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Lecture 2
Introduction: Review, Returns 

and Data  

© R. Susmel (for private use, not to be posted/shared online)

• All the information and material is on my webpage:

https://www.bauer.uh.edu/rsusmel/4397/4397.htm

• Textbook: Introductory Econometrics for Finance, 4th edition or 
older, by Chris Brooks.

• Exams 

- Midterms: September 26 and October 24 (tentative)

- Final: According to UH Schedule (December 12, 5PM-8PM)

- Research Project (Paper): November 5

- Case Presentations (presentation and discussion of project): After
project, to be scheduled during Office Hours.

- Homework: Aug 29, Sep 12, Sep 24 & Nov 26 (or Dec 3, depending
on progress of class)

This Class – Organization

2
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• Final Grade 

A weighted average:

Midterms (2): 40% 

Final (substitution with a short paper encouraged): 30%

Homework: 10%

Class Project: 15%

Presentation: 5%

• R Program

After this class, install R in your machine. Previous students had a 
strong preference for R Studio. 

Next class, we will introduce R and run some simple R programs. 
More advance programs will be run throughout the semester.

This Class – Organization

3

• Class is very technical

We will go over many stats concepts and definitions, some derivations
and lots of formulas. But, we will apply each topic to a finance setting.

• Class covers a lot of material

We will cover as much as possible of Chris Brooks’s textbook. Last
year we were able to cover 7 chapters (& previous years, 8 chapters).

• Instructor (me) goes fast

Questions are a great way to slow me down. Ask questions, please.
All questions and interruptions are appreciated

4

This Class – Comments from Previous Classes
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• More comments from previous classes

“It was difficult to keep awake in the class.”

“Very technical course.”

“Very organized lectures and course.”

“I had problems with R almost all semester. Only at the end, I was
able to understand what was going on.”

“Learned a lot. Good course. Enjoyed the exams. One of the good
courses (in program).”

“This course is much too quantitative.”

“We covered too much info too fast.”

“This is one of the few courses that I feel I've truly earned what I'm
paying the university.”

“He fried my brain.”
5

This Class – Comments from Previous Classes

• This is an applied technical class, with some econometric theory and 
many stats concepts, followed by related financial applications.

• We will review many math and statistical topics. 

• Some technical material may be new to you, for example Linear 
Algebra. The new material is introduced to simplify exposition. You 
will not be required to have a deep understanding of the new material, 
but you should be able to follow the intuition.

• This is not a programming class, but we will use R to estimate 
models. I will cover some of the basics in class and I will run in class 
all the programs you need to run.

• For some students, the class will be dry (“He fried my brain,” a student 
said in 2020.)

This class – Overview

6
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• How do we measure returns and risks of financial assets?

• Is the equity premium (excess returns of stocks over bonds) really 
that high?

• Can we measure left-tail (unusual/extreme negative) risk?

• How do we determine a good model for financial assets? Is the 
CAPM a good model for stock returns? What about Fama-French?

• Can we explain asset returns?

• How can one explain variations in stock returns across various 
stocks?

• Are asset returns predictable? In the short run? In the long run?

• Are markets efficient?

• Does the risk of an asset vary with time? What are the implications? 
How can one model time-varying risk?

This class – Main Applied Topics

7

• Understanding Distributions and Moments 

• Testing and Confidence Intervals

• Bootstrap

• Linear Regression 

• Testing Hypothesis in the Classical Linear (Regression) Model

• Finding a Good Statistical and Financial Model

• Forecasting

• Time Series Models

• Efficiency & EMH. (Application of Many Concepts)

• Time-varying Volatility (if time allows).

• Integrated Time Series and Co-integration (if time allows).

This class – Main Technical Topics

8
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• Goal of the class: Students should be comfortable with applied 
regressions, testing financial hypothesis and forecasting.

• Secondary goal: Get students familiar with R & running R programs.

This class – Goals

9

What is Econometrics?

• Ragnar Frisch, Econometrica Vol.1 No. 1 (1933) revisited

“Experience has shown that each of these three view-points, that of 
statistics, economic theory, and mathematics, is a necessary, but not by itself a 
sufficient, condition for a real understanding of the quantitative 
relations in modern economic life. 

It is the unification of all three aspects that is powerful. And it is this 
unification that constitutes econometrics.”

EconometricsMathematical Statistics

Data
Economic Theory

10
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Example: We want to estimate expected annual excess returns for 
Exxon, E[𝑟௑ைெ - 𝑟௙].  

- Simple approach: Compute the average excess return of  XOM in the 
past 50 years to estimate the annual expected return. We get an 
annualized 2.81% estimate. Good, we use data & statistics.  

- More sophisticated approach: Add economic theory. That is, use 
econometrics. For example, we use the Capital Asset Pricing Model 
(CAPM) that states a linear relation, in equilibrium, between excess 
market returns, 𝑟ெ - 𝑟௙, & excess returns, 𝑟௜ - 𝑟௙, for any asset 𝑖:

E[𝑟௜ - 𝑟௙] = β௜ E[(𝑟ெ - 𝑟௙)].

We get data on 𝑟௜, 𝑟௙, and 𝑟ெ. Then, we use a linear regression to 
estimate β௜.

What is Econometrics?

11

• Steps:

(1) Economic Theory: The CAPM:

E[𝑟௜ୀ௑ைெ - 𝑟௙] = β௜ E[(𝑟ெ - 𝑟௙)]

(2) Data: Collect data, 1973-now for 𝑟௑ைெ, 𝑟௙, & 𝑟ெ .

(3) Mathematical Statistics: Use a linear regression to estimate β௜: 

𝑟௑ைெ - 𝑟௙ = 𝛼௑ைெ + β௑ைெ (𝑟ெ - 𝑟௙) + ε௑ைெ
⇒ Compute 𝒃𝑿𝑶𝑴 (the regression estimator of  β௑ைெ), say 0.665.

• Now, we are ready to compute the expected excess return for XOM:

Expected excess XOM return: 𝒃𝑿𝑶𝑴 * Average(𝒓𝑴 - 𝒓𝒇).

: 0.665 * 0.0727 = 0.0483 (= 4.83%)

What is Econometrics?

12
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• Issues

Of  course, there are many potential problems (& assumptions) behind 
our estimation of  expected excess returns for XOM. 

We can raise many issues regarding what we have done:

- Economic Theory question: Is the CAPM a good model?

- Data question: Is 50 years enough data?   

- Stats question: Do the assumptions behind the linear CAPM hold? 

What is Econometrics?

13

• Financial Econometrics is applied econometrics to financial data. 
That is, we study the statistical tools that are needed to analyze and 
address the specific types of  questions and modeling challenges that 
appear in analyzing financial data.

• Always keep in mind that almost in all cases, financial data is not 
“experimental data.” We have no control over the data. We have to learn 
how to deal with the usual problems in financial data.

• Typical applications of  econometric tools to finance:

- Describe data. For example, expected returns & volatility. 

- Test hypothesis. For example, are stocks riskier than bonds?

- Build and test models. For example, the different Fama-French 
factor models used to estimate expected returns.

What is Financial Econometrics?

14
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• In general, in finance we deal with trade-offs. The usual trade-off: 
Risk & Return. 

– How do we measure risk and return? 

– Can we predict them?

– How do we measure the trade-off?

– How much should I be compensated for taking a given risk?

• Thus, we will be concerned with quantifying rewards and risks 
associated with uncertain outcomes.

What is Financial Econometrics?

15

This Lecture

We will review some basic concept of  Probability and Statistics:

- Random Variable

- Distribution Functions

- Descriptive Statistics: Moments

- Population & Sample

- Sample Statistics & Estimators

- Law of  Large Numbers (LLN)

- Central Limit Theorem (CLT)

- Sampling Distributions

What is Financial Econometrics?

16
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Review – Random Variable

17

• In probability, a random variable (RV), or stochastic variable, is described 
informally as a variable whose values depend on outcomes of  
an experiment. (Experiment: Act/process with an unknown outcome).

Examples:

1. We throw two coins and count the number of  heads.

2. We define X = 1 if  the economy grows two consecutive quarters and 
X = 0, otherwise. (This is an example of  a Bernouille (or indicator) RV.) 

3. We read comments from IBM’s CEO and compute IBM’s return.

4. We count the days in a week that XOM has a positive return. 

5. We look at a CEO and write his/her highest education degree.

6. We compute the weekly sign of  stock returns of  two unrelated 
firms: Positive (U: up) or negative (D: down). We count the times at 
least one stock is up: {D,U}, {U,D}, {U,U}.

Review – Random Variable

18

• For some RVs, it is easy to enumerate all possible outcomes. For 
instance, for the fourth (XOM) above: {0, 1, 2, 3, 4, 5}. But, for some 
RVs, it can be complicated. For example, for the third (IBM) example: 
{-100%, 𝐾}, where 𝐾 is a large positive number.  

• The set of  all possible outcomes is called sample space, denoted by Ω. 

• An event A is a set containing outcomes from the sample space. For 
example, for the IBM return example, the return is between -1.64% 
and 1.64% is an event.

• The collection of  all possible events is Σ. For example, for the IBM 
return example, {(1.1%, 1.2%), (-0.02%, -0.001%), (2.00%, 12.657%), 
(-5%, 5%), (-100%, -13.95%),(-1.64%, 1.64%), (0%, 350%), … }  
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Review – Random Variable

19

• In general, a RV is a function whose domain is the sample space, Ω. It 
produces numbers. For instance, in example 6 above, instead of  using 
{U, U} when both stocks go up, we use 2.

Mathematically, X: Ω→ R.

Remark: The name “random variable” is confusing; it is just a function!

• We put some mathematical structure (pdf, pmf, CDF) to the concept 
of  RV to describe what is more/less likely to happen to the (randomly 
determined) events.

For example, we would like to know which event is more/less likely for 
the IBM example: Is (1.1%-1.2%) more likely than (-0.02%, -0.001%)? 

• Definition: Let 𝑋 be a discrete RV. Let 𝑝 𝑥 be a function with the 
following properties:

1. 0 ൑ 𝑝ሺ𝑥ሻ ൑ 1

2. ∑ 𝑝ሺ𝑥௜

௜ୀଵ ሻ ൌ 1

3. 𝑃 𝑎 ൑ 𝑋 ൑ 𝑏 ൌ ∑  𝑝ሺ𝑥ሻ௔ ஸ ௫ ஸ ௕

Then, 𝑝ሺ𝑥ሻ is called the probability function or probability mass function 
(pmf) of 𝑋. We use 𝑝ሺ𝑥ሻ to describe the behavior of a discrete RV.

Example: Suppose the discrete RV 𝑋 is the number of  days in a week 
that XOM has a positive return. Using Property 3, we can compute the 
probability that XOM’s has a positive return in 3 or more days in a 
week:

𝑃 𝑎 ൌ 3 ൑ 𝑋 ൑ 𝑏 ൌ 5 ൌ  𝑝 𝑥 ൌ 3 ൅ 𝑝 𝑥 ൌ 4 ൅ 𝑝ሺ𝑥 ൌ 5ሻ

Review – PMF for a Discrete RV

20
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Definition: Let 𝑋 be a continuous RV, like stock returns. Let 𝑓 𝑥 be 
a function defined for -∞ < 𝑥 < ∞ with the following properties:

1. 𝑓 𝑥 ≥ 0.

׬ .2 𝑓 𝑥 𝑑𝑥
ஶ
ିஶ ൌ 1.

3. 𝑃 𝑎 ൑ 𝑋 ൑ 𝑏 ൌ ׬ 𝑓 𝑥 𝑑𝑥
௕
௔

Then, 𝑓 𝑥 is called the probability density function (pdf) of 𝑋. We use the 
pdf to describe the behavior of a continuous RV. 

Example: Suppose the continuous RV 𝑋 is IBM’s daily stock returns 
and we know the pdf. Then, using Property 3, we can compute the 
probability that IBM’s daily return is between 𝑎 =-1.64% and 𝑏=1.64%:

𝑃 െ1.64% ൑ 𝑋 ൑ 1.64% ൌ න 𝑓 𝑥 𝑑𝑥

௕ୀଵ.଺ସ

௔ୀିଵ.଺ସ

Review – PDF for a Continuous RV

21

න 𝑓 𝑥 𝑑𝑥

ஶ

ିஶ

ൌ 1.

Review – PDF for a Continuous RV

• The pdf  is non-negative and integrates to  

• Remark: If 𝑋 is IBM’s daily returns, the red area represents the 
probability that IBM’s returns are between -1.64% & 1.64%.

𝑃 െ1.64% ൑ 𝑋 ൑ 1.64% ൌ න 𝑓 𝑥 𝑑𝑥

௕ୀଵ.଺ସ

௔ୀିଵ.଺ସ

െ1.64 1.64

22

PDF for a Continuous RV: Area between -1.64% & 1.64%
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• A RV 𝑋 is said to have a normal distribution with parameters  (mean) 
and 𝜎ଶ (variance) if 𝑋 is a continuous RV with pdf 𝑓 𝑥 :

Review – Popular PDFs: Normal Distribution

Note: Described by two parameters:  and 𝜎ଶ. We write 𝑋 ~ N(, 𝜎ଶ)
23

𝑓 𝑥 ൌ
1

2𝜋𝜎ଶ
exp െ

𝑥 െ 𝜇 ଶ

2𝜎ଶ

• When 𝜇 = 0 and 𝜎ଶ= 1, we call the distribution standard normal. We 

write 𝑋 ~ N(0, 1). This is the distribution that is tabulated.

The normal distribution is often used to describe or approximate any 
variable that tends to cluster around the mean. It is the most assumed 
distribution in economics and finance: rates of return, growth rates, IQ 
scores, observational errors, etc.

• The central limit theorem (CLT) provides a justification for the 
normality assumption when the sample size, N, is large.

Notation: PDF:   𝑋 ~ N(𝜇, 𝜎ଶ)

CDF:   Φ(x)

Review – Popular PDFs: Normal Distribution

24
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• Let the continuous RV 𝑋 have density function):

Review – Popular PDFs: Gamma Distribution

   
1 0

0 0

xx e x
f x

x


 


 

  
 

where  > 0 and Γ(is the gamma function evaluated at . 

Then, 𝑋 is said to have a Gamma distribution with parameters  and , 
denoted as X ~ Gamma(, or Γ(, 

It is a family of  distributions, with special cases:

 Exponential Distribution, or Exp(:  = 1.

 Chi-square Distribution, or χ஝ଶ:  = /2 and   = ½. 25

• The Chi-square distribution, χ஝ଶ, will appear a lot, since it is derived 
from a sum of independent square standard normals. Below, we 
plot the χ஝ଶ distribution with parameter , called degrees of freedom:

Review – Popular PDFs: Chi-square Distribution
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Note: When  is large, the χ஝ଶ converges to a N(, 2). 26
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• Other distributions we will use  in class: 

(1) t-distribution: A ratio of a standard normal and the square root 
of a 𝜒ఔଶ divided by 𝜈. That is, let Y ~ N(0, 1) and W ~ 𝜒ఔଶ, then 

t = 
௒

ௐ/ఔ
~ 𝑡ఔ.

Below, we plot a simulated t-distribution with 𝜈 =5 (in red), along a 
normal distribution (in blue). It has thicker tails. As 𝜈 increases, 𝑡ఔ
converges to a N(0, 1) distribution. 

Review – Popular PDFs: Other Distributions

27

(2) F-distribution: A ratio of two independent 𝜒ଶ distributions, 
divided by their degrees of freedom. That is, let 𝑍ଵ ~ 𝜒ఔభ

ଶ and 𝑍ଶ ~ 
𝜒ఔమ
ଶ , then 

F = 
௓భ /ఔభ
௓మ /ఔమ

~ 𝐹ఔ,ఔమ

Review – Popular PDFs: Other Distributions

28
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𝐹 𝑥 ൌ 𝑃 𝑋 ൑ 𝑥 ൌ න𝑓 𝑡  𝑑𝑡

௫

ିஶ

.

Review – CDF for a Continuous RV

• If 𝑋 is a continuous random variable with pdf, 𝑓 𝑥 , the cumulative 
distribution function (CDF) of 𝑋 is given by:

29

𝐹 𝑥 ൌ 1.645 = 0.95

• Remark: If 𝑋 = daily IBM’s returns, the probability that IBM’s daily 
returns are 1.645% or less is 95% (red area). 

Review – CDF for a Continuous RV

• The plot of 𝐹 𝑥 is:

• Note: The FTC implies: 𝐹ᇱ 𝑥 ൌ ௗி ௫

ௗ௫
ൌ 𝑓 𝑥

30

𝑥 ൌ 1.645

0.95
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Review – The Empirical Distribution

• The empirical distribution (ED) of  a dataset is simply the distribution 
that we observe in the data. 

The ED is a discrete distribution that gives equal weight to each data 
point, assigning a 1/𝑁 probability to each of  the original 𝑁
observations. 

We form a cumulative distribution function, F*, that is a step function 
that jumps up by 1/𝑁 at each of  the N data point:

F*(x) = 1/𝑁 ∑ 𝐼ሺ𝑥௜ ൑ 𝑥ሻே
௜ୀଵ ,

where I(.) is the indicator function:

𝐼 𝑥௜ ൑ 𝑥 = 1, if 𝑥௜ ൑ 𝑥
𝐼ሺ𝑥௜ ൑ 𝑥ሻ = 0, if 𝑥௜ ൐ 𝑥

31

Review – The Empirical Distribution

Example: We throw 100 times two dice and sum the results. The 
CDF is given below:

• In general, we use a histogram to describe the ED of a dataset. 

Important result: Let F be the true distribution of  the data and F* be 
the ED of  the data. As 𝑁→ ∞, the Law of  large numbers (LLN) tells 
us that F* becomes a good approximation of  F.

32
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Review – Histogram of  a RV

Example: We use a histogram to estimate the distribution (pdf) of a 
RV. Let 𝑋 = Percentage changes in the CHF/USD exchange rate = 𝑒௙
Data: Monthly - January 1973 to March 2024 (𝑁 = 615 observations).

Note: We overlay a Normal density (blue line) over the histogram.
33

• The moments of a random variable 𝑋 are used to describe the 
behavior of the RV (discrete or continuous). 

Definition: 𝑘th Moment

Let 𝑋 be a RV (discrete or continuous), then the 𝑘th moment of 𝑋 is:

𝜇௞ ൌ 𝐸 𝑋௞ ൌ

෍𝑥௞  𝑝 𝑥
௫

if 𝑋 is discrete

න 𝑥௞ 𝑓 𝑥 𝑑𝑥

ஶ

ିஶ

if 𝑋 is continuous

• The first moment of  𝑋,  = 1 = E(𝑋) is the center of  gravity of  the 
distribution of  𝑋.  

• The higher moments give different information regarding the shape of  
the distribution of  𝑋.

Review – Moments of  Random Variables

34
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Example: Suppose 𝑋 is the number of  days in a week that XOM has a 
positive return. We want to know the first moment, the mean, of  the 
distribution. That is,

𝜇ଵ ൌ ∑ 𝑥 𝑝 𝑥௫ = 0 * 𝑝 𝑥 ൌ 0 + 1 * 𝑝 𝑥 ൌ 1 + 2 * 𝑝 𝑥 ൌ 2 +

+ 3 * 𝑝 𝑥 ൌ 3 + 4 * 𝑝 𝑥 ൌ 4 + 5 * 𝑝 𝑥 ൌ 5

Suppose we can describe 𝑋 with a Binomial distribution, with p=0.52. 
That is, XOM has a 52% probability of  having a positive return. Then,

𝜇ଵ ൌ 0 * 0.0255 + 1* 0.1380 + 2 * 0.2990 + 3 * 0.3240 + 4 * 0.1755 
+ 5 * 0.0380 = 2.60

Interpretation: The expected number of  days in week with positive 
returns for XOM is 2.6 days.

Note: For a continuous RV, we need to integrate to get moments.

Review – Moments of  Random Variables

35

Definition: Central Moments

Let 𝑋 be a RV (discrete or continuous). Then, the 𝑘th central moment of  
𝑋 is defined to be:

𝜇௞
଴ ൌ 𝐸 𝑋 െ 𝜇 ௞ ൌ

෍ 𝑥 െ 𝜇 ௞  𝑝 𝑥
௫

if 𝑋 is discrete

න 𝑥 െ 𝜇 ௞  𝑓 𝑥 𝑑𝑥

ஶ

ିஶ

if 𝑋 is continuous

where  = 1 = E(𝑋) = the first moment of  𝑋.

• The central moments describe how the probability distribution is 
distributed about the center of  gravity, .

Review – Moments of  a RV

36
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• The first central moments is given by: 

𝜇ଵ
଴ ൌ 𝐸 𝑋 െ 𝜇 = 0

The second central moment depends on the spread of  the probability 
distribution of  𝑋 about It is called the variance of  𝑋 and is denoted 
by the symbol 𝜎ଶ= var(𝑋):

𝜇ଶ
଴ ൌ 𝐸 𝑋 െ 𝜇 ଶ = Var[𝑋] = ଶ

The square root of  var(𝑋) is called the standard deviation of  𝑋 and is 
denoted by the symbol = SD(𝑋). We also refer to it as volatility:

𝜇ଶ
଴ ൌ 𝐸 𝑋 െ 𝜇 ଶ = 𝜎

Review – Moments of  a RV

37

Example: Suppose 𝑋 is the number of  days in a week that XOM has a 
positive return. We want to know the second central moment, 𝜇ଶ

଴ = ଶ

(& volatility, ). (Recall that 𝜇ଵ = 𝜇 = 2.6 days). Then,
 ଶ ൌ ∑ 𝑥 െ 𝜇 ଶ 𝑝 𝑥௫ = 0 െ 2.6 ଶ* 𝑝 𝑥 ൌ 0 ൅ 1 െ 2.6 ଶ* 𝑝 𝑥 ൌ 1

+ 2 െ 2.6 ଶ * 𝑝 𝑥 ൌ 2 + 3 െ 2.6 ଶ* 𝑝 𝑥 ൌ 3
+ 4 െ 2.6 ଶ * 𝑝 𝑥 ൌ 4 + 5 െ 2.6 ଶ* 𝑝 𝑥 ൌ 5

\

Again, assume 𝑋 follows a Binomial distribution, with p=0.52. Then,

 ଶൌ 0 െ 2.6 ଶ * 0.0255 + 1 െ 2.6 ଶ * 0.1380 + 2 െ 2.6 ଶ * 0.2990 
+ 3 െ 2.6 ଶ * 0.3240 + 4 െ 2.6 ଶ * 0.1755 + 5 െ 2.6 ଶ * 0.0380

= 1.24802   = sqrt(1.24802) = 1.117148

Interpretation: The volatility of  𝑋 is 1.12 days.

Note: Again, for a continuous RV, we need to integrate to get moments.

Review – Moments of  a RV
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• The third central moment: 𝜇ଷ
଴ ൌ 𝐸 𝑋 െ 𝜇 ଷ

𝜇ଷ
଴ contains information about the skewness of  a distribution.

• A popular measure of  skewness: 𝛾ଵ ൌ
ఓయ
బ

ఙయ
ൌ ఓయ

బ

ఓమ
బ
య
మ

• Distribution according to skewness:
1) Symmetric distribution (with mode = median = 𝜇)

𝜇ଷ
଴ ൌ 0, 𝛾ଵ ൌ 0

Review – Moments of  a RV: Skewness
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𝜇ଷ
଴ ൐ 0, 𝛾ଵ ൐ 0

2) Positively (right-) skewed distribution (with mode < median < 𝜇)

3) Negatively (left-) skewed distribution (with mode > median > 𝜇)

𝜇ଷ
଴ ൏ 0, 𝛾ଵ ൏ 0

Review – Moments of  a RV: Skewness
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Example (continuation): We want to know 𝜇ଷ
଴ & 𝛾ଵ for 𝑋 ൌ the 

number of  days in a week that XOM has a positive return. . Then,
𝜇ଷ
଴ ൌ ∑ 𝑥 െ 𝜇 ଷ 𝑝 𝑥௫ = 0 െ 2.6 ଷ* 𝑝 𝑥 ൌ 0 ൅ 1 െ 2.6 ଷ* 𝑝 𝑥 ൌ 1

+ 2 െ 2.6 ଷ * 𝑝 𝑥 ൌ 2 + 3 െ 2.6 ଷ* 𝑝 𝑥 ൌ 3
+ 4 െ 2.6 ଷ * 𝑝 𝑥 ൌ 4 + 5 െ 2.6 ଷ* 𝑝 𝑥 ൌ 5

\

Again, assume 𝑋 follows a Binomial distribution, with p=0.52. Then,

𝜇ଷ
଴ ൌ 0 െ 2.6 ଷ * 0.0255 + 1 െ 2.6 ଷ * 0.1380 + 2 െ 2.6 ଷ * 0.2990 

+ 3 െ 2.6 ଷ * 0.3240 + 4 െ 2.6 ଷ * 0.1755 + 5 െ 2.6 ଷ * 0.0380

= െ0.04989  𝛾1 ൌ
𝜇3

0

𝜎3 ൌ
ି଴.଴ସଽ଼ଽ

ሺଵ.ଵଵ଻ଵହሻయ
= -0.03578522

Interpretation: 𝑋 has a small, but negative skewness. The left tail is a 
little bit longer. 

Review – Moments of  a RV
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• Skewness and Economics
For returns:
- Zero skew means symmetrical gains and losses. 
- Positive skew suggests many small losses and few rich returns. 
- Negative skew indicates lots of  minor wins offset by rare major losses. 

• In financial markets, stock returns at the firm level show positive 
skewness, but at the aggregate (index) level show negative skewness. 

• From horse race betting and from U.S. state lotteries there is evidence 
supporting the contention that gamblers are not necessarily risk-lovers 
but skewness-lovers: Long shots are overbet (positive skewness 
loved!).

Review – Moments of  a RV: Skewness

42



FINA 4397/7354: Financial Econometrics - Returns and Data

22RS 2024 copyright. Not to be posted online/shared without written consent from author

• The fourth central moment: 𝜇ସ
଴ ൌ 𝐸 𝑋 െ 𝜇 ସ .

𝜇ସ
଴ is a measure of  the shape of  a distribution. The property of  shape 

measured by this moment is called kurtosis, usually estimated by  = 
ఓర
బ

ఙర
.

• The measure of  (excess) kurtosis: 𝛾ଶ = 
ఓర
బ

ఙర
െ 3 = 

ఓర
బ

ሺఓమ
బሻమ

െ 3.

• Distributions:

1) Mesokurtic distribution (𝛾ଶ ൌ 0 or =3, like the normal distribution)

Review – Moments of  a RV: Kurtosis
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2) Platykurtic distribution (𝛾ଶ ൏ 0)

3) Leptokurtic distribution (𝛾ଶ ൐ 0, usual shape for asset returns)

Review – Moments of  a RV: Kurtosis
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• Typical financial returns series has 𝛾ଶ ൐ 0. Below, I simulate a series 
with 𝜇=0, 𝜎=1, 𝛾ଵ=0 & kurtosis = 6 (𝛾ଶ=3), overlaid with a standard 
normal distribution. Fat tails are seen on both sides of the distribution.

Review – Moments of  a RV: Kurtosis

45

fat tail fat tail 

• Note that moments are defined by expected values. We define the 
expected value of a function of a continuous RV X, 𝑔 𝑋 , as

𝐸 𝑔 𝑋 ൌ න 𝑔 𝑥 𝑓 𝑥 𝑑𝑥

ஶ

ିஶ

• If  𝑋 is discrete with probability function 𝑝 𝑥

𝐸 𝑔 𝑋 ൌ෍𝑔 𝑥 𝑝 𝑥
௫

ൌ෍𝑔 𝑥௜ 𝑝 𝑥௜
௜

Examples: 𝑔 𝑥 = 𝑥 െ 𝜇 ଶ  E[𝑔 𝑥 ] = E[ 𝑥 െ 𝜇 ଶ] 
𝑔 𝑥 = 𝑥 െ 𝜇 ௞  E[𝑔 𝑥 ] = E 𝑥 െ 𝜇 ௞]

• We estimate expected values with sample averages. The Law of  Large 
Numbers (LLN) tells us they are consistent estimators of  expected 
values. 

Review – Moments and Expected Values

46



FINA 4397/7354: Financial Econometrics - Returns and Data

24RS 2024 copyright. Not to be posted online/shared without written consent from author

Definition: Population

A population is the totality of  the elements under study. We are 
interested in learning something about this population.

Examples: Number of  alligators in Texas, percentage of  
unemployed workers in cities in the U.S., total return of  all stocks in 
the U.S., 10-year Japanese government bond yields from 1960-2024.

Usually, a complete enumeration of  all the values in the population is 
impractical or impossible. Thus, the descriptive statistics 
describing/generating the population –i.e., the population parameters–
will be considered unknown.

Note: A Random Variable (RV) X defined over a population is called 
the population RV. The population RV generates the data. We call the 
population RV the “Data Generating Process,” or DGP.

Review – Population and Sample 
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Definition: Sample

The sample is a (manageable) subset of  elements of  the population. 

Example: The total returns of  the stocks on the S&P 500 index.

48

Review – Population and Sample 

Get a sample 
Population 

(DGP) Sample (size N or  T)

Samples are collected to learn about the population. The process of  
collecting information from a sample is referred to as sampling. 

Definition: Random Sample 
A random sample is a sample where the probability that any individual 
member from the population being selected as part of  the sample is 
exactly the same as any other individual member of  the population. 
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Example: The total returns of  the stocks on the S&P 500 index is not 
a random sample.

• In general, in finance and economics, we do not deal with random 
samples. The collected observations will have issues that make the 
sample not a true random sample.

Remark: In mathematical terms, given a random variable X with 
distribution F, a random sample of  length 𝑁 is a set of  𝑁
independent, identically distributed (i.i.d.) random variables with 
distribution F. 

• We will estimate population parameters using sample analogues: 
mean, sample mean; variance, sample variance; , b; etc.

49

Review – Population and Sample 

• The samples we collect are classified in three groups:

• Time Series Data: Collected over time on one or more variables, 
with a particular frequency of observation. Example: we record for 10 
years the monthly S&P 500 returns, or 10’ IBM returns. 

Usual notation: 𝑥௧, 𝑡 = 1, 2, …, 𝑇.

• Cross-sectional Data: Collected on one or more variables collected 
at a single point in time. Example: today we record all closing returns 
for the members of the S&P 500 index. 

Usual notation: 𝑥௜ , 𝑖 = 1, 2, …, 𝑁.

• Panel Data: Cross-sectional data collected over time. Example: the 
CRSP database collects daily prices of all U.S. traded stocks since 1962.

Usual notation: 𝑥௜,௧, 𝑖 = 1, 2, …, 𝑁 & 𝑡 = 1, 2, …, 𝑇.

Review – Samples and Types of  Data

50
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• Typical situation in statistics: We want to make inferences about an 
unknown population parameter θ using a sample: {𝑋ଵ, 𝑋ଶ, …, 𝑋ே}.

• We summarize the information in the sample with a statistic, which is 
a function of  the sample.

• Any statistic summarizes the data or reduces the information in the 
sample to a single number. To make inferences, we use the information 
in the statistic instead of  the entire sample.

Get a statistic and Make inferences (“learn”)

Get a sample 

Population Sample (size N or  T)

Review – Statistics
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• A statistic (singular) is a single measure of  some attribute of  a sample 
(for example, its arithmetic mean value). It is calculated by applying a 
function (statistical algorithm) to the values of  the items comprising 
the sample, which are known together as a set of  data.

Definition: Statistic

A statistic is a function of  the observable random variable(s), which 
does not contain any unknown parameters.

Examples: sample mean (𝑋ത), sample variance (𝑠ଶ), minimum, median, 
(𝑥ଵ + 𝑥ே)/2, etc.

Note:  A statistic is distinct from a population parameter. A statistic 
will be used to estimate a population parameter. In this case, the 
statistic is called an estimator. 

Review – Sample Statistic

52



FINA 4397/7354: Financial Econometrics - Returns and Data

27RS 2024 copyright. Not to be posted online/shared without written consent from author

• Sample statistics are used to estimate population parameters.

Example: 𝑋ത is an estimate of  the population mean, .

Notation: Population parameters: Greek letters (σ, θ, etc.)

Estimators: A hat over the Greek letter (θ෠).

Suppose we want to learn about the mean of  IBM annual returns, 
μIBM. From the population, we get a sample of  size N: {𝑋ଵଽ଺ଶ, 𝑋ଵଽ଺ଷ, 
…, 𝑋ேୀଶ଴ଶଷ}. Then, we compute a statistic, 𝑋ത. As we will see later, on 
average, 𝑋ത is a good estimator of  .

Calculate 𝑋ത and infer μIBM

Get a sample (size 𝑁)

IBM returns {X1962, X1963, …, X2023}

Review – Sample Statistic: Estimators
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• The definition of  a sample statistic is very general. For example, by 
definition (𝑥ଵ + 𝑥ே)/2 is a statistic; we could claim that it estimates 
the population mean of  the variable X. However, this is probably not 
a good estimate. 

• We would like our estimators, θ෠, to have certain desirable properties, 
for example, low bias and low variance, where bias and variance are:

- Bias[θ෠ሿ = E[θ෠] െ θ

- Var[θ෠ሿ = E[ሺθ෠ െ Eሾθ])ଶ] 

Ideally, we would like to have θ෠ with both low bias and low variance, 
but as we would see later, in general, we have a trade-off  between 
these two properties.

Review – Sample Statistic: Estimators

54
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• Some simple properties for estimators, θ෠:
- θ෠ is unbiased estimator of  θ if  E[θ෠] = θ. (Bias[θ෠ሿ = E[θ෠] െ θ)

- θ෠ is most efficient if  the variance of  the estimator, Var[θ෠ሿ, is 
minimized.

- θ෠ is BUE, or Best Unbiased Estimator, if  it is the estimator with the 
smallest variance among all unbiased estimates.

- θ෠ is consistent if  as the sample size, 𝑁, increases to ∞, θ෠ே converges 

to θ. We write θ෠ே
௣
→ θ. 

- θ෠ is asymptotically normal if  as the sample size, 𝑁, increases to ∞, θ෠ே, 
θ෠ே often standardized or transformed, converges in distribution to a 

Normal distribution. We write θ෠ே  
ௗ
→ N(θ, Var[θ෠ேሿ). 

Review – Estimators: Properties
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• The first two properties for estimators hold for samples of  any size,
not just large samples –i.e., when 𝑁 → ∞. 

We associate bias with lack of  accuracy and efficiency/variance with 
uncertainty.

• It is common to evaluate an estimator using the Mean Squared 
Error (MSE), which combines bias and variance:

MSE[θ෠] = E[ሺθ෠ െ θ)ଶ] = 𝐵𝑖𝑎𝑠ሾθ෠ሿଶ + Var[θ෠ሿ.

Review – Estimators: Properties

56
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Theorem (Weak LLN)

Let 𝑋ଵ, … , 𝑋ே be 𝑁 mutually independent & identically distributed 
RVs, each having mean, and SD,  finite. We say {𝑋ே} is i.i.d.

Let 𝑋ത ൌ  
∑ ௑೔
ಿ
೔సభ

ே
.

Then for any  > 0 (no matter how small)

P[|𝑋ത െ |< 𝛿 ] = P[  െ 𝛿 <  𝑋ത < + 𝛿] → 1, as N →  ∞

• There are many versions of  the LLN. It is a general result: A sample
average as the sample size goes to infinite tends to its expected value. 

Also written as  𝑋തN

୮
→ . (convergence in probability)

• Long history: Gerolamo Cardano (1501-1576) stated it without proof.

Jacob Bernoulli published a rigorous proof  in 1713.

Review – Law of  Large Numbers (LLN)
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• Below, we randomly generate 10,000 observations from a N(0, 1) and 
compute the sample mean as a function of  𝑁. As expected, as 𝑁
increases, the sample mean gets closer to the population mean (=0).

Review – Law of  Large Numbers (LLN)

58
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Review – Central Limit Theorem (CLT)

• Let 𝑋ଵ, … , 𝑋ே be a sequence of  i.i.d. RVs with finite mean , and 
finite variance ଶThen, as 𝑁 increases, the distribution of  the 
(normalized) sample mean, 𝑋തே, approaches the normal distribution with 
mean 𝜇 and variance ଶ 𝑁.

This theorem is sometimes stated as 
ேሺ௑ത ି ఓሻ

ఙ
 →
ௗ

 𝑁ሺ0,1ሻ

where 
ௗ
→ means “the limiting distribution (asymptotic distribution) is” 

(or convergence in distribution).

• Many versions of  the CLT. This one is the Lindeberg-Lévy CLT.

Remark: The CLT gives only an asymptotic distribution. We usually take 
it as an approximation, since 𝑁 is finite. In these cases, the notation 

goes from 
ௗ
→ to 

௔
→. 59

• We estimate expected values with sample averages. For example, the 
first moment, 𝜇, & the second central moment, σଶ, are estimated by:

𝑋ത ൌ  
∑ ௑೔
ಿ
೔సభ

ே

𝑠ଶ=  
∑ ሺ௑೔ ି ௑തሻమಿ
೔సభ

ேିଵ
(𝑁 െ 1 adjustment needed for Eሾ𝑠ଶሿ ൌ σଶ)

• They are both unbiased estimators of  their respective population 
moments That is, 

Eሾ𝑋തሿ ൌ  𝜇
Eሾ𝑠ଶሿ ൌ σଶ “𝜇 & σଶ are population parameter”

Note: Unbiased estimator = “On average, we get the population 
parameter.”

Review – Expected Values & Sample Averages

60
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• All statistics, T(𝑋), are functions of  RVs and, thus, they have a 
distribution. Depending on the sample, we can observe different values 
for T(𝑋), thus, the finite sample distribution of  T(𝑋) is called the 
sampling distribution. 

For the sample mean 𝑋ത, if  the 𝑋௜ ’s are normally distributed, then the 
sampling distribution is normal with mean μ and variance ଶ/𝑁. Or

𝑋ത ~ N(𝜇, ଶ/𝑁).

Note: If  the data is not normal, the CLT is used to approximate the 
sampling distribution by the asymptotic one, usually after some 

manipulations. Again, in those cases, the notation goes from 
ௗ
→ to 

௔
→. 

• The SD of the sampling distribution is called the standard error (SE). 
Then, SE(𝑋ത) = /sqrt(𝑁). 61

Review – Sampling Distributions: 𝑋ത

• Summary for 𝑋ത: 

Sampling distribution: 𝑋ത ~ N(𝜇, σଶ/𝑁) (if  data normal)

Mean: Eሾ𝑋തሿ ൌ 𝜇

Variance: Varሾ𝑋തሿ ൌ σଶ/𝑁.

Note: If  the data is not normal (& 𝑁 is large), the CLT can be used to 
approximate the sampling distribution by the asymptotic one:

𝑋ത  
  ௔  

N(𝜇, σଶ/𝑁).

62

Review – Sampling Distributions: 𝑋ത
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• Sampling Distribution for the Sample Mean of  a normal population: 

𝑋ത ~ N(, σଶ/𝑁)

Note: As 𝑁 →∞, 𝑋ത→ 𝜇 –i.e., the distribution becomes a spike at 𝜇!

Review – Sampling Distributions: 𝑋ത
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, 𝑋ത



• 10,000 samples, for a N(2 4) population. Different sample sizes, 𝑁:

Note: As 𝑁 →∞, 𝑋ത becomes more concentrated around = 2. In the 
limit, a spike at !

𝑁 = 10 𝑁 = 60 𝑁 = 200

Review – Sampling Distributions: 𝑋ത

64
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• For the sample variance 𝑠ଶ, if  the 𝑋i’s are normally distributed, the 
sampling distribution is derived from this result: 

ሺ𝑁 െ 1ሻ 𝑠ଶ/ଶ ~ χேିଵ
ଶ .

We use the properties of  a χ௩ଶ to derive the mean & variance of 𝑠ଶ: 

Property 1. Let Z ~ χ௩ଶ. Then, E[Z] = 𝑣.
Property 2. Let Z ~ χ௩ଶ. Then, Var[Z] = 2 ∗ 𝑣.

Application: Let Z ൌ ሺ𝑁 െ 1ሻ 𝑠ଶ/ଶ ~ χேିଵ
ଶ

From Property 1: E[ሺ𝑁 െ 1ሻ 𝑠ଶ/ଶ] = 𝑁 െ 1 
 Eሾ𝑠ଶሿ ൌ σଶ

From Property 2: Var[ሺ𝑁 െ 1ሻ 𝑠ଶ/ଶ] = 2 ∗ ሺ𝑁 െ 1ሻ
 Varሾ𝑠ଶሿ ൌ 2 ∗ σସ/ሺ𝑁 െ 1ሻ
 SE(𝑠ଶ) = SD(𝑠ଶ) = 2 * sqrtሾ2/ሺ𝑁 െ 1ሻሿ 65

Review – Sampling Distributions: 𝒔𝟐

• Summary for 𝑠ଶ of normal variates: 

Sampling distribution: ሺ𝑁 െ 1ሻ 𝑠ଶ/ଶ ~ χேିଵ
ଶ .

Mean: Eሾ𝑠ଶሿ ൌ σଶ

Variance: Varሾ𝑠ଶሿ ൌ 2 ∗ σସ/ሺ𝑁 െ 1ሻ.

Note: If  the data is not normal (& 𝑁 is large), the CLT can be used to 
approximate the sampling distribution by the asymptotic one:

𝑠ଶ
௔
→ N(ଶ, σସ ∗ ሺെ 1ሻ/ 𝑁)

where  = 
ఓర
బ

ఙర
(recall when data is normal,  = 3). 

66

Review – Sampling Distributions: 𝒔𝟐
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• 10,000 samples, for a N(2 4) population. Different sample sizes, 𝑁:

𝑁 = 10 𝑁 = 60 𝑁 = 200

Review – Sampling Distributions: 𝒔𝟐

Note: As 𝑁→ ∞, the distribution of  𝑠ଶ looks more Normal – the CLT at 
work! 67


