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Lecture 2-d
Bootstrap & Value-at-Risk

© R. Susmel, 2024 (for private use, not to be posted/shared online).

• We started with a review of stats concepts: RV, distributions (pdf & 
CDFs), moments, statistics & estimators, LLN & CLT.

• Using these stats concepts, assuming the data is normal distributed, 
we obtained the sampling distribution of two estimators: 𝑋ത &  𝑠ଶ. 

- For 𝑋: 𝑋ത ~ N(, σ2/N)

Example: Using Shiller’s returns (N=1805, 𝑋ത=0.007378,  s=0.040455)
 𝑋ത ~ N(0.007378, .000952).

- For s2 : ሺ𝑁 െ 1ሻ 𝑠ଶ/2 ~ χேିଵ
ଶ .

Example: Using Shiller’s data.

Estimated Var[s2] = 2 ∗ σସ/ 𝑁 െ 1 ൌ 2 * 0.040455^4/1804 =

= 2.969493e-09 

S.E.(s2) = sqrt(2.969493e-09) = 0.0000545 (or 0.0055%).

Review: General Overview
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• We learned that the estimates for variances and SD of returns are 
more precise than expected returns (means).

• We computed the ERPs for many markets. Using SEs as a measure 
of precision, we learned that ERPs are not precisely estimated.

Example: We use Shiller’s monthly data, with 150 years of data, to 
produce an estimate of the ERP = E[(𝑟ெ,௧ - 𝑟௙,௧)]:

Annualized Market return = 0.007378 * 12 = 0.088536

Annualized risk-free rate = 0.04511

ERP = 0.088536 - 0.04511 = 0.043426 (4.34%)

Precision measure: SE(𝑋ത) = s ்ൗ

U.S.: 15.01/sqrt(620/12) = 2.0882%

Hong Kong: 33.23/sqrt(620/12) = 4.6230 % ⟸ Effect of T 3

Review: General Overview

• Testing involves the comparison between two competing hypothesis:

– H0: The maintained hypothesis.

– H1: The hypothesis considered if H0. (in general, not H0)

• Idea: We collect a sample, X = {𝑋ଵ, 𝑋ଶ, …, 𝑋ே}.  We construct a 
statistic T(X) = f(X), called the test statistic. Now we have a decision rule:

– If T(X) is contained in space R, we reject H0 (& we learn).

– If T(X) is in the complement of R (RC), we fail to reject H0.

Note: T(X), like any other statistic, is a RV. It has a distribution. We 
use the distribution of T(X) to determine R (& we associate a 
probability to R).

Review – Hypothesis Testing
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Example: Suppose T(𝑋) = 𝑋ത. If  data is normal, the distribution of  𝑋ത
is also normal. Then, under H0, we build a Rejection Region, R:

R = ሾ𝑋ത ൏ TLB , TUB ൐ 𝑋ത]

5

TLB TUB

Note: The blue area (“significance level”) represents the P[R|H0]. For 
example, if  the blue area is 5%, then, TLB = -1.96 & TUB = 1.96.

Review – Hypothesis Testing

• The classical approach, also known as significance testing, relies on p-values:

p-value is the probability of observing a result at least as extreme as the 
test statistic, under H0. 

Example: Suppose T(𝑋) ~ 𝜒ଶ
ଶ. We compute  T(𝑋)෣ = 7.378. Then, 

p-value(T(𝑋)෣ = 7.378) =  1 – Prob[T(𝑋) < 7.378] = 0.025

Review – Hypothesis Testing: p-value

6
7.378

p-value = 2.5%
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• Steps for the classical approach, also known as significance testing:

1. Identify H0 & set a significance level (α%).

2. Determine the appropriate test statistic T(𝑋) and its distribution 
under the assumption that H0 is true.

3. Calculate T(X) from the data.

4. Rule: If p-value of T(𝑋) < α  Reject H0 (& we learn H0! is not true).

If p-value of T(𝑋) > α  Fail to reject H0. (No learning.)

Note: In Step 4, setting α% is equivalent to setting R. Thus, instead of 
looking at p-value, we can look if T(𝑋) falls in R (in the blue area). We 
do this by constructing a (1 - α)% C.I.

• Mistakes are made. We want to quantify these mistakes.

Review – Hypothesis Testing: Steps
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Example: We want to test if the mean is equal to μ଴. Then,

1. H0: μ = μ଴.

H1: μ ് μ଴.

2. Appropriate T(𝑋): t-test (based on σ unknown and estimated by s).

Determine distribution of T(X) under H0: 

t = 
௑ത ି μబ
ೞ

ಿൗ
~ tேିଵ –when 𝑁 > 30, tே ~ N(0, 1). 

3. Compute t, t,̂ using 𝑋ത, μ0, 𝑠, and N. Get p-value(t)̂.

4. Rule: Set an α level. If p-value(t)̂ < α  Reject H0: μ = μ଴.

Alternatively, if |t|̂> t𝑵ି𝟏,𝟏ି஑/𝟐  Reject H0: μ = μ଴.

Review – Hypothesis Testing: H0: μ = μ0
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Example 1: We test if the S&P 500 monthly excess return is zero. 
Data (1871-2021): 𝑋ത = 0.003619, s = 0.04052, N = 1805. Then,

1. H0: μ = 0.

H1: μ ് 0.

2. Appropriate test: t = 
௑ത ି μబ
s

ಿൗ

3. t ̂ = 
0.003619

0.04052
భఴబఱ

ൗ
= 3.7941 &  p-value(t)̂ = 0.00015

4. Rule: p-value(t)̂ = 0.00015 < α = .05  Reject H0: μ = 0. 

Alternatively, |t ̂ = 3.7941 |> tN-1,1-.05/2 = 1.96  Reject H0: μ = 0. 

Conclusion: S&P 500 monthly mean excess returns are not equal to 
zero. ¶

Review – H. Testing: Are Excess Returns Zero?

9

Example 1 (continuation): The observed t ̂ = 3.7941 is outside the 
non-rejection region, RC, built around H0: RC = (-1.96, 1.96). 

Note: t1789, 1-.05/2 = z1-.05/2 = 1.96 (since 𝑁 > 30.)

And, by symmetry of Normal: -z.05/2 = z1-.05/2 = 1.96

|t ̂ = 3.7941| 10

RC: (-1.96, 1.96), with 95% prob. 

Review – H. Testing: Are Excess Returns Zero?
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• When we estimate parameters with an estimator, θ෠ , we get a point 
estimate for θ. For example, in the previous example, 𝑋ത = 0.003619.

• Broader concept: Estimate a set 𝐶௡, a collection of values in 𝑅௞. For 
example, μ ∈ 𝐶௡ = [𝐿௡; 𝑈௡], called an interval estimate for θ. 

• The goal of 𝐶௡ is to contain the true population value, θ. The wider 
the interval 𝐶௡, the more uncertain we are about our estimate, θ෠. 

• Interval estimates 𝐶௡ are called confidence intervals (C.I.), usually noted 
with the coverage probability (1 – α)%. 

11

Review – Confidence Intervals (C.I.)

• When we know the distribution of θ෠ , it is easy to construct a C.I. For 
example, if the distribution of θ෠ is normal, then a (1 – α)% C.I.:

𝐶௡ = [θ෠ ± z1-α/2 * Estimated SE(θ෠)] (-zα/2 = z1 - α/2)

Example: We estimate a 95% C.I. for the monthly S&P mean excess 
return. Assuming, normality, 𝑋ത ~ N(μ, σ2/𝑁). Then, a (1 – α)% C.I.:

𝐶௡ = [𝑋 ഥ – z1-.05/2 * SD(𝑋)ഥ ,  𝑋 ഥ+ z1-.05/2 * SD(𝑋)ഥ ]

𝐶௡= [0.003619 – 1.96 * 0.04052/ 1805,  0.003619 + 1.96 * 0.04052/ 1805] 

= [0.00175, 0.00549] = [0.18%, 0.55%]. 

Note: By looking at the 95% C.I., we reject than monthly S&P 
Composite excess returns are 0, since 0% is outside the 95% C.I.

Review – Confidence Intervals (C.I.)
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Example (continuation): Reject H0: μ = 0, since 0 is outside the 
observed 95% C.I.

13

RC: (0.18%, 0.55%), with 95% prob. 

Review – C.I. for Monthly Stock Excess Returns

• Note: This 95% C.I. shows why Mehra & Prescott (1985) thought the 
ERP was too high. Their theoretical monthly ERP was, at most, 
0.0833% (=1%/12). ¶

• We want to estimate a (1 - α)% C.I. for the variance. Assuming
normality for our data, the sample variance, once scaled, is distributed:

ሺ𝑁 െ 1ሻ 𝑠ଶ/2 ~ χேିଵ
ଶ .

To derive a C.I. for 2, we rewrite the standard C.I. for a χ஥ଶ variable:

P(χ஥,஑/ଶ
ଶ < χ஥ଶ< χ஥,ଵି஑/ଶ

ଶ ) = P(χ஥,஑/ଶ
ଶ < (N-1)𝑠ଶ/2 < χ஥,ଵି஑/ଶ

ଶ ) = 1 - 

For 𝑁=11, we have the following 95% C.I. for a χ஥ୀଵ଴
ଶ :

14
χଵ଴,.ଽ଻ହ
ଶ = 20.48318χଵ଴,.଴ଶହ

ଶ = 3.246973

P[3.246973 < (10) 𝑠ଶ/2 < 20.48318] = .95%

Review – C.I. for the Variance of  Stock Returns
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The standard C.I. for ሺ𝑁 െ 1ሻ 𝑠ଶ/2 (a χ஥ଶ variable):

P(χ஥,஑/ଶ
ଶ < ሺ𝑁 െ 1ሻ 𝑠ଶ/2 < χ஥,ଵି஑/ଶ

ଶ ) = 1 - 

After some algebra (recall inversion changes inequality signs), we derive:

P[ሺ𝑁 െ 1ሻ 𝑠ଶ/χ஥,ଵି஑/ଶ
ଶ < 2 < ሺ𝑁 െ 1ሻ 𝑠ଶ/χ஥,஑/ଶ

ଶ ] = 1 - .

Note: This C.I. is not symmetric. But, as the degrees of freedom, υ, get
large, χ஥ଶ starts to look like the normal distribution and, thus, CIs will
look more symmetric.

Review – C.I. for the Variance of  Stock Returns
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Example: We estimate a 95% C.I. for the variance of monthly S&P
500 mean total return ሺ𝑁=1805). Then, from the χଵ଼଴ସ

ଶ distribution,
we get: χଵ଼଴ସ,.଴ଶହ

ଶ = 1688.2 & χଵ଼଴ସ,.ଽ଻ହ
ଶ = 1923.6.

P[1804 * (0.04046)2/(1923.6) < 2 < 1804 * (0.04046)2/(1688.2)] = .95
P[0.001535 < 2 < 0.001749] = .95 16

1688.2 1923.6

Review – C.I. for the Variance of  Stock Returns
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Example (continuation):
P[0.001535 < 2 < 0.001749] = .95

Taking square root above delivers a 95% C.I. for :
 95% C.I. for  is given by (3.918%, 4.182%).

C.I. is compact around the estimated 0.04046   is measured with
accuracy.

Note: Usually 𝑁 is large (𝑁>30). We can use the normal approximation 
to calculate CIs for the population . For the S&P data:

SE[𝑠] = 𝑠/ 2 ∗ ሺ𝑁 െ 1ሻ = 0.04046/ 2 ∗ 1804 = 0.00067 (or .067%)

A 95% CI for  is given by: 
(4.046% ± 1.96 * .067%) = (3.914%, 4.178%). (Very close!) 

17

Review – C.I. for the Variance of  Stock Returns

• In the previous examples, we assumed that we knew the distribution 
of  the data: Stock returns follow a normal distribution. 

Q: What happens when the data follows an unknown distribution, F?

• We still can use 𝑋ത or 𝑠ଶ as estimates of μ and σ2, since they have
good properties when 𝑁 is large: consistency & asymptotic normality.

• But, if  F is unknown and/or N is not large enough (or the normal 
approximation is not good), we still can build a C.I. for any statistic 
using a new method: a bootstrap.

• The bootstrap is a method for estimating the sampling distribution of  a 
statistic, θ = θ(𝑥ଵ, 𝑥ଶ, …, 𝑥ே), by resampling from the ED, where 

𝑥ଵ, 𝑥ଶ, …, 𝑥ே ~ i.i.d. F (unknown)

C.I. Application: Using the ED
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Idea: We use the data at hand -the empirical distribution (ED)- to 
estimate the variation of  a statistic θ that is itself  computed from the 
same data. 

For large samples drawn from F, the ED approximates the CDF of  F 
very well.

• The bootstrap is a resampling mechanism used to provide information 
about the sampling distribution of  a statistic θ. Bootstrapping uses the 
ED –i.e., sample- as if  it were the true CDF.

C.I. Application: Using the ED

Bootstrap resampling
Sample 

{𝑥ଵ, 𝑥ଶ, …, 𝑥ே}
Bootstrap samples (B)

• Suppose we have 𝑁 i.i.d. observations drawn from F(𝑥): 

{𝑥ଵ, 𝑥ଶ, …, 𝑥ே}

From the ED, F*, we sample with replacement 𝑁 observations: 

{xଵ
∗  = 𝑥ଶ, xଶ

∗ = 𝑥ସ, 𝑥ଷ
∗ = 𝑥ସ, 𝑥ସ

∗ = 𝑥ହହ, … , 𝑥ே
∗  = 𝑥ேି଼}

This is an empirical bootstrap sample, which is a resample of  the same size 
𝑁 as the original data, drawn from F*.

• For any statistic θ computed from the original sample data, we can 
define a statistic θ* by the same formula, but computed instead using 
the resampled data. 

• θ* is computed by resampling the original data; we can compute many 
θ* by resampling many times from F*. Say, we resample θ* B times.

C.I. Application: Using the ED – The Bootstrap
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Example: We are interested in estimating the variance of monthly  
S&P 500 returns. We have already estimated it, using Shiller’s data: 
(0.04046)2. We have also built a 95% C.I. based on the normal 
distribution,  but, we are not sure it is a reliable C.I. since we already 
rejected that monthly returns are normally distributed. 

• We decide to use a bootstrap to study the distribution of variance.

• Randomly construct a sequence of B samples (all with 𝑁=1,871). Say,

B1 = {𝑥1, 𝑥3, 𝑥6, 𝑥6, 𝑥6, 𝑥6, 𝑥16, ..., 𝑥1458, 𝑥1758, 𝑥1859} ⇒ θ෠ଵ
∗ = 𝑠ଵ

ଶ

B2 = {𝑥5, 𝑥7, 𝑥8, 𝑥9, 𝑥21, 𝑥21, 𝑥26, ..., 𝑥1661, 𝑥1663, 𝑥1870} ⇒ θ෠ଶ
∗ = 𝑠ଶ

ଶ

....

BB = {𝑥2, 𝑥3, 𝑥8, 𝑥10, 𝑥11, 𝑥21, 𝑥22, ..., 𝑥1805, 𝑥1805 , 𝑥1806} ⇒ θ෠஻
∗ = 𝑠஻

ଶ

C.I. Application: Using the ED – The Bootstrap

• We have a collection of  estimated θ*:

{θ෠ଵ
∗ , θ෠ଶ

∗ , θ෠ଷ
∗ , ... , θ෠஻

∗ }.

From this collection of  θ෠*’s, we can compute the mean, the variance, 
skewness, draw a histogram, etc., and confidence intervals.

• Bootstrap Steps:

1. From the original sample, draw random sample with size 𝑁.

2. Compute statistic θ from the resample in 1: θ෠ଵ
∗ .

3. Repeat steps 1 & 2 B times  Get B statistics: {θ෠ଵ
∗ , θ෠ଶ

∗ , θ෠ଷ
∗ , ..., θ෠஻

∗ }

4. Compute moments, draw histograms, etc. for these B statistics.

C.I. Application: Using the ED – The Bootstrap
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• Using the histogram or the sorted {θ෠ଵ
∗ , θ෠ଶ

∗ , θ෠ଷ
∗ , ..., θ෠஻

∗ }, we build a 
ሺ1 െ αሻ% C.I. Using the histogram:

- The lower bound leaves α/2% of  the θ෠* to the right 

- The upper bound leaves (1 െ α/2)% of  the θ෠* to the left.

Example (continuation): We plot the histogram of  bootstrapped 
𝑠ଶ’s & define a C.I.: [௅஻ଶ , ௎஻ଶ ]  2 ∈ [௅஻ଶ , ௎஻ଶ ] with some 
probability

C.I. Application: Using the ED – The Bootstrap

𝑼𝑩
𝟐𝑳𝑩

𝟐

Histogram of  collection of  𝑠ଶ’s

bootstrapped 𝑠ଶ

• Results (Bootstrap Principle):

1. With a large enough B, the LLN allows us to use the θ෠*’s to estimate 
the distribution of  θ෠, F(θ෠).  
2. The variation in θ෠ is well approximated by the variation in θ෠*.

Result 2 is the one that we use to estimate the size of  a C.I.

• There are many ways to construct a C.I. using bootstrapping. The 
easier one is the one described above. Just use the distribution of  the 
θ෠*’s to compute directly a C.I. This is the bootstrap percentile method.

The percentile method uses the distribution of  θ෠* as an approximation 
to the distribution of  θ෠. 

C.I. Application: Using the ED – The Bootstrap
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• Technical Note: The bootstrap delivers consistent results only. 

Example: We construct a 95% C.I. for the variance of S&P 500
monthly returns (continuation of previous examples). Using the
boot.ci function, with type=perc, from boot package. First, install
boot, use the function install.packages()  install.packages(“boot”).
Then, call library(boot):

Sh_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Shiller_2020data.csv", 
head=TRUE, sep=",")

SP <- Sh_da$P

T <- length(SP)

lr <- log(SP[-1]/SP[-T])

lr_var <- var(lr)

T_s <- length (lr)

library(boot)

C.I. Application: Bootstrap Percentile Method

Example (continuation):
# function to obtain the variance from the data

var_p <- function(data, i) {

d <- data[i]

return(var(d))

}

library(boot)
boot.ci(boot.samps, type = "perc")

> boot.ci(boot.samps, type = "perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.samps, type = "perc")

Intervals :
Level Percentile
95% ( 0.0014, 0.0020 )
Calculations and Intervals on Original Scale

C.I. Application: Bootstrap Percentile Method
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Example (continuation):
• Check results by sorting boot.samps$t.
> new <- sort(boot.samps$t)
> new[25] # CI's Lower Bound
[1] 0.001398215
> new[975] # CI's Upper Bound
[1] 0.001955096

Or for , taking square roots: 95% CI ∈ [3.74%, 4.42%].

C.I. Application: Bootstrap Percentile Method

𝑼𝑩
𝟐𝑳𝑩

𝟐

• The percentile method uses the distribution of  θ෠* as an 
approximation to the distribution of  θ෠. It is very simple, but there are 
more appealing methods. In general, a bootstrap based on comparing 
differences is sounder. This is the key to the empirical bootstrap.

• To build a C.I. for θ, we use θ෠, computed from the original sample. As 
in the previous C.I.’s, we want to know how far is θ෠ from θ. For this, 
we would like to know the distribution of  

q = θ෠ – θ.

• If  we knew the distribution of q = θ෠ – θ, we build a (1 – α)% C.I., by 
finding the critical values qα/2 & q(1- α/2) to have:

Pr (qα/2 ≤ θ෠ – θ ≤ q(1- α/2) |θ) = 1 – α

C.I. Application: Empirical Bootstrap
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• Or, after some manipulations: 

Pr (θ෠ – qα/2  ≥  θ ≥  θ෠ – q(1- α/2) |θ) = 1 – α,

which gives a (1 – α)% C.I.:

𝐶௡ = [θ෠ – q(1- α/2), θ෠ – qα/2]

• We do not know the distribution of q, but we can use the bootstrap 
to estimate it with 

q* = θ෠* – θ෠.

and, then, to get q஑/ଶ
∗ & qሺଵି஑/ଶሻ

∗ :

𝐶௡ = [θ෠ – qሺଵି஑/ଶሻ
∗ , θ෠ – q஑/ଶ

∗ ]

• This C.I. is called the pivotal C.I. 

C.I. Application: Empirical Bootstrap

• Intuition: The distribution of  θ෠ is ‘centered’ at θ, while the 
distribution of  θ෠* is centered at  θ෠. If  there is a significant separation 
between θ෠ and θ, these two distributions will also differ significantly. 

On the other hand, the distribution of  q = θ෠ − θ describes the variation 
of  θ෠ about its center. Similarly, the distribution of  q∗ = θ෠* − θ෠
describes the variation of  θ෠* about θ෠. 

Then, even if  the centers are quite different, the two variations about 
the centers can be approximately equal. 

C.I. Application: Empirical Bootstrap
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Example: We estimate a 95% C.I. for the variance of monthly returns
of the S&P 500.

Note: You need to install R package resample, using the
install.packages() function  install.packages(“resample”).

sim_size <- 1000 # B = size of  bootstrap

library(resample) # call library resample

data_star <- sample(lr, T_s*sim_size, replace=TRUE) # create B resamples of  size T_s

boot_sample <- matrix(data_star, nrow=T_s, ncol=sim_size)  # organize resamples in matrix

boots_vars <- colVars(boot_sample) # compute the variance for each bootsrap sample

q_star <- boots_vars - lr_var # Compute q* for each bootstrap sample

q <- quantile(q_star, c(0.025, 0.975)) # Find the 0.025 and 0.975 quantile for q_star

ci <- lr_var - c(q[2], q[1]) # Calculate the 95% C.I. for the variance.

cat("Confidence interval: ",ci, "\n") # Print C.I using cat 

C.I. Application: Empirical Bootstrap

Example (continuation):

> lr_var
[1] 0.001637
> ci

97.5% 2.5%
0.001376664 0.001909769

> cat("Confidence interval: ", ci, "\n")
Confidence interval: 0.001376664 0.001909769
>

Or for , the 95% CI is given by (3.71%, 4.37%).

C.I. Application: Empirical Bootstrap
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Example: We construct the same 95% C.I. for the variance of
monthly S&P 500 returns using the R package boot.

library(boot)

boot.samps <- boot(data=lr, statistic=var_p, R=sim_size) # resampling and θ* estimation

boot.ci(boot.samps, type = "basic") # boot computes the CI.

> boot.ci(boot.samps, type = "basic")

CALL : 

boot.ci(boot.out = boot.samps, type = "basic")

Intervals : 

Level      Basic         

95%   ( 0.0014,  0.0019 )  

Calculations and Intervals on Original Scale

C.I. Application: Empirical Bootstrap

Example (continuation): Check results using step-by-step procedure:
q_star <- boot.samps$t - lr_var # q∗ = θ* −  θ෠

q_ad <- sort(q_star) # sort q∗

> lr_var - q_ad[975] # CI's Lower Bound

[1] 0.001357793

> lr_var - q_ad[25] # CI's Upper Bound 

[1] 0.001914674 

We can transform this CI for the variance into a CI for the SD:
> sqrt(lr_var - q_ad[975])

[1] 0.03684825

> sqrt(lr_var - q_ad[25])

[1] 0.04375699

A 95% CI for  is given by (3.68%, 4.38%), wider than the CI 
assuming a Normal distribution for returns.

C.I. Application: Empirical Bootstrap
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• It is common to gauge the uncertainty of  the estimation of θ by
computing the sample standard error, SE(θ෠*): 

• Steps

1. Computing the sample variance: 

Var(θ෠*) = 
ଵ

஻ିଵ
∑ ሺθ෠௜

∗஻
௜ୀ௜ െ 𝜃̅*)2,

where 𝜃̅* = 
ଵ

஻
∑ θ෠௜

∗஻
௜ୀ௜ .

2. Estimate the S.E. of  θ෠*: SE(θ෠*) = sqrt[Var(θ෠*)].

Example: Estimate the SE(𝑠ଶ):

1. Compute: Var(𝑠ଶ) = 
ଵ

஻ିଵ
∑ ሺ𝑠௜

ଶ∗஻
௜ୀ௜ െ 𝑠஻

ଶሻ2, where 𝑠஻
ଶ=

ଵ

஻
∑ 𝑠௜

ଶ∗஻
௜ୀ௜ .

2. SE(𝑠ଶ) = sqrt[Var(𝑠ଶ)].

C.I. Application: Empirical Bootstrap

• If  we assume the data is from a parametric model (say, from a 
Normal or a Gamma distribution), we can use the parametric bootstrap 
to access the uncertainty (variance, C.I.) of  the estimated parameter.

A parametric bootstrap generates bootstrap samples from the assumed 
distribution, based on moments computed from the sample; not from 
the ED. 

• Suppose we have a sample with 𝑁 observations drawn from F(𝑥; θ): 

{𝑥ଵ, 𝑥ଶ, …, 𝑥ே}

We know F(𝑥; θ), but do not know its parameters. Suppose there is 
only one unknown parameter, θ. From the sample, we compute θ෠. 
Then, we bootstrap from F(𝑥; θ෠) and proceed as before to form a C.I.

C.I. Application: Parametric Bootstrap Method
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• Steps:

1. Draw B samples of  size N from F(𝑥; θ෠).
2. For each bootstrap sample, {𝑥ଵ

∗, 𝑥ଶ
∗, 𝑥ଷ

∗, ..., 𝑥ே
∗ }, calculate θ෠*.

 Get B θ෠*’s.

3. Estimate a C.I. using the previous methods.

Example: We have a sample: {𝑥ଵ, 𝑥ଶ, …, 𝑥ே} drawn from a N(0,σ2).
We estimate 𝑠ଶ and use a parametric bootstrap to gauge its uncertainty
with a C.I.

Steps:
1. Draw B samples of size 𝑁 from a N(0, 𝑠ଶ)  Compute B 𝑠ଶ*.

2. Estimate a C.I. using the previous methods.

C.I. Application: Parametric Bootstrap Method

Example: Suppose S&P 500 monthly returns follow a N(0, σ2). We
estimate σ2 with 𝑠ଶ:
> lr_var # s2

[1] 0.001656445
lr_sd <- sqrt(lr_var)

x <- rnorm(T_s*sim_size, mean=0, sd=lr_sd) # generate normal data
boot_sample <- matrix(x, nrow=T_s, ncol=sim_size) # organize simulated data
boots_vars <- colVars(boot_sample) # compute variances
q_star <- boots_vars - lr_var # q∗ = θ* − θ෠
q <- quantile(q_star, c(0.025, 0.975))
ci <- lr_var - c(q[2], q[1])
> ci

97.5% 2.5%
0.001547382 0.001760286

Or for , the 95% CI is given by (3.94%, 4.20%). Very close to the CIs
we obtained before assuming a Normal distribution for returns.

C.I. Application: Parametric Bootstrap Method
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• Q: Why do we need a bootstrap?

- Sample sizes are “small” and asymptotic assumptions do not apply

- DGP assumptions are violated. 

- Distributions are complicated.

• Usually, we would not use a bootstrap to compute C.I.’s for the mean, 
in general, the normal distribution works well, as long as N is large 
enough. 

• The bootstrap is used to generate C.I. & S.E. for estimates of  other 
statistics where the normal distribution is not a good approximation. A 
typical example is the median, where for non-normal underlying 
distributions, the SE[median] is complicated to compute.

C.I. Application: Bootstrapping - Why?

• Q: What is the most an investor can lose with a particular investment
over a given time framework? Or, what is the worst case scenario?

• Value-at-Risk (VaR) provides one answer, a (lower) bound with a
probability attached to it.

• So far, we have measured risk of an asset/investment with its
volatility.

• Volatility is calculated including positive (right tail) and negative (left
tail) returns. Investors, however, love the right tail of the returns
distribution, but dislike the other tail. VaR focuses on the left tail.

• VaR gives a formal definition of “worst case scenario” for an asset
over a time period.

C.I. Application: Value-at-Risk
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• VaR gives a formal definition of “worst case scenario” for an asset.

VaR: Maximum expected amount (loss) in a given time interval within a (one-
sided) (1 - α)% C.I.:

VaR(1 - α) = Amount exposed * (1 + worst % change scenario in C.I.)

It is common to express the “expected loss” relative to today’s expected
value of asset/investment:

VaR-mean(1 - α) = VaR – E[Amount exposed]

• There are different ways to compute the worst case scenario within a
time interval. We go over two approaches:
- Assuming a probability distribution (normal, in our case).
- Using the empirical distribution (a bootstrap, using the past).

C.I. Application: Value-at-Risk

VaR(97.5%): Minimum Amount within C.I.

Example: α = .025
VaR = Amount exposed * (1 + worst change scenario in 97.5% C.I.).
VaR-mean(97.5%) = VaR – E[Amount exposed]

α = 2.5% Amount Exposedt

VaR(97.5%)-mean

C.I. Application: Value-at-Risk
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• When a company is involved with transactions denominated in
foreign currency (FC), it is exposed to currency risk. Transaction
exposure (TE) provides a simple measure of this exposure:

𝑇𝐸௧ = Value of a fixed future transaction in FC * 𝑆௧
where 𝑆௧ is the exchange rate expressed as units of domestic currency
(USD for us) per unit of FC (say, EUR).

Example: A Swiss company, Swiss Cruises, sells packages in USD.

Amount = USD 1 million.

Payment: 30 days.

𝑆௧ = 0.92 CHF/USD

 𝑻𝑬𝒕 = USD 1M * 0.92 CHF/USD = CHF 0.92M.

If 𝑆௧ is described by a Random Walk (E[𝑆௧ା்]=𝑆௧), then 𝑇𝐸௧ is a
forecast of the value of the transaction in 30 days (𝑇𝐸௧ାଷ଴). ¶

C.I. Application: VaR in FX Markets

• Swiss Cruises wants a measure of the uncertainty related to the
amount to receive in CHF in 30 days, since 𝑆௧ାଷ଴ is unknown.

We can use a range to quantify this uncertainty, we want to say  
𝑇𝐸௧ାଷ଴ TELB, TEUB] with high probability.

To determine this range for TE, we assume that (log) changes in 𝑆௧, 
𝑒௙,௧, are normally distributed:  𝑒௙,௧ ~ N(, 2). 

Then, we build a (1 - α)% interval around the mean: [  z1- α/2 * ]. 

Usual α’s in interval calculations: α =.05  |z.025|= 1.96 (≈2)
α =.02  |z.01|= 2.33

As usual, we estimate (, ) using (𝑋ത, 𝑠).

C.I. Application: VaR in FX Markets (Normal)
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Example: Range estimate based on a Normal distribution.
Swiss Cruises believes that CHF/USD monthly changes follow a
normal distribution. Swiss Cruises estimates the mean and variance
using the last 20 years of monthly data.

𝑋ത = Monthly mean = -0.00152 ≈ -0.15%
𝑠ଶ = Monthly variance = 0.001014 ( 𝑠= 0.03184, or 3.18%)
𝑒௙,௧ ~ N(-0.00152, 0.031842) 𝑒௙,௧ = CHF/USD log changes. 

Swiss Cruises constructs a 95% CI for 𝑒௙,௧ (which applies to any 𝑡):
𝑒௙,௧  [-0.00152  1.96 * 0.03184] = [-0.06393; 0.06089].

C.I. Application: VaR in FX Markets (Normal)

Example (continuation):
𝑒௙,௧ାଷ଴ [-0.00152  1.96 * 0.03184] = [-0.06393; 0.06089]. 

Based on this range for 𝑒௙,௧ାଷ଴, we can build a 95% C.I. for 𝑆௧ାଷ଴ and,
then, for 𝑇𝐸௧ାଷ଴ (= USD 1M * 𝑆௧ାଷ଴).

First, 95% C.I. for 𝑆௧ାଷ଴:

(A) Upper bound 
𝑆௧ାଷ଴,௎஻ = 𝑆௧ * (1+ 𝑒௙,௎஻) = 0.92 CHF/USD * (1 + 0.06089) =

= 0.97602 CHF/USD

(B) Lower bound 
𝑆௧ାଷ଴,௅஻ = 𝑆௧ * (1+ 𝑒௙,௅஻) = 0.92 CHF/USD * (1 - 0.06393)] =

= 0.86118 CHF/USD

 𝑆௧ାଷ଴ [0.86118 CHF/USD; 0.97602 CHF/USD]. 

C.I. Application: VaR in FX Markets (Normal)
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Example (continuation): Finally, we derive the bounds for the TE:

(A) Upper bound (𝑆௧ାଷ଴,௎஻ = 𝑆௧ * (1+ 𝑒௙,௎஻) = 0.97602 CHF/USD) 
TEUB: USD 1M * 0.97602 CHF/USD = CHF 976,019.

(B) Lower bound (𝑆௧ାଷ଴,௅஻ = 𝑆௧ * (1+ 𝑒௙,௅஻) = 0.86118 CHF/USD) 
TELB: USD 1M * 0.86118 CHF/USD = CHF 861,184.

 𝑇𝐸௧ାଷ଴  [CHF 0.861 M; CHF 0.976 M]. ¶

• The lower bound, for a receivable, represents the worst case scenario
within the interval. This is the Value-at-Risk (VaR) interpretation:

VaR: Maximum expected amount (loss) in a given time interval within a (one-
sided) confidence interval.

VaR = Amount exposed * (1+ worst % change scenario in C.I.)

C.I. Application: VaR in FX Markets (Normal)

CHF 0.976 MCHF 0.861 M

VaR(97.5%): Minimum revenue within a 97.5% C.I.

2.5%2.5%
TE = CHF 0.92M

VaR = Amount exposed * (1+ worst % change scenario in C.I.).
Then, in our application: VaR = 𝑻𝑬𝒕 * (1 + 𝑒௙,௅஻)

C.I. Application: VaR in FX Markets (Normal)
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Example (continuation): The minimum revenue to be received by SC
in the next 30 days, within a 97.5% CI.

VaR(97.5%) = CHF 0.92M * [1+ (- 0.06393)]
= CHF 0.8612M.

Interpretation of VaR: If SC expects to cover expenses with this USD
inflow, the maximum amount in CHF to cover, within a 97.5% one-
sided CI, should be CHF 0.8612M.

• It is common to express the “expected loss” relative to today’s expected
value of transaction (or asset):

VaR-mean = VaR – 𝑻𝑬𝒕 = 𝑻𝑬𝒕 * (1 + 𝑒௙,௅஻) – 𝑻𝑬𝒕
= 𝑻𝑬𝒕 * 𝑒௙,௅஻

Or just
VaR-mean = Amount exposed * worst case scenario

C.I. Application: VaR in FX Markets (Normal)

• Relative to today’s valuation (or expected valuation, according to RWM), 
the maximum expected loss in 30 days within a  97.5% one-sided C.I. is:

VaR-mean(.975) = CHF 0.8612M – CHF 0.92M = CHF -0.0588M.

Note that we can also compute the VaR-mean as:

VaR-mean(.975) = CHF 0.92M * (- 0.06393) 

= CHF -0.0588M. ¶

• Technically speaking, the VaR is a quantile, where a quantile is the 
fraction of  observations that lie below a given value (in this case the 
VaR). 

In the previous example, the 0.025 quantile (or 2.5% quantile) for 
expected loses is CHF -0.0588M.

C.I. Application: VaR in FX Markets (Normal)
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VaR (97.5%) = CHF 0.8612M

VaR(97.5%)-mean = CHF -0.0588M

2.5% quantile

TE = CHF 0.92M

C.I. Application: VaR in FX Markets (Normal)

Example (continuation):

Note: We could have used a different quantile –i.e. a different significant
level- to calculate the VaR, for example 1% ( z.99 = 2.33). Then,

VaR(99%) = CHF 0.92M * [1+ (-0.00152 – 2.33 * 0.03184)] -
= CHF 0.92M * [1 + (-0.0757072)]
= CHF 0.8503M (A more conservative bound.)

 VaR-mean (.99) = CHF 0.92M * (-0.0757072) = CHF -0.0697M

Interpretation of VaR-mean: Relative to today’s valuation (or expected
valuation, according to RWM), the maximum expected loss with a 99%
“chance” is CHF -0.0697M.

Note: As the C.I. gets wider, Swiss Cruises can spend less CHF on
account of the USD 1M receivable. ¶

C.I. Application: VaR in FX Markets (Normal)
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VaR (99%) = CHF 0.8503M

VaR(99%)-mean = CHF -0.0697M

1% quantile

TE = CHF 0.92M

C.I. Application: VaR in FX Markets (Normal)

• VaR is a statistic –a function of  the data, in our case, 𝑒௙,௧. We can do 
an empirical bootstrap to calculate the mean, SE (=SD), C.I., etc.

Example: We want to calculate the average VaR(97.5%) and its S.E., 
using all CHF/USD data from 1990:Jan - 2023:July. Then,

chfusd <- read.csv("http://www.bauer.uh.edu/rsusmel/4386/chfusd.csv",sep=",") # Data
S <- chfusd$CHF_USD # Extract CHF_USD column of the data
T <- length(S) # Check total T (1971:1 to 2023:7)
Tstart <- 229 # Start of sample period: 1990:1
SP <- S[Tstart: T]
T <- length(SP)
Val <- 1000000 # Value of transaction in FC (in M)
S_0 <- S[T] # Today's S_t
e_f <- log(SP[-1]/SP[-T])
T_s <- length(e_f)
alpha = .05 # Specify alpha level for VaR
T_s_low <- round(T_s*alpha/2) # Obs corresponding to alpha/2*T_s
TE_o <- Val*S_0*(1+e_f) # calculate Original TE values
STE_o <- sort(TE_o) # sort Original TE

C.I. Application: VaR in FX Markets (Bootstrap)
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Example (continuation):
VaR_o <- STE_o[T_s_low] # Original VaR

> VaR_o

[1] 860293

# function to obtain VaR from the data

varisk <- function(data, i) {

d <-data[i]

TE <- Val*S_0*(1+d) # calculate R TE values 

STE <- sort(TE) # sort TE

VaR <- STE[T_s_low]

return(VaR)

}

library(boot)

sim_size <- 1000

boot.samps <- boot(data=e_f, statistic=varisk, R=sim_size)

C.I. Application: VaR in FX Markets (Bootstrap)

Example (continuation):
> boot.samps

Bootstrap Statistics :

original   bias    std. error

t1*   860293 1929.305    4870.733

> boot.ci(boot.samps, type = "basic") # boot computes the CI.

Intervals : 

Level      Basic         

95%   (849352, 867587 ) 

> mean(boot.samps$t)

[1] 862222.3

> sd(boot.samps$t)

[1] 4870.733

hist(boot.samps$t, xlab="VaR (in CHF)", breaks=30)

Bootstrap estimated VaR(97.5%) = CHF 0.8622M

C.I. Application: VaR in FX Markets (Bootstrap)


