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Lecture 3-a
Least Squares – Introduction, & 

Review of Linear Algebra

Brooks (4th edition): Chapter 3
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• Q: What is the most an investor can lose with a particular investment
over a given time framework? Or, what is the worst case scenario?

• Value-at-Risk (VaR) provides one answer, a (lower) bound with a
probability attached to it.

• So far, we have measured risk of an asset/investment with its
volatility, which is calculated including positive (right tail) and negative
(left tail) returns. Investors, however, love the right tail of the returns
distribution, but dislike the other tail. VaR focuses on the left tail.

• VaR gives a formal definition of left-tail risk, a “worst case scenario,”
for an asset over a time period.

Review – C.I. Application: Value-at-Risk (VaR)
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• VaR gives a formal definition of “worst case scenario” for an asset.

VaR: Maximum expected amount (loss) in a given time interval within a (one-
sided) (1 - α)% C.I.:

VaR(1 - α) = Amount exposed * (1 + worst % change scenario in C.I.)

It is common to express the “expected loss” relative to today’s expected
value of asset/investment:

VaR-mean(1 - α) = VaR – E[Amount exposed]

• There are different ways to compute the worst case scenario within a
time interval. We go over two approaches:

- Assuming a probability distribution (normal, in our case).
- Using the empirical distribution (a bootstrap, using the past).

Review – C.I. Application: Value-at-Risk

VaR(97.5%): Minimum Amount within C.I.

Example: α = .05
VaR = Amount exposed * (1 + worst change scenario in 97.5% C.I.).
VaR-mean(97.5%) = VaR – E[Amount exposed]

α = 2.5% Amount Exposedt

VaR(97.5%)-mean

Review – C.I. Application: Value-at-Risk 
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• When a company is involved with transactions denominated in
foreign currency (FC), it is exposed to currency risk. Transaction
exposure (TE) provides a simple measure of this exposure:

TEt = Value of a fixed future transaction in FC * 𝑆௧
where 𝑆௧ is the exchange rate expressed as units of domestic currency
(USD for us) per unit of FC (say, EUR).

Example: A Swiss company, Swiss Cruises, sells packages in USD.

Amount = USD 1 million.

Payment: 30 days.

𝑆௧ = 0.92 CHF/USD

 TEt = USD 1M * 0.92 CHF/USD = CHF 0.92M. ¶

Review – C.I. Application: VaR in FX Markets

• Swiss Cruises wants a measure of the uncertainty related to the
amount to receive in CHF in 30 days, since 𝑆௧ାଷ଴ is unknown.

We can use a range to quantify this uncertainty, we want to say  
TEt+30  TELB, TEUB] with high probability.

To determine this range for TE, we assume that (log) changes in 𝑆௧, 
𝑒௙,௧, are normally distributed:  𝑒௙,௧ ~ N(, 2). 

Then, we build a (1 - α)% C.I.: [  z1- α/2 * ]. 

Usual α’s in interval calculations: α =.05  |z.025|= 1.96 (≈2)
α =.02  |z.01|= 2.33

As usual, we estimate (, ) using (𝑋ത, 𝑠).

Review – C.I. Application: VaR (Normal)
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Example: Range estimate based on a Normal distribution.
Assume Swiss Cruises believes that CHF/USD monthly changes follow
a normal distribution. Swiss Cruises estimates the mean and variance
using the last 15 years of data.

𝑋ത = Monthly mean = -0.00152 ≈ -0.15%
𝑠ଶ = Monthly variance = 0.001014 ( 𝑠= 0.03184, or 3.18%)
𝑒௙,௧ ~ N(-0.00152, 0.031842) 𝑒௙,௧ = CHF/USD log changes. 

Swiss Cruises constructs a 95% CI for CHF/USD monthly changes.

Recall that a 95% C.I. for 𝑒௙,௧ାଷ଴ (which applies to any t) is given by: 
𝑒௙,௧  [-0.00152  1.96 * 0.03184] = [-0.06393; 0.06089]. 

Based on this range for 𝑒௙,௧, we can build a 95% C.I. for St+30 and, then,
for TEt+30 (= USD 1M * 𝑆௧ାଷ଴).

Review – C.I. Application: VaR (Normal)

Example (continuation):
𝑒௙,௧ାଷ଴ [-0.00152  1.96 * 0.03184] = [-0.06393; 0.06089]. 

Now, based on the range 𝑒௙,௧, we derive a range for 𝑆௧ାଷ଴:

(A) Upper bound 
𝑆௧ାଷ଴,௎஻ = 𝑆௧ * (1+ 𝑒௙,௎஻) = 0.92 CHF/USD * (1 + 0.06089) =

= 0.97602

(B) Lower bound 
𝑆௧ାଷ଴,௅஻ = 𝑆௧ * (1+ 𝑒௙,௅஻) = 0.92 CHF/USD * (1 - 0.06393)] =

= 0.86118

 𝑆௧ାଷ଴ [0.97602 CHF/USD; 0.86118 CHF/USD]. 

Review – C.I. Application: VaR (Normal)
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Example (continuation): Finally, we derive the bounds for the TE:

(A) Upper bound (𝑆௧ାଷ଴,௎஻ = 𝑆௧ * (1+ 𝑒௙,௎஻) = 0.97602 CHF/USD) 
TEUB: USD 1M * 0.97602 CHF/USD = CHF 976,019.

(B) Lower bound (𝑆௧ାଷ଴,௅஻ = 𝑆௧ * (1+ 𝑒௙,௅஻) = 0.86118 CHF/USD) 
TELB: USD 1M * 0.86118 CHF/USD = CHF 861,184.

 TEt+30  [CHF 0.861 M; CHF 0.976 M]. ¶

• The lower bound, for a receivable, represents the worst case scenario
within the interval. This is the VaR interpretation:

VaR: Maximum expected amount (loss) in a given time interval within a (one-
sided) confidence interval.

VaR = Amount exposed * (1+ worst % change scenario in C.I.)

Review – C.I. Application: VaR (Normal)

CHF 0.976 MCHF 0.861 M

VaR(97.5%): Minimum revenue within a 97.5% C.I.

2.5%2.5%
TE = CHF 0.92M

VaR = Amount exposed * (1+ worst % change scenario in C.I.).
Then, in our application: VaR = TEt * (1 + 𝑒௙,௅஻)

Review – C.I. Application: VaR (Normal)
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Example (continuation): The minimum revenue to be received by SC
in the next 30 days, within a 97.5% CI.

VaR(97.5%) = CHF 0.92M * [1+ (-0.00152 – 1.96 * 0.03184)]
= CHF 0.8612M.

Interpretation of VaR: If SC expects to cover expenses with this USD
inflow, the maximum amount in CHF to cover, within a 97.5% one-
sided CI, should be CHF 0.8612M. ¶

It is common to express the “expected loss” relative to today’s value of a
transaction (or asset):

VaR-mean = VaR – TEt = TEt * (1 + 𝑒௙,௅஻) – TEt

= TEt * 𝑒௙,௅஻
Or just

VaR-mean = Amount exposed * worst case scenario

Review – C.I. Application: VaR (Normal)

Example (continuation): Relative to today’s valuation (or expected 
valuation, according to RWM), the maximum expected loss in 30 days 
within a  97.5% one-sided C.I. is:

VaR-mean(.975) = CHF 0.8612M – CHF 0.92M = CHF -0.0588M.

Note that we can also compute the VaR-mean as:

VaR-mean(.975) = CHF 0.92M * (-0.00152 – 1.96 * 0.03184) 

= CHF -0.0588M. ¶

• Technically speaking, the VaR is a quantile. A quantile is the fraction of  
observations that lie below a given value (in this case, the VaR). 

In the previous example, the 0.025 quantile (or 2.5% quantile) for 
expected loses is CHF -0.0588M.

Review – C.I. Application: VaR (Normal)
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VaR (97.5%) = CHF 0.8612M

VaR(97.5%)-mean = CHF -0.0588M

2.5% quantile

TE = CHF 0.92M

Review – C.I. Application: VaR (Normal)

Example (continuation):

Note: We could have used a different quantile –i.e. a different significant
level- to calculate the VaR, for example 1% ( z.99 = 2.33). Then,

VaR(99%) = CHF 0.92M * [1+ (-0.00152 – 2.33 * 0.03184)]
= CHF 0.8503M (A more conservative bound.)

 VaR-mean (.99) = CHF 0.8503M – CHF 0.92M = CHF -0.0697M

Interpretation of VaR-mean: Relative to today’s valuation, the maximum
expected loss with a 99% “chance” is CHF -0.0697M.

Note: As the C.I. gets wider, Swiss Cruises can spend less CHF on
account of the USD 1M receivable. ¶

Review – C.I. Application: VaR (Normal)
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VaR (99%) = CHF 0.8503M

VaR(99%)-mean = CHF -0.0697M

1% quantile

TE = CHF 0.92M

Review – C.I. Application: VaR (Normal)

• VaR is a statistic –a function of  the data. We can do an empirical 
bootstrap to calculate the mean, SE (=SD), C.I., etc.

Example: We want to calculate the average VaR(97.5%) and its S.E., 
using all CHF/USD data from 1990:Jan - 2023:July. Then,

chfusd <- read.csv("http://www.bauer.uh.edu/rsusmel/4386/chfusd.csv",sep=",") # Data
S <- chfusd$CHF_USD # Extract CHF_USD column of the data
T <- length(S) # Check total T (1971:1 to 2023:7)
Tstart <- 229 # Start of sample period: 1990:1
SP <- S[Tstart: T]
T <- length(SP)
Val <- 1000000 # Value of transaction in FC (in M)
S_0 <- S[T] # Today's S_t
e_f <- log(SP[-1]/SP[-T])
T_s <- length(e_f)
alpha = .05 # Specify alpha level for VaR
T_s_low <- round(T_s*alpha/2) # Obs corresponding to alpha/2*T_s
TE_o <- Val*S_0*(1+e_f) # calculate Original TE values

Review – C.I. Application: VaR (Bootstrap)
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Example (continuation):
STE_o <- sort(TE_o) # sort Original TE
VaR_o <- STE_o[T_s_low] # Original VaR

> VaR_o

[1] 860293

# function to obtain VaR from the data

varisk <- function(data, i) {

d <-data[i]

TE <- Val*S_0*(1+d) # calculate R TE values 

STE <- sort(TE) # sort TE

VaR <- STE[T_s_low]

return(VaR)

}

library(boot)

sim_size <- 1000

boot.samps <- boot(data=e_f, statistic=varisk, R=sim_size) # use boot to build samples

C.I. Application: VaR in FX Markets (Bootstrap)

Example (continuation):
> boot.samps

Bootstrap Statistics :

original   bias    std. error

t1*   860293 1929.305    4870.733

> boot.ci(boot.samps, type = "basic") # boot computes the CI.

Intervals : 

Level      Basic         

95%   (849352, 867587 ) 

> mean(boot.samps$t)

[1] 862222.3

> sd(boot.samps$t)

[1] 4870.733

hist(boot.samps$t, xlab="VaR (in CHF)", breaks=30)

Bootstrap estimated VaR(97.5%) = CHF 0.8622M

C.I. Application: VaR in FX Markets (Bootstrap)
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Example (continuation):
VaR_o <- STE_o[T_s_low] # Original VaR

> VaR_o

[1] 860293

# function to obtain VaR from the data

varisk <- function(data, i) {

d <-data[i]

TE <- Val*S_0*(1+d) # calculate R TE values 

STE <- sort(TE) # sort TE

VaR <- STE[T_s_low]

return(VaR)

}

boot.samps <- boot(data=e_f, statistic=varisk, R=sim_size)

> boot.samps

Bootstrap Statistics :

original   bias    std. error

t1*   860293 1929.305    4870.733

Review – C.I. Application: VaR (Bootstrap)

Example (continuation):
> boot.ci(boot.samps, type = "basic") # boot computes the CI.

Intervals : 

Level      Basic         

95%   (849352, 867587 ) 

> mean(boot.samps$t)

[1] 862222.3

> sd(boot.samps$t)

[1] 4870.733

hist(boot.samps$t, xlab="VaR (in CHF)", 

breaks=30)

Bootstrap estimated VaR(97.5%) = CHF 0.8622M

Review – C.I. Application: VaR (Bootstrap)
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• Defined a random variable (say, stock returns) and how to describe 
its distribution with moments (mean, variance, skewness, etc).

• Testing hypothesis (H0) about the behavior of the RV. For example, 
the mean return of the S&P 500 is 0 (H0: μ=0).

• Building Confidence Intervals: Assuming a distribution or a 
bootstrap.

• Basic R and simple applications.

Review – Previous Classes: Summary

• So far, we focused on one RV only, say stock returns and learning 
about its distribution, for example, using descriptive statistics. In 
econometrics,  we are more interested in describing or measuring the 
expected effect of size on stock returns or the expected effect of 
education on an employee’s salary or a CEO’s compensation. 

• That is, we usually care about a functional relation between 𝑦, the 
dependent variable, and 𝒙, a set (a vector!) of explanatory variables. 

• In this lecture, we will linearly relate 𝑦 to 𝑥 & an error term, : 
𝑦௜ =  α +  𝑥௜ + ௜, 𝑖 = 1, 2, ...., 𝑇

where α &  are parameters to be estimated and ௜ is the error term or 
disturbance that has zero mean and constant variance, σ2. That is, ௜ is a 
RV with E[௜] = 0 & Var[௜] = σ2. 

Modeling a Dependent Variable as a Function
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• In our linear model:

𝑦௜ =  α +  𝑥௜ + ௜, 𝑖 = 1, 2, ...., 𝑁.

We think of ௜ as the effect of individual variation that is not 
“controlled for” with 𝑥௜ . The disturbance, ௜, is part of the model. We 
call the above equation the Data Generating Process (DGP).

Then, under the assumption E[௜] = 0, we have:

E[𝑦௜] =  α +  E[𝑥௜].

Example: The Sharpe-Litner CAPM posits a relation between the 
excess return of asset 𝑖, 𝑟௜,௧ – 𝑟௙, and the excess return of the market, 
𝑟௠,௧ – 𝑟௙. In equilibrium, the CAPM states:

E[(𝑟௜,௧ – 𝑟௙)] = β௜ E[(𝑟௠,௧ – 𝑟௙)],

where β௜ is the sensitivity of asset 𝑖 to market risk.

Modeling a Dependent Variable: Linear Model

Example (continuation): Let asset 𝑖 = IBM. The previous 
mathematical structure allows us to estimate β௜ୀூ஻ெ , compute 
expected excess returns for IBM, and test the CAPM for IBM. Define 

𝑦 = excess returns for IBM 

𝑥 = excess returns for the market (the “Market”). 

We express the underlying relation behind the CAPM as:

𝑦௜ =  α +  𝑥௜ + ௜, 𝑖 = 1, 2, ...., 𝑁.
where α &  are parameters to be estimated and  is the error term with 
E[] = 0 & Var[] = σ2. Taking expectations:

E[𝑦௜] =  α +  E[𝑥௜].

Then, once we estimate α & , we test the CAPM for IBM, since 
according to the CAPM α = 0. That is, we test: H0: α = 0 vs H1: α ≠ 0.

Modeling a Dependent Variable: Linear Model
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• To gain intuition and easy interpretation of the model, it is useful to 
think of 𝑥 as a given or predetermined (realized before 𝑦) variable. Then, 
we can express the relation between 𝑦 & 𝑥, in terms of the conditional 
expectation of 𝑦, conditioning on the predetermined value of 𝑥:

E[𝑦௜| 𝑥௜] =  α +  𝑥௜ . (“Regression equation”)

• The conditional expectation of 𝑦 is what we model; in general, based 
on finance theory or the experience of the practitioner. To be  
technically precise, for the regression equation we require E[i|𝑥௜] = 0.

Note: We started with: 𝑦௜ =  α +  𝑥௜ + ௜
which can be converted to: 𝑦௜ =  E[𝑦௜| 𝑥௜] + ௜

That is, 𝑦௜ is what we model plus something unexpected, a surprise.

Univariate Regression Equation

• In the CAPM example, we have that IBM’s excess returns are only 
related to (“explained by”) the market. This is a one variable model.

But, we could have used more variables, for example the 3 factors in 
the standard Fama-French model: Market, SMB (size factor), and 
HML (book-to-market or value factor).  This represents a 
multivariate model for IBM returns:

𝑦௜ = α + 1 𝑥ଵ,௜+ 2 𝑥ଶ,௜ + 3 𝑥ଷ,௜ + ε௜
• Though not necessary correct, we usually think of 𝑦 as the endogenous
variable and 𝑥 as the exogenous, determined “outside” the model.

This lecture: Estimation of population parameters α &  and the 
properties of estimators.

Multivariate Regression Equation
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Technical Note: We can study the joint distribution of 𝑦 & 𝑥, f(𝑥, 𝑦) 
and describe the joint behavior in terms of expectations, conditional 
expectations, correlations, etc. For example, assuming joint normality 
for 𝑦 & 𝑥, we can derive the conditional expectation of 𝑦, given 𝑥:

E[𝑦௜ | 𝑥௜] = α + β 𝑥௜
which gives a functional (& linear) relation between 𝑦 & 𝑥.

Thus, in a joint normality context, we can study the effect of a change 
in 𝑥 on 𝑦. Moreover, after a lot of manipulations and applying 
statistical definitions, we get a formula to estimate α & β in terms of 
moments of 𝑦 & 𝑥.

Q: Why do we need other methods to estimate α & β? 

Multivariate Regression Equation: Normality

• Q: More specific to this lecture, why do we need a least squares 
estimation (regression analysis)?

A: Two things to consider:

1) Joint normality is not a realistic assumption in economics and 
finance. 

2) In many situations, we think of the explanatory variable, 𝑥, as 
control, not necessarily as RV. 

Remark: Without making any reference to a joint distribution, we will 
derive the formulas to estimate parameters in a linear relation. 

Multivariate Regression Equation: Normality
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• Old method: Gauss (1795, 1801) used it in 

astronomy.

Idea: 

• We relate a dependent variable 𝑦 to a set of k explanatory variables 𝒙. 
This function depends on unknown parameters, θ, which we want to 
estimate. The relation between 𝑦 and 𝒙 is not exact; there is an error, . 
We have T observations of 𝑦 and 𝒙. 

𝑦௜ = 𝑓ሺ 𝑥ଵ,௜, 𝑥ଶ,௜, …, 𝑥௞,௜ ; θሻ + ε௜, i = 1, 2, ...., T.

• If the functional form is known, we estimate the parameters θ by 
minimizing a sum of squared errors:

minθ {S(𝒙; θ) = ∑ ε௜
்
௜

ଶ
 = ∑ ሺ𝑦௜െ𝑓ሺ𝑥ଵ,௜, 𝑥ଶ,௜, …, 𝑥௞,௜; θሻሻ

்
௜

ଶ
}

Carl F. Gauss (1777 – 1855, Germany)

Least Squares Estimation

• The estimator obtained is called the Least Squares (LS) estimator. 

• LS is a general estimation method. It can be applied to almost any 
function. 

• The functional form, f(𝒙௜ , θ), is dictated by theory or experience. In 
this class, we mainly work with the linear case:

f(𝒙௜ , θ) = 1  𝑥ଵ,௜ + 2  𝑥ଶ,௜ + 3 x3,i + … + k  𝑥௞,௜.

• Now, we estimate the vector θ = {1, 2, …, k} by minimizing 

S(𝒙; θ) = ∑ ε௜
்
௜

ଶ
= ∑ ሺ𝑦௜ െ 1 𝑥ଵ,௜ െ 2 𝑥ଶ,௜ െ ⋯െ 𝑘 𝑥௞,௜ሻ

்
௜

ଶ

In this case, we call this estimator the Ordinary Least Squares (OLS) 
estimator. (Ordinary = Linear functional form.)

Ordinary Least Squares Estimation
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Notation: In lecture 2, we used ^ over the estimator of the parameter 
of interest. For example, θ෠ is the estimator of the parameter θ. 
Sometimes, to emphasize the method of estimation, we add to the 
estimated parameter the initials of the method used, say θ෠௅ௌ. 

• For historical reasons, in the linear model, b is popularly used to 
denote the OLS estimator of . 

Least Squares Estimation – Notation

Example 1: We want to study the effect of the tech boom (𝑥) on the 
San Francisco housing market (𝑦). We rely on a simple linear model, 
with only one explanatory variable, the tech boom variable. That is, 

𝑦௜ =  α +   𝑥௜+ ௜.

In this model, we are interested in estimating , our parameter of 
interest.  measures the marginal effect of x on y. We can use the 
estimate of  to check if the tech boom has a positive effect on SF 
housing prices. In this case, we test:

H0 (No or Negative effect):  ൑ 0.

H1 (Positive effect):  > 0.

We have monthly data on SF Housing Prices and a Tech Indicator, 
developed by the Federal Reserve. We transform the data in 
percentage changes.

LS Estimation – Example 1: One Variable Model
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Plot data: SF House Prices vs Tech Indicator (both in % changes).

LS Estimation – Example 1: One Variable Model

It looks like  > 0. 

LS Estimation – Example 1: One Variable Model
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Example 2: We want to study the effect of a CEO’s education (𝑥) on 
a firm’s CEO’s compensation (y). We build a CEO’s compensation 
model including a CEO’s education (𝑥) and other “control variables” 
(W: experience, gender, etc.), controlling for other features that make 
one CEO’s compensation different from another. That is, 

𝑦௜ =  f(𝑥௜ , 𝑾௜, θ) + ௜, i = 1, 2, ...., T.

The term ௜ represents the effects of individual variation that have not 
been controlled for with 𝑾௜or 𝑥௜ and θ is a vector of parameters.

Usually, f(𝑥, θ) is linear. Then, the compensation model becomes:

𝑦௜ = α +   𝑥௜ + γ1 𝑊ଵ,௜ + γ2 𝑊ଶ,௜ + ... + ௜
Again, in this model, we are interested in estimating , our parameter 
of interest, which measures the effect of a CEO’s education on a 
CEO’s compensation.

LS Estimation – Example 2: Multivariate Model

• LS estimation can be applied to any functional form. In this class, 
we use a linear function. In this lecture, we derive the OLS formulas 
for the simplest case: one explanatory variable. Then, 

𝑦௜ = 1 + 2 𝑥௜ + ௜ (two parameters  𝑘 = 2)

Objective function: 

S(𝒙; 1, 2) = ∑ ε௜
்
௜

ଶ
= ∑ ሺ𝑦௜െ 1 െ 2 𝑥௜ሻ

்
௜

ଶ
=

= ሼ𝑦ଵെ1 െ 2 𝑥ଵሻଶ + ሼ𝑦ଶെ1 െ 2 𝑥ଶሻଶ + … + ሼ𝑦்െ1 െ 2 𝑥்ሻଶ

Taking first derivatives with respect to 1 
& 2 

:

(1): 2 ∑ ሺ𝑦௜െ 1 െ 2 𝑥௜ሻ
்
௜  (-1)  -2 ∑ ሺ𝑦௜െ 1 െ 2 𝑥௜ሻ

்
௜

(2): 2 ∑ ሺ𝑦௜െ 1 െ 2 𝑥௜ሻ
்
௜  (-𝑥௜)  -2 ∑ ሺ𝑦௜ 𝑥௜െ1 𝑥௜ െ 2𝑥௜

ଶ்
௜ ሻ

OLS Estimation – One Variable: Derivation
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• Now, we set f.o.c.’s

(1):  ∑ ሺ𝑦௜െ b1 െ b2 𝑥௜ሻ 
்
௜ = 0 (1)

(2):  ∑ ሺ𝑦௜ 𝑥௜െ b1 𝑥௜ െ b2 𝑥௜
ଶ்

௜ ሻ = 0 (2)

Since we have 𝑘 = 2, the f.o.c.’s form a 2x2 system of equations, the 
normal equations.  

• Next, we solve for b1 & b2, the OLS estimators.

From (1): ∑ 𝑦௜
்
௜  – ∑ b1

்
௜  – b2 ∑ 𝑥௜

்
௜  = 0 

⇒ b1 = 𝑦ത – b2 𝑥̅

From (2): ∑ 𝑦௜𝑥௜
்
௜  – (𝑦ത – b2 𝑥̅) ∑ 𝑥௜

்
௜  – b2 ∑ 𝑥௜

ଶ்
௜  = 0= 0

⇒ ∑ 𝑦௜𝑥௜
்
௜ – 𝑦ത ∑ 𝑥௜

்
௜ – b2 (∑ 𝑥௜

ଶ்
௜ – 𝑥̅ ∑ 𝑥௜

்
௜ )= 0

⇒ b2 =
∑ ሺ௬೔೔  ି ௬തሻ ௫೔
∑ ሺ௫೔೔  ି ௫̅ሻ ௫೔

OLS Estimation – One Variable: Derivation

• The estimator of 2:

b2 =
∑ ሺ௬೔
೅
೔ ି ௬തሻ ௫೔

∑ ሺ௫೔
೅
೔ ି ௫̅ሻ ௫೔

after some algebra can be written as:

b2 =
∑ ሺ௬೔
೅
೔ ି ௬തሻሺ௫೔ ି ௫̅ሻ

∑ ሺ௫೔ ି ௫̅ሻమ೅
೔

= 
∑ ሺ௬೔
೅
೔ ି ௬തሻሺ௫೔ ି ௫̅ሻ/ሺ்ିଵሻ

∑ ௫೔ ି ௫̅ మ೅
೔ /ሺ்ିଵሻ

ൌ ௖௢௩ሺ௬೔, ௫೔ሻ

௩௔௥ሺ௫೔ሻ 

Note: We need 𝑣𝑎𝑟ሺ𝑥௜ሻ ≠ 0 to get b2. 

• The estimators b1 & b2 are a function of the data. Moreover, if we 
think of 𝑥 as predetermined, b1 & b2 are a linear function of 𝑦. This is 
a property of the OLS estimators.

OLS Estimation – One Variable: Derivation
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• Interpretation of coefficients

- b1 estimates the constant of the regression, the value of 𝑦௜, when 𝑥௜
equals to 0. 

- b2 estimates the slope of the regression, the marginal effect –i.e., the 
first derivative of 𝑦௜ with respect to 𝑥௜ : 

ఋ௬೔
ఋ௫೔

= 2 ⇒ estimated by b2.

That is, if 𝑥 increases by one unit (say, 1%), then, we estimate that 𝑦
increases by b2 units (say, b2%).

• Conditional Prediction

Suppose analysts estimate that 𝑥௜ will be z%, then, you estimate (or 
predict, given the z% value of 𝑥௜):

Predicted [𝑦௜| 𝑥௜ = z%] = b1 + b2 * z.

OLS Estimation: Interpretation & Prediction

• General functional form:

𝑓ሺ𝑥௜ , θሻ -θ is a vector of 𝑘 parameters. 

• The model: 

𝑦௜ = 𝑓ሺ𝑥௜ , θሻ + i

• Objective function: 

S(𝒙; θ) = ∑ ε௜
்
௜

ଶ
= ∑ ሼ𝑦௜െ𝑓ሺ𝑥௜ , θሻሽ

்
௜

ଶ

= ሼ𝑦ଵെ𝑓ሺ𝑥ଵ, θሻሽଶ + ሼ𝑦ଶെ𝑓ሺ𝑥ଶ, θሻሽଶ + … + ሼ𝑦்െ𝑓ሺ𝑥் , θሻሽଶ

• We minimize S(𝒙, θ) with respect to θ:
డS(𝒙, θ)

డθ ൌ 2 ሼ𝑦ଵെ𝑓ሺ𝑥ଵ, θሻሽሺെ𝑓′ሺ𝑥ଵ, θሻሻ ൅ ⋯൅  2 ሼ𝑦்െ𝑓ሺ𝑥் , θሻሽሺെ𝑓′ሺ𝑥் , θሻሻ

ൌ െ2∑ ሼ𝑦௜ െ 𝑓ሺ𝑥௜ , θሻሽ 𝑓′ሺ𝑥௜ , θሻሽ
்
௜

LS Estimation – General Case: f.o.c.
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• We minimize S(𝒙, θ) with respect to θ:

డS(𝒙, θ)
డθ ൌ െ2∑ ሼ𝑦௜ െ 𝑓ሺ𝑥௜ , θሻሽ 𝑓′ሺ𝑥௜ , θሻሽ

்
௜

• We set the f.o.c.’s: 

െ2∑ ሼ𝑦௜ െ 𝑓ሺ𝑥௜ , θ෠௅ௌሻሽ 𝑓′ሺ𝑥௜ , θ෠௅ௌሻሽ
்
௜ ൌ 0

  ∑ ሼ𝑦௜ െ 𝑓ሺ𝑥௜ , θ෠௅ௌሻሽ 𝑓′ሺ𝑥௜ , θ෠௅ௌሻሽ
்
௜ ൌ 0 (normal equations)

• The normal equations (a 𝑘x𝑘 system) do not always have an analytic 
solution. When 𝑓ሺ𝑥௜ , θሻ is linear, we get an explicit solution, θ෠ை௅ௌ = b.

• When 𝑓ሺ𝑥௜ , θሻ is non-linear, we do not have an explicit solution for  
θ෠௅ௌ. The system can be solved numerically. In this case, the estimator 
is usually referred as Non-linear Least Squares estimator, θ෠ே௅௅ௌ.

LS Estimation – General Case: OLS & NLLS

• A typical finance application of a one variable linear model is the 
CAPM. Recall that the (Sharpe-Litner) CAPM, in equilibrium, implies:

E[𝑟௜,௧ – 𝑟௙] = β௜ E[(𝑟௠,௧ – 𝑟௙)],

where

𝑟௜,௧ = return on asset i at time t.

𝑟௙ = return of riskless asset at time t. 

𝑟௠,௧ = return on the market portfolio at time t.

β௜ = asset i’s sensitivity to market (systematic) risk.

That is, the expected excess return on asset i is proportional to the 
market risk premium. β௜ is the proportionality factor, it measures the 
sensitivity to market (systematic) risk.

OLS Estimation – One Variable: CAPM
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• The CAPM is a particular case of what in financial theory we call 
“factor models.” Factors represent the systematic component that drives 
the cross-section of returns over time; they can be observed or 
unobserved. For example, a 𝑘-factor model for returns is given by:

𝑟௜,௧ – 𝑟௙ = α + 1 𝑓ଵ,௧+ 2 𝑓ଶ,௧ + … + k 𝑓௞,௧ + ε௜,௧
where 𝑓௝,௧ is the j (common) factor at time t, and constant over i, and 
ε௜,௧ represents the idiosyncratic component of asset i. 

• We think of returns as driven by common factors (undiversifiable) 
& idiosyncratic factors (diversifiable in large portfolios.) Thus, 
investors get compensated only for the systematic risk they take. The 
higher the exposure –i.e., β௜– the higher the expected compensation.

• The CAPM has only one factor: market excess returns (“the market”). 

OLS Estimation – One Variable: CAPM

• A linear data generating process (DGP) consistent with the CAPM: 
𝑟௜,௧ – 𝑟௙ = αi + β௜(𝑟௠,௧ – 𝑟௙ሻ + ௜,௧ , i = 1, ..., N &  t = 1, …,T

αi & β௜ are the coefficients to be estimated by LS, and

Cov(𝑟௠,௧, ௜,௧) = 0 -i.e., market returns are exogenous.

If  β௜ = 0, asset 𝑖 is not exposed to market risk. Thus, the investor is 
not compensated with a higher return than 𝑟௙. 

If  β௜ > 0, asset 𝑖 is exposed to market risk & 𝑟௜,௧ ≥ 𝑟௙, provided that 
E[𝑟௠,௧ – 𝑟௙]> 0.

If  β௜ > 1 (β௜ < 1), asset 𝑖 is “riskier” (“safer”) than the market.

If  αi > 0, then asset 𝑖 has higher expected returns than what is 
expected in equilibrium –i.e., what the CAPM implies.

OLS Estimation – One Variable: CAPM
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• Then, in our linear model let 𝑦௜ represent IBM excess returns 
(𝑟௜ୀூ஻ெ,௧ – 𝑟௙) at time 𝑡 and let 𝑥௜ represent Market excess returns 
(𝑟௠,௧ – 𝑟௙) at time 𝑡. Then, b2 estimates IBM’s beta in the CAPM.

Then, b2 estimates the stock’s beta in the CAPM: 

b2 = 𝛽መூ஻ெ ൌ 
௖௢௩ሺ௥೔స಺ಳಾ,೟ – ௥೑, ௥೘,೟ – ௥೑ሻ

௩௔௥ሺ௥೘,೟ – ௥೑ሻ 

That is, the CAPM 𝛽 is the ratio of a covariance over a variance. 

Recall that the CAPM 𝛽 measures a stock's risk in relation to the risk 
(volatility) of the market. We think of 𝛽 as a measure of the relative 
risk exposure of holding a particular stock (IBM, in this case) in 
relation to the market.

OLS Estimation – One Variable: CAPM

• Interpretation of coefficients

- b1 estimates the constant of the regression: IBM excess returns in 
excess of Market excess returns. In the CAPM, it should be 0 (= αi). 

- b2 estimates the slope of the regression. In the CAPM: i

ఋ௬೔
ఋ௫೔

= i

That is, if Market excess returns increase by one 1%, then IBM excess 
returns are expected to increase by b2 (= i) units (say, b2%). The IBM 

also tells us if IBM is riskier (IBM >1) or safer (IBM <1) than the 
market.

OLS Estimation – One Variable: CAPM
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• Conditional Prediction

Suppose analysts estimate that Market excess returns are 10%, then, 
we estimate (or predict, given the 10% value for Market excess 
returns):

Predicted [IBM excess returns|(𝑟௠,௧ – 𝑟௙)=.10] = b1 + b2 * .10.

We will call the Predicted 𝑦௜ = 𝑦ොi = fitted value.

OLS Estimation – One Variable: CAPM

Example: Estimate the CAPM for IBM returns using lm function.

• Import data with read function
SFX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv", 
head=TRUE, sep=",")

• Extract variables from imported data
x_ibm <- SFX_da$IBM # extract IBM price data

x_Mkt_RF <- SFX_da$Mkt_RF # extract Market excess returns (in %)

x_RF <- SFX_da$RF # extract Risk-free rate (in %)

• Define log returns & adjust size of variables accordingly
T <- length(x_ibm) # sample size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) # create IBM log returns (in decimal returns)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust sample size to ( T-1) by removing 1st obs

RF <- x_RF[-1]/100 # Adjust sample size and use decimal returns.

OLS Estimation: CAPM – R Estimation
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Example (continuation):

• Define excess returns and estimate CAPM with lm function: 

ibm_x <- lr_ibm – RF # IBM excess returns

fit_ibm_capm <- lm(ibm_x ~ Mkt_RF) # lm (=linear model) package in R

summary(fit_ibm_capm) # print lm results

> summary(fit_ibm_capm)

Call:

lm(formula = ibm_x ~ Mkt_RF)

Residuals:

Min        1Q    Median        3Q       Max 

-0.314401 -0.031692 -0.000537  0.031447  0.248201 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005791   0.002487  -2.329   0.0202 *  

xMkt_RF 0.895774 0.053867  16.629   <2e-16 ***

OLS Estimation: CAPM – R Estimation

Example (continuation):
> summary(fit_ibm_capm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.005791   0.002487  -2.329   0.0202 *  

xMkt_RF 0.895774 0.053867  16.629   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05887 on 567 degrees of freedom

Multiple R-squared:  0.3278,    Adjusted R-squared:  0.3266 

F-statistic: 276.5 on 1 and 567 DF,  p-value: < 2.2e-16

Interpretation of b1:

b1 = constant. The additional IBM return, after excess market returns 
are incorporated, is -0.58%. Under the CAPM, b1 should be close to 
0.

b2 = 𝜷෡𝑪𝑨𝑷𝑴

b1

OLS Estimation: CAPM – R Estimation
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Example (continuation):

Interpretation of b2:

b2 = slope. If market excess returns increase by 1%, IBM excess 
returns increase by 0.90%. The estimate of 𝛽IBM (𝛽<1) implies that 
IBM is less volatile (“safer”) than the market.

Conditional prediction of IBM excess returns: 

Suppose market excess returns increase are 10%, then we predict IBM 
excess returns = -0.005791 + 0.895774 * .10 = 0.08378 (8.38%).

Note: According to the CAPM, IBM underperformed:

- IBM excess returns (CAPM) = 0.895774 * mean(Mkt_RF) 

= 0.895774 * 0.0056489 = 0.0050601

- IBM excess returns (sample) = mean(ibm_x) = -0.00073141

OLS Estimation: CAPM – R Estimation

• LS is a general estimation method. It allows any functional form for 
the relation between 𝑦௜ and 𝑥௜ . But, in this lecture, we cover the case 
where f(𝑥௜ , θ) is linear. When the relation is linear, we do OLS 
estimation. 

We assume a linear system with 𝑘 independent variables and 𝑇
observations. That is,

𝑦௜= β1 𝑥ଵ,௜ + β2 𝑥ଶ,௜ + ... + βk 𝑥௞,௜ + εi, 𝑖 = 1, 2, ...., 𝑇

The whole system (for all i) is:

𝑦ଵ= β1 
x11 

+ β2  
x12 + ... + βk 

xk1 + ε1

𝑦ଶ= β1 
x12 

+ β2 
x22 + ... + βk 

xk2 + ε2

....           ....             ....          ... 
𝑦்  = β1 

x1T 
+ β2 

x2T + ... + βk 
xkT + εT

OLS Estimation – Multivariate Case
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• It is cumbersome to write the whole system. Using linear algebra, we 
can rewrite the system in a more compact and simplify derivations. 

Example: Using vector & matrix notation, we write the system as:

y =  f(X, θ) +  = X  + 

Notation: 𝐲,  &  are vectors:

𝐲 ൌ
𝑦ଵ
⋮
𝑦்

 ,  ൌ
ଵ
⋮
்

, &  ൌ
ଵ
⋮
௞

 

X is a matrix: X ൌ
𝑥ଵଵ 𝑥ଶଵ ⋯ 𝑥௞ଵ
⋮ ⋮ ⋱ ⋮
𝑥ଵ் 𝑥ଶ் ⋯ 𝑥௞்

OLS Estimation – Multivariate Case

Linear Algebra: Brief  Review – Matrix

• Life (& notation) becomes easier with linear Algebra. Concepts:

• A Matrix. 

A matrix is a set of  elements, organized into rows and columns

𝑎 𝑏
𝑐 𝑑

columns

rows

• 𝑎 and 𝑑 are the diagonal elements. 
• 𝑏 and 𝑐 are the off-diagonal elements.

• Matrices are like plain numbers in many ways:  they can be added, 
subtracted, and, in some cases, multiplied and inverted (divided).   
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Examples:

55

𝐴 ൌ
𝑎ଵଵ 𝑎ଶଵ
𝑎ଵଶ 𝑎ଶଶ

;   𝑏 ൌ 𝑏ଵ 𝑏ଶ 𝑏ଷ

• Dimensions of  a matrix: numbers of  rows by numbers of  columns. 
The Matrix A is a 2x2 matrix, b is a 1x3 matrix.

• A matrix with only 1 column or only 1 row is called a vector.

• If  a matrix has an equal numbers of  rows and columns, it is called a 
square matrix. Matrix A, above, is a square matrix.

• Usual Notation: Upper case letters  matrices
Lower case  vectors

Linear Algebra: Matrices and Vectors

• Information is described by data. A tool to organize the data is a list, 
which we call a vector. Lists of lists are called matrices. That is, we 
organize the data using matrices, say, X. 

• We think of the elements of X as data points (“data entries”, 
“observations”), in economics, we usually have numerical data.

• We store the data in rows. In a Tx𝑘 matrix, X, over time we build a 
database:

X ൌ
𝑥ଵଵ 𝑥ଶଵ ⋯ 𝑥௞ଵ
⋮ ⋮ ⋱ ⋮
𝑥ଵ் 𝑥ଶ் ⋯ 𝑥௞்

• Once the data is organized in matrices it can be easily manipulated: 
multiplied, added, etc. (This is what Excel does very well). 56

row 1 = 𝑘 entries at time 1

row T = 𝑘 entries at time T

Linear Algebra: Matrices – Information
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• We want to estimate a model: 𝑦 = f(𝑥ଵ, 𝑥ଶ, ..., 𝑥௞). We collect data, 
T (or N) observations, on a dependent variable, 𝒚, and on 𝑘
explanatory variables, X.

• Usual notation: vectors are column vectors: y & 𝒙௝ are Tx1 vectors:

𝐲 ൌ

𝑦ଵ
𝑦ଶ
⋮
𝑦்

& 𝒙௝  ൌ

𝑥௝ଵ
𝑥௝ଶ
⋮
𝑥௝்

 𝑗 = 1, ..., 𝑘 

X is a Tx𝑘 matrix: X ൌ
𝑥ଵଵ 𝑥ଶଵ ⋯ 𝑥௞ଵ
⋮ ⋮ ⋱ ⋮
𝑥ଵ் 𝑥ଶ் ⋯ 𝑥௞்

Its columns are the 𝑘 Tx1 vectors 𝒙௝ . It is common to treat 𝒙ଵ as 
vector of ones, ί. 57

Linear Algebra: Matrices in Econometrics

• In general, we import matrices (information) to our programs.

Example: In R, we use the read function, usually followed by the 
type of data we are importing. Below, we import a comma separated 
values (csv) file with monthly CPIs and exchange rates for 20 different 
countries, then we use the read.csv function:

PPP_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE
,sep=",")

The names() function describes the headers of the file imported (41 headers):
> names(PPP_da)

[1] "Date"      "BG_CPI"    "IT_CPI"    "GER_CPI"   "UK_CPI"   

[6] "SWED_CPI"  "DEN_CPI"   "NOR_CPI"   "IND_CPI"   "JAP_CPI" 

[11] "KOR_CPI"   "THAI_CPI"  "SING_CPI"  "MAL_CPI"   "KUW_CPI"  

[16] "SUAD_CPI"  "CAN_CPI"   "MEX_CPI"   "US_CPI"    "EGY_CPI“

[...] 58

Linear Algebra: Matrices in Econometrics
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Example (continuation): 

The summary() function provides some stats of variables imported:
>summary(PPP_da)

Date         BG_CPI           IT_CPI          GER_CPI      

1/15/1971:  1   Min.   : 19.77   Min.   :  5.90   Min.   : 31.20  

1/15/1972:  1   1st Qu.: 49.32   1st Qu.: 32.25   1st Qu.: 57.17  

1/15/1973:  1   Median : 69.91   Median : 67.30   Median : 75.30  

1/15/1974:  1   Mean   : 67.92   Mean   : 60.14   Mean   : 72.29  

1/15/1975:  1   3rd Qu.: 89.40   3rd Qu.: 89.65   3rd Qu.: 91.17  

1/15/1976:  1   Max.   :109.71   Max.   :103.50   Max.   :106.60  

(Other)  :588 

We extract a variable from the matrix by the name of file followed by 
$ and the header of variable:
x_chf <- PPP_da$CHF_USD # extract CHF/USD exchange rate data

We can transform the vector x_chf. For example, for % changes:
T <- length(x_chf) # length of  CHF/USD exchange rate data
lr_chf  <- log(x_chf[-1]/x_chf[-T]) # create log returns (changes) for the CHF/USD

59

Linear Algebra: Matrices in Econometrics


