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Lecture 3-b
Least Squares – Review of 

Linear Algebra

Brooks (4th edition): Chapter 3
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• Defined a random variable (say, stock returns) and how to describe 
its distribution with moments (mean, variance, skewness, etc).

• Testing hypothesis (H0) about the behavior of the RV. For example, 
the mean return of the S&P 500 is 0 (H0: μ=0).

• Building Confidence Intervals: Assuming a distribution or a 
bootstrap. For example, compute a C.I. for Transaction Exposure in 
FX Markets and compute a VaR(1 - 𝛼).

• Basic R and simple applications.

Review – First Four Classes: Summary
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• So far, we focused on one RV only, say stock returns and learning 
about its distribution, for example, using descriptive statistics. In 
econometrics, we usually care about a functional relation between 𝑦, 
the dependent variable, and 𝒙, a set (a vector!) of explanatory variables. 

• In this lecture, we will linearly relate 𝑦 to 𝑥 & an error term, : 
𝑦 = 𝛼 +  𝑥 +  , 𝑖 = 1, 2, ...., 𝑁

where α &  are parameters to be estimated and  is the error term or 
disturbance. We think of  as the effect of individual variation that is 
not “controlled for” with 𝑥 . The disturbance,  , is part of the model. 

• We call the above equation the Data Generating Process (DGP).

Modeling a Dependent Variable as a Function

• DGP: (linear): 𝑦 =  𝛼 +  𝑥 +  , 𝑖 = 1, 2, ...., 𝑁.

If we assume E[ ] = 0, we have:

E[𝑦 ] =  𝛼 +  E[𝑥 ].

Example: The CAPM posits a relation between the excess return of 
asset 𝑖, 𝑦 = 𝑟 ,  –  𝑟 , and the excess return of the market, 𝑥 = 
𝑟 ,  – 𝑟 . In equilibrium, the CAPM states:

E[(𝑟 ,  – 𝑟 )] = β E[(𝑟 ,  – 𝑟 )],

where β is the sensitivity of asset 𝑖 to market risk.

CAPM DGP:  𝑦 =  𝛼 +  𝑥 +  , 𝑖 = 1, 2, ...., 𝑁.
where 𝛼 &  are parameters to be estimated. Once we estimate 𝛼 & , 
we can test the CAPM for IBM, since according to the CAPM 𝛼 = 0.

Review – Linear Model: One Variable Case
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• In the CAPM example, we have that 𝑖’s excess returns are only 
explained by the market. But, we could have used more variables, for 
example the 3 factors in the standard Fama-French model: Market, 
SMB (size factor), and HML (book-to-market).  

The 3-factor FF model represents a multivariate model for IBM 
returns:

𝑦 = 𝛼 + 1 𝑥 , + 2 𝑥 , + 3 𝑥 , + ε

• Though not necessary correct, we usually think of 𝑦 as the endogenous
variable and 𝑥 as the exogenous, determined “outside” the model.

Goal: Estimation of population parameters 𝛼 &  to learn the DGP.

Review – Linear Model: Multivariate Case

• We relate a dependent variable 𝑦 to a set of k explanatory variables 𝒙. 
This function depends on unknown parameters, θ, which we want to 
estimate. The relation between 𝑦 and 𝒙 is not exact; there is an error, . 
We have T observations of 𝑦 and 𝒙. 

𝑦 = 𝑓  𝑥 , , 𝑥 , , …, 𝑥 , ; θ  + ε , i = 1, 2, ...., T.

• The functional form, f(𝒙 , θ), is dictated by theory or experience. In 
this class, we mainly work with the linear case:

f(𝒙 , ) = 1  𝑥 , + 2  𝑥 , + 3 x3,i + … + k  𝑥 , .

• Now, we estimate the vector  = {1, 2, …, k} by minimizing 

S(𝒙; θ) = ∑ ε = ∑ 𝑦   1 𝑥 , 2 𝑥 , ⋯ 𝑘 𝑥 ,

We call this estimator the Ordinary Least Squares (OLS) estimator. 

Review – Least Squares Estimation



RS - Lec 3 - Regression & LInear Algebra

4© R. Susmel, 2022 (for private use, not to be posted/shared online).

• LS estimation can be applied to any functional form. In this class, 
we use a linear function. In this lecture, we derive the OLS formulas 
for the simplest case: one explanatory variable. Then, 

𝑦 = 1 + 2 𝑥 +  (two parameters  𝑘 = 2)

Objective function: 

S(𝒙; 1, 2) = ∑ ε = ∑ 𝑦  1 2 𝑥 =

= 𝑦 1 2 𝑥  + 𝑦 1 2 𝑥 + … + 𝑦 1 2 𝑥

Taking first derivatives with respect to 1 
& 2 

:

(1): 2 ∑ 𝑦  1 2 𝑥  (-1)  -2 ∑ 𝑦  1 2 𝑥

(2): 2 ∑ 𝑦  1 2 𝑥  (-𝑥 )  -2 ∑ 𝑦  𝑥 1 𝑥 2𝑥

Review – OLS for One Variable: Derivation

• Now, we set f.o.c.’s

(1):  ∑ 𝑦  b1 b2 𝑥  = 0 (1)

(2):  ∑ 𝑦  𝑥  b1 𝑥 b2 𝑥 = 0 (2)

Since we have 𝑘 = 2, the f.o.c.’s form a 2x2 system of equations, the 
normal equations.  

• Next, we solve for b1 & b2, the OLS estimators.

From (1): ∑ 𝑦  – ∑ b1 – b2 ∑ 𝑥  = 0 

⇒ b1 = 𝑦 – b2 �̅�

From (2): ∑ 𝑦 𝑥  – (𝑦 – b2 �̅�) ∑ 𝑥  – b2 ∑ 𝑥  = 0= 0

⇒ ∑ 𝑦 𝑥 – 𝑦 ∑ 𝑥 – b2 (∑ 𝑥 – �̅� ∑ 𝑥 )= 0

⇒ b2 =
∑    

∑   ̅  

, 

 

Review – OLS & One Variable Case: Derivation
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• Interpretation of coefficients

- b1 estimates the constant of the regression: IBM excess returns in 
excess of Market excess returns. In the CAPM, it should be 0 (= αi). 

- b2 estimates the slope of the regression. In the CAPM: i

= i  ,  – , ,  – 

,  –  

That is, if Market excess returns increase by one 1%, then IBM excess 
returns are expected to increase by b2 (= i) units (say, b2%). The IBM 

also tells us if IBM is riskier (IBM >1) or safer (IBM <1) than the 
market.

Review – OLS & One Variable Case: CAPM

• Conditional Prediction

Suppose analysts estimate that Market excess returns are 10%, then, 
we estimate (or predict, given the 10% value for Market excess 
returns):

Predicted [IBM excess returns|(𝑟 , – 𝑟 )=.10] = b1 + b2 * .10.

We will call the Predicted 𝑦 = 𝑦i = fitted value.

Review – OLS & One Variable Case: CAPM
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Example (continuation):
> summary(fit_ibm_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005791   0.002487  -2.329   0.0202 *  

xMkt_RF 0.895774 0.053867  16.629   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05887 on 567 degrees of freedom

Multiple R-squared:  0.3278,    Adjusted R-squared:  0.3266 

F-statistic: 276.5 on 1 and 567 DF,  p-value: < 2.2e-16

Interpretation of b1:

b1 = constant. The additional IBM return, after excess market returns 
are incorporated, is -0.58%. Under the CAPM, b1 should be close to 
0.

b2 = 𝜷𝑪𝑨𝑷𝑴

b1

Review – OLS: CAPM – R Estimation

Example (continuation):

Interpretation of b2:

b2 = slope. If market excess returns increase by 1%, IBM excess 
returns increase by 0.90%. The estimate of 𝛽IBM (𝛽<1) implies that 
IBM is less volatile (“safer”) than the market.

Conditional prediction of IBM excess returns: 

Suppose market excess returns increase are 10%, then we predict IBM 
excess returns = -0.005791 + 0.895774 * .10 = 0.08378 (8.38%).

Note: According to the CAPM, IBM underperformed:

- IBM excess returns (CAPM) = 0.895774 * mean(Mkt_RF) 

= 0.895774 * 0.0056489 = 0.0050601

- IBM excess returns (sample) = mean(ibm_x) = -0.00073141

Review – OLS: CAPM – R Estimation
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• The CAPM is a particular case of what in financial theory we call 
“factor models.” Factors represent the systematic component that drives 
the cross-section of returns over time. For example, a 𝑘-factor model for 
excess returns is given by:

𝑟 , – 𝑟 = 𝛼 + 1 𝑓 , + 2 𝑓 , + … + k 𝑓 , + ε ,

where 𝑓 , is the 𝑗 (common) factor at time 𝑡, and constant over 𝑖, and 
ε , represents the idiosyncratic component of asset 𝑖. 

• The higher the exposure –i.e., β – the higher the expected 
compensation.

• The CAPM has only one factor: market excess returns (“the market”). 

Review – OLS: Multivariate Case

• LS is a general estimation method. It allows any functional form for 
the relation between 𝑦 and 𝑥 . and it allows 𝑦 to be related to many 
explanatory variables, like multi-factor models for excess returns. 

In this lecture, we cover the case where f(𝑥 , θ) is linear. We assume a 
linear system with 𝑘 independent variables and 𝑇 observations. That 
is,

𝑦 = β1 𝑥 ,  + β2 𝑥 ,  + ... + βk 𝑥 ,  + εi, 𝑖 = 1, 2, ...., 𝑇

The whole system (for all 𝑖) is:

𝑦 = β1 
x11 

+ β2  
x12 + ... + βk 

xk1 + ε1

𝑦 = β1 
x12 

+ β2 
x22 + ... + βk 

xk2 + ε2

....           ....             ....          ... 
𝑦  = β1 

x1T 
+ β2 

x2T + ... + βk 
xkT + εT

Review – OLS: Multivariate Case
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• It is cumbersome to write the whole system. Using linear algebra, we 
can rewrite the system in a more compact and simplify derivations. 

Example: Using vector & matrix notation, we write the system as:

𝑦 =  f(X, θ) +  = X  + 

Notation: 𝐲,  &  are vectors:

𝑦
𝑦
⋮
𝑦

 , 

⋮


, &  

⋮


 

X is a matrix: X 
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

Review – OLS: Multivariate Case

Linear Algebra: Brief  Review – Matrix

• Life (& notation) becomes easier with linear Algebra. Concepts:

• A Matrix. 

A matrix is a set of  elements, organized into rows and columns

𝑎 𝑏
𝑐 𝑑

columns

rows

• 𝑎 and 𝑑 are the diagonal elements. 
• 𝑏 and 𝑐 are the off-diagonal elements.

• Matrices are like plain numbers in many ways:  they can be added, 
subtracted, and, in some cases, multiplied and inverted (divided).   
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Examples:

17

𝐴
𝑎 𝑎
𝑎 𝑎 ;   𝑏 𝑏 𝑏 𝑏

• Dimensions of  a matrix: numbers of  rows by numbers of  columns. 
The Matrix A is a 2x2 matrix, b is a 1x3 matrix.

• A matrix with only 1 column or only 1 row is called a vector.

• If  a matrix has an equal numbers of  rows and columns, it is called a 
square matrix. Matrix A, above, is a square matrix.

• Usual Notation: Upper case letters  matrices
Lower case  vectors

Linear Algebra: Matrices and Vectors

• Information is described by data. A tool to organize the data is a list, 
which we call a vector. Lists of lists are called matrices. That is, we 
organize the data using matrices, say, X. 

• We think of the elements of X as data points (“data entries”, 
“observations”), in economics, we usually have numerical data.

• We store the data in rows. In a Tx𝑘 matrix, X, over time we build a 
database:

X 
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

• Once the data is organized in matrices it can be easily manipulated: 
multiplied, added, etc. (This is what Excel does very well). 18

row 1 = 𝑘 entries at time 1

row T = 𝑘 entries at time T

Linear Algebra: Matrices – Information



RS - Lec 3 - Regression & LInear Algebra

10© R. Susmel, 2022 (for private use, not to be posted/shared online).

• We want to estimate a model: 𝑦 = f(𝑥 , 𝑥 , ..., 𝑥 ). We collect data, 
T (or N) observations, on a dependent variable, 𝒚, and on 𝑘
explanatory variables, X.

• Usual notation: vectors are column vectors: y & 𝒙 are Tx1 vectors:

𝐲

𝑦
𝑦
⋮
𝑦

& 𝒙  

𝑥
𝑥
⋮
𝑥

 𝑗 = 1, ..., 𝑘 

X is a Tx𝑘 matrix: X 
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

Its columns are the 𝑘 Tx1 vectors 𝒙 . It is common to treat 𝒙 as 
vector of ones, ί. 19

Linear Algebra: Matrices in Econometrics

• In general, we import matrices (information) to our programs.

Example: In R, we use the read function, usually followed by the 
type of data we are importing. Below, we import a comma separated 
values (csv) file with monthly CPIs and exchange rates for 20 different 
countries, then we use the read.csv function:

PPP_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/ppp_m.csv",head=TRUE,sep=
",")

The names() function describes the headers of the file imported (41 headers):
> names(PPP_da)

[1] "Date"      "BG_CPI"    "IT_CPI"    "GER_CPI"   "UK_CPI"   

[6] "SWED_CPI"  "DEN_CPI"   "NOR_CPI"   "IND_CPI"   "JAP_CPI" 

[11] "KOR_CPI"   "THAI_CPI"  "SING_CPI"  "MAL_CPI"   "KUW_CPI"  

[16] "SUAD_CPI"  "CAN_CPI"   "MEX_CPI"   "US_CPI"    "EGY_CPI“

[...] 20

Linear Algebra: Matrices in Econometrics
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Example (continuation): 

The summary() function provides some stats of variables imported:
>summary(PPP_da)

Date         BG_CPI           IT_CPI          GER_CPI      

1/15/1971:  1   Min.   : 19.77   Min.   :  5.90   Min.   : 31.20  

1/15/1972:  1   1st Qu.: 49.32   1st Qu.: 32.25   1st Qu.: 57.17  

1/15/1973:  1   Median : 69.91   Median : 67.30   Median : 75.30  

1/15/1974:  1   Mean   : 67.92   Mean   : 60.14   Mean   : 72.29  

1/15/1975:  1   3rd Qu.: 89.40   3rd Qu.: 89.65   3rd Qu.: 91.17  

1/15/1976:  1   Max.   :109.71   Max.   :103.50   Max.   :106.60  

(Other)  :588 

We extract a variable from the matrix by the name of file followed by 
$ and the header of variable:
x_chf <- PPP_da$CHF_USD # extract CHF/USD exchange rate data

We can transform the vector x_chf. For example, for % changes:
T <- length(x_chf) # length of  CHF/USD exchange rate data
lr_chf  <- log(x_chf[-1]/x_chf[-T]) # create log returns (changes) for the CHF/USD

21

Linear Algebra: Matrices in Econometrics

 
1 0 0
0 1 0
0 0 1

  

0 0 0
0 0 0
0 0 0

• Identity Matrix, I: A square matrix with 1’s along the 
diagonal and 0’s everywhere else. Similar to scalar “1”: 

A * I = A

• Null matrix, 0: A matrix in which all elements are 0’s. 
Similar to scalar “0”: 

A * 0 = 0

22

• Both are diagonal matrices  off-diagonal elements are zero.

• Both are examples of  symmetric and idempotent matrices. 

- Symmetric: A = AT

- Idempotent: A = A2 = A3 = …

Linear Algebra: Special Matrices
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• We want to multiply two matrices: A*B. But, multiplication of  
matrices requires a conformability condition.

• Conformability condition: The column dimensions of  the lead
matrix A must be equal to the row dimension of  the lag matrix B. 

• If  A is an (𝑚x𝒏) and B an (𝒏x𝑝) matrix (A has the same number 
of  columns as B has rows), then we define the product of  AB:
AB = C is (𝑚x𝑝) matrix with its 𝑖𝑘th element is 𝑐 = ∑ 𝑎 𝒋

𝒏
𝒋 𝑏𝒋 . 

• What are the dimensions of  the vector, matrix, and result?

𝒂𝐁 𝑎 𝑎  
𝑏 𝑏 𝑏
𝑏 𝑏 𝑏 𝒄 𝑐 𝑐 𝑐

 𝑎 𝟏𝑏𝟏 𝑎 𝟐𝑏𝟐 𝑎 𝟏𝑏𝟏 𝑎 𝟐𝑏𝟐 𝑎 𝟏𝑏𝟏 𝑎 𝟐𝑏𝟐

• Dimensions: 𝑎(1x2), B(2x3)  𝑐(1x3)
23

Linear Algebra: Multiplication

Example: We want to multiply A (2x2) and B (2x2), where A has 
elements 𝑎 𝒋 and B has elements 𝑏𝒋 . Recall the 𝑖𝑘th element is 

𝑐 = ∑ 𝑎 𝒋
𝒏 𝟐
𝒋 𝑏𝒋

A = 2 1
7 9

B = 1 0
2 3

C = 2 1
7 9

∗ 1 0
2 3

𝟒 2 ∗ 1 1 ∗ 2 𝟑 2 ∗ 0 1 ∗ 3
𝟐𝟓 7 ∗ 1 9 ∗ 2 𝟐𝟕 7 ∗ 0 9 ∗ 3

𝐶 𝐴 ∗  𝐵

• Dimensions: A(2x2), B(2x2)  C(2x2), a square matrix.

24

Linear Algebra: Multiplication
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Example: We want to multiply X (2x2) and  (2x1), where X has 
elements 𝑥 𝒋 and b has elements β𝒋:

X = 
𝑥 𝑥
𝑥 𝑥 &  = 

𝛽
𝛽

We compute
𝒚 = X 

Recall the  ith element is 

𝑦 = ∑ 𝑥 𝒋
𝒏 𝟐
𝒋 𝛽𝒋

Then,

𝒚 = 
𝑦
𝑦 = 

𝑥 𝑥
𝑥 𝑥 ∗

𝛽
𝛽  

𝑥  𝛽 𝑥 𝛽
𝑥  𝛽 𝑥  𝛽

• Dimensions: X(2x2), (2x1)  𝒚(2x1), a row vector.
25

Linear Algebra: Multiplication

 The transpose of  a matrix A is another matrix AT (also written A′) 
created by any one of  the following equivalent actions:

–write the rows (columns) of  A as the columns (rows) of  AT

–reflect A by its main diagonal to obtain AT

Example: 𝐴 3 8 9
1 0    4

  𝐴
   3 1
   8 0

9 4

 If  A is a m × n matrix  AT is a n × m matrix. 

 (A')' = A

 Conformability changes unless the matrix is square.

 (AB)' = B'A'

26

Linear Algebra: Transpose
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• In econometrics, an important matrix is X′X. Recall X (usually, the 
matrix of  𝑘 independent explanatory variables):

X 

𝑥 𝑥 ⋯ 𝑥
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

a (Tx𝑘) matrix

Then,

X ′ 

𝑥 𝑥 ⋯ 𝑥
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

a (𝑘xT) matrix

27

Linear Algebra: Transpose – Example (X′) 

• Addition, Subtraction, Multiplication

𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

𝑎 𝑒 𝑏 𝑓
𝑐 𝑔 𝑑 ℎ

𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

𝑎 𝑒 𝑏 𝑓
𝑐 𝑔 𝑑 ℎ

𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

𝑎𝑒 𝑏𝑔 𝑎𝑓 𝑏ℎ
𝑐𝑒 𝑑𝑔 𝑐𝑓 𝑑ℎ

Just add elements

Just subtract elements

Multiply each row by 
each column and add

𝑘 𝑎 𝑏
𝑐 𝑑

𝑘𝑎 𝑘𝑏
𝑘𝑐 𝑘𝑑

Multiply each element 
by the scalar

28

Linear Algebra: Math Operations
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2 1
7 9

3 1
0 2

5 2
7 11

𝐴   𝐵    𝐶

 Matrix addition

 Matrix subtraction

 Matrix multiplication

 Scalar multiplication

29

2 1
7 9

1 0
2 3

1 1
5 6

2 1
7 9

x 1 0
2 3

4 3
25 27

 𝐴    x   𝐵        𝐶

1
8

 2 4
6 1

1 4⁄ 1 2⁄
3 4⁄ 1 8⁄

29

Linear Algebra: Math Operations – Examples

• In LS estimation, we minimize a sum of square errors

S(𝑥 , ) = ∑ 

Since  is 𝑇x1 vector, we use linear algebra to write the sum of 
squares of its elements as (dot product of 2 𝑇x1 vectors):

S(𝑥 , ) = ∑  = ′ 

Check:

′  = [1 2 ....  ] ∗

⋮


= [ +  + .... +  ] = ∑ 

Thus, we pick  to minimize: 

S(𝑥 , ) = ′ = (𝒚 – X)′ (𝒚 – X)

Linear Algebra: Math Operations – ′
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 A special matrix in econometrics, X′X (a 𝑘x𝑘 matrix, with 𝑘 = 2): 

 X (Tx2) =

𝑥 𝑥
𝑥 𝑥
⋮ ⋮
𝑥 𝑥

 X ′ (2xT)
𝑥 𝑥 ⋯ 𝑥
𝑥 𝑥 ⋯ 𝑥

X ′X (2x2)
∑ 𝑥 ∑ 𝑥 𝑥

∑ 𝑥 𝑥 ∑ 𝑥
= ∑

𝑥 𝑥 𝑥
𝑥 𝑥 𝑥

𝑻
𝒊 𝟏

= ∑
𝑥
𝑥

𝑻
𝒊 𝟏 𝑥 𝑥

= ∑ 𝒙 𝒙 ′𝑻
𝒊 𝟏 31

Linear Algebra: Math Operations – X′ X

Sum of  squares of  𝑥  (𝑖 = 1, 2)

Sum of  cross products of  𝑥 𝑥

 In general, with a 𝑘x𝑘 X′X matrix: 

 X (Tx𝑘) =

𝑥 𝑥 ⋯ 𝑥
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

& X’ 

𝑥 𝑥 ⋯ 𝑥
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥

 X’′X (𝑘x𝑘)

∑ 𝑥 ∑ 𝑥 𝑥 ⋯ ∑ 𝑥 𝑥
∑ 𝑥 𝑥 ∑ 𝑥 ⋯ ∑ 𝑥 𝑥

⋮ ⋮ ⋱ ⋮
∑ 𝑥 𝑥 ∑ 𝑥 𝑥 ⋯ ∑ 𝑥

=

= ∑
𝑥 ⋯ 𝑥 𝑥
⋮ ⋱ ⋮

𝑥 𝑥 ⋯ 𝑥

𝑻
𝒊 𝟏 (a symmetric matrix)

32

Linear Algebra: Math Operations – X′ X
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• Identity matrix: AI = A, where 𝐼

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 1

Notation: 𝑰 is a 𝑗x𝑗 identity matrix.

• Given A (mxn), the matrix B (nxm) is a right-inverse for A iff AB=Im

• Given A (mxn), the matrix C (nxm) is a left-inverse for A iff CA = In

• Theorem: If  A (mxn), has both a right-inverse B and a left-inverse C, 
then C = B = A-1

Note: 

- If  A has both a right and a left inverse, it is a square matrix 
(m=n). It is called invertible. We say “the matrix A is non-singular.”

- This matrix, A-1, is unique. 

- If  det(A) ≠ 0  A is non-singular. 33

Linear Algebra: Inverse of  a Matrix

Definition:

If  A' = A, then A is called a symmetric matrix.

• In many applications, matrices are often symmetric. For example, in 
statistics the correlation matrix and the variance covariance matrix. 

• Symmetric matrices play the same role as real numbers do among 
the complex numbers. 

• We can do calculations with symmetric matrices like with numbers: 
for example, we can solve B2 = A for B if  A is symmetric matrix (& 
B is square root of  A.) This is not possible in general.

• X'X is symmetric. It plays a very important role in econometrics.
34

Linear Algebra: Symmetric Matrices
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 Many ways to create a vector (c, 2:7, seq, rep, etc) or a matrix (c, 
cbind, rbind). We use c(), the combine function:
v1 <- c(1, 3, 8) # a (3x1) vector (vectors are usually treated as a column list)

> v1

[1] 1 3 8 

A <- matrix(c(1, 2, 3, 7, 8, 9), ncol = 3) # a (2x3) matrix

> A

[,1] [,2] [,3]

[1,]    1    3    8

[2,]    2    7    9

B <- matrix(c(1, 3, 1, 1, 2, 0), nrow = 3)

> B

[,1] [,2]

[1,]    1    1

[2,]    3    2

[3,]    1    0
35

Linear Algebra: Operations in R 

 Now, we use rbind to create A and cbind to create B
v1 <- c(1, 3, 8) # a (3x1) vector

v2 <- c(2, 7, 9)

A <- rbind(v1, v2)

> A # a (2x3) matrix

[,1] [,2] [,3]

v1    1    3    8

v2    2    7    9

v3 <- c(1, 3, 1)

v4 <- c(1, 2, 0)

B <- cbind(v3,v4)

> B # a (3x2) matrix

v3 v4

[1,]  1  1

[2,]  3  2

[3,]  1  0
36

Linear Algebra: Operations in R 
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37

Linear Algebra: Operations in R 

 Matrix addition/subtraction: +/- –element by element.

 Matrix multiplication: %*%
C <- A%*%B #A is 2x3; B is 3x2  C is 2x2

> C

[,1] [,2]

[1,]   18    7

[2,]   32   16

 Scalar multiplication: *
> 2 * C # elementwise multiplication of  C by scalar 2

[,1] [,2]

[1,]   36   14

[2,]   64   32

Note: Usually, matrices will be data –i.e., read as input.

38

Linear Algebra: Operations in R 

 Dot product “•” is a function that takes pairs of  vectors and 
produces a number. For vectors c & z, it is defined as:

𝒄 • 𝒛 𝒄 𝒛 𝒛 𝒄 𝑐 ∗ 𝑧 + 𝑐 ∗ 𝑧 + ... + 𝑐 ∗ 𝑧 ∑ 𝑐 𝑧

 Dot product with 2 vectors: v1 • v2 produces a sum of  the 
elementwise multiplied elements of  both vectors
> t(v1) %*% v2 # v1 <- c(1, 3, 8) & v2 <- c(2, 7, 9)

[,1]

[1,]   95

 Dot product with a vector itself: v1 • v1 produces a sum of  the 
square elements of  vector
> t(v1) %*% v1

[,1]

[1,]   74



RS - Lec 3 - Regression & LInear Algebra

20© R. Susmel, 2022 (for private use, not to be posted/shared online).

39

Linear Algebra: Operations in R 

 Dot product with ί (a vector of  ones): sum of  elements of  vector
i <- c(1,1,1) # define a unit vector

> t(i) %*% v1 # v1 <- c(1, 3, 8)

[,1]

[1,]    12

• Product of  2 vectors: v1 & t(v2): A (3x3) matrix. 
> v1%*%t(v2) # v2 <- c(2, 7, 9) --a (3x1) vector x (1x3) vector

[,1] [,2] [,3]

[1,]    2    7    9

[2,]    6   21   27

[3,]   16   56   72

Property of  dot product: If  the dot product of  two vectors is equal to 
zero, then the vectors are orthogonal (perpendicular or “┴”) vectors. We 
interpret this as “the vectors are uncorrelated.” 

40

Linear Algebra: Operations in R 

 Matrix transpose: t
> t(B) #B is 3x2  => t(B) is 2x3

[,1] [,2] [,3]

[1,]    1    3    1

[2,]    1    2    0

 X'X (a symmetric matrix)
> t(B)%*%B # command crossprod(B) is more efficient

[,1] [,2]

[1,]   11    7

[2,]    7    5

 Determinant: det
> det(t(B)%*%B) # Matrix has to be square. If  det(A)=0 => A non-invertible

[1] 6

> B
v3 v4

[1,]  1  1
[2,]  3  2
[3,]  1  0
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41

Linear Algebra: Operations in R 

 (X'X)-1: Inverse: solve
> solve(t(B)%*%B) #Matrix inside solve() has to be square

[,1]      [,2]

[1,]  0.8333333 -1.166667

[2,] -1.1666667  1.833333

 Take the diagonal elements of  a matrix A: diag()

> diag(solve(t(B)%*%B))

[1] 0.8333333 1.833333

• Square root of  (positive) elements of  a matrix A: sqrt()
> sqrt(diag(solve(t(B)%*%B)))

v3        v4 

0.9128709 1.3540064

 There is a functional form relating a dependent variable, 𝑦, and 𝑘
explanatory variables, X. The functional form is linear, but it depends 
on 𝑘 unknown parameters, . The relation between 𝑦 and X is not 
exact. There is an error, . We have T observations of  𝑦 and X. 

 Then, the data is generated according to:

𝑦 = ∑ 𝑥    +  𝑖 = 1, 2, ...., 𝑇.

Or

𝒚

𝑦
𝑦
⋮
𝑦

= 

𝑥 𝑥 ⋯ 𝑥
𝑥 𝑥 ⋯ 𝑥
⋮ ⋮ ⋱ ⋮
𝑥 𝑥 ⋯ 𝑥


⋮


+ 



⋮


Or using matrix notation: 

y = X  + 
42

Linear Algebra: Example 1 – Linear DGP
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• Model: 𝒚 = X  + 
where 𝒚 &  are (Tx1); X is (Tx𝑘); and  is (𝑘x1). 

• We call this relation data generating process (DGP).

• Our goal this lecture: Estimate the unknown vector . 

43

Linear Algebra: Example 1 – Linear DGP

 Assume an economic model as system of  linear equations with: 
𝑎 parameters, where 𝑖 = 1,.., 𝑚 rows, 𝑗 = 1,.., n columns
𝑥 endogenous variables (𝑛), 
𝑑 exogenous variables and constants (𝑚).

𝑎 𝑥  + 𝑎  𝑥 + ... + 𝑎  𝑥   = 𝑑
𝑎  𝑥  + 𝑎  𝑥  + ... + 𝑎 𝑥   = 𝑑  

....           ....             ....          ... 
𝑎  𝑥  + 𝑎   𝑥  + ... + 𝑎  𝑥   = 𝑑

 We can write this system using linear algebra notation: A x = d

𝑎 ⋯ 𝑎
⋮ ⋱ ⋮

𝑎 ⋯ 𝑎

𝑥
…
𝑥

= 
𝑑
…
𝑑

 Q: What is the nature of  the set of  solutions to this system? 44

d = (𝑚x1) column vector 

A = (𝑚x𝑛) matrix x = (𝑛x1) column vector 

Linear Algebra: Example 2 – Linear System
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 System of  linear equations: Ax = d
where 

A = (𝑚x𝑛) matrix of  parameters
x = column vector of  endogenous variables (𝑛x1) 
d = column vector of  exogenous variables and constants (𝑚x1) 

 Solve for x*

45

 Theorem: Given A (𝑚x𝑛) invertible. Then, the equation Ax = d
has one and only one solution for every d (𝑚x1). That is, there is a 
unique x*.

 x* = A-1 d

Example: In practice, we avoid computing A-1, we solve a system.
A <- matrix(c(1, 1, 5, 7, 9, 11, 10, 10, 14), ncol = 3) # check det(A) for singularity (det(A)=-72)
d <- c(2, 5, 2)
> solve(A,d)
[1] -0.7222222  1.5000000 -0.7777778

Linear Algebra: Example 2 – Linear System

 A set of  vectors is linearly dependent if  any one of  them can be 
expressed as a linear combination of  the remaining vectors; otherwise, 
it is linearly independent.

 Formal definition: Linear independence (LI)

The set {𝒖 , 𝒖 , ..., 𝒖 } is called a linearly independent set of  vectors iff

𝑐 𝒖 + 𝑐 𝒖 + .... + 𝑐 𝒖 = 0  𝑐 = 𝑐 = ... = 𝑐 = 0.

Notes:

- Dependence prevents solving a system of  equations (A is not 
invertible). More unknowns than independent equations.

- The number of  linearly independent rows or columns in a matrix is 
the rank of  a matrix (rank(A)).

- If  A, a (𝑘 x 𝑘) square matrix, has rank(A)= 𝑘, then A is invertible. 46

Linear Algebra: Linear Dependence and Rank
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Examples:

1 𝑣 5 12  
𝑣 10 24

𝑨 5 10
12 24

𝑣
𝑣

(a 2x2 matrix)

2𝑣 𝑣 𝟎  ⇒ 𝑟𝑎𝑛𝑘 𝑨 1  cannot invert A

(2) 𝑣 2
7

; 𝑣 1
8

; 𝑣 4
5

;  

𝐴 2 1 4
7 8 5

3𝑣 ′ 2𝑣 ′ 6 21 2 16
4 5 𝑣 ′

3𝑣 2𝑣 𝑣 ′ 𝟎 ⇒ 𝑟𝑎𝑛𝑘 𝑨 2
47

Linear Algebra: Linear Dependence and Rank

(1) Linear function: 𝒚 = 𝑓 𝒙  = 𝒙’  +  

where 𝒙 and  are 𝑘-dimensional vectors and  is a constant.

 We derive the gradient in matrix notation as follows:

1. Convert to summation notation: 𝑓 𝒙  ∑ 𝑥  
2. Take partial derivative w.r.t. 𝑥 : ∑ 𝑥   

3. Put all the partial derivatives in a vector:

𝑓 𝒙

𝒙

⋮
𝒙


⋮


4. Convert to matrix notation: 𝑓 𝒙  = 
48

Linear Algebra: Rules for Vector Derivatives
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(2) Quadratic form: q = 𝑓 𝒙  = 𝒙′ A 𝒙

where 𝒙 is 𝑘x1 vector and A is a 𝑘x𝑘 matrix, with 𝑎 elements.

• Convert 𝒙’ A 𝒙 to summation notation: 

𝑓 𝒙 𝒙′ 
∑ 𝑎 𝑥  

⋮
∑ 𝑎 𝑥  

∑ ∑ 𝑥  𝑎  𝑥  

• After taking derivatives and some algebra: 

𝑓 𝒙

𝒙

⋮
𝒙

=
∑ 𝑥  𝑎

⋮
∑ 𝑥  𝑎

∑ 𝑎  𝑥  
⋮

∑ 𝑎  𝑥  

= A′ 𝒙 + A 𝒙

If  A is symmetric, then 𝑓 𝒙  = (A′ + A) 𝒙 = 2 A 𝒙 49

Linear Algebra: Rules for Vector Derivatives

• Let’s assume a linear system with 𝑘 independent variables and 𝑇
observations. That is,

𝑦  = β1 𝑥   + β2 𝑥  + ... + βk 𝑥  + ε , 𝑖 = 1, 2, ...., 𝑇

The whole system (for all i) is:

 
 𝑦   = β1 𝑥   + β2  𝑥   + ... + βk  𝑥   + ε1

𝑦   = β1 𝑥   + β2 𝑥   + ... + βk 𝑥   + ε2

....           ....             ....          ... 
   𝑦   = β1 𝑥   + β2 𝑥   + ... + βk 𝑥  + ε2

Using linear algebra we can rewrite the system as: 

𝒚 = X  + 

Least Squares Estimation with Linear Algebra
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• Using linear algebra notation: 𝒚 = X  + 

Vectors will be column vectors: y, xj, and  are Tx1 vectors: 

𝒚
𝑦
⋮
𝑦

 ⇒ 𝒚′ = [𝑦 𝑦 .... 𝑦 ] 

𝒙j 
𝑥
⋮
𝑥

 ⇒ 𝒙j′ = [𝑥 𝑥 .... 𝑥 ] 



⋮


 ⇒ ′ = [1 2 .... T]

X is a Tx𝑘 matrix. ⇒ X = [𝒙1 𝒙2 .... 𝒙 ]

Least Squares Estimation with Linear Algebra

• Assume f(X, θ) is linear: f(X, θ) = X 

• Objective function: S(𝑥 , ) = Σi  = ′ = (𝒚 – X)′ (𝒚 – X)

= 𝒚′𝒚 – 𝒚′X – ′X′𝒚 + ′X′X
= 𝒚′𝒚 – 2 ′X′y + ′X′X

• First derivative w.r.t. :    – 2 X′𝒚 + 2 X′X  (a 𝑘x1 vector)

• F.o.c. (normal equations): X′𝒚 – (X′X) b = 0  (X′X) b = X′𝒚

• Assuming (X′X) is non-singular –i.e., invertible-, we solve for b:
 b = (X′X)-1 X′𝒚 (a 𝑘x1 vector)

Note: b is  called the Ordinary Least Squares (OLS) estimator. 
(Ordinary = f(X, θ) is linear)

Least Squares Estimation with Linear Algebra
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• X is a Tx𝑘 matrix. Its columns are the 𝑘 Tx1 vectors 𝒙 . It is 
common to treat x1 as vector of ones:

𝒙1 
𝑥
⋮
𝑥

 
1
⋮
1

⇒ 𝒙1′ = [1 1 .... 1] = ί′

This vector of ones represent the usual constant in the model.

Note: Recall the dot product: Post-multiplying a vector (1xT) 𝒙 by ί
(or ί′ 𝒙 ) produces a scalar, the sum of all the elements of vector 𝒙 :

𝒙 ′ ί = ί′ 𝒙 = 𝑥  + 𝑥  + .... + 𝑥  = ∑ 𝑥  

Least Squares Estimation with Linear Algebra

Example: CAPM Model for IBM monthly returns: 
SFX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv", 
head=TRUE, sep=",")

x_ibm <- SFX_da$IBM

x_Mkt_RF <- SFX_da$Mkt_RF # Market (CRSP) excess returns (in %)

x_RF <- SFX_da$RF # Risk-free rate (in %)

T <- length(x_ibm) # Data size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T])

Mkt_RF <- x_Mkt_RF[-1]/100

RF <- x_RF[-1]/100

ibm_x <- lr_ibm - RF # IBM Excess returns

T <- length(ibm_x) # Data size adjusted by 1 observation

x0 <- matrix(1,T,1) # vector of 1s (Tx1)

x <- cbind(x0, Mkt_RF) # Matrix X (Tx2)

OLS Estimation – Example in R: IBM returns
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Example (continuation): CAPM Model for IBM returns: 

b <- solve(t(x)%*% x)%*% t(x)%*%y # b = (X′X)-1X′ y  (OLS regression)

> b

[,1]

-0.005791039

Mkt_RF 0.895773564

Note: We got these coefficient before, using the lm() function:

fit_ibm_capm <- lm(x_ibm ~ Mkt_RF)

OLS Estimation – Example in R: IBM returns


