
RS – Financial Econometrics - Lecture 10

1

1

Lecture 10
Volatility Models 

Brooks (4th edition): Chapter 9

• So far, we have focused on linear models. We have relied on
Assumption (A1), where the relation between 	&	 is given by:

β + , 	~	 . . .	D(0, σ2)

• There are, however, many relationships in finance that are 
intrinsically non-linear: The payoffs to options are non-linear in some 
of  the input variables, for example, St; investors’ willingness to trade 
off  returns and risks are also non-linear; CEO compensation that 
depends on thresholds and with a big option component. 

• The textbook of  Campbell et al. (1997) defines a non-linear data 
generating process as one where the current value of  is related 
non-linearly to current and previous values of  the error term, :

= f( , , ,  . . .) 

where is i.i.d. and f  is a non-linear function.

Linear and Non-linear Models
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• A friendlier and slightly more specific definition of a non-linear
model is given by the equation

= g( , , , . . .) + σ2( , , , . . .)

where g is a function of  past error terms only, and σ2 can be 
interpreted as a variance term, since it is multiplied by the current 
value of  the error. 

• Cases

- Non-linear in mean only: g (•) = non-linear & σ2(•) = σ2

- Non-linear in variance only: g (•) = linear & σ2(•) ≠ non-linear g (•) 

- Non-linear in mean and variance: both g (•) & σ2(•) are non-linear.

• Most popular non-linear models in finance: The ARCH models, 
where we model a time-varying variance as a function of  past ’s.

Linear and Non-linear Models

• Until the early 1980s econometrics had focused almost solely on
modeling the conditional means of series:

= E[ | It] + , ~ D(0,σ2)

Suppose we have an AR(1) process:
= α + ϕ + .

Then, the conditional mean, conditioning on information set at time 
t, It , is:

Et[ | It] = α + ϕ

•  Recall the distinction between conditional moments and 
unconditional ones. The unconditional mean and variance are:

E[ ] = α/(1 – ϕ) = constant 
Var[ ] = σ2/(1 – ϕ2) = constant 

The conditional mean is time varying; the unconditional mean is not!

ARCH Models
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• Similar idea for the variance. Let’s focus on the conditional variance, 
conditioning on:

Conditional variance:     
Var[ |It] = Et[( – Et[ |It])2] = Et[ ]

Unconditional variance: 
Var[ ] = E[( – E[ ])2] = σ2/(1 – ϕ2)

Remark: Conditional moments are time varying; unconditional 
moments are not!

ARCH Models

• The unconditional variance measures the overall uncertainty. In the
AR(1) example, the information available at time t, It , plays no role:
Var[ ] = σ2/(1 - ϕ2) .

• The conditional variance, Var[ |It], is a better measure of
uncertainty at time t. It is a function of information at time t, It.

mean
Variance

Conditional 
Variance

ARCH Models

Time

yt

t
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(1) Thick tails: Leptokurtic (thicker tails than Normal).

(2) Volatility clustering: “Large changes tend to be followed by large 
changes of  either sign.” 

(3) Leverage Effects: Tendency for changes in stock prices to be 
negatively correlated with changes in volatility. 

(4) Non-trading Effects, Weekend Effects: When a market is closed 
information accumulates at a different rate to when it is open –for 
example, the weekend effect, where stock price volatility on Monday 
is not three times the volatility on Friday. 

(5) Expected events: Volatility is high at regular times such as news 
announcements or other expected events, or even at certain times of  
day –for example, less volatile in the early afternoon.

ARCH Models: Stylized Facts of  Asset Returns

(6) Volatility and serial correlation: Inverse relationship between the two.

(7) Co-movements in volatility: Volatility is positively correlated across 
markets/assets.

• We need a model that accommodates all these (non-linear) facts.

• Stylized facts (1) and (2) form the basis of  Volatility (ARCH) 
Models.

ARCH Models: Stylized Facts of  Asset Returns
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Figure: Descriptive Statistics and Distribution for Monthly S&P500 Returns

Statistic

Mean (%) 0. 0585
(p-value: 0.0004)

Standard Dev (%) 0.0449

Skewness -0.7294

Excess Kurtosis 2. 6406

Jarque-Bera 216.15
(p-value: <0.000001)

• Easy to check leptokurtosis (Stylized Fact #1)

ARCH Models: Stylized Facts of  Asset Returns

• Heavy tails: Excess kurtosis greater than 0!

• Easy to check Volatility Clustering (Stylized Fact #2)

ARCH Models: Stylized Facts of  Asset Returns

Note: Periods with low changes, usually long, and periods of  high 
changes, usually short. That is, volatility shows autocorrelation.
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ARCH Models: Engle (1982) 

• We start with assumptions (A1) to (A5), but with a specific (A3’):

, 	~	 0,

(A3’) ⋯

which we can write, using the L operator, as:

∑

• We can write the model in terms of  an AR(q) for . Define 
≡ , -an error term for the variance.

Then,

• Correlated ’s: High (low) past ’s produce a high (low) today.

ARCH Models: Engle (1982) 

• The model

∑

is an AR(q) model for squared innovations, . We have the ARCH 
model: Auto-Regressive Conditional Heteroskedasticity.

• The ARCH(q) model estimates the unobservable (latent) variance. 

• Non-negative constraints: Since we are dealing with a variance, we 
usually impose 

ω > 0 and αi > 0 for all i.

Robert F. Engle (1942, USA)
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ARCH Models: Unconditional Variance

• The unconditional variance is determined by:

That is, 

	 	∑

To obtain a positive σ2, we impose another restriction: (1 ∑ ) > 0

• Example: ARCH(1)
, ~ 0,


	 	

• We need to impose restrictions: > 0, α1 > 0,  &  (1 – α1) > 0.

• Even though the errors may be serially uncorrelated they are not 
independent: There will be volatility clustering, which produces fat 
tails. We define standardized errors: 

/

• They have conditional mean zero and a time invariant conditional 
variance equal to 1. That is, zt ~ D(0, 1). If  zt is assumed to follow a 
N(0, 1), with a finite fourth moment (use Jensen’s inequality). Then:

3	

/ 3.

Technical point: It can be shown that for an ARCH(1), the 4th

moment for an ARCH(1):
if 3 1.

ARCH Models: Leptokurtosis
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• More convenient, but less intuitive, presentation of the ARCH(1) 
model:

, 	~	 0, 1

that is, is i.i.d. with mean 0, and Var[ ]=1. Since is i.i.d., then:

	

which delivers the AR(1) representation for .

Also, if we assume is normally distributed, then
	~	 0, .

ARCH Models: Alternative Representation

GARCH Model: Bollerslev (1986)

• An early technique to determine q was to look at the ACF/PACF 
for squared returns, , which usually determined a very large q. 

Example: We calculate the ACF and PACF for the squared of  the 
U.S. monthly stock returns (1871-2020).
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GARCH Model: Bollerslev (1986)

• Highly autocorrelated squared returns. To accommodate the long 
autocorrelations, we use large q.

• This result is not surprising, is a very persistent process. 
Persistent processes can be captured with an AR(p), where p is large. 
This is not efficient.

• Following the idea of  an ARMA process, we can use a more 
parsimonious representation of  the ARCH model: The Generalized 
ARCH model or GARCH(q, p):

	 	∑ 	 	∑

which can be shown it is an ARMA(max(p,q), p) model for the 
squared innovations.

GARCH Model: GARCH(1,1)

• Popular GARCH model: GARCH(1,1):

with an unconditional variance: Var[εt2] = σ2 = ω /(1- α1 - β1).

 Restrictions: ω > 0, α1 > 0, β1 > 0; (1- α1 - β1) > 0.

• Technical details: This is covariance stationary if  all the roots of  
α(L) + β(L) = 1

lie outside the unit circle. For the GARCH(1,1) this amounts to
α1 + β1 < 1.
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GARCH Model: Determination of  Order

• We should use enough lags to make sure the residuals do not have 
any more autocorrelation in the square residuals.

• If  the order of  GARCH process is well determined, the 
ACF/PACF for should show no significant autocorrelations.

• We can add lags until the tests for ARCH structure in the squared 
residuals, discussed later, are not longer significant.

• A GARCH(1,1) is a very good starting point.

• In the GARCH-X model, exogenous variables are added to the 
conditional variance equation. 

Consider the GARCH(1,1)-X model:

),( 1
2

11
2

11
2    tttt Xf

where f(Xt, ) is strictly positive for all t. Usually, Xt, is an observed 
economic variable or indicator, for example, a liquidity index, and f(.) 
is a non-linear transformation, which should be non-negative.

Examples: We can use 3-mo T-bill rates for modeling stock return 
volatility, or interest rate differentials between countries to model FX 
return volatility.  

The US congressional budget office uses inflation in an ARCH(1) 
model for interest rate spreads.

GARCH-X
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• All of  these models can be estimated by maximum likelihood. First 
we need to construct the sample likelihood. 

• Since we are dealing with dependent variables, we use the 
conditioning trick to get the joint distribution:

, , … , ; ; , , ; , , , , ; 	...
	 	 	 	 	 	 	 	 	 	 . . . | , … , , , … , ; .

Taking logs:
log , , . . . , ; log | ; log | , , ;

	 	 	 	 	 	 	 	 	 	 	 	…	 log | , … , , , … , ;

	 	 	 	 	 	 	 	   	    log | , ;

ARCH Estimation: MLE

We maximize this function with respect to the k mean parameters (γ) 
and the m variance parameters (ω, α, β).

• Example: ARCH(1) model.
Mean equation: , 	~ N(0, )
Variance equation:

We write the pdf  for the normal distribution, 

| , , exp = exp 	 	

We form the likelihood L (the joint pdf):

L		 ∏ 	exp 2 / ∏ exp

We take logs to form the log likelihood, 	= log L:

log
2
log 2

1
2

log
1
2

/

Then, we maximize with respect to θ = ( , , ) the function .

ARCH Estimation: MLE – ARCH(1)
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Example (continuation): ARCH(1) model.

2
log 2

1
2

log
1
2

/

Taking derivatives with respect to θ = (ω, α1, γ), where γ is a vector of  
k mean parameters:

1/ 1/2 /

/ 1/2 /

∑ ′ / (kx1 vector of  derivatives)

ARCH Estimation: MLE – ARCH(1)

Example (continuation): We form the f.o.c.; that is, we write the first 

derivative vectors as θ and, then, set it equal to 0:

θ = S(yt, θ) = 0 -a (k+2) system of  equations. 

The vector of  first derivatives is called the score vector, S(yt, θ).

Take the last f.o.c., the kx1 vector, 0:

∑ ′ / , = ∑ ′ 	 	 / , = 0

∑
, ,

	
,

= 0

The last equation shows that MLE is GLS for the mean parameters, , 
each observation is weighted by the inverse of  , .

ARCH Estimation: MLE – ARCH(1)
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Example (continuation): We have a (k+2) system. It is a non-linear 
system. The system is solved using numerical optimization (usually, 
with the Newton-Raphson method). 

ARCH Estimation: MLE

Technical Note: If the conditional density for is well specified and 
θ0 (the true parameter) belongs to the parameter space, Ω, then

/ → 0, , 	  
,

• A0 is the matrix of  second derivatives of  the log likelihood, . It is 
called the Hessian. In general, it is difficult to numerically compute and 
make sure it is positive definite (so it can be inverted), especially when 
the dimensions are big.

There a lot of  computational tricks to compute a Hessian that is 
invertible, the most popular algorithm is the Broyden–Fletcher–
Goldfarb–Shanno, or “BFGS.”

ARCH Estimation: MLE – Standard Errors
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• Under the correct specification assumption, A0 = B0, where

We estimate A0 and B0 by replacing θ0 by its estimated MLE value, 
θMLE .

• The estimator B0 has a computational advantage over A0.: Only first 
derivatives are needed.  But A0 = B0 only if  the distribution is 
correctly specified. This is very difficult to know in practice.

• Common practice in empirical studies: Assume the necessary 
regularity conditions are satisfied.

, , , ′

ARCH Estimation: MLE – Standard Errors

• In general, we have a (k+m x k+m) system; k mean parameters and 
m variance parameters. But, it is a non-linear system. We use numerical 
optimization, which are methods that search over the parameter space 
looking for the values that maximize the log likelihood function. 

• In R, the function optim does numerical optimization. It minimizes 
any non-linear function. It needs as inputs: 
- Initial values for the parameters, θ0. 
- Function to be minimized (includes the GARCH process).
- Data used. 
- Other optional inputs: Choice of method, hessian calculated, etc.

Example: optim(theta0,  log_lik_garch11, data=z, method="BFGS", 
hessian=TRUE)

theta0 = initial values
log_lik_garch11 = function to be minimized

ARCH Estimation: Numerical Optimization
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• Initial values:
- Numerical optimization needs initial values for θ, say θ0. It is very 
common to find that the optimization is sensitive to the initial values. 
It is a good practice to try different sets of initial values.

We want to avoid selecting a local maximum:

ARCH Estimation: Numerical Optimization

• Initial values (continuation):
- Given the autoregressive structure in , and sometimes we have 
AR(p) in the mean, we need to make assumptions about σ0 and the ε0, 
..., εq (and ε0, ε1 , ..., εp if we assume an AR(p) process for the mean).

Usual assumptions: σ0 = unconditional SD; ε0 = ε1 = ...= εp=0.

- Alternatively, we can take σ0 (and ε0, ε1, ..., εp) as parameters to be 
estimated (it can be computationally more intensive and estimation
can lose power.)

ARCH Estimation: Numerical Optimization
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• Log likelihood of  AR(1)-GARCH(1,1) Model:

ARCH Estimation: MLE – Example (in R)

log_lik_garch11 <- function(theta, data) {
mu <- theta[1]; rho1 <- theta[2]; omega <- abs(theta[3]); alpha1 <- abs(theta[4]); beta1 <-
abs(theta[5]);  
chk0 <- (1 - alpha1 - beta1)
r <- ts(data)
n <- length(r)

u <- vector(length=n);  u <- ts(u)
u[1] = 0
for (t in 2:n)
{u[t] = r[t] - mu - rho1*r[t-1]} # this setup allows for ARMA in mean

h <- vector(length=n);  h <- ts(h)
h[1] = omega/chk0 # set initial value for h[t] series
if  (chk0==0) {h[1]=.000001} # check to avoid dividing by 0
for (t in 2:n)
{h[t] = abs(omega + alpha1*(u[t-1]^2) + beta1*h[t-1])
if  (h[t]==0) {h[t]=.00001} } # check to avoid log(0)

return(-1*sum(- 0.5 * log(abs(h[2:n])) - 0.5 * (u[2:n]^2)/abs(h[2:n])))
} # I use optim to minimize a function, to maximize multiply by -1

Example 1: GARCH(1,1) model for changes in CHF/USD. We will 
use R function optim (mln can also be used) to maximize the function:

ARCH Estimation: MLE – Example (in R)

PPP_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",")

x_chf  <- PPP_da$CHF_USD # CHF/USD 1971-2020 monthly data
T <- length(x_chf)
z <- log(x_chf[-1]/x_chf[-T])

theta0 = c(-0.002,  0.026,   0.001,   0.19,   0.71) # initial values
ml_2 <- optim(theta0,  log_lik_garch11, data=z, method="BFGS", hessian=TRUE)

logL_g11 <- log_lik_garch11(ml_2$par, z) # value of  log likelihood
logL_g11

ml_2$par # estimated parameters 

I_Var_m2 <- ml_2$hessian
eigen(I_Var_m2) # check if  Hessian is pd.
sqrt(diag(solve(I_Var_m2))) # parameters SE

chf_usd <- ts(z, frequency=12, start=c(1971,1))
plot.ts(chf_usd) # time series plot of  data
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ARCH Estimation: MLE – Example (in R)

Example 1 (continuation):
> logL_g11 # Log likelihood value
[1] –1745.197

> ml_2$par # Extract from ml_2 function parameters
[1] -0.0021051742  0.0260003610  0.00012375 0.1900276519  0.7100718082

> I_Var_m2 <- ml_2$hessian # Extract Hessian (matrix of  2nd derivatives)

> eigen(I_Var_m2) # Check if  Hessian is pd to invert.
eigen() decomposition
$values # Eigenvalues: if  positives => Hessian is pd
[1] 1.687400e+08 6.954454e+05 7.200084e+03 5.120984e+02 2.537958e+02 

$vectors
[,1]        [,2]      [,3]  [,4]        [,5]

[1,]  4.265907e-05  9.999960e-01 -0.0011397586  0.0018331957 -0.0018541203
[2,] -3.333961e-06 -2.188159e-03 -0.0010048203  0.9769058449 -0.2136566699
[3,]  9.999998e-01 -4.223001e-05 -0.0003544245  0.0001291633  0.0005770707
[4,] -3.599974e-06 -1.702277e-03 -0.8603563865 -0.1097470278 -0.4977344477
[5,] -6.893837e-04  6.416141e-04 -0.5096905472  0.1833226197  0.8405994743

ARCH Estimation: MLE – Example (in R)

Example 1 (continuation):
> sqrt(diag(solve(I_Var_m2))) # Invert Hessian: Parameters Var on diag
[1] 1.203690e-03 4.419049e-02 7.749756e-05 5.014454e-02 3.955411e-02

> t_stats <- ml_2$par/sqrt(diag(solve(I_Var_m2)))
> t_stats
[1] -1.7489333  0.5883701  1.5967743  3.7895984 17.9519078
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Example 1 (continuation): Summary for CHF/USD changes

ef,t = [log(St) - log(St-1)] = a0 + a1 ef,t-1 + , It-1 ~ N(0, )
	 	 	 	 	 	 	 .

• T: 562 (January 1971 - July 2020, monthly).

The estimated model for st is given by:
ef,t = -0.00211 + 0.02600 ef,t-1,

(.0012) (0.044)
= 0.00012 + 0.19003 	 + 0.71007 .

(0.00096)* (0.050)* (0.040)*
Unconditional σ2 = 0.00012 /(1- 0.19003 - 0.71007) = 0.001201201
Log likelihood: 1745.197

Note: α1 + ß1 = .90 < 1. (Persistent.)

ARCH Estimation: MLE – Example (in R)

ARCH Estimation: MLE – Example (in R)
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Example 2: Using Robert Shiller’s monthly data set for the S&P 500 
(1871:Jan - 2020:Aug, T=1,795), we estimate an AR(1)-GARCH(1,1) 
model: 

rt = [log(Pt) - log(Pt-1)] = a0 + a1rt-1 + , It-1 ~ N(0, )
	 	 	 	 	 	 	

The estimated model for st is given by:
rt = 0.338 + 0.278 rt-1,

(.08)* (0.025)*
= 0.756 + 0.126 	 + 0.826 	 .

(0.151)* (0.017)* (0.021)*
Unconditional σ2 = 0.756 /(1 - 0.126 - 0.826) = 15.4630
Log likelihood: 4795.08

Note: α1 + ß1 = .952 < 1. (Very persistent.)

ARCH Estimation: MLE – Example (in R)

ARCH Estimation: MLE – Example (in R)

Example 2: Below, we plot the time-varying variance. Certain events 
are clearly different, for example, the 1930 great depression, with a 
peak variance of  282 (18 times unconditional variance!). The covid-19 
volatility similar to the 2008-2009 financial crisis recession: 
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• Consider the forecast in a GARCH(1,1) model:

	 	 		

Taking expectation at time t

1

Then, by repeated substitutions:

∗ ∑ 	

Assuming ( ) < 1, as j → ∞, the forecast reverts to the 
unconditional variance: σ2 = ω/(1 – α1 – β1).

• When α1 + β1 = 1, today’s volatility affect future forecasts forever:

GARCH: Forecasting and Persistence

Example 1: We want to forecast next month (September 2020) 
variance for CHF/USD changes. Recall we estimated :

	= 0.00012 + 0.19003	 + 0.71007 . 

getting : = 0.003672220 (= : = sqrt(0.00367) = 6.1%)

We based the : forecast on:

	 ∗ ∑

Then, = 0.190 + 0.710 = 0.900

: : 	0.00012 	0.00367 ∗ 0.9) = 0.003423

We also forecast :

: : 0.00012 ∗ {1+ (0.9)+ (0.9)2} + 0.00367 ∗ (0.9)3

= 0.00300063

GARCH: Forecasting and Persistence
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Example 1 (continuation):
We forecast volatility for March 2021:

: : 0.00012 ∗ {1 + (0.9) + (0.9)2+ … 	+ (0.9)5} +

+ 0.00367 ∗ (0.9)6 = 0.002512659 

Remark: We observe that as the forecast horizon increases (j → ∞), 
the forecast reverts to the unconditional variance: 

/(1 – α1 – β1) = 0.00012/(1 − 0.9) = 0.0012

 = sqrt(0.0012) = 0.0346 (3.46% ≈ close to sample 
SD = 3.36%) 

GARCH: Forecasting and Persistence

Example 2: On August 2020, we forecast the December’s variance 
for the S&P500 changes. Recall we estimated :

	= 0.756  +  0.125	 + 0.826 	 . 

getting : = 43.037841

We based the : forecast on:

∗ ∑ 	

Then, since = 0.952

: : 0.756 ∗ {1+ (0.952) + (0.952)2 
+ (0.952)3} +

+ 43.037841 ∗ (0.952)4 = 38.02797

Lower variance forecasted for the end of  the year, but still far from 
the unconditional variance of  15.4.

GARCH: Forecasting and Persistence



RS – Financial Econometrics - Lecture 10

22

Example: In September 2020, Swiss Cruises wants to construct a 
VaR-mean for the USD 1 M receivable in 30 days (October). Data
Receivable: USD 1 M
St=2020:9 = 1.45 CHF/USD
ef,t=2020:9 = 0.01934126
TEt=2020:9 = USD 1M * 1.45 CHF/USD = CHF 1.45M. 

: : = 0.003423  sqrt(0.003423) = 0.05851 (5.85%)

VaR-mean(.99) = CHF 1.45M * : , : –
– 2.33 * sqrt( : : )}

: , : = -0.00211 + 0.026 * , :
= -0.00211 + 0.026 * 0.01934126 = -0.001607

VaR-mean(.99) = CHF 1.45M * (-0.001607 – 2.33 * sqrt(0.003423))
= CHF -0.1999941 M

GARCH: Forecasting – Application to VaR

Example (continuation): 
VaR-mean(.99) = CHF 1.45M * (-0.001607 – 2.33 * sqrt(0.003423))

= CHF -0.1999941 M

Interpretation of  VaR-mean: Relative to today’s valuation (or expected 
valuation, according to RWM), the maximum expected loss with a 99% 
“chance” is CHF -0.20 M.

We also derive this value, using the sample mean and sample SD:
sample mean = -0.00259
sample SD = 0.033357
 VaR-mean(.99) = CHF 1.45M * * (-0.00259 - 2.33 * 0.033357) = 

= CHF - 0.1164491

Remark: The GARCH forecast reflects the higher than average 
uncertainty in 2020:9 (Covid-19, presidential elections).

GARCH: Forecasting – Application to VaR
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• GARCH estimation requires numerical optimization, which is 
dependent on initial values. The R package does a good job at 
estimating ARMA-GARCH models, allowing for different models 
and performing a lot of  specification tests.

You need to specify the model (“specs”) first, for example, you want 
to estimate an AR(1)-GARCH(1,1) with a constant in the mean. 
Then, you estimate the model with the ugarchfit command.

Example: We estimate an AR(1)-GARCH(1,1) for the historical U.S. 
monthly returns (1871 – 2020, T = 1,797).

x <- lr_p # SP500 long run monthly returns
library(rugarch) # You need to install package first!
mod_gar <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), 
mean.model = list(armaOrder = c(1, 0), include.mean = TRUE))
ar1_garch11 <- ugarchfit(spec=mod_gar, data=lr_p)

GARCH: Rugarch Package

Example (continuation): > ar1_garch11

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics   
-----------------------------------
GARCH Model     : sGARCH(1,1)
Mean Model      : ARFIMA(1,0,0)
Distribution    : norm 

Optimal Parameters
------------------------------------

Estimate Std. Error  t value Pr(>|t|)
mu 0.004695    0.001052   4.4651 8e-06
ar1 0.277567    0.025120 11.0496    0e+00
omega 0.000075    0.000015   4.8968 1e-06
alpha1 0.126715    0.017529  7.2289    0e+00
beta1 0.826194    0.020600  40.1061 0e+00

GARCH: Rugarch Package
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Example (continuation): > ar1_garch11

Robust Standard Errors:
Estimate  Std. Error  t value Pr(>|t|)

mu   0.004695 0.001145   4.1018 0.000041
ar1   0.277567 0.022948  12.0957 0.000000
omega 0.000075 0.000021   3.6307 0.000283
alpha1 0.126715 0.026943   4.7031 0.000003
beta1 0.826194 0.028409  29.0821 0.000000

LogLikelihood : 3472.361

Information Criteria
------------------------------------

Akaike -3.8591
Bayes        -3.8438
Shibata      -3.8591
Hannan-Quinn -3.8534

GARCH: Rugarch Package

Example (continuation): > ar1_garch11

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------

statistic p-value
Lag[1]                    0.3178 0.57294
Lag[2*(p+q)+(p+q)-1][2] 2.5441 0.08393
Lag[4*(p+q)+(p+q)-1][5] 6.9210 0.02072  Need to add more lags in mean.
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------

statistic p-value
Lag[1]             0.1915  0.6617
Lag[2*(p+q)+(p+q)-1][5] 1.1353  0.8284
Lag[4*(p+q)+(p+q)-1][9] 1.6161  0.9455  No evidence of  extra ARCH lags.
d.o.f=2

GARCH: Rugarch Package
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• Recall the technical detail: The standard GARCH model:

is covariance stationary if  α(1) + β(1) < 1.

• But strict stationarity does not require such a stringent restriction
In the GARCH(1,1) model, if  α1 + β1 =1, we have the Integrated 
GARCH (IGARCH) model.

• In the IGARCH model, the autoregressive polynomial in the ARMA 
representation has a unit root: a shock to the conditional variance is 
“persistent.” 

• Variance forecasts are generated with: 
 today’s variance remains important for all future forecasts. This is 
persistence!

IGARCH

IGARCH

• Variance forecasts are generated with: 

• That is, today’s variance remains important for future forecasts of  all 
horizons.

• In practice (see previous Example 2 for the S&P 500 data), it is 
often found that α1 + β1 are close to 1.
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• The time-varying variance affects mean returns:
Mean equation: 	 	δ	 , 	~ N(0, )
Variance equation: 	 	

• We have a dynamic mean-variance relations. It describes a specific 
form of the risk-return trade-off.

• Finance intuition says that δ	 has to be positive and significant. 
However, in empirical work, it does not work well: δ is not significant 
or negative.

GARCH: Variations – GARCH-in-mean

• GJR-GARCH model – Glosten, Jagannathan & Runkle (JF, 1993):

∗

where = 1 if  εt-i< 0; 
= 0 otherwise.

• Using the indicator variable , this model captures sign 
(asymmetric) effects in volatility: Negative news (εt-i< 0) increase the 
conditional volatility (leverage effect).

• The GARCH(1,1) version:

	 	 	 	 	 	 	

where = 1 if  εt-i< 0; 
= 0 otherwise.

GARCH: Variations – Asymmetric GJR 
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• The GARCH(1,1) version:

	 	 	 	 	 	 	

When εt-1 < 0  	 	 	 	 	 	 	
εt-1 > 0  	 	 	 	 	 	 	 	

• This is a very popular variation of the GARCH models. The 
leverage effect is significant.

• There is another variation, the Exponential GARCH, or EGARCH, 
that also captures the asymmetric effect of  negative news on the 
conditional variance.

GARCH: Variations – Asymmetric GJR 

• Non-linear ARCH model NARCH – Higgins and Bera (1992) and 
Hentschel (1995).

These models apply the Box-Cox-type transformation to the 
conditional variance:

| |

Note: The variance depends on both the size and the sign of  the 
variance which helps to capture leverage type (asymmetric) effects.

Special case: γ = 2 (standard GARCH model).

GARCH: Variations – NARCH



RS – Financial Econometrics - Lecture 10

28

• Threshold ARCH (TARCH) – Rabemananjara & Zakoian (1993)

Large events –i.e., large errors- have a different effect from small 
events. We use 2 indicator variables, & : one 
for “large events,” , & one for “small events,” :

	 	 	 	 	 	 	

• We can modify the model in many ways. For example, we can allow 
for the asymmetric effects of  negative news.

There are two variances:

, 	 	 if	

, 	 	 if	

GARCH: Variations – TARCH

Technical Note: The appeal of MLE is the optimal properties of the 
resulting estimators under ideal conditions. However, this ideal 
conditions, which are called “regularity conditions,” are difficult to verify 
for ARCH models

• Block-diagonality
In many applications of ARCH models, the parameters can be 
partitioned into mean parameters, θ1, and variance parameters, θ2. Thus, 
the Information matrix (≈Hessian) is block-diagonal.

Not a bad result:
– Regression can be consistently done with OLS.
– Asymptotically efficient estimates for the ARCH parameters can be 
obtained on the basis of the OLS residuals.

ARCH Estimation: MLE – Regularity Conditions
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• But:
– Conventional OLS standard errors could be terrible. 

– When testing for autocorrelation, in the presence of  ARCH, the 
conventional Bartlett s.e. –T-1/2– could seriously underestimate the 
true standard errors.

ARCH Estimation: MLE – Remarks

• The basic GARCH model allows a certain amount of  leptokurtosis. 
It is often insufficient to explain real world data. 

Solution: Assume a distribution, other than the normal, that can 
produce fatter tails in the distribution.

• t Distribution - Bollerslev (1987)
The t distribution has a degrees of  freedom parameter which allows 
greater kurtosis. The t likelihood function is

)ln(5.0)))2(1()2()5.0())1(5.0(ln( 22/)1(12/11
t

v
tt vzvvvl  

where Γ is the gamma function and v is the degrees of  freedom.
As υ → ∞,  this tends to the normal distribution.

ARCH Estimation: Non-Normality
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• Standard BP test, where we test H0: α1= α2= ... = αq= 0.

Steps:
– Step 1. (Same as BP’s Step 1). Run OLS on DGP:

y = X  + . Keep residuals, et.

– Step 2. (Auxiliary Regression). Regress et
2 on et-1

2,  ...., et-q
2

et
2 = α0 + α1 et-1

2 + .... + αm et-q
2 + vt. Keep R2, say .

– Step 3. Compute the statistic:

LM = (T – q) 
		 		

χ .

ARCH: Testing

Example: We do an ARCH Test with 4 lags, for the AR(1) residuals 
of log changes in the CHF/USD (T = 593): 

yyy <- z; 

T <- length(yyy)

xx_1 <- z[-T]

yy <- z[-1]

fit2 <- lm(yy ~ xx_1 -1) 

res_d <- fit2$residuals # Step 1: extract residuals

p_lag <- 4

e2_lag <- matrix(0, T-p_lag, p_lag) # matrix to put lag e^2

resid_r2 <- res_d^2

a <-1

while (a <= p_lag) {

e2_lag[,a] <- resid_r2[a:(T-p_lag+a-1)]

a <- a+1

}

ARCH: Testing 
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Example (continuation):

fit_lm2 <- lm(resid_r2[(p_lag+1):T] ~ e2_lag) # Step 2: Auxiliary Regression

r2_e1 <- summary(fit_lm2)$r.squared # extract R^2

lm_t <- (T-p_lag)*r2_e1 # LM test: Sample size * R^2

> lm_t

[1] 17.08195  Reject H0 (No ARCH) with a p-value of  0.001

ARCH: Testing 

• In ARCH Models, testing as usual: LR, Wald, and LM tests.

• Ignoring ARCH
- Suppose you suspect yt has an AR structure: 

yt = γ0 + ϕ1 yt-1 + εt, εtIt-1 ~ N(0, σ2
t). 

with ARCH structure in the error term, but you ignore it. You fit the 
AR(1) model using OLS.

• Simulations find that OLS t-test with no correction for ARCH  
spuriously reject H0: ϕ1 = 0 with arbitrarily high probability for 
sufficiently large T.  

• White’s (1980) SE help. NW SE help less.

ARCH: Testing – Ignoring ARCH



RS – Financial Econometrics - Lecture 10

32

Figure. From Hamilton (2008). Fraction of  samples in which OLS t-
test leads to rejection of  H0: ϕ1 = 0 as a function of  T for regression 
with Normal errors (solid blue line) and Student’s t errors (dashed  
green line). 
Note: H0 is actually true & the t-test is evaluated at the 5% level.

ARCH: Testing – Ignoring ARCH

• Questions
1) Lots of ARCH models. Which one to use?
2) Choice of p and q. How many lags to use?

• Hansen and Lunde (2004) compared lots of ARCH models:

- It turns out that the GARCH(1, 1) is a great starting model. 

- Add a leverage effect for financial series and it’s even better.

- A t-distribution is also a good addition.

ARCH: Which Model to Use
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• The idea of realized volatility is to estimate the latent (unobserved) 
variance using the realized data, without any modeling. Recall the 
definition of sample variance: 

1
1

• Suppose we want to use calculate the daily variance for stock returns. 
We know how to compute it: we use daily information, for T days, and 
apply the above definition. 

• Alternatively, we use hourly data for the whole day (with k hours). 
Since hourly returns are very small, ignoring seems OK. We use ,

as the ith hourly variance on day t. Then, we add , over the day:

,

RV Models: Intuition

• In more general terms, we use higher frequency data to estimate a 
lower frequency variance:

,

where rt,i is the realized returns in (higher frequency) interval i of  the 
(lower frequency) period t. We estimate the t-frequency variance, using k i-
intervals. If  we have daily returns and we want to estimate the monthly 
variance, then, k is equal to the number of  days in a month.

• It can be shown that as the interval i becomes smaller (i → 0), 
→ Return Variation [t – 1, t].

That is, with an increasing number of  observations we get an accurate 
measure of  the latent variance.

RV Models: Intuition
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• Note that RV is a model-free measure of  variation –i.e., no need for 
ARCH-family specifications. The measure is called realized variance (RV). 
The square root of  the realized variance is the realized volatility (RVol, 
RealVol):

• Given the previous theoretical result, RV is commonly used with 
intra-daily data, called high frequency (HF) data.

• It lead to a revolution in the field of  volatility, creating new models 
and new ways of  thinking about volatility and how to model it. 

• We usually associate realized volatility with an observable proxy of  the 
unobserved volatility.

RV Models: High Frequency

• As mentioned above, the theory behind realized variation measures 
dictates that the sampling frequency, or k in the RVt formula above, 
goes to ∞. 

• Intra-daily data applications are the most common. But, when using 
intra-daily data, RV calculations are affected by microstructure effects: 
bid-ask bounce, infrequent trading, calendar effects, etc. rt,i does not 
look uncorrelated.

For example, the bid-ask bounce induces serial correlation in intra-day 
returns, which biases RVt. The usual solutions is to filter data using an 
ARMA model to get rid of  the autocorrelations and/or dummy 
variables to get rid of  calendar effects. 

Then, used the filtered data to compute RVt.

RV Models: High Frequency – Tick Data
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• Key choice: The sampling frequency (observations per period). 
Theory dictates using as many rt,i as possible. Then, use the highest 
frequency available, say millisecond to millisecond returns.

• But, in practice, market microstructure frictions limit the highest 
sampling frequency that may be used to reliably estimate RVt.

• In intra-daily RV estimation, it is  common to use 10’ intervals. They 
have good properties. However, there are estimations with 1’ intervals.

• Hansen and Lunde (2006) find that for highly liquid assets, such as 
the S&P 500 index, a 5’ sampling frequency provides a reasonable 
choice. Thus, to calculate daily RV, we need to add 78 five-minute 
intervals.

RV Models: High Frequency – Practice

Example: Based on TAQ (Trade and Quote) NYSE data, we use 5’ 
realized returns to calculate 30’ variances –i.e., we use six 5’ intervals. 
Then, the 30’ variance, or RVt=30-min, is:

∑ , , 	 	 1,2, . . . . , =15

rt,j is the 5’ return during the jth interval on the half  hour t. Then, we 
calculate 30’ variances for the whole day –i.e., we calculate 13 
variances, since the trading day goes from 9:30 AM to 4:00 PM.

The Realized Volatility, RVol, is:

RV Models: High Frequency – TAQ
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Example: Below, we show the first transaction of  the SPY TAQ 
(Trade and Quote) data (tick-by-tick trade data) on January 2, 2014.  

SYMBOL DATE TIME PRICE SIZE

SPY 20140102 9:30:00 183.98 500

SPY 20140102 9:30:00 183.98 500

SPY 20140102 9:30:00 183.98 200

SPY 20140102 9:30:00 183.98 500

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.98 800

SPY 20140102 9:30:00 183.98 100

SPY 20140102 9:30:00 183.98 100

SPY 20140102 9:30:00 183.97 200

SPY 20140102 9:30:00 183.98 100

SPY 20140102 9:30:00 183.97 200

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.97 100

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.98 2600

SPY 20140102 9:30:00 183.98 1000

SPY 20140102 9:30:00 183.97 400

RV Models: High Frequency – TAQ

Example: Below, we show the first transaction of  the AAPL TAQ 
(Trade and Quote) data (tick-by-tick quote data) on January 2, 2014: 4 AM  

RV Models: High Frequency – TAQ

SYMBOL DATE TIME BID OFR BIDSIZ OFRSIZ MODE EX

AAPL 20140102 4:00:00 455.39 0 1 0 12T

AAPL 20140102 4:00:00 553.5 558 2 2 12P

AAPL 20140102 4:00:01 455.39 561.02 1 2 12T

AAPL 20140102 4:00:45 552.1 558 1 2 12P

AAPL 20140102 4:00:51 552.1 558.4 1 2 12P

AAPL 20140102 4:00:51 552.1 558.8 1 2 12P

AAPL 20140102 4:00:51 552.1 559 1 1 12P

AAPL 20140102 4:01:14 553 559 1 1 12P

AAPL 20140102 4:01:30 553.01 561.02 1 2 12T

AAPL 20140102 4:01:43 553.01 559 1 1 12T

AAPL 20140102 4:01:44 553.05 559 1 1 12P

AAPL 20140102 4:01:49 455.39 559 1 1 12T

AAPL 20140102 4:01:49 553.61 559 1 1 12T

AAPL 20140102 4:02:02 553.05 559 1 2 12P

AAPL 20140102 4:02:04 455.39 559 1 1 12T

AAPL 20140102 4:02:04 548.28 559 1 1 12T

AAPL 20140102 4:02:33 553.05 558.83 1 2 12P

AAPL 20140102 4:02:33 555.17 558.83 2 2 12P

AAPL 20140102 4:03:50 555.2 558.83 5 2 12P



RS – Financial Econometrics - Lecture 10

37

Example (continuation): We read SPY trade data for 2014:Jan.
> HF_da <- read.csv("c:/Financial Econometrics/SPY_2014.csv", head=TRUE, sep=",")
> summary(HF_da)

SYMBOL             DATE                TIME             PRICE            SIZE              G127  
SPY:6800865   Min.   :20140102 9:30:00 :  21436 Min.   :176.6   Min.   :      1 Min.   :0  

1st Qu.:20140110 16:00:00: 11352 1st Qu.:178.9 1st Qu.:    100 1st Qu.:0  
Median :20140121 9:30:01 : 5922 Median :182.6 Median :    100 Median :0  
Mean   :20140119 15:59:59: 4090 Mean   :181.4 Mean   :    337 Mean   :0  
3rd Qu.:20140128 15:59:55: 3198 3rd Qu.:183.5 3rd Qu.:    300   3rd Qu.:0  
Max.   :20140131   15:50:00: 2916 Max.   :189.2 Max.   :4715350 Max.   :0  

(Other) :6751951                                                
CORR         COND               EX         

Min.   :0.0e+00 @  :3351783 T      :1649158  
1st Qu.:0.0e+00 F      :2888182   P      :1335135  
Median :0.0e+00 : 524409 Z      :1182126  
Mean   :1.9e-04 O     :  18057 D      :1062382  
3rd Qu.:0.0e+00 4   :   9098 K      : 437900  
Max.   :1.2e+01 6    :   8142 J      : 356539  

(Other):   1194   (Other): 777625 

RV Models: High Frequency – TAQ

Example (continuation): Using the SPY trade data, we calculate 
using 5’-returns a daily realized volatilitiy for the first 4 days in 2014 
(2014:01:02 - 2014:01:07). Originally, we have T = 1,048,570.

HF_da <- read.csv("http://www.bauer.uh.edu//rsusmel//4397//SPY_2014.csv", 
head=TRUE, sep=",")
summary(HF_da)
pt <- as.POSIXct(paste(HF_da$DATE, HF_da$TIME), format="%Y%m%d %H:%M:%S")

library(xts)
hf_1 <- xts(x=HF_da, order.by = pt) # Define a specific time series data set

# pt pastes together DATE and Time.
spy_p <- as.numeric(hf_1$PRICE) # Read price data as numeric

T <- length(spy_5_p)
spy_ret <- log(spy_p[-1]/spy_p[-T])
plot(spy_ret, type="l", ylab="Return", main="Tick by Tick Return (2014:01:02 - 2014:01:07)")
mean(spy_ret)
sd(spy_ret)

RV Models: High Frequency – TAQ
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Example (continuation): We plot the tick-by-tick data. 

Very noisy data, with lots of  “jumps”:
Mean tick by tick return: -3.7365e-09
Tick-by-tick SD: 6.3163e-05

RV Models: High Frequency – TAQ

Example (continuation): For the whole month of  January 2020:

> mean(spy_ret)
[1] -4.796933e-09
> sd(spy_ret)
[1] 7.804991e-05

RV Models: High Frequency – TAQ
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Example (continuation): We plot the autocorrelogram for the TAQ 
SPY data:

> acf_spy_raw

Autocorrelations of  series ‘spy_ret’, by lag

0 1 2 3 4 5 6  7   8 9 10 
1.000 -0.469 -0.013 -0.010  0.014 -0.008  0.000 -0.002 -0.001  0.000  0.000

Note: We have only a significant autocorrelation, the 1st-order 
autocorrelation: -0.459. 

RV Models: High Frequency – TAQ

Example (continuation): We aggregate the tick-by-tick data in 5’ 
intervals using the function aggregateTrades in the R package 
highfrequency. It needs as an input an xts object (hf_1, for us).

library(highfrequency)
spy_5 <- aggregateTrades(
hf_1,
on = "minutes", # you can use also seconds, days, weeks, etc.
k = 5, # number of  units in for “on”
marketOpen = "09:30:00",
marketClose = "16:00:00",
tz = "GMT"
)

spy_5_p <- as.numeric(spy_5$PRICE)

T <- length(spy_5_p)
spy_5_ret <- log(spy_5_p[-1]/spy_5_p[-T])
plot(spy_5_ret, type="l", ylab="Return", main="5-minute Return (2014:01:02 - 2014:01:07)")

RV Models: High Frequency – TAQ



RS – Financial Econometrics - Lecture 10

40

Example (continuation): We plot the 5-minute return data. 
Smoother, easier to read.

RVolt=2014:01:02 = 0.0053344
RVolt=2014:01:03 = 0.0043888
RVolt=2014:01:04 = 0.0059836
RVolt=2014:01:05 = 0.0052772

RV Models: High Frequency – TAQ

Example (continuation): We plot the autocorrelogram for the 5’ 
TAQ SPY data:

> acf_spy_5 <- acf(spy_5_ret, main = "5-minute SPY Data: January 2014")
> acf_spy_5 
Autocorrelations of  series ‘spy_ret’, by lag

0 1 2 3 4 5 6  7   8 9 10 
1.000 -0.105 -0.024 -0.104  0.018 0.147  0.016 -0.024 -0.088  0.048  0.037

Note: We have a negative 1st-order autocorrelation: -0.105, thought not 
significant. However, the autocorrelation of  order 5 is significant. 

RV Models: High Frequency – TAQ
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Example (continuation): We plot the 10-minute return data. 
Smoothing increases.

RVolt=2014:01:02 = 0.005478294
RVolt=2014:01:03 = 0.004256046
RVolt=2014:01:04 = 0.006190508
RVolt=2014:01:05 = 0.005145601

RV Models: High Frequency – TAQ

Example (continuation): We plot the autocorrelogram for the 10’ 
TAQ SPY data:

Note: Now, none of  the autocorrelations is significant. The 10-minute 
returns look independent.   

RV Models: High Frequency – TAQ
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• In practice, 10’ returns are common. To form a daily measure for RV, 
we have 39 10-minute returns plus one overnite return (from 16:00 
PM to next day 9:30 AM)

• We have some technical issues working with tick data:
- Not all days the stock market is open from 9:30 AM to 16:00 PM, 
NYSE closes early on certain days (Christmas Eve, Thanksgiving). 

- For many stocks, we do have lapses in trading. For these stocks, using 
5’ or 10’ intervals may not work well. 

- There are many suggested solutions to the problem of  infrequent 
trading. Usual solution: interpolation from quote data.

- We have a lot of  (discrete) jumps in the data.

RV Models: High Frequency – TAQ

Example: R script to compute realized volatility
MSCI_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/MSCI_daily.csv", head=TRUE, sep=",")

x_us <- MSCI_da$USAT <- length(x_us)

us_r <- log(x_us[-1]/x_us[-T])

x <- us_r # US log returns from MSCI USA Index

T <- length(x)

rvs=NULL # create vector to fill with RV

i <- 1

k <- 21 # k: observations per period (78 for 5’ data)

while (i < T - k) {

s2 <- sum(x[i:(i+k)]^2) # realized variance

i <- k + i

rvs <- rbind(rvs,s2)

}

rvol <- sqrt(rvs) # realized volatility 

mean(rvol) # mean

sd(rvol) # variance

RV Models: R Script
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Example: Using daily data we calculate 1-mo Realized Volatility  
(k=21 days) for log returns for the USA MSCI (1970: Jan – 2020: Oct).

> mean(rvol) # average monthly Rvol in the sample
[1] 0.04326531  very close to monthly S&P Volatility: 4.49%
> sd(rvol) # standard deviation of  monthly Rvol in the sample
[1] 0.02592653  dividing by sqrt(T) we get the SE = 0.001 (very small)

RV Models: Monthly RV From Daily Data

Example (continuation): 

Technical computing points: 

We use k=21 days, which is an average of the trading days per month. 
Of course not all months have the same amount of trading days. In 
2019, February had the fewest (19) and October the most (23), but, in 
2018, February and September (18) and August the most (23). For us, 
k=21 days is an approximation. 

To be precise, if we use daily data to calculate a monthly variance, we 
need to use an exact index of trading days, say, K=[k1, k2, k3, ... kJ] 
where ki is the exact number of trading days in month-year i. 

In addition, for daily data, we should not ignore the mean in the 
computation of RV.

RV Models: Monthly RV From Daily Data
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Example (continuation): Below, the while loop in R is modified to 
incorporate the vector K (c1) of exact trading days for each month.
MSCI_cd <-
read.table("https://www.bauer.uh.edu/rsusmel/4397/MSCI_d_count_days.txt",header=FALSE)

c1 <- MSCI_cd[,1]

n_c1 <- length(c1)

rvs=NULL #Initialize empty

t <- 1

tj <- 1

x_m = mean(x)

while (tj <= n_c1) {

mj <- c1[tj]

xx <- x[t:(t+mj-1)] - x_m

s2 <- sum(xx^2)

t <- t + mj

tj <- tj + 1

rvs <- rbind(rvs,s2)

}

RV Models: Monthly RV From Daily Data

Example (continuation): Below, we plot the new series
rvol <- sqrt(rvs) # realized volatility 

> mean(rvol) # mean

[1] 0.04285471

> sd(rvol) # variance

[1] 0.02622621

> rvs_ts <- ts(rvol,start=c(1970,1),frequency=12) 

> plot.ts(rvs_ts,xlab="Time",ylab="RVOL", main="Monthly RVOL for MSCI USA")

Note: The results (mean, SD and shape of RV) very similar).

RV Models: Monthly RV From Daily Data
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• The log approximations rules for the variance and SD are used to 
change frequencies for the RV and RVol. For example, suppose we are 
calculating RV based on frequency j, RVt=j; but we are interested in the 
J-period RVt=J. Then, the J-period (with j intervals) realized variance 
and realized volatility can be calculated as 

	 ∗ 	
	∗ 	

Example: We calculate using 5’ data the daily realized variance, 
RVt=daily. Then, the annual variance can be calculated as 

260	 ∗ 	

where 260 is the number of  trading days in the year. The annualized 
RVOL is the squared root of  :

260 ∗

RV Models: Log Approximation Rules

Example: Using daily data we calculate 3-mo Realized Volatility  
(k=66 days) for log returns for the MSCI (1970: March – 2020: Oct).

> mean(rvol) # average monthly Rvol in the sample
[1] 0.07725361  log approximation: sqrt(3) * 0.04326 = 0.07493 (close!)
> sd(rvol) # standard deviation of  monthly Rvol in the sample
[1] 0.02592653

RV Models: Quarterly RV From Daily Data
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• Under some conditions (bounded kurtosis and autocorrelation of  
squared returns less than 1), RVt is consistent.

• Realized volatility is a measure. It has a distribution.

• For returns, the distribution of  RV is non-normal (as expected). It 
tends to be skewed right and leptokurtic. 

• Daily returns standardized by RVol measures are nearly Gaussian.

• RV is highly persistent. (Check with a LB test.)

• Daily RV calculate with intra-daily data, it is found to be more robust 
than measures using daily data, like GARCH.

RV Models: Properties

• Like all volatility measures, RVOL is highly autocorrelated.  

Example: We plot the ACF and PACF for the 1-mo Realized 
Volatility, based on daily data for the monthly USA MSCI data.

RV Models: ACF and Persistence 

 AR(2)? 
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• We can fit ARMA models to the RVOL series to generate forecasts.

Example: Based on the ACF and PACF, we fit an AR(1) model for 
the monthly RVOL, calculated from monthly data:
> fit_rvol_ar2 <- arima(rvol, order=c(2,0,0))

> fit_rvol_ar2

Call:

arima(x = rvol, order = c(2, 0, 0))

ar1     ar2  intercept

0.5631  0.0967     0.0433

s.e.  0.0396  0.0396     0.0023

sigma^2 estimated as 0.0004056:  log likelihood = 1568.46,  aic = -3128.92

RV Models: Forecasting

Example (continuation):
> checkresiduals(fit_rvol_ar2)

Ljung-Box test

data:  Residuals from ARIMA(2,0,0) with non-zero mean

Q* = 12.008, df = 7, p-value = 0.1003

Model df: 3.   Total lags used: 10

RV Models: Forecasting
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Example (continuation):
fcast_rvol <- forecast(fit_rvol_ar2, h=12, level=.95)    # h=number of step-ahead forecasts

> fcast_rvol

> fcast_rvol

Point Forecast     Lo 95          Hi 95

632     0.05201688 0.0125419811 0.09149178

633     0.04937852  0.0040761548 0.09468088

634     0.04757422 -0.0005822456 0.09573069

635     0.04630317 -0.0031716903 0.09577804

636     0.04541302 -0.0046992667 0.09552532

637     0.04478891 -0.0056334466 0.09521126

638     0.04435142 -0.0062226287 0.09492546

639     0.04404473 -0.0066036868 0.09469315

640     0.04382975 -0.0068551809 0.09451467

641     0.04367904 -0.0070238175 0.09438190

642     0.04357339 -0.0071382718 0.09428506

643     0.04349934 -0.0072166577 0.09421533

RV Models: Forecasting

Example (continuation):
fcast_rvol <- forecast(fit_rvol_ar2, h=12, level=.95)    # h=number of step-ahead forecasts

Note: The VIX index (“fear index”) is a forecast for the next 30-day 
volatility, derived from S&P 500 options. The VIX on Sep 30, 2020 
was 26.37, that is, the volatility at the end of October is expected to be 
26.37% annualized or 7.61% monthly, higher than 5.20%, but, well 
within thr 95% C.I. (More on this later.)

RV Models: Forecasting
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RV Models: Forecasting – Using VIX

• Empirical work uses the VIX to calculate the implied volatility, IVt, 
for the S&P500. The VIX index is based on the S&P500 index options 
(on a panel of  S&P 500 option prices), using the “model-free” 
approach tailored to replicate the (annualized) risk-neutral volatility of  
a fixed 30-day maturity. 

Example: We use VIX to forecast monthly RV based on daily data 
(1990:May - 2020:Sep). We regress

RVt+1 = α 	β VIXt + εt.

Mid_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/Mid1_U_B_data.csv", 
head=TRUE, sep=",")

v_date <- Mid_da$Code

VIX <- Mid_da$VIX # Extract VIX data

T <- length(rvol) # End of sample for RVol (2020:Oct)

rvol_90 <- as.numeric(rvol_ts[245:T]) # RVol starting in 1990:May

rvol_0 <- rvol_90[-1] # remove first observation (RVt+1)

lm_rvol_f <- lm(rvol_0 ~ VIX)

summary(lm_rvol_f)

RV Models: Forecasting – Using VIX
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Example (continuation): 
lm_rvol_f <- lm(rvol_0 ~ VIX)

> summary(lm_rvol_f)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.0259776  0.0035343   7.350 1.32e-12 ***

VIX    0.0009262  0.0001690   5.481 7.94e-08 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02481 on 363 degrees of freedom

Multiple R-squared:  0.07643,   Adjusted R-squared:  0.07388 

F-statistic: 30.04 on 1 and 363 DF,  p-value: 7.94e-08

Note: In sample, a strong  positive predictive relation.

RV Models: Forecasting – Using VIX

Example (continuation): We also check the contemporaneous 
relation between RVol and VIX.

> lm_rvol <- lm(rvol_90[-length(rvol_90)] ~ VIX)

> summary(lm_rvol)

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.0301794  0.0035950   8.395 1.06e-15 ***

VIX   0.0007095  0.0001719   4.128 4.55e-05 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02523 on 363 degrees of freedom

Multiple R-squared:  0.04483,   Adjusted R-squared:  0.0422 

F-statistic: 17.04 on 1 and 363 DF,  p-value: 4.551e-05

Note: A weaker relation, as expected: IV embeds future expectations.

RV Models: Forecasting – Using VIX
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RV Models: Variance Risk Premium (VRP)

• The implied volatility of  an option, calculated today, or IVt, is a 
measure of  the (“ex ante”) expected variance over the remaining life 
of  the option. 

• The Black-Scholes (BS) and similar models for option prices produce 
the same option prices as would be seen under modified probabilities 
in a world of  investors who were indifferent to risk (risk neutral). 

• IV & other parameters extracted from options market prices embed 
these modified “risk neutral” probabilities, that combine investors' 
objective predictions of  the real world returns distribution with their 
risk preferences. 

• Under BS assumptions, IV and market volatility are the same. But, 
BS assumptions do not hold. The VRP uses this disparity.

RV Models: VRP – Definition

• We define the variance risk premium (VRP) as the difference 
between the “ex-ante” risk neutral expectation at time t of  the future 
return variation over the period [t, t+1] time interval and the ex-post 
realized return variation over the [t – 1, t]: 

VRPt = IVt − RVt.

It is an ad-hoc definition, we could have defined VRPt based on the 
expectation at time t for RVt+1, in this case Et[RVt+1]. The one-step-
ahead forecast can be obtained using an ARMA process for RVt. 

In practice, using Et[RVt+1] or RVt, does not affect VRPt that much. 

• The are many ways to calculate IV: based on models, like the BS, or 
“model free,” similar to how we calculated IV, in this case, using changes 
in option prices for different strike prices and computing an average.
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RV Models: VRP – 1990-2008

Example: We plot IVt(=VIX), RVt & VRPt for the S&P500 Index 
(shaded blue area are U.S. recessions). Data: Monthly 1990-2008.

RV Models: VRP – Predicting Stock Returns

• Bollerslev et al. (2009) use 5’ intervals to calculate RVt find that VRPt

is a predictor of  stock market excess returns at different horizons 
(t+h). That is, they regress:

rt+h – rf,t+h = [log(Pt) − log(Pt-1)] = μ + δ VRPt + 

They find that δ is positive and has a t-stat=1.76 for monthly data 
(h=1) and a t-stat=2.86 for quarterly data (h=3). The R2 is 1.07% for 
monthly data and 6.82% for quarterly data. For annual data the t-stat is 
not significant. 
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• The Parkinson’s (1980) estimator: 
s2

t = {Σt [ln(Ht) – ln(Lt)]2 /(4ln(2)T)},

where Ht is the highest price and Lt is the lowest price.

• There is an RV counterpart, using HF data: Realized Range (RR): 
RRt = {Σj [100 * (ln(Ht,j) – ln(Lt,j))]2 /(4ln(2)},

where Ht,j and Lt,j are the highest and lowest price in the jth interval.

• These “range” estimators are very good and very efficient.

• These estimators can be applied to intra-daily data. The Realized 
Range works well with combined with other models.

Other Models: Parkinson’s (1980) Estimator

),0(~; 2
1  Ntttt  

),0(~;loglog 2
1  Ntttt  

Or using logs:

• The difference with ARCH models: The shocks that govern the 
volatility are not necessarily εt’s. 

• Usually, the standard model centers log volatility around ω:

Then, 
E[log(σt)] = ω
Var[log(σt)] = κ2 		συ2/(1 – β2).

 Unconditional distribution:  log(σt) ~ N(ω, κ2)

Stochastic volatility (SV/SVOL) models

• Now, instead of  a known volatility at time t, like ARCH models, we 
allow for a stochastic shock to σt, υt: 

ttt    )(loglog 1
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Stochastic volatility (SV/SVOL) models

•	Like ARCH models, SV models produce returns with kurtosis > 3 
(and, also, positive autocorrelations between squared excess returns).

• We have 3 SVOL parameters to estimate: φ = (ω, β, σv). 

• Estimation: The modern approach uses Bayesian methods (MCMC), 
which are advanced for this class. Brooks discusses the estimation of  
SVOL.


