Review — OLS & One Variable Case: CAPM

* Conditional Prediction

Suppose analysts estimate that Market excess returns are 2%, then, we
estimate (or predict, given the 2% value for Market excess returns):

Predicted [IBM excess returns | (¢ — 17)=.02] = b; + b, * .02.

We will call the Predicted y; = ¥, = fitted value.
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Review — OLS: CAPM - R Estimation

Example (continuation):

> summary(fit_ibm_capm)

Coefficients:
Estimate Std. Error t value Pr(>|t]) b,
(Intetcept) -0.005791%0. 7 -2.329 0.0202 *
xMkt_RF 0.895774_0.053867 16.629 <2e-16 *** N
— b, = Bcarm
Signif. codes: 0 “**0.001 “*0.01 **0.050.1 > 1

Residual standard error: 0.05887 on 567 degrees of freedom
Multiple R-squared: 0.3278, Adjusted R-squared: 0.3266
F-statistic: 276.5 on 1 and 567 DF, p-value: < 2.2e-16

Interpretation of bl :

b, = constant. The additional IBM return, after excess market returns
are incorporated, is -0.58%. Under the CAPM, b, should be close to
0.

Review — OLS: CAPM - R Estimation

Example (continuation):

Interpretation of by: In addition, the estimate of By (B<1) implies
that IBM is less volatile (“safer”) than the market.

Conditional prediction of IBM excess returns:

Suppose market excess returns increase are 2%, then we predict IBM
excess returns = -0.005791 + 0.895774 * .02 = 0.01212 (1.21%).

Note: According to the CAPM, IBM underperformed:
- IBM excess returns (CAPM) = 0.895774 * mean(Mkt_RF)

= 0.895774 * 0.0056489 = 0.0050601
- IBM excess returns (sample) = mean(ibm_x) = -0.00073141
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Review — OLS: Multivariate Case

e The CAPM is a particular case of what in financial theory we call
“factor models.” Factors represent the systematic component that drives
the cross-section of returns over time. For example, a k-factor model for
excess returns is given by:

Tie =Tp = & + By foe + B2 for T -0 + Bi fir T €ie

where f; ; is the j (common) factor at time ¢, and constant over i, and

€; + represents the idiosyncratic component of asset L.

* The higher the exposure —i.e., B;— the higher the expected
compensation.

* The CAPM has only one factor: market excess returns (“zhe market”).

Review — OLS: Multivariate Case

* LS is a general estimation method. It allows any functional form for
the relation between y; and x;. It also allows y; to be related to many
explanatory variables, like multi-factor models for excess returns.

In this lecture, we cover the case where the DGP is linear. We
assume a linear system with k independent variables and T
observations. That is,

Yi=Brxyi By xo T Brxpi t e, i=12,..,T
The whole system (for all i) is:

V1= Bix; + By Xt Brxy T g
V2= Bixppt Baxgy Tt Brxp T

yr = Bixirt Byxor + o+ Bexyr T &g
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y =X Q+e=XPB+e

Notation: y, B & € ate vectors:

V1 €1
y = : , € = [ : ], &
yr er
X11 X21
X is a matrix: X= [ :
X1t Xor

Review — OLS: Multivariate Case

¢ It is cumbersome to write the whole system. Using linear algebra, we
can rewrite the system in a more compact and simplify derivations.

Example: Using vector & matrix notation, we write the system as:

* A Matrix.

columns
fOws [a b]
c d

* a and d are the diagonal elements.
* b and c are the off-diagonal elements.

Linear Algebra: Brief Review — Matrix

e Life (& notation) becomes easier with linear Algebra. Concepts:

A matrix is a set of elements, organized into rows and columns

* Matrices are like plain numbers in many ways: they can be added,
subtracted, and, in some cases, multiplied and inverted (divided).
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Linear Algebra: Matrices and Vectors

Examples:

_[A11 Q21 _
A= [‘112 ‘122] 3 b=1br by b

* Dimensions of a matrix: numbers of rows by numbers of columns.
The Matrix A is a 2x2 matrix, b is a 1x3 matrix.

* A matrix with only 1 column or only 1 row is called a veczor.
e If a matrix has an equal numbers of rows and columns, it is called a

square matrix. Matrix A, above, is a square matrix.

e Usual Notation: Upper case letters => matrices
Lower case = vectors

Linear Algebra: Matrices — Information

* Information is described by data. A tool to organize the data is a list,
which we call a vector. Lists of lists are called matrices. That is, we
organize the data using matrices, say, X.

* We think of the elements of Xas data points (“data entries”,
“observations”), in economics, we usually have numerical data.

* We store the data in rows. In a Txk matrix, X over time we build a
database:

\xn X1 xkl] row 1 = k entries at time 1
row T = k entries at time T

X1t  Xor v XkT

* Once the data is organized in matrices it can be easily manipulated:
multiplied, added, etc. (This is what Excel does very well).
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Linear Algebra: Matrices in Econometrics

* We want to estimate a model: y = fxq, X, ..., X§). We collect data,
T (or N) observations, on a dependent variable, ¥, and on k
explanatory variables, X.

* Usual notation: vectors are column vectors: y & X; are Tx1 vectors:

V1 Xj1
Xjo

y=|"? & x =7 j=1..k
yr Xt

X111 X217 X

X is a Txk matrix: X=|: oo :
Xir  Xer  t Xkr

Its columns are the k Tx1 vectors X;. It is common to treat X7 as

vector of ones, [.

Linear Algebra: Matrices in Econometrics

¢ In general, we import matrices (information) to our programs.

Example: In R, we use the read function, usually followed by the
type of data we are importing. Below, we import a comma separated
values (csv) file with monthly CPIs and exchange rates for 20 different
countries, then we use the read.csv function:

PPP_da <-
read.csv("http://www.bauer.uh.edu/rsusmel /4397 /ppp_m.csv" head=TRUE,sep=
"’")

The names() function describes the headers of the file imported (41 headers):
> names(PPP_da)

[1] "Date"  "BG_CPI" "IT_CPI" "GER_CPI" "UK_CPI"

[6] "SWED_CPI" "DEN_CPI" "NOR_CPI" "IND_CPI" "JAP_CPI"

[11] "KOR_CPI" "THAI_CPI" "SING_CPI" "MAL_CPI" "KUW_CPI"

[16] "SUAD_CPI" "CAN_CPI" "MEX_CPI" "US_CPI" "EGY_CPI*

[]
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Linear Algebra: Matrices in Econometrics

Example (continuation):

The summary() function provides some stats of variables imported:
>summary(PPP_da)

Date BG_CPI IT_CPI GER_CPI

1/15/1971: 1 Min. :19.77 Min. : 590 Min. :31.20
1/15/1972: 1 1st Qu.: 49.32 1st Qu.: 32.25 1st Qu.: 57.17
1/15/1973: 1 Median : 69.91 Median : 67.30 Median : 75.30
1/15/1974: 1 Mean :67.92 Mean :60.14 Mean :72.29
1/15/1975: 1 3rd Qu.: 89.40 3rd Qu.: 89.65 3rd Qu.: 91.17
1/15/1976: 1 Max. :109.71 Max. :103.50 Max. :106.60
(Other) :588

We extract a variable from the matrix by the name of file followed by
$ and the header of variable:

x_chf <- PPP_da§CHF_USD # extract CHF/USD exchange rate data

We can transform the vector x_chf. For example, for % changes:

T <- length(x_chf) # length of CHF/USD exchange rate data
lr_chf <-log(x_chfl[-1]/x_chf[-T]) # create log returns (changes) for the CHF/USD

Linear Algebra: Special Matrices

diagonal and 0’s everywhere else. Similar to scalar “1”:

e Identity Matrix, I: A square matrix with 1’s along the [1 0 0]
A*I=A

o Null matrix, 0: A matrix in which all elements are 0’s. 0 0 O
Similar to scalar “0: [ ]

A*0=0
* Both are diagona/ matrices = off-diagonal elements are zero.

* Both are examples of symmetric matrices. That is, element a;; is
equal to element aj;. (Later, we'll see A = AT). For example:

2 5 9
A=|5 -1 0 is a symmetric matfix.
9 0 1
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Linear Algebra: Multiplication

* We want to multiply two matrices: A*B. But, multiplication of
matrices requires a conformability condition.

* Conformability condition: The column dimensions of the lead
matrix A must be equal to the row dimension of the lag matrix B.

 If Aisan (mxn) and B an (nxp) matrix (A has the same number
of columns as B has rows), then we define the product of AB:

AB = C is (mxp) matrix with its ik™ element is ¢, = 211_121 aj bj.

Example: Given a(1x2) and B(2x3), we compute aB:
bi1 b1z by3
b21 bZZ b23

= [ay1b11 + ay2by1  ay1bip +agobs;  ag1by3 + agabas]

aB = [a;;a,;] =c=[C11 C1z Cy3]

» Dimensions: a(1x2), B(2x3) = ¢(1x3)

Linear Algebra: Multiplication

Example: We want to multiply A (2x2) and B (2x2), where A has
clements a;j and B has elements bj. Recall the ik™ element is

Cik= Z] 1al] jk
A=[; 4l
1 0]

_[2 1 0 =2*x14+1%2 3=2+x04+1%3
_[ ] [2 3] [5—7*1+9*2 27=7x0+9%3

Coxz = Azxz2 * Baxo

* Dimensions: A(2x2), B(2x2) = C(2x2), a square matrix.

© R. Susmel, 2022 (for private use, not to be posted/shared online).



RS - Lec 3 - Regression & LInear Algebra

Linear Algebra: Multiplication

Example: We want to multiply X (2x2) and B (2x1), where X has
clements x;; and b has elements B;:

] o I S

We compute
y=XB
Recall the i™ element is
Vi = XI5 % By
Then,
B4 x11 x21 _ [*11 B1+ x2152
=D =0 2=

12 x22 g By 222 B

* Dimensions: X(2x2), B(2x1) = y(2x1), a row vectot.

Linear Algebra: Transpose

¢ The transpose of a matrix A is another matrix AT (also written A')
created by any one of the following equivalent actions:

—wtite the rows (columns) of A as the columns (rows) of AT

—reflect A by its main diagonal to obtain AT

31
8 0

-9 4

3

Example: A = [ 1

_Z] = A =

o If Aisa m X nmatrix = Alis a n X m matrix.
“(A)=A
* Conformability changes unless the matrix is square.

* (AB) = BA = (y-Xp) =y -BX
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X11  X21 Xk1
X12 X222 Xk2
X1t Xor XkT
Then,
X11  X12 X1t
X' = X21 X22 XaT
Xk1 Xg2 XkT

Linear Algebra: Transpose — Example (X')

* In econometrics, an important matrix is X'X. Recall X (usually, the
matrix of k independent explanatory vatiables):

a (Txk) matrix

a (kxT) matrix

* Addition, Subtraction, Multiplication

[a b]+'e f [a+e b+ f]
d g hi c+g d+h]

[a — e

Qo
I

¢ d-;

[a b”e f]_[ae+bg af + bh
c dllg hl lce+dg cf+dh

==

c—Jg

k[a b:ka kb
c d kc kd

Linear Algebra: Math Operations

Just add elements

Just subtract elements

Multiply each row by
each column and add

Multiply each element
by the scalar

© R. Susmel, 2022 (for private use, not to be posted/shared online).
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Linear Algebra: Math Operations — Examples
) .. 2 1 3 11_[5 2
Matrix addition [7 9 + [0 o] = [7 1 1]
Ayxa + Baxz = Caxo
e Matrix subtraction [2 1] — [1 0] = [1 1
7 9 2 3 5 6
) o 2 1 1 01_14 3
e Matrix multiplication [7 9] X [2 3] = [2 5 27]
Azxz X Baxy = (g
* Scalar multiplication 1 [2 4] — [1/ 4 1/2
1 3/4 1/8

Linear Algebra: Math Operations — €'¢

* In LS estimation, we minimize a sum of square errors

S(xi> B) = ’lr=1 (C’LZ

Since € is Tx1 vector, we use linear algebra to write the sum of
squares of its elements as (dot product of 2 Tx1 vectors):

S(xi, B) = ?:1 81'2 =¢'e (a scalar)
Check:
&1
ge=[g & ..e7] % [ : ] = [g% +g% +....+8%~] = ?2181_2
er

Thus, we pick B to minimize:

S(xi, B) = €t = (y - XB)' (v - XP)
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Linear Algebra: Math Operations — X' X

A special matrix in econometrics, X'X (a kxk matrix, with k = 2):

X11  X21

X X
« X(Ix =" 7T

XiT  XoT
o X'(2xD)= [X11 X122 " xlT] Sum of squares of x; (I = 1, 2)
[X21 X220 Xor
r T .2 2
X XoiX x5 XoiX1i
X'X(2X2) — i=11i 1 1 20 11] 2 l 1i 212 11]
_Zi=1 X1iX2i I, 1 21 X2iX1i X2i
_ xu X .
= Ji=1 ; [X1i  X2i] Sum of cross products of x; x;
Zl lxlxl
. . 1
Linear Algebra: Math Operations — X' X
¢ In general, with a kxk X'X matrix:
X11 X221 "t Xga X11 X120 XaT
X12 X22 "t Xg2 X21 X2 "t Xor
° X(Ixk) = : - L [&XT=1] . : - :
X1t  Xor v Xkt Xk1 Xg2 0 Xgr
T .2 T T
i=1%1i Di= 1x1ix2i o D=1 XXk
T T T
o XX (fexk) = | Zi=1X2i%1i i= 1le o Kz XXk
T T T .2
Yi=1 XkiX1i Zi:l XpiXoi i= 1xkl
2 s
X1i X1iXki
= Di=1 : : (a symmetric matrix)
2
XkiX1i 0 X

© R. Susmel, 2022 (for private use, not to be posted/shared online).
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Linear Algebra: Inverse of a Matrix

1.0 - 0
* Identity matrix: AT = A, where [; = 0 1 0
0 0 - 1

Notation: I is a jxj identity matrix.

 Given A (mxn), the matrix B (1) is a right-inverse for A iftf AB=I
e Given A (mx#), the matrix C (nxm) is a left-inverse for A itf CA =1

e Theorem: If A (#xn), has both a right-inverse B and a left-inverse C,
then C=B = A

Note:

- If A has both a right and a left inverse, it is a square matrix
(m=n). It is called invertible. We say “the matrix A is non-singular.”’

- This matrix, AL, is unique.
- If det(A) # 0 = A is non-singular.

Linear Algebra: Symmetric Matrices

Definition:

If A' = A, then A is called a symmetric matrix.

* In many applications, matrices are often symmetric. For example, in
statistics the correlation matrix and the variance covariance matrix.

* Symmetric matrices play the same role as real numbers do among
the complex numbers.

* We can do calculations with symmetric matrices like with numbers:
for example, we can solve B2 = A for B if A is symmetric matrix (&
B is square root of A.) This is not possible in general.

* X'X is symmetric. It plays a very important role in econometrics.
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Linear Algebra: Operations in R
* Many ways to create a vector (c, 2:7, seq, rep, etc) or a matrix (c,
cbind, rbind). We use ¢(), the combine function:
vl <-¢(1,3,8) # a (3x1) vector (vectors are usually treated as a column list)
>vl
11138
A <- matrix(c(1, 2, 3, 7, 8, 9), ncol = 3) # a (2x3) matrix
>A
11121 13
) 1 3 8
2] 2 7 9
B <- matrix(c(1, 3, 1, 1, 2, 0), nrow = 3)
>B
111,21
) 1 1
2] 3 2
3] 1 0

Linear Algebra: Operations in R

* Now, we use tbind to create A and cbind to create B
vl <-¢(1,3,8) # a (3x1) vector

v2 < ¢(2,7,9)

A <-tbind(v1, v2)

> A # a (2x3) matrix
L1121 [3]

vi 1 3 8

v2 2 7 9

v3<-¢(1,3,1)

v4 <-c(1,2,0)

B <- cbind(v3,v4)

>B # a (3x2) matrix
v3 v4

1) 11

2] 32

3] 10
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Linear Algebra: Operations in R
e Matrix addition/subtraction: +/- —element by element.

* Matrix multiplication: %*%
C <- A%*%B #A is 2x3; Bis 3x2 = Cis 2x2
>C
L1 2]
[1] 18 7
2] 32 16

e Scalar multiplication: *
>2*C # elementwise multiplication of C by scalar 2

(1112
[1] 36 14
[2] 64 32

Note: Usually, matrices will be data —i.e., read as input.

Linear Algebra: Operations in R
* Dot product “*” is a function that takes pairs of vectors and
produces a number. For vectors ¢ & z, it is defined as:

cez=C'z=7'c=ci %21+ %2y + ..t Cyu¥zy =067

* Dot product with 2 vectors: vl ® v2 produces a sum of the
elementwise multiplied elements of both vectors
> t(v1) %*% v2 #vl <-c(1,3,8) &v2 <-c(2,7,9)
L1l
[1,] 95

* Dot product with a vector itself: vl * vl produces a sum of the
square elements of vector
> t(v1) %*% v1 #vl <-c(l,3,8) => 172 + 3°2 + 8°2 = 1+9+64

[1]
(1] 74
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Linear Algebra: Operations in R

* Dot product with t (a vector of ones): sum of elements of vector

1<-c(1,1,1) # define a unit vector
> t(i) %*% vl #vl<-c(1,3,98)
L1l

¢ Product of 2 vectors: vl & t(v2): A (3x3) matrix.

> v1%*%t(v2) Hv2<-¢(2,7,9) --a (3x1) vector x (1x3) vector
L1121 [3]

[ty 2 7 9

2] 6 21 27

[3] 16 56 72

Property of dot product: If the dot product of two vectors is equal to
zero, then the vectors are orthogonal (perpendicular or ““=”) vectors. We
interpret this as “the vectors are #ncorrelated.”

Linear Algebra: Operations in R

* Matrix transpose: t

> t(B) #B is 3x2 => (B) is 2x3 >B
[)1] [’2] [33] v3 v4
) 1 3 1 (L) 11
2132
2] 1 2 0 3]10
* X'X (a symmetric matrix)
> t(B)%*%B # command crossprod(B) is more efficient
L1 [,2]
1] 11 7
2] 7 5

* Determinant: det
> det(t(B)%*%B) # Matrix has to be square. If det(A)=0 => A non-invertible
(116
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Linear Algebra: Operations in R

o (X'X)!: Inverse: solve

> solve(t(B)%*%B) #Matrix inside solve() has to be square
L1 2]

[1,] 0.8333333 -1.166667

[2,] -1.1666667 1.833333

e Take the diagonal elements of a matrix A: diag()

> diag(solve(t(B)%*%B))
[1] 0.8333333 1.833333

e Square root of (positive) elements of a matrix A: sqrt()
> sqrt(diag(solve(t(B)%0*%B)))

v3 v4
0.9128709 1.3540064

Linear Algebra: Example 1 - Linear DGP

* We have a model (the DGP) that linearly relates a dependent
variable, y, k explanatory variables, X, and an error term, €. There are
k unknown parameters, 3. We have T observations of y and X.

e DGP:
Yi :Zﬁ?zlxji Bj"‘ﬁi i=1,2..,T.
Or
41 X11 X217t Xpga B €
V2| _|*21 X222 Xk [ .1] €2
Y=1:1"1": : : N I I
Yr XiT  Xor v Xkt B er

Or using matrix notation:
y=XB+e
where ¥ & € are (Tx1); Xis (Txk); and B is (kx1).
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Linear Algebra: Example 2 — Linear System

e Assume an economic model as system of linear equations with:
a;j parameters,  where i = 1,.,m rows, j = 1,.., n columns
x; endogenous variables (n),

d; exogenous vatiables and constants (m).

ai1Xx1 + aiz x2+ ..t Aipn Xn = dl
a1 X1 + Ao Xo + ..+ AornXn = dz

Am1 X1+ Ao Xp oo+ A Xy = dy
e We can write this system using linear algebra notation: A x = d
Ay - Qin x1] [dl
Am1 / Amnl [Xn dml d = (mx1) column vector

A = (mxn) matrix x = (nx1) column vector

e (Q: What is the nature of the set of solutions to this system?

Linear Algebra: Example 2 — Linear System

 System of linear equations: Ax=d

where
A = (mxn) matrix of parameters
x = column vector of endogenous variables (nx1)
d = column vector of exogenous variables and constants (mx1)

¢ Solve for x*

* Theorem: Given A (mxn) invertible. Then, the equation Ax = d
has one and only one solution for every d (mx1). That is, there is a
unique x*,

=x*=Ald

Example: In practice, we avoid computing A, we solve a system.

A <-matrix(c(1, 1, 5,7, 9, 11, 10, 10, 14), ncol = 3)  # check det(A) for singularity (det(A)=-72)
d<-c(2,5,2)

> solve(A,d)

[1] -0.7222222 1.5000000 -0.7777778
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Linear Algebra: Linear Dependence and Rank

A set of vectors is /Znearly dependent if any one of them can be
expressed as a linear combination of the remaining vectors; otherwise,
it is linearly independent.

 Formal definition: Linear independence (LI)
The set {Uq, Uy, ..., U } is called a lnearly independent set of vectors iff
CiUuitcauy + .. tcpu =0 = C=C=..=¢=0.

Notes:

- Dependence prevents solving a system of equations (A is not
invertible). More unknowns than independent equations.

- The number of linearly independent rows or columns in a matrix is
the rank of a matrix (rank(A)).

-If A, a (k x k) square matrix, has rank(A)= k, then A is invertible.

Linear Algebra: Linear Dependence and Rank

Examples:
1 wn=I[5 12]
vy = [10 24
A= [ > [ ] (a 2x2 matrix)
2v; — vé =0 = rank(4) =1 = cannot invert A

(2) vy = ;]JV2=[513]JV3=[§];

271 4
A‘[7 8 5]
3, — 20, = [6 21]—[2 16]

=[4 5]=v3
3v; —2v; —v3' =0 = rank(4) =2
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Linear Algebra: Rules for Vector Derivatives

(1) Linear function: y=f(Z)=0+2'y =0 + 2171+ ... T Z 1k

where Z and 7y are k-dimensional vectors and @ is a constant.

91 (=)
0z, 11
* Then, Vi) =| : |= [ 5 ] =7 (kx1 vector)
@A vk
6zk
(2) Quadratic form: q=f(z)=2'Az (a scalar)

where Z is kx1 vector and A is a kxk matrix.
* Then, Vfx)=A'z+Az

If A is symmetric, then Vf(z) = (A'+A)z=2Az (kx1 vector)

Least Squares Estimation with Linear Algebra

* Let’s assume a linear system with k independent variables and T
observations. That is,

Vi =By X1 T By X T+ B X T E, i=12..T

The whole system (for all i) is:

Y1 =Bix11 TBy X1 . Bxpr T E
Y2 =B Xx12 +Byxpz +. FBiXkz T E

yr =By X117 + By Xor T+ By Xper T €7

Using linear algebra we can rewrite the system as:
y =Xp+e
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Least Squares Estimation with Linear Algebra
* Using linear algebra notation: y =XB+e

Vectors will be column vectors: y, X;, and € are Tx1 vectors:

Y1
y= =] = Y=Yz V7]

YT
e
— : [

xX;=|: = X = [Xj1 Xjz ... Xj7]
ij
€1

ge=|: > € =[e1 8 ... &]
er

Xis a Txk matrix. = X=[x,x,.... Xg]

Least Squares Estimation with Linear Algebra

* Assume f{X, 0) is linear: ~ fIX, 0) = X3

* Objective function: S(xi, B)=YT ef =¢'e = (y — XB)' (y — XB)
=0'-PBX) (y - XB)
=Yy -yXp-pXy+ pXXp
=Yy -2pXy+ pXX
= (c—2p'd + P'AB)

* 1st derivative w.r.t. [3: 6(:5'[3) =(2d+2AP)

= -2X'y+2XX [ (kx1 vector)

* F.o.c. (normal equations): X'y - XX)b=0 = XX)b=X'"y
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Least Squares Estimation with Linear Algebra
* F.o.c. (normal equations): Xy - XX)b=0 = XX)b=X'y

* Assuming (X'X) is non-singular —i.e., invertible-, we solve for b:
=b= XXXy (a kx1 vector)
Notes: 1. b is called the Ordinary Least Squares (OLS) estimator.

2. We can use the determinant to check if X'X is non-singular.

Remark: Technically, we still need to check the Second Order
condition, we need the 2nd derivative to be positive for a minimum:

GENIETS
( 12 B) — 2 X'X,
aBaB,
which is a positive definite (pd) matrix, the counterpart to positive
numbers for matrices.

= b is 2 minimum!

Least Squares Estimation with Linear Algebra

* X is a Txk matrix. Its columns atre the k Tx1 vectors Xj. It is
common to treat X, as vector of ones:

X11 1
X, = Pl = = x/'=[11.1=
X1T 1

This vector of ones represent the usual constant in the model. Then,

1 X1 = X
Sl S
1 xor - Xkr
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OLS Estimation — Example in R: IBM returns

Example: CAPM Model for IBM monthly returns:

SFX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397 /Stocks_FX_1973.csv",
head=TRUE, sep=",")

x_ibm <- SFX_da$IBM

x_Mkt_RF <- SFX_da$Mkt_RF # Market (CRSP) excess returns (in %)
x_RF <- SFX_da$RF # Risk-free rate (in %)
T <- length(x_ibm) # Data size

lr_ibm <- log(x_ibm][-1]/x_ibm[-T])
Mkt_RF <- x_Mkt_RF[-1]/100
RF <- x_RF[-1]/100

ibm_x <-Ir_ibm - RF # IBM Excess returns

T <- length(ibm_x) # Data size adjusted by 1 observation
x0 <- matrix(1,T,1) # vector of 1s (Tx1)

x <- cbind(x0, Mkt_RF) # Matrix X (Tx2)

OLS Estimation — Example in R: IBM returns

Example (continuation): CAPM Model for IBM returns:

b <- solve(t(x)%*% x)%*% t(x)%*%y #b=XX)'X'y (OLS regtession)
>b

L1
-0.005791039
Mkt_RF  0.895773564

Note: We got these coefficient before, using the Im() function:

fit_ibm_capm <- Im(x_ibm ~ Mkt_RF)
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