# Lecture 2-d Bootstrap \& Value-at-Risk 

© R. Susmel, 2020 (for private use, not to be posted/shared online).

## Review: Sampling Distribution of $\bar{X}$ and $\boldsymbol{s}^{\mathbf{2}}$

- Recall that the sampling distribution of the sample mean is:

$$
\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / N\right)
$$

Example: Using Shiller's S\&P 500 monthly log returns ( $N=1805$,

$$
\begin{aligned}
& \bar{X}=0.007378, s=0.0404559) \\
& \quad \Rightarrow \bar{X} \sim \mathrm{~N}\left(0.007378, .00095^{2}\right)
\end{aligned}
$$

- Under normal variates, the sampling distribution of $s^{2}$ is:

$$
(N-1) s^{2} / \sigma^{2} \sim \chi_{N-1}^{2}
$$

Example: Using Shiller's data.
Estimated $\operatorname{Var}\left[s^{2}\right]=2 * \sigma^{4} /(N-1)=2 * 0.040455^{\wedge} 4 / 1804=$

$$
=2.969493 \mathrm{e}-09
$$

S.E. $\left(s^{2}\right)=\operatorname{sqrt}(2.969493 \mathrm{e}-09)=0.0000545($ or $0.0055 \%)$.

## Review - Returns: Expected Returns \& the ERP

- Q : How precise is the computation of $\mathrm{ERP}=\mathrm{E}\left[\left(r_{M, t}-r_{f, t}\right)\right]$ ?

Example: We use Shiller's monthly data, with 150 years of data, to produce an estimate of the $\mathrm{ERP}=\mathrm{E}\left[\left(r_{M, t}-r_{f, t}\right)\right]$ :

Annualized Market return $=0.007378 * 12=0.088536$
Annualized risk-free rate $=\mathbf{0 . 0 4 5 1 1}$
$\mathrm{ERP}=0.088536-0.04511=0.043426$

- Many economists would consider this estimated ERP as "too bigh." Why? The standard "neoclassical" model gets an ERP close to $1 \%$. To get to $4.34 \%$ (or $6 \%$ ) the model requires extremely high risk aversion..
- It turns out that ERP is not easy to estimate precisely. Duarte and Rosa (2015) list over 20 models to estimate ERP in the U.S. With 1960-2013 data, they report estimates from $-0.4 \%$ to $13.1 \%$.


## Review - Returns: ERP - Wide Range

- Using $\mathbf{5 0}$ years of monthly data, we report ERP annual estimates for developed markets (in USD), from $0.88 \%$ (Italy) to 11.56 (HK). For EM, there is also big dispersion of ERP estimates (also big SDs!)
- We use the SE as a measure of precision of an estimate. For the sample mean, $\bar{X}$, we have: $\quad$ S.E. $(\bar{X})=s / \sqrt{T}$
U.S.: $\quad 15.01 / \operatorname{sqrt}(620 / 12)=2.0882 \%$

Germany: $\quad 21.48 / \operatorname{sqrt}(620 / 12)=2.9883 \%$
Hong Kong: $\quad 33.23 / \operatorname{sqrt}(620 / 12)=4.6230 \% \quad \Leftarrow$ Effect of $T$
Brazil: $\quad 47.67 / \operatorname{sqrt}(404 / 12)=8.2157 \%$
Russia: $\quad 47.54 / \operatorname{sqrt}(320 / 12)=9.2061 \%$
India: $\quad 28.35 / \operatorname{sqrt}(344 / 12)=5.2950 \%$

## Review - Returns: Risk-Return - Sharpe Ratio

- A popular statistics that provides a measure of the risk-return tradeoff for an asset is the Sharpe ratio (SR), the ratio of the excess expected return of an asset to its risk, measured by its return volatility (SD). We estimate the SR of asset $i$ with

$$
\widehat{S R}_{i}=\frac{\widehat{\mu}_{\mathrm{i}}-\mathrm{r}_{\mathrm{f}}}{s_{i}} \quad\left(\hat{\mu}_{\mathrm{i}}=\bar{X} \text { for the return of } \imath\right)
$$

Interpretation: A $1 \%$ change in risk, increases excess returns by $\mathrm{SR} \%$.

Using the previous data, we calculate the SR for several markets:
U.S.: $\quad 0.0382 / .1501=0.2545$

Switzerland: $\quad 0.0585 / .1764=0.3316$
Hong Kong: $\quad 0.1156 / .3323=0.3479$
Russia: $\quad 0.1660 / .4754=0.3492 \quad \Leftarrow$ Best trade-off.
India: $\quad 0.0760 / .2835=0.2681$.

## Review - Hypothesis Testing

- Testing involves the comparison between two competing hypothesis:
$-H_{0}$ : The maintained hypothesis.
$-H_{1}$ : The hypothesis considered if $H_{0}$.
- Idea: We collect a sample, $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. We construct a statistic $\mathrm{T}(X)=f(X)$, called the test statistic. Now we have a decision rule:
- If $T(X)$ is contained in space $R$, we reject $H_{0}$ (\& we learn).
- If $T(X)$ is in the complement of $R\left(R^{\mathrm{C}}\right)$, we fail to reject $H_{0}$.

Note: $T(X)$, like any other statistic, is a RV. It has a distribution. We use the distribution of $T(X)$ to determine R (\& we associate a probability to $R$ ).

## Review - Hypothesis Testing

Example: Suppose $\mathrm{T}(X)=\bar{X}$. If data is normal, the distribution of $\bar{X}$ is also normal. Then, under $\mathrm{H}_{0}$, we build a Rejection Region, R :

$$
\mathrm{R}=\left[\bar{X}<T_{L B}, T_{U B}>\bar{X}\right]
$$



Note: The blue area ("significance level") represents the $\mathrm{P}\left[\mathrm{R} \mid \mathrm{H}_{0}\right]$. For example, if the blue area is $5 \%$, then, $T_{L B}=-1.96 \& T_{U B}=1.96$.

## Review - Hypothesis Testing: p-value

- The classical approach, also known as significance testing, relies on $p$-values: $p$-value is the probability of observing a result at least as extreme as the test statistic, under $H_{0}$.

Example: Suppose $T(X) \sim \chi_{2}^{2}$. We compute $\widehat{T(X)}=7.378$. Then, p-value $(\widehat{T(X)}=7.378)=1-\operatorname{Prob}[T(X)<7.378]=0.025$

Chi-square Distribution (df=2): P-value.


## Review - Hypothesis Testing: Steps

- Steps for the classical approach, also known as significance testing:

1. Identify $\mathrm{H}_{0} \&$ set a significance level ( $\alpha \%$ ).
2. Determine the appropriate test statistic $\mathrm{T}(X)$ and its distribution under the assumption that $\mathrm{H}_{0}$ is true.
3. Calculate $T(X)$ from the data.
4. Rule: If $p$-value of $\mathrm{T}(X)<\alpha \Rightarrow$ Reject $\mathrm{H}_{0}$ (\& we learn $\mathrm{H}_{0}$ ! is not true). If $p$-value of $\mathrm{T}(X)>\alpha \Rightarrow$ Fail to reject $\mathrm{H}_{0}$. (No learning.)

Note: In Step 4, setting $\alpha \%$ is equivalent to setting R. Thus, instead of looking at $p$-value, we can look if $\mathrm{T}(X)$ falls in R (in the blue area). We do this by constructing a $(1-\alpha) \%$ C.I.

- Mistakes are made. We want to quantify these mistakes.


## Review - Hypothesis Testing: $\mathbf{H}_{0}: \mu=\mu_{0}$

Example: We want to test if the mean is equal to $\mu_{0}$. Then,

1. $\mathrm{H}_{0}: \mu=\mu_{0}$.
$\mathrm{H}_{1}: \mu \neq \mu_{0}$.
2. Appropriate $\mathrm{T}(X)$ : t-test (based on $\sigma$ unknown and estimated by $s$ ).

Determine distribution of $\mathrm{T}(X)$ under $\mathrm{H}_{0}$. Sampling distribution of $\bar{X}$, under $\mathrm{H}_{0}: \bar{X} \sim \mathrm{~N}\left(\mu_{0}, \sigma^{2} / N\right)$. Then, distribution of $\mathrm{T}(X)$ under $\mathrm{H}_{0}$ :

$$
\mathrm{t}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{N}} \sim t_{N-1} \quad-\text { when } N>30, t_{N} \sim \mathrm{~N}(0,1) .
$$

3. Compute $\mathrm{t}, \hat{\mathrm{t}}$, using $\bar{X}, \mu_{0}, s$, and $N$. Get $p$-value $(\hat{\mathrm{t}})$.
4. Rule: Set an $\alpha$ level. If $p$-value $(\hat{t})<\alpha \quad \Rightarrow$ Reject $\mathrm{H}_{0}: \mu=\mu_{0}$.

$$
\text { Alternatively, if }|\hat{\mathfrak{t}}|>t_{N-1,1-\alpha / \mathbf{2}} \quad \Rightarrow \text { Reject } \mathrm{H}_{0}: \mu=\mu_{0}
$$

## Review - H. Testing: Are Excess Returns Zero?

Example 1: We test if the S\&P 500 monthly excess return is zero.
Data (1871-2021): $\bar{X}=0.003619, s=0.04052, N=1805$. Then,

1. $\mathrm{H}_{0}: \mu=0$.
$\mathrm{H}_{1}: \mu \neq 0$.
2. Appropriate test: $\mathrm{t}=\frac{\bar{X}-\mu_{0}}{s / \sqrt{N}}$
3. $\hat{\mathrm{t}}=\frac{0.003619}{0.04052 / \sqrt{1805}}=3.7941 \& p-\operatorname{value}(\hat{\mathrm{t}})=0.00015$
4. Rule: $p$-value $(\hat{t})=0.00015<\alpha=.05 \quad \Rightarrow$ Reject $\mathrm{H}_{0}: \mu=0$.

Alternatively, $|\hat{\mathfrak{t}}=3.7941|>t_{N-1,1-.05 / 2}=1.96 \Rightarrow$ Reject $H_{0}: \mu=0$.
Conclusion: S\&P 500 monthly mean excess returns are not equal to zero. $\|$

## Review - H. Testing: Are Excess Returns Zero?

Example 1 (continuation): The observed $\hat{\mathrm{t}}=3.7941$ is in the rejection region built around $\mathrm{H}_{0}$ : $(-1.96,1.96)$.
Note: $\mathrm{t}_{1789,1-.05 / 2}=\mathrm{z}_{1-.05 / 2}=1.96$
(since $N>30$.)
And, by symmetry of Normal: $-\mathrm{z}_{05 / 2}=\mathrm{z}_{1-.05 / 2}=1.96$
Distribution of Mean Standardized S\&P 500 Returns: $\mathbf{9 5 \%}$ C.I.


## Review - Confidence Intervals (C.I.)

- When we estimate parameters with an estimator, $\hat{\theta}$, we get a point estimate for $\theta$. For example, in the previous example, $\bar{X}=0.003619$.
- Broader concept: Estimate a set $\mathrm{C}_{\mathrm{n}}$, a collection of values in $\mathrm{R}^{\mathrm{k}}$. For example, $\mu \in \mathrm{C}_{\mathrm{n}}=\left[\mathrm{L}_{\mathrm{n}} ; \mathrm{U}_{\mathrm{n}}\right]$, called an interval estimate for $\theta$.
- The goal of $\mathrm{C}_{\mathrm{n}}$ is to contain the true population value, $\theta$. The wider the interval $C_{n}$, the more uncertain we are about our estimate, $\hat{\theta}$.
- Interval estimates $\mathrm{C}_{\mathrm{n}}$ are called confidence intervals (C.I.), usually noted with the coverage probability $(1-\alpha) \%$.


## Review - Confidence Intervals (C.I.)

- When we know the distribution of $\hat{\theta}$, it is easy to construct a C.I. For example, if the distribution of $\hat{\theta}$ is normal, then a $(1-\alpha) \%$ C.I.:

$$
\mathrm{C}_{\mathrm{n}}=\left[\hat{\theta} \pm z_{1-\alpha / 2} * \text { Estimated } \operatorname{SE}(\hat{\theta})\right] \quad\left(-z_{\alpha / 2}=z_{1-\alpha / 2}\right)
$$

Example: We estimate a $95 \%$ C.I. for the monthly S\&P mean excess return. Assuming, normality, $\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / N\right)$. Then, a $(1-\alpha) \%$ C.I.:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{n}}=\left[\bar{X}-z_{1-.05 / 2} * \operatorname{SD}(\bar{X}), \bar{X}+z_{1-.05 / 2} * \mathrm{SD}(\bar{X})\right] \\
\mathrm{C}_{\mathrm{n}}= & {[0.003619-1.96 *[0.04052 / \sqrt{1805}], 0.003619+1.96 *[0.04052 / \sqrt{1805}]} \\
= & {[0.00175,0.00549]=[0.18 \%, 0.55 \%] . }
\end{aligned}
$$

Note: By looking at the $95 \%$ C.I., we reject than monthly S\&P Composite excess returns are 0 , since $0 \%$ is outside the $95 \%$ C.I.

## Review - C.I. for Monthly Stock Excess Returns

Example (continuation): Reject $\mathrm{H}_{0}: \mu=0$, since 0 is outside the observed 95\% C.I.


- Note: This $95 \%$ C.I. shows why Mehra \& Prescott (1985) thought the ERP was too high. Their theoretical monthly ERP was, at most, $0.0833 \%(=1 \% / 12)$. $\boldsymbol{\text { | }}$


## Review - C.I. for the Variance of Stock Returns

Example: We estimate a $95 \%$ C.I. for the variance of monthly S\&P 500 mean total return. Assuming normality, $s$, once scaled, follows:

$$
(N-1) s^{2} / \sigma^{2} \sim \chi_{N-1}^{2} .
$$

First, we rewrite the standard C.I. for a chi-squared variable:

$$
\begin{aligned}
\mathrm{P}\left(\chi_{v, \alpha / 2}^{2}<\chi_{v}^{2}<\chi_{v, 1-\alpha / 2}^{2}\right)=1-\alpha \\
\mathrm{P}\left(\chi_{N-1, \alpha / 2}^{2}<(N-1) s^{2} / \sigma^{2}<\chi_{N-1,1-\alpha / 2}^{2}\right)=1-\alpha \quad(v=N-1)
\end{aligned}
$$

After some easy algebra, we derive:

$$
\mathrm{P}\left[(N-1) s^{2} / \chi_{v, 1-\alpha / 2}^{2}<\sigma^{2}<(N-1) s^{2} / \chi_{v, \alpha / 2}^{2}\right]=1-\alpha .
$$

Note: This C.I. is not symmetric. But, as the degrees of freedom $(N)$ get large, the $\chi_{N-1}^{2}$ starts to look like a Normal and, thus, more symmetric. ${ }_{16}$

## Review - C.I. for the Variance of Stock Returns

Example (continuation): From the $\chi_{1804}^{2}$ distribution, we get: $\chi_{1804,025}^{2}=1688.2 \& \chi_{1804,975}^{2}=1923.6$.

Chi-square Distribution (df=1789): 95\% C.I.

$\mathrm{P}\left[1804^{*}(0.04046)^{2} /(1923.6)<\sigma^{2}<1804 *(0.04046)^{2} /(1688.2)\right]=.95$
$\mathrm{P}\left[0.001535<\sigma^{2}<0.001749\right]=.95$

## Review - C.I. for the Variance of Stock Returns

Example (continuation):
$\mathrm{P}\left[0.001535<\sigma^{2}<0.001749\right]=.95$
Taking square root above delivers a $95 \%$ C.I. for $\sigma$ :

$$
\Rightarrow 95 \% \text { C.I. for } \sigma \text { is given by }(3.918 \%, 4.182 \%) .
$$

C.I. is compact around the estimated $0.04046 \Rightarrow \sigma$ is measured with accuracy.

Note: Usually $N$ is large ( $N>30$ ). We can use the normal approximation to calculate CIs for the population $\sigma$. For the $\mathrm{S} \& \mathrm{P}$ data:
$\mathrm{SE}[s]=s / \sqrt{2 *(N-1)}=0.04046 / \sqrt{2 * 1804}=0.00067($ or $.067 \%)$
A $95 \%$ CI for $\sigma$ is given by:

$$
(4.046 \% \pm 1.96 * .067 \%)=(3.914 \%, 4.178 \%) . \quad \text { (Very close! })
$$

## C.I. Application: Using the ED

- In the previous examples, we assumed that we knew the distribution of the data: Stock returns follow a normal distribution.

Q: What happens when the data follows an unknown distribution, $F$ ?

- Well, we still can use $\bar{X}$ or $s^{2}$ as estimates of $\mu$ and $\sigma^{2}$, since they have good properties when $N$ is large: consistency \& asymptotic normality.
- But, if $\boldsymbol{F}$ is unknown and/or $\boldsymbol{N}$ is not large enough (or the normal approximation is not good), we still can build a C.I. for any statistic using a new method: a bootstrap.
- The bootstrap is a method for estimating the sampling distribution of a statistic, $\theta=\theta\left(x_{1}, x_{2}, \ldots, x_{N}\right)$, by resampling from the ED, where $x_{1}, x_{2}, \ldots, x_{N} \sim$ i.i.d. $F$ (unknown)


## C.I. Application: Using the ED

Idea: We use the data at hand -the empirical distribution (ED)- to estimate the variation of a statistic $\theta$ that is itself computed from the same data. Recall that, for large samples drawn from $F$, the ED approximates the CDF of $F$ very well.

- The bootstrap is a resampling mechanism used to provide information about the sampling distribution of a statistic $\theta$. Bootstrapping uses the ED -i.e., sample- as if it were the true CDF.



## C.I. Application: Using the ED - The Bootstrap

- Suppose we have $N$ i.i.d. observations drawn from $F(x)$ :

$$
\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

From the ED, $F^{*}$, we sample with replacement $N$ observations:

$$
\left\{x_{1}^{*}=x_{2}, x_{2}^{*}=x_{4}, x_{3}^{*}=x_{4}, x_{4}^{*}=x_{55}, \ldots, x_{N}^{*}=x_{N-8}\right\}
$$

This is an empirical bootstrap sample, which is a resample of the same size $N$ as the original data, drawn from $F^{*}$.

- For any statistic $\theta$ computed from the original sample data, we can define a statistic $\theta^{*}$ by the same formula, but computed instead using the resampled data.
- $\theta^{*}$ is computed by resampling the original data; we can compute many $\theta^{*}$ by resampling many times from $F^{*}$. Say, we resample $\theta^{*} B$ times.


## C.I. Application: Using the ED - The Bootstrap

Example: You are interested in the relation between CEO's education $(\mathbf{X})$ and firm's long-term performance $(\boldsymbol{y})$. You have 1,500 observations on both variables. You estimate the correlation coefficient, $\mathbf{\rho}(=\theta)$, with its sample counterpart, $r(=\widehat{\theta})$. You find the correlation to be very low.

- Q: How reliable is this result? The distribution of $r$ is complicated. You decide to use a bootstrap to study the distribution of $r$.
- Randomly construct a sequence of $B$ samples (all with $N=1,500$ ). Say, $\mathrm{B}_{1}=\left\{\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right),\left(x_{6}, y_{0}\right),\left(x_{6}, y_{0}\right), \ldots,\left(x_{1458}, y_{1458}\right)\right\} \quad \Rightarrow \hat{\theta}_{1}^{*}=r_{1}$ $\mathrm{B}_{2}=\left\{\left(x_{5}, y_{5}\right),\left(x_{7}, y_{7}\right),\left(x_{11}, y_{11}\right),\left(x_{12}, y_{12}\right), \ldots,\left(x_{1486}, y_{1486}\right)\right\} \Rightarrow \hat{\theta}_{2}^{*}=r_{2}$
$\mathrm{B}_{\mathrm{B}}=\left\{\left(x_{2}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{1499}, y_{1499}\right)\right\} \quad \Rightarrow \hat{\theta}_{B}^{*}=r$


## C.I. Application: Using the ED - The Bootstrap

- We have a collection of estimated $\theta^{*}$ :

$$
\left\{\hat{\theta}_{1}^{*}, \hat{\theta}_{2}^{*}, \hat{\theta}_{3}^{*}, \ldots, \hat{\theta}_{B}^{*}\right\} .
$$

From this collection of $\hat{\theta}^{*}$ 's, we can compute the mean, the variance, skewness, draw a histogram, etc., and confidence intervals.

- Below, we plot the histogram of bootstrapped correlations and defined a C.I. with $\left[r_{\mathrm{LB}}, r_{\mathrm{UB}}\right] \Rightarrow \rho \in\left[r_{\mathrm{LB}}, r_{\mathrm{UB}}\right]$ with some probability



## C.I. Application: Using the ED - The Bootstrap

- Using the histogram or the sorted $\left\{\hat{\theta}_{1}^{*}, \hat{\theta}_{2}^{*}, \hat{\theta}_{3}^{*}, \ldots, \hat{\theta}_{B}^{*}\right\}$, we build a $(1-\alpha) \%$ C.I. Using the histogram:
- The lower bound leaves $\alpha / 2 \%$ of the $\hat{\theta}^{*}$ to the right
- The upper bound leaves $(1-\alpha / 2) \%$ of the $\hat{\theta}^{*}$ to the left.
- Bootstrap Steps:

1. From the original sample, draw random sample with size $N$.
2. Compute statistic $\theta$ from the resample in $1: \widehat{\theta}_{1}^{*}$.
3. Repeat steps $1 \& 2 B$ times $\Rightarrow$ Get $B$ statistics: $\left\{\widehat{\theta}_{1}^{*}, \widehat{\theta}_{2}^{*}, \widehat{\theta}_{3}^{*}, \ldots, \widehat{\theta}_{B}^{*}\right\}$
4. Compute moments, draw histograms, etc. for these $B$ statistics.

## C.I. Application: Using the ED - The Bootstrap

- Results (Bootstrap Principle):

1. With a large enough $B$, the LLN allows us to use the $\hat{\theta}^{*}$ 's to estimate the distribution of $\widehat{\theta}, F(\hat{\theta})$.
2. The variation in $\hat{\theta}$ is well approximated by the variation in $\hat{\theta}^{*}$.

Result 2 is the one that we use to estimate the size of a C.I.

- There are many ways to construct a C.I. using bootstrapping. The easier one is the one described above. Just use the distribution of the $\hat{\theta}^{*}$ 's to compute directly a C.I. This is the bootstrap percentile method.

The percentile method uses the distribution of $\hat{\theta}^{*}$ as an approximation to the distribution of $\hat{\theta}$.

## C.I. Application: Bootstrap Percentile Method

- Technical Note: The bootstrap delivers consistent results only.

Example: We construct a $95 \%$ C.I. for the variance of S\&P 500 monthly returns (continuation of previous examples). Using the boot.ci function, with type=perc, from boot package. First, install boot, use the function install.packages() $\Rightarrow$ install.packages("boot"). Then, call library(boot):

```
Sh_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Shiller_2020data.csv",
head=TRUE, sep=",")
SP <- Sh_da$P
T<- length(SP)
lr <- log(SP[-1]/SP[-T])
lr_var <- var(lr)
T_s <- length (lr)
library(boot)
```


## C.I. Application: Bootstrap Percentile Method

```
Example (continuation):
# function to obtain the variance from the data
var_p <- function(data, i) {
    d <- data[i]
    return(var(d))
}
library(boot)
boot.ci(boot.samps, type = "perc")
> boot.ci(boot.samps, type = "perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL:
boot.ci(boot.out = boot.samps, type = "perc")
Intervals:
Level Percentile
95% (0.0014, 0.0020)
Calculations and Intervals on Original Scale
```


## C.I. Application: Bootstrap Percentile Method

Example (continuation):

- Check results by sorting boot.samps\$t.
> new <- sort(boot.samps\$t)
$>$ new[25]
[1] 0.001398215
> new[975]
[1] 0.001955096
\# CI's Lower Bound
\# CI's Upper Bound


Or for $\sigma$, taking square roots: $95 \% \mathrm{CI} \in[3.74 \%, 4.42 \%]$.

## C.I. Application: Empirical Bootstrap

- The percentile method uses the distribution of $\hat{\theta}^{*}$ as an approximation to the distribution of $\hat{\theta}$. It is very simple, but there are more appealing methods. In general, a bootstrap based on comparing differences is sounder. This is the key to the empirical bootstrap.
- To build a C.I. for $\theta$, we use $\hat{\theta}$, computed from the original sample. As in the previous C.I's, we want to know how far is $\hat{\theta}$ from $\theta$. For this, we would like to know the distribution of

$$
q=\hat{\theta}-\theta .
$$

- If we knew the distribution of $q=\hat{\theta}-\theta$, we build a $(1-\alpha) \%$ C.I., by finding the critical values $q_{\alpha / 2} \& q_{(1-\alpha / 2)}$ to have:

$$
\operatorname{Pr}\left(q_{\alpha / 2} \leq \hat{\theta}-\theta \leq q_{(1-\alpha / 2)} \mid \theta\right)=1-\alpha
$$

## C.I. Application: Empirical Bootstrap

- Or, after some manipulations:

$$
\operatorname{Pr}\left(\hat{\theta}-q_{\alpha / 2} \geq \theta \geq \hat{\theta}-q_{(1-\alpha / 2)} \mid \theta\right)=1-\alpha,
$$

which gives a $(1-\alpha) \%$ C.I.:

$$
\mathrm{C}_{\mathrm{n}}=\left[\hat{\theta}-q_{(1-\alpha / 2)}, \hat{\theta}-q_{\alpha / 2}\right]
$$

- We do not know the distribution of $q$, but we can use the bootstrap to estimate it with

$$
q^{*}=\widehat{\theta}^{*}-\widehat{\theta} .
$$

and, then, to get $q_{\alpha / 2}^{*} \& q_{(1-\alpha / 2)}^{*}$ :

$$
\mathrm{C}_{\mathrm{n}}=\left[\hat{\theta}-q_{(1-\alpha / 2)}^{*}, \hat{\theta}-q_{\alpha / 2}^{*}\right]
$$

- This C.I. is called the pivotal C.I.


## C.I. Application: Empirical Bootstrap

- Intuition: The distribution of $\hat{\theta}$ is 'centered' at $\theta$, while the distribution of $\hat{\theta}^{*}$ is centered at $\hat{\theta}$. If there is a significant separation between $\hat{\theta}$ and $\theta$, these two distributions will also differ significantly.

On the other hand, the distribution of $q=\hat{\theta}-\theta$ describes the variation of $\hat{\theta}$ about its center. Similarly, the distribution of $q^{*}=\hat{\theta}^{*}-\hat{\theta}$ describes the variation of $\hat{\theta}^{*}$ about $\hat{\theta}$.

Then, even if the centers are quite different, the two variations about the centers can be approximately equal.

## C.I. Application: Empirical Bootstrap

Example: We estimate a $95 \%$ C.I. for the variance of monthly returns of the S\&P 500.

Note: You need to install R package resample, using the install.packages() function $\Rightarrow$ install.packages("resample").

| sim_size <-1000 | \# B = size of bootstrap |
| :--- | :--- |
| library(resample) | \# call library resample |
| data_star <- sample(lr, T_s*sim_size, replace=TRUE) $\quad$ \# create B resamples of size T_s |  |
| boot_sample <- matrix(data_star, nrow= T_s, ncol=sim_size) \# organize resamples in matrix |  |


| boots_vars <- colVars(boot_sample) | \# compute the variance for each bootsrap sample |
| :--- | :--- |
| q_star <- boots_vars - lr_var | \# Compute q* for each bootstrap sample |
| q <- quantile(q_star, c $(0.025,0.975))$ | \# Find the 0.025 and 0.975 quantile for q_star |
| ci <- lr_var - c(q[2], q[1]) | \# Calculate the $95 \%$ C.I. for the variance. |
| cat("Confidence interval: ",ci, " $\backslash n ")$ | \# Print C.I using cat |

## C.I. Application: Empirical Bootstrap

Example (continuation):<br>$>$ lr_var<br>[1] 0.001637<br>$>\mathrm{ci}$<br>97.5\% 2.5\%<br>0.0013766640 .001909769<br>> cat("Confidence interval: ", ci, " $\backslash \mathrm{n} "$ ")<br>Confidence interval: 0.0013766640 .001909769<br>><br>Or for $\sigma$, the $95 \% \mathrm{CI}$ is given by ( $3.71 \%, 4.37 \%$ ).

## C.I. Application: Empirical Bootstrap

Example: We construct the same $95 \%$ C.I. for the variance of monthly S\&P 500 returns using the R package boot.
library(boot)
boot.samps <- boot(data=lr, statistic=var_p, R=sim_size) \# resampling and $\theta^{*}$ estimation
boot.ci(boot.samps, type $=$ "basic") \# boot computes the CI.
> boot.ci(boot.samps, type $=$ "basic")
CALL:
boot.ci(boot.out $=$ boot.samps, type $=$ "basic")
Intervals :
Level Basic
$95 \% ~(0.0014,0.0019)$
Calculations and Intervals on Original Scale

## C.I. Application: Empirical Bootstrap

Example (continuation): Check results using step-by-step procedure:
q_star <- boot.samps\$t - lr_var
q_ad <- sort(q_star)
$>$ lr_var - q_ad[975]
[1] 0.001357793
> lr_var - q_ad[25]
[1] 0.001914674
$\# q^{*}=\theta^{*}-\hat{\theta}$
\# sort $q^{*}$
\# CI's Lower Bound
\# CI's Upper Bound

We can transform this CI for the variance into a CI for the SD:
> sqrt(lr_var - q_ad[975])
[1] 0.03684825
$>$ sqrt(lr_var - q_ad[25])
[1] 0.04375699
A $95 \%$ CI for $\sigma$ is given by $(3.68 \%, 4.38 \%)$, wider than the CI assuming a Normal distribution for returns.

## C.I. Application: Empirical Bootstrap

- It is common to gauge the uncertainty of the estimation of $\theta$ by computing the sample standard error, $\operatorname{SE}\left(\hat{\theta}^{*}\right)$ :
- Steps

1. Computing the sample variance:

$$
\operatorname{Var}\left(\hat{\theta}^{*}\right)=\frac{1}{B-1} \sum_{i=i}^{B}\left(\hat{\theta}_{i}^{*}-\bar{\theta}^{*}\right)^{2},
$$

where $\bar{\theta}^{*}=\frac{1}{B} \sum_{i=i}^{B} \hat{\theta}_{i}^{*}$.
2. Estimate the S.E. of $\hat{\theta}^{*}: \quad \operatorname{SE}\left(\hat{\theta}^{*}\right)=\operatorname{sqrt}\left[\operatorname{Var}\left(\hat{\theta}^{*}\right)\right]$.

Example: Estimate the $\mathrm{SE}\left(s^{2}\right)$ :

1. Compute: $\operatorname{Var}\left(s^{2}\right)=\frac{1}{B-1} \sum_{i=i}^{B}\left(s_{i}^{2 *}-s_{B}^{2}\right)^{2}$, where $s_{B}^{2}=\frac{1}{B} \sum_{i=i}^{B} s_{i}^{2 *}$.
2. $\operatorname{SE}\left(s^{2}\right)=\operatorname{sqrt}\left[\operatorname{Var}\left(s^{2}\right)\right]$.

## C.I. Application: Parametric Bootstrap Method

- If we assume the data is from a parametric model (say, from a Normal or a Gamma distribution), we can use the parametric bootstrap to access the uncertainty (variance, C.I.) of the estimated parameter.

A parametric bootstrap generates bootstrap samples from the assumed distribution, based on moments computed from the sample; not from the ED.

- Suppose we have a sample with $N$ observations drawn from $F(x ; \theta)$ :

$$
\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

We know $F(x ; \theta)$, but do not know its parameters. Suppose there is only one unknown parameter, $\theta$. From the sample, we compute $\hat{\theta}$. Then, we bootstrap from $\mathrm{F}(x ; \hat{\theta})$ and proceed as before to form a C.I.

## C.I. Application: Parametric Bootstrap Method

- Steps:

1. Draw $B$ samples of size $N$ from $\mathrm{F}(x ; \hat{\theta})$.
2. For each bootstrap sample, $\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N}^{*}\right\}$, calculate $\hat{\theta}^{*}$. $\Rightarrow \operatorname{Get} B \hat{\theta}^{*}$ 's.
3. Estimate a C.I. using the previous methods.

Example: We have a sample: $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ drawn from a $\mathrm{N}\left(0, \sigma^{2}\right)$. We estimate $s^{2}$ and use a parametric bootstrap to gauge its uncertainty with a C.I.

Steps:

1. Draw $B$ samples of size $N$ from a $\mathrm{N}\left(0, s^{2}\right) \Rightarrow$ Compute $B s^{2 *}$.
2. Estimate a C.I. using the previous methods.

## C.I. Application: Parametric Bootstrap Method

Example: Suppose S\&P 500 monthly returns follow a $\mathrm{N}\left(0, \sigma^{2}\right)$. We estimate $\sigma^{2}$ with $s^{2}$ :

```
> lr_var # s
[1] 0.001656445
lr_sd <- sqrt(lr_var)
x<- rnorm(T_s*sim_size, mean=0, sd=lr_sd) # generate normal data
boot_sample <- matrix(x, nrow=T_s, ncol=sim_size) # organize simulated data
boots_vars <- colVars(boot_sample) # compute variances
q_star <- boots_vars - lr_var # q}=\mp@subsup{q}{}{*}-\hat{0
q<- quantile(q_star, c(0.025, 0.975))
ci<-lr_var - c(q[2], q[1])
>ci
    97.5% 2.5%
0.0015473820.001760286
```

Or for $\sigma$, the $95 \% \mathrm{CI}$ is given by ( $3.94 \%, 4.20 \%$ ). Very close to the CIs we obtained before assuming a Normal distribution for returns.

## C.I. Application: Bootstrapping - Why?

- Q: Why do we need a bootstrap?
- Sample sizes are "small" and asymptotic assumptions do not apply
- DGP assumptions are violated.
- Distributions are complicated.
- Usually, we would not use a bootstrap to compute C.I.'s for the mean, in general, the normal distribution works well, as long as $N$ is large enough.
- The bootstrap is used to generate C.I. \& S.E. for estimates of other statistics where the normal distribution is not a good approximation. A typical example is the median, where for non-normal underlying distributions, the $\mathrm{SE}[$ median $]$ is complicated to compute.


## C.I. Application: Value-at-Risk

- Q: What is the most an investor can lose with a particular investment over a given time framework? Or, what is the worst case scenario?
- Value-at-Risk (VaR) provides one answer, a (lower) bound with a probability attached to it.
- So far, we have measured risk of an asset/investment with its volatility.
- Volatility is calculated including positive (right tail) and negative (left tail) returns. Investors, however, love the right tail of the returns distribution, but dislike the other tail. VaR focuses on the left tail.
- VaR gives a formal definition of "worst case scenario" for an asset over a time period.


## C.I. Application: Value-at-Risk

- VaR gives a formal definition of "worst case scenario" for an asset.

VaR: Maximum expected amount (loss) in a given time interval within a (onesided) $(1-\alpha) \%$ C.I.:
$\operatorname{VaR}(1-\alpha)=$ Amount exposed * ( $1+$ worst $\%$ change scenario in C.I. $)$
It is common to express the "expected loss" relative to today's expected value of asset/investment:

$$
\text { VaR-mean }(1-\alpha)=\text { VaR }-\mathrm{E}[\text { Amount exposed }]
$$

- There are different ways to compute the worst case scenario within a time interval. We go over two approaches:
- Assuming a probability distribution (normal, in our case).
- Using the empirical distribution (a bootstrap, using the past).


## C.I. Application: Value-at-Risk

Example: $\alpha=.05$
$\mathrm{VaR}=$ Amount exposed $*(1+$ worst change scenario in $97.5 \%$ C.I. $)$.
VaR-mean $(97.5 \%)=$ VaR -E [Amount exposed]


## C.I. Application: VaR in FX Markets

- When a company is involved with transactions denominated in foreign currency (FC), it is exposed to currency risk. Transaction exposure (TE) provides a simple measure of this exposure:
$\mathrm{TE}_{\mathrm{t}}=$ Value of a fixed future transaction in FC $* S_{t}$
where $S_{t}$ is the exchange rate expressed as units of domestic currency (USD for us) per unit of FC (say, EUR).

Example: A Swiss company, Swiss Cruises, sells packages in USD.
Amount = USD 1 million.
Payment: 30 days.
$S_{t}=0.92 \mathrm{CHF} / \mathrm{USD}$

$$
\Rightarrow \mathrm{TE}_{\mathrm{t}}=\mathrm{USD} 1 \mathrm{M} * 0.92 \mathrm{CHF} / \mathrm{USD}=\mathrm{CHF} 0.92 \mathrm{M} .
$$

If $S_{t}$ is described by a Random Walk, then $\mathrm{TE}_{t}$ is a forecast of the value of the transaction in 30 days $\left(\mathrm{TE}_{\mathrm{t}+30}\right)$. $\boldsymbol{\|}$

## C.I. Application: VaR in FX Markets (Normal)

- Swiss Cruises wants a measure of the uncertainty related to the amount to receive in CHF in 30 days, since $S_{t+30}$ is unknown.

We can use a range to quantify this uncertainty, we want to say

$$
\mathrm{TE}_{\mathrm{t}+30} \in\left[\mathrm{TE}_{\mathrm{LB}}, \mathrm{TE}_{\mathrm{UB}}\right] \quad \text { with high probability. }
$$

To determine this range for TE, we assume that (log) changes in $S_{t}$, $e_{f, t}$, are normally distributed: $e_{f, t} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.

Then, we build a $(1-\alpha) \%$ interval around the mean: $\left[\mu \pm z_{1-\alpha / 2} * \sigma\right]$.
Usual $\alpha$ 's in interval calculations: $\alpha=.05 \quad \Rightarrow\left|z_{.025}\right|=1.96(\approx 2)$
$\alpha=.02 \quad \Rightarrow\left|z_{.01}\right|=2.33$
As usual, we estimate ( $\mu, \sigma$ ) using $(\bar{X}, s)$.

## C.I. Application: VaR in FX Markets (Normal)

Example: Range estimate based on a Normal distribution.
Assume Swiss Cruises believes that CHF/USD monthly changes follow a normal distribution. Swiss Cruises estimates the mean and variance using the last 15 years of data.
$\bar{X}=$ Monthly mean $=-0.00152 \approx-0.15 \%$
$s^{2}=$ Monthly variance $=0.001014(\Rightarrow s=0.03184$, or $3.18 \%)$
$e_{f, t} \sim \mathrm{~N}\left(-0.00152,0.03184^{2}\right) \quad e_{f, t}=$ CHF/USD $\log$ changes.
Swiss Cruises constructs a $95 \%$ CI for CHF/USD monthly changes.

Recall that a $95 \%$ C.I. for $e_{f, t+30}$ (which applies to any t) is given by:

$$
e_{f, t} \in[-0.00152 \pm 1.96 * 0.03184]=[-0.06393 ; 0.06089] .
$$

Based on this range for $e_{f, t}$, we can build a $95 \%$ C.I. for $S_{\mathrm{t}+30}$ and, then, for $\mathrm{TE}_{\mathrm{t}+30}\left(=\mathbf{U S D} 1 \mathbf{M} * S_{t+30}\right)$.

## C.I. Application: VaR in FX Markets (Normal)

## Example (continuation):

$$
e_{f, t+30} \in[-0.00152 \pm 1.96 * 0.03184]=[-0.06393 ; 0.06089] .
$$

Now, based on the range $e_{f, t}$, we derive a range for $S_{t+30}$ :
(A) Upper bound

$$
\begin{aligned}
S_{t+30, U B} & =S_{t} *\left(1+e_{f, U B}\right)=0.92 \mathrm{CHF} / \mathrm{USD} *(1+0.06089)= \\
& =0.97602
\end{aligned}
$$

(B) Lower bound

$$
\begin{aligned}
S_{t+30, L B} & \left.=S_{t} *\left(1+e_{f, L B}\right)=0.92 \mathrm{CHF} / \mathrm{USD} *(1-0.06393)\right]= \\
& =0.86118 \\
& \Rightarrow \quad S_{t+30} \in[0.97602 \mathrm{CHF} / \mathrm{USD} ; 0.86118 \mathrm{CHF} / \mathrm{USD}] .
\end{aligned}
$$

## C.I. Application: VaR in FX Markets (Normal)

Example (continuation): Finally, we derive the bounds for the TE:
(A) Upper bound $\left(S_{t+30, U B}=S_{t} *\left(1+e_{f, U B}\right)=0.97602 \mathrm{CHF} / \mathrm{USD}\right)$ TE $_{\mathrm{UB}}$ : USD $1 \mathrm{M} * 0.97602 \mathrm{CHF} / \mathrm{USD}=\mathrm{CHF} 976,019$.
(B) Lower bound $\left(S_{t+30, L B}=S_{t} *\left(1+e_{f, L B}\right)=0.86118 \mathrm{CHF} / \mathrm{USD}\right)$ $\mathrm{TE}_{\mathrm{LB}}$ : USD $1 \mathrm{M} * 0.86118 \mathrm{CHF} / \mathrm{USD}=\mathrm{CHF} 861,184$.

$$
\Rightarrow \mathrm{TE}_{\mathrm{t}+30} \in[\mathrm{CHF} 0.861 \mathrm{M} ; \text { CHF } 0.976 \mathrm{M}] . \mathbb{\|}
$$

- The lower bound, for a receivable, represents the worst case scenario within the interval. This is the Value-at-Risk (VaR) interpretation:

VaR: Maximum expected amount (loss) in a given time interval within a (onesided) confidence interval.
$\mathrm{VaR}=$ Amount exposed $*(1+$ worst $\%$ change scenario in C.I. $)$

## C.I. Application: VaR in FX Markets (Normal)

$\mathrm{VaR}=$ Amount exposed $*(1+$ worst $\%$ change scenario in C.I. $)$.
Then, in our application: $\quad \mathrm{VaR}=\mathbf{T E}_{\mathbf{t}} *\left(1+e_{f, L B}\right)$


## C.I. Application: VaR in FX Markets (Normal)

It is common to express the "expected loss" relative to today's expected value of transaction (or asset):

$$
\begin{aligned}
\text { VaR-mean } & =\operatorname{VaR}-\mathbf{T E}_{\mathbf{t}}=\mathbf{T} \mathbf{E}_{\mathbf{t}} *\left(1+e_{f, L B}\right)-\mathbf{T E}_{\mathbf{t}} \\
& =\mathbf{T E}_{\mathbf{t}} * e_{f, L B}
\end{aligned}
$$

Or just

$$
\text { VaR-mean }=\text { Amount exposed } * \text { worst case scenario }
$$

Example (continuation): The minimum revenue to be received by SC in the next 30 days, within a $97.5 \%$ CI.

$$
\begin{aligned}
\operatorname{VaR}(97.5 \%) & =\text { CHF } \mathbf{0 . 9 2 M} *[1+(-0.00152-1.96 * 0.03184)] \\
& =\text { CHF } 0.8612 \mathbf{M} .
\end{aligned}
$$

Interpretation of VaR: If SC expects to cover expenses with this USD inflow, the maximum amount in CHF to cover, within a $97.5 \%$ onesided CI, should be CHF 0.8612 M .

## C.I. Application: VaR in FX Markets (Normal)

- Relative to today's valuation (or expected valuation, according to RWM), the maximum expected loss in 30 days within a $97.5 \%$ one-sided C.I. is:

VaR-mean(.975) $=$ CHF 0.8612M - CHF 0.92M $=$ CHF -0.0588M.

Note that we can also compute the VaR-mean as:
$\operatorname{VaR}-\mathrm{mean}(.975)=$ CHF 0.92M * ( $-0.00152-1.96 * 0.03184$ )

$$
=\text { CHF }-0.0588 \mathrm{M} .
$$

- Technically speaking, the VaR is a quantile, where a quantile is the fraction of observations that lie below a given value (in this case the VaR).

In the previous example, the 0.025 quantile (or $2.5 \%$ quantile) for expected loses is CHF $\mathbf{- 0 . 0 5 8 8 M}$.

## C.I. Application: VaR in FX Markets (Normal)



## C.I. Application: VaR in FX Markets (Normal)

## Example (continuation):

Note: We could have used a different quantile -i.e. a different significant level- to calculate the VaR , for example $1 \%\left(\Rightarrow z_{.99}=2.33\right)$. Then,

$$
\operatorname{VaR}(99 \%)=\text { CHF 0.92M } *[1+(-0.00152-2.33 * 0.03184)]
$$

$$
=\text { CHF } 0.8503 \mathrm{M} \quad \text { (A more conservative bound.) }
$$

$\Rightarrow$ VaR-mean $(.99)=$ CHF $0.8503 \mathrm{M}-$ CHF $0.92 \mathrm{M}=$ CHF -0.0697 M
Interpretation of VaR-mean: Relative to today's valuation (or expected valuation, according to RWM), the maximum expected loss with a $99 \%$ "chance" is CHF -0.0697 M .

Note: As the C.I. gets wider, Swiss Cruises can spend less CHF on account of the USD 1M receivable. II

## C.I. Application: VaR in FX Markets (Normal)



## C.I. Application: VaR in FX Markets (Bootstrap)

- VaR is a statistic -a function of the data. We can do an empirical bootstrap to calculate the mean, $\mathrm{SE}(=\mathrm{SD})$, C.I., etc.

Example: We want to calculate the average $\operatorname{VaR}(97.5 \%)$ and its S.E., using all CHF/USD data from 1990:Jan - 2023:July. Then,
chfusd <- read.csv("http://www.bauer.uh.edu/rsusmel/4386/chfusd.csv",sep=",") \# Data
S <- chfusd\$CHF_USD \# Extract CHF_USD column of the data
$\mathrm{T}<$ - length $(\mathrm{S}) \quad$ \# Check total T (1971:1 to 2023:7)
Tstart <-229 \# Start of sample period: 1990:1
SP $<-$ S[Tstart: T]
T <- length(SP)
Val <- 1000000 \# Value of transaction in FC (in M)
S_0 <- S[T] \# Today's S_t
e_f $<-\log ($ SP[-1] $/ \mathrm{SP}[-\mathrm{T}])$
T_s <- length (e_f)
alpha $=.05 \quad$ \# Specify alpha level for VaR
T_s_low <- round (T_s*alpha/2) \# Obs corresponding to alpha/2*T_s
TE_o <- Val*S_0*(1+e_f) \# calculate Original TE values
STE_o <- sort(TE_o) \# sort Original TE

## C.I. Application: VaR in FX Markets (Bootstrap)

```
Example (continuation):
VaR_o <- STE_o[T_s_low] # Original VaR
> VaR_o
[1] }86029
# function to obtain VaR from the data
varisk <- function(data, i) {
d <-data[i]
TE <- Val*S_0*(1+d) # calculate R TE values
STE <- sort(TE) # sort TE
VaR <- STE[T_s_low]
return(VaR)
}
library(boot)
sim_size <- 1000
boot.samps <- boot(data=e_f, statistic=varisk, R=sim_size)
```


## C.I. Application: VaR in FX Markets (Bootstrap)

## Example (continuation):

> boot.samps
Bootstrap Statistics : original bias std. error t1* $8602931929.305 \quad 4870.733$
$>$ boot.ci(boot.samps, type $=$ "basic")
Intervals :
Level Basic
95\% (849352, 867587 )
$>$ mean(boot.samps $\$$ t)
[1] 862222.3
$>$ sd(boot.samps\$t)
[1] 4870.733


[^0]
[^0]:    hist(boot.samps\$t, xlab="VaR (in CHF)", breaks=30)
    Bootstrap estimated $\operatorname{VaR}(97.5 \%)=$ CHF 0.8622M

