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Lecture 11
Unit Roots and Cointegration

Brooks (4th edition): Chapter 8

© R. Susmel, 2020 (for private use, not to be posted/shared online).

• Suppose 𝑦௧ and 𝑥௧ are non-stationary, I(1). That is, we differentiate 
them and the changes become stationary, or I(0). We regress 𝑦௧
against 𝑥௧: What happens? 

• The usual t-tests on regression coefficients can show statistically 
significant coefficients, even if  in reality it is not so. 

• This the spurious regression problem (Granger and Newbold (1974)): We 
find a statistically significant relation between unrelated variables.

• In a Spurious Regression contexts, the regression errors would be 
highly correlated and the standard t-statistic will be wrongly calculated 
because the variance of  the errors is not consistently estimated.

Spurious Regression 
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Example: We simulate two independent RW (𝑅𝑊ଵ,௧, 𝑅𝑊ଶ,௧) and then 
regress one against the other: 

𝑅𝑊ଵ,௧ ൌ 𝜇 ൅ β 𝑅𝑊ଶ,௧ ൅ 𝜀௧
With test the true H0: β = 0.

sim_rw1 <- arima.sim(list(order=c(0,1,0)), sd=.5, n=500) # simulate RW series 1
sim_rw2 <- arima.sim(list(order=c(0,1,0)), sd=.5, n=500) # simulate RW series 2

Spurious Regression – Simulated Example 

Example:

fit_sim_rw <- lm(sim_rw1 ~ sim_rw2) # Regression of  two RWs
res_sim_rw <- fit_sim_rw$residuals # Extract residuals
> summary(fit_sim_rw)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -4.61541 0.13188  -35.00   <2e-16 ***
sim_rw2     -0.47384 0.04076  -11.62   <2e-16 ***  Reject H0: β = 0.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.356 on 499 degrees of  freedom
Multiple R-squared:  0.2131,    Adjusted R-squared:  0.2115 
F-statistic: 135.1 on 1 and 499 DF,  p-value: < 2.2e-16

Note: Very significant t-value (& F-goodness of  fit stat), and a good 
R2. But, the model makes no sense.

Spurious Regression – Simulated Example 
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Examples:
(1) Egyptian infant mortality rate (Y), 1971-1990, annual data, on 
Gross aggregate income of  American farmers (I) and Total Honduran 
money supply (M):
Yt
෡ = 179.9 - .2952 It - .0439 Mt, R2 = .918, DW = .4752, F = 95.17

(16.63) (-2.32) (-4.26) Corr(Yt, Xi,t) = .8858, -.9113, -.9445

(2). US Export Index (Y), 1960-1990, annual data, on Australian 
males’ life expectancy (X):
Yt
෡ = -2943. + 45.7974 Xt, R2 = .916, DW = .3599, F = 315.2

(-16.70) (17.76) Corr(Yt, Xt) = .9570

(3) Total Crime Rates in the US (Y), 1971-1991, annual data, on Life 
expectancy of  South Africa (X):
Yt
෡ = -24569 + 628.9 Xt, R2 = .811, DW = .5061, F = 81.72

(-6.03) (9.04) Corr(Yt, Xt) = .9008

Spurious Regression – Real Examples 

Examples (continuation):
(2). US Export Index (Y), 1960-1990, annual data, on Australian 
males’ life expectancy (X):
Yt
෡ = -2943. + 45.7974 Xt, R2 = .916, DW = .3599, F = 315.2

(-16.70) (17.76) Corr(Yt , Xt) = .9570

Spurious Regression – Real Examples 

US ExportsAustralian males’ life expectancy

Note: It looks like the trend is the common element between Yt & Xt.
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• Suppose 𝑦௧ & 𝑥௧ are unrelated I(1) variables. We run the regression:
𝑦௧ ൌ β𝑥௧ ൅ 𝜀௧

• True value of  β=0. The above is a spurious regression and 𝜀௧∼ I(1).

• Technical points: Phillips (1986) derived the following results:

- β෠
௣
→ ് 0  &  β෠

ௗ
→ Non-normal RV not necessarily centered at 0. 

 This is the spurious regression phenomenon.

- The OLS t-statistics for testing H0: β=0 diverge to ±∞ as 𝑇→ ∞. 
Thus, with a large enough 𝑇 it will appear that β is significant. 

- The usual R2
௣
→ 1 as 𝑇→ ∞. The model appears to have good

fit well, even though it is a bad (nonsense) model.

Spurious Regression – Statistical Implications 

• Given the statistical implications, the typical symptoms are: 

- High R2, 𝑡-values, & 𝐹-values. 

- Low DW values.

• Q: How do we detect a spurious regression (between I(1) series)?
- Check  the correlogram of  the residuals. 

- Test for a unit root on the residuals. (This lecture.)

Spurious Regression – Detection and Solutions 
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• Statistical solution: 
When series (𝑦௧ & 𝒙௧) are I(1), work with first differences, instead: 

∆𝑦௧ = 𝑦௧ െ 𝑦௧ିଵ &  ∆𝒙௧= 𝒙௧ െ 𝒙௧ିଵ

If  the relation between the series 𝑦௧ & 𝒙௧ exists,  should be the same 
in levels (𝑦௧, 𝒙௧) or first differences (∆𝑦௧, ∆𝒙௧). 

Levels: 𝑦௧ ൌ β𝑥௧ ൅ 𝜀௧ (*)
Lagged Levels: 𝑦௧ିଵ ൌ β𝑥௧ିଵ ൅ 𝜀௧ିଵ (**)

Subtract (**) from (*): We have a regression with 1st differences:
First Differences: ∆𝑦௧ =  ∆𝒙௧+ 𝑢௧, where 𝑢௧ ൌ 𝜀௧ െ 𝜀௧ିଵ

Now, we have a valid regression, since both regressors are I(0). But, 
the economic interpretation of  the regression changes. 

Spurious Regression – Detection and Solutions 

Example: We regress the two RW in first differences:

diff_rw1 <- diff(sim_rw1) # First differences for RW 1
diff_rw2 <- diff(sim_rw2) # First differences for RW 2
fit_diff_rw <- lm(diff_rw1 ~ diff_rw2)
> summary(fit_diff_rw)

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) -0.003199   0.023481  -0.136   0.8917  
diff_rw2     0.106339 0.044773  2.375   0.0179 *  Reject H0: β = 0.
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.525 on 498 degrees of  freedom
Multiple R-squared:  0.0112,    Adjusted R-squared:  0.009215 
F-statistic: 5.641 on 1 and 498 DF,  p-value: 0.01792

Note: Still significant (by chance), but the  coefficient changes sign. 
Clear indication that something is wrong with regression. 

Spurious Regression – Simulated Example 
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• The message from spurious regression: Regression of  I(1) variables 
can produce nonsense.

Q: Does it make sense a regression between two I(1) variables?
Yes, only if  the regression errors are I(0). That is, when the variables 
are cointegrated.

Spurious Regression – Remarks

• A shock is usually used to describe an unexpected change in a 
variable or in the value of the error terms at a particular time period.

• When we have a stationary system, the effect of a shock will die out 
gradually. But, when we have a non-stationary system, the effect of a 
shock is permanent.

• We have two types of non-stationarity. In an AR(1) model we have:

𝑦௧ = 𝜇 + 𝜙ଵ𝑦௧ିଵ + 𝜀௧
- Unit root: |𝜙ଵ| = 1: homogeneous non-stationarity

- Explosive root: 𝜙ଵ ൐ 1: explosive non-stationarity

• In the last case, a shock to the system become more influential as 
time goes on. It is not seen in real life. We will not consider them.

I(1) Process – Autoregressive Unit Root
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• Consider the AR(𝑝) process:
𝜙 𝐿 𝑦௧ = 𝜇 ൅ 𝜀௧, where 𝜙ሺ𝐿ሻ ൌ 1 െ ଵ 𝐿 െ ଶ 𝐿ଶെ. . .െ௣ 𝐿௣

As we discussed before, if one of the roots equals 1, 𝜙 1 ൌ 0, or
ଵ ൅ ଶ ൅ ⋯൅ ௣ ൌ 1

• We say 𝑦௧ has a unit root. In this case, 𝑦௧ is non-stationary. 

Example: AR(1): 𝑦௧ = 𝜇 + 𝜙ଵ𝑦௧ିଵ + 𝜀௧.  Unit root: 𝜙ଵ= 1.

H0 (𝑦௧ non-stationarity): 𝜙ଵ= 1 (or, 𝜙ଵ– 1 = 0)

H1 (𝑦௧ stationarity): 𝜙ଵ< 1 (or, 𝜙ଵ– 1 < 0)

• A t-test seems natural to test H0. But, the ergodic theorem & MDS 
CLT do not apply: the t-statistic does not have the usual distributions.

I(1) Process – Autoregressive Unit Root

• Now, let’s reparameterize the AR(1) process. Subtract yt-1 from yt:

𝑦௧ = 𝜇 ൅ 𝜙ଵ𝑦௧ିଵ ൅ 𝜀௧.
∆𝑦௧ ൌ 𝜇 ൅ 𝜙ଵ െ 1  𝑦௧ିଵ൅ 𝜀௧

ൌ 𝜇 ൅ 𝛼଴  𝑦௧ିଵ൅ 𝜀௧

• Unit root test: H0 (unit root process): 𝛼଴= 𝜙ଵ െ 1 ൌ 0
H1(stationary process): 𝛼଴< 0. 

• Under H0 (unit root process): 𝛼଴ ൌ 𝜙ଵ െ 1 ൌ 0, the model is 
stationary in ∆𝑦௧. Then, if 𝑦௧ has a unit root:

∆𝑦௧ ൌ 𝜇 ൅ 𝜀௧
That is, ∆𝑦௧ is a stationary process with a drift and WN innovations. 

• If we reject H0: 𝛼଴ ൌ 0, then 𝑦௧ is a stationary AR(1) process:

𝑦௧ = 𝜇 + 𝜙ଵ𝑦௧ିଵ + 𝜀௧

Autoregressive Unit Root – Testing
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• We have a linear regression framework:

∆𝑦௧ ൌ 𝜇 ൅ 𝛼଴  𝑦௧ିଵ൅ 𝜀௧

• The natural test for H0 (unit root process): 𝛼଴= 𝜙ଵ െ 1 ൌ 0: A t-test.

𝑡థୀଵ ൌ  ம
෡భ ି ଵ

ௌாሺம෡భሻ

• We call this t-test the Dickey-Fuller (DF) test.

• As mentioned above, under H0, the t-test does not have the usual t-
distribution. We use a distribution tabulated (simulated) by DF.

Autoregressive Unit Root – Testing

• We derived the DF test from an AR(1) process for 𝑦௧, but 𝑦௧ may 
follow a more general AR(𝑝) process:

𝜙 𝐿 𝑦௧ = 𝜇 ൅ 𝜀௧

We rewrite the process using the Dickey-Fuller reparameterization:

∆𝑦௧ ൌ 𝜇 ൅ 𝛼଴  𝑦௧ିଵ൅ 𝛼ଵ ∆𝑦௧ିଵ ൅ 𝛼ଶ∆𝑦௧ିଶ ൅⋯൅ 𝛼ଶ∆𝑦௧ିሺ௣ିଵሻ ൅ 𝜀௧

Note: Both AR(𝑝) formulations are equivalent. 

• It can be shown that 𝜙 1 ൌ െ𝛼଴. (Roots of 𝜙 𝐿 ൌ 0 equal to 1!) 

 A unit root hypothesis can be stated, again, as H0: 𝛼଴ ൌ 0
H1: 𝛼଴ ൏ 0. 

• Like in the DF test, we have a linear regression framework. A t-test 
for H0 (unit root) is the Augmented Dickey-Fuller (ADF) test. 

Autoregressive Unit Root – Testing
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• The Dickey-Fuller (DF) test is a special case of the ADF: No lags 
are included in the regression. 

• From our previous AR(1) process, we have:

∆𝑦௧  ൌ 𝜇 ൅ 𝜙ଵ െ 1  𝑦௧ିଵ൅ 𝜀௧ ൌ 𝜇 ൅ 𝛼଴  𝑦௧ିଵ൅ 𝜀௧

• If 𝛼଴= 0, 𝑦௧ has a unit root: H0: 𝛼଴ ൌ 0
H1: 𝛼଴ ൏ 0. 

• We can test H0 with a t-test:  𝑡థୀଵ ൌ  ம
෡భ ି ଵ

ௌாሺம෡భሻ

Note: There is another associated test with H0, the ρ-test: (T-1) (𝜙෠-1).

Autoregressive Unit Root – Testing: DF

• 𝜙෠ is not asymptotically normally distributed and 𝑡థୀଵ is not 
asymptotically standard normal. 

• The limiting distribution of 𝑡థୀଵis the DF distribution, which does 
not have a closed form representation. Then, quantiles of the 
distribution must be numerically approximated or simulated.

• The distribution of the DF test is non-standard. It has been tabulated 
under different scenarios. 

Case 1: no constant: 𝑦௧ ൌ 𝜙ଵ  𝑦௧ିଵ൅ 𝜀௧
Case 2: with a constant: 𝑦௧ ൌ 𝜇 ൅ 𝜙ଵ  𝑦௧ିଵ൅ 𝜀௧
Case 3: with a constant and a trend: 𝑦௧ ൌ 𝜇 ൅ 𝜙ଵ  𝑦௧ିଵ൅ δ𝑡 ൅ 𝜀௧

Note: In general, the tests with no constant are not used in practice; 
unless, theoretical reasons impose a constant in the model.

Autoregressive Unit Root – Testing: DF
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• Critical values of the 𝐷𝐹ሺ𝑇ሻ test under different scenarios. 

Autoregressive Unit Root – Testing: DF

• Which version of the three main variations of the test should be 
used is not a minor issue. The decision has implications for the size 
and the power of the unit root test. 

• For example, an incorrect exclusion of the time trend term leads to 
(omitted variables) bias in the coefficient estimate for 𝜙, leading to 
size distortions (false negatives/positives) and reductions in power.

• Technical note: The normalized bias (T  1) * (𝜙෠ − 1) has a well 
defined limiting distribution that does not depend on nuisance 
parameters it can also be used as a test statistic for the null hypothesis 
H0: ϕ = 1. It is usually referred as the ρ-test. 

The distribution of this ρ-test is also non-standard. It is also simulated.

Autoregressive Unit Root – Testing: DF
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• Case 2. DF with a constant term in DGP: 𝑦௧ ൌ 𝜇 ൅ 𝜙ଵ  𝑦௧ିଵ൅ 𝜀௧
The hypotheses to be tested:

H0: 𝜙ଵ ൌ 1,𝜇 ൌ 0  𝑦௧ ~ 𝐼ሺ1ሻ without drift

H1: 𝜙ଵ ൏ 1  𝑦௧ ~ 𝐼ሺ0ሻ with mean.

This formulation is appropriate for non-trending economic and 
financial series like interest rates, exchange rates for developed (& 
stable) countries and spreads.

• The test statistics 𝑡థୀଵ is computed from the estimation of the 
AR(1) model with a constant.

Autoregressive UR – DF: Case 2

Example: We do a DF test for the monthly DKK/USD exchange 
rate, 𝑆௧, (1971-2020), 𝑇 = 597. We use Case 2 (constant in DGP):

PPP_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",")

x_d <- PPP_da$DKK_USD

x_d_ts <- ts(x_d,start=c(1971,1),frequency=12) 

plot(x_d_ts, main ="DKK/USD Exchange Rate")

Autoregressive UR – DF: Example Case 2
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Example (continuation): 
T_d <- length(x_d)

x_S <- x_d[-T_d]

diff_x <- x_d[-1] - x_d[-T_d]

fit_df <- lm(diff_x ~ x_S) 

> summary(fit_df)> summary(fit_df)

Coefficients:

Estimate Std. Error t value Pr(>|t|)  

(Intercept) 0.093170   0.045975   2.027   0.0432 *

xx         -0.014382   0.006838  -2.103   0.0359 *  DF test stat

---
Residual standard error: 0.03326 on 591 degrees of freedom

Multiple R-squared:  0.009852,  Adjusted R-squared:  0.008176 

F-statistic:  5.88 on 1 and 591 DF,  p-value: 0.01561

Autoregressive UR – DF: Example Case 2

Example (continuation): 

Compare 𝑡థୀଵ = -2.103 to the values in DF distribution at 5% level

Critical values at 5% level: 2.87 for 𝑇 = 500  &  2.88 for 𝑇 = ∞

𝑡థୀଵ ൐ 2.87  Cannot reject H0: 𝜙1 = 1, with a t-test. Then, take 
1st differences (changes in St) to model the series. 

Note: The R library urca computes the DF test (and other unit root 
tests) with the ur.df function. There are other R libraries that do unit 
root tests. The ur.df function with lags=0 is the DF test, with lags>0 
is the “Augmented Dickey-Fuller” (or ADF) test.

library(urca)

lc.df <- ur.df(y=x_d, lags=0, type='drift')

> summary(lc.df)

Autoregressive UR – DF: Example Case 2
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Example (continuation): > summary(lc.df)

############################################### 

# Augmented Dickey-Fuller Test Unit Root Test # 

############################################### 

Coefficients:

Estimate Std. Error t value Pr(>|t|)  

(Intercept)  0.093170   0.045975   2.027   0.0432 *

z.lag.1     -0.014382   0.006838  -2.103   0.0359 *  DF test stat
------

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2047 on 594 degrees of freedom

Multiple R-squared:  0.007392,  Adjusted R-squared:  0.005721 

F-statistic: 4.424 on 1 and 594 DF,  p-value: 0.03586

Value of test-statistic is: -2.1033 2.2377 

Critical values for test statistics: 

1pct  5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1  6.43  4.59  3.78

Autoregressive UR – DF: Example Case 2

Example (continuation): 

Check: OLS regression of 𝑆௧ against a constant and 𝑆௧ିଵ. The 𝑆௧ିଵ
coefficient should be very close to 1.

fit_S_1 <- lm (x_d[-1] ~ x_d[-T_chf]) 

> summary(fit_S_1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.093170 0.045975   2.027   0.0432 *  

x_d[-T_chf] 0.985618 0.006838 144.140 <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2047 on 594 degrees of freedom

Multiple R-squared:  0.9722,    Adjusted R-squared:  0.9722 

F-statistic: 2.078e+04 on 1 and 594 DF,  p-value: < 2.2e-16

Autoregressive UR – DF: Example Case 2
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• Case 3. With constant and trend term in the DGP.
The test regression is 𝑦௧ ൌ 𝜇 ൅ 𝜙ଵ  𝑦௧ିଵ൅ 𝛿𝑡 ൅ 𝜀௧

and includes a constant and deterministic time trend to capture the 
deterministic trend under the alternative. The hypotheses to be tested:

H0: 𝜙ଵ ൌ 1,𝛿 ൌ 0  𝑦௧ ~ 𝐼ሺ1ሻ with drift

H1: |𝜙ଵ| ൏ 1  𝑦௧ ~ 𝐼ሺ0ሻ with deterministic time trend.

• This formulation is appropriate for trending time series like asset 
prices or the levels of macroeconomic aggregates like real GDP. The 
test statistics 𝑡థୀଵ is computed from the above regression.

Autoregressive UR – DF: Case 3

• Example: We do a DF test for the monthly stock index price, 𝑃௧, 
(1873 - 2020), T=1796. We use Case 3 (constant and trend in DGP):
Sh_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Shiller_2020data.csv",head=TRUE,sep=",")

x_p <- Sh_da$P

T_p <- length(x_p)

library(urca)

Autoregressive UR – DF: Example Case 3
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• Example (continuation): We use function ur.df in the library urca.
lc.df_p <- ur.df(y=x_p, lags=0, type='trend')
> summary(lc.df_p)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.252237   1.367601  -0.184 0.854    

z.lag.1    0.006243   0.001380   4.526 6.42e-06 ***  DF test stat

tt          0.000329   0.001627   0.202 0.840    

---

Value of test-statistic is: 4.5257 16.6595 20.1626 

Critical values for test statistics: 

1pct  5pct 10pct

tau3 -3.96 -3.41 -3.12

Compare 𝑡థୀଵ = 4.5257 to the values in DF distribution (5%): -3.41.

𝑡థୀଵ > -3.41  Cannot reject H0: 𝜙ଵ ൌ 1, with a t-test at 5% level. 
Then, take 1st differences –i.e, returns!– to model the series. 

Autoregressive UR – DF: Example Case 3

• Example (continuation):

OLS regression of 𝑃௧ against a constant and 𝑃௧ିଵ. The 𝑃௧ିଵ
coefficient should be very close to 1.

fit_p_1t <- lm (x_p[-1] ~ x_p[-T_p] + trend_p) 

> summary(fit_p_1t)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -1.020395   1.346116  -0.758    0.449    

x_S1        1.006243   0.001380 729.401 <2e-16 ***

trend        0.000329   0.001627   0.202    0.840 

---

Residual standard error: 26.28 on 1794 degrees of freedom

Multiple R-squared:  0.9982,    Adjusted R-squared:  0.9982 

F-statistic: 4.93e+05 on 2 and 1794 DF,  p-value: < 2.2e-16

Autoregressive UR – DF: Example Case 3
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• The DF tests is valid if εt is white noise. In particular, 𝜀௧ will show 
autocorrelation if there was also autocorrelation in the dependent 
variable, ∆𝑦௧. The solution is to “augment” the DF test using 𝑝 lags of 
the dependent variable. 

• Back to the general, AR(𝑝) process. We can rewrite the equation as 
the Dickey-Fuller reparameterization:

∆𝑦௧ ൌ 𝜇 ൅ 𝛼଴  𝑦௧ିଵ൅ 𝛼ଵ ∆𝑦௧ିଵ ൅ 𝛼ଶ∆𝑦௧ିଶ ൅ ⋯൅ 𝛼ଶ∆𝑦௧ିሺ௣ିଵሻ ൅ 𝜀௧

• Under H0 (unit root): 𝛼଴ ൌ 0, ∆𝑦௧ is a stationary AR(𝑝 െ 1) process.
Under H1: 𝛼଴ ൏ 0, 𝑦௧ is a standard AR(𝑝) stationary process.

• The usual t-test for H0 is the Augmented Dickey-Fuller (ADF) test. 
Similar to the DF test case, we have a non-normal distribution.

Autoregressive UR – Testing: ADF

Example: We do an ADF test, with 12 lags for the monthly 
DKK/USD exchange rate. We use Case 2 (constant in DGP):

lc.df_lag12 <- ur.df(y=x_d, lags=12, type='drift')

> summary(lc.df_lag12)
Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept)   0.129831   0.049055   2.647  0.00835 **

z.lag.1      -0.019787   0.007317  -2.704  0.00705 **  ADF test stat

z.diff.lag1  -0.004393   0.041620  -0.106  0.91597   

z.diff.lag2   0.103244   0.041562   2.484 0.01327 * 

z.diff.lag3   0.049343   0.041872   1.178  0.23911   

z.diff.lag4   0.013162   0.041917   0.314  0.75363   

z.diff.lag5   0.016241   0.041920   0.387  0.69859   

z.diff.lag6  -0.021091   0.041876  -0.504  0.61470   

z.diff.lag7   0.060137   0.041854   1.437  0.15131   

[...]  None of the omitted coefficients is significant

---

Autoregressive UR – ADF: Example Case 2
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Example (continuation):
Value of test-statistic is: -2.7041 3.6606 

Critical values for test statistics: 

1pct  5pct 10pct

tau2 -3.43 -2.86 -2.57  Cannot reject H0: unit root at 5% level

phi1  6.43  4.59  3.78

• ADF test with 4 lags.
lc.df_lag4 <- ur.df(y=x_d, lags=4, type='drift')

> summary(lc.df_lag4)

Value of test-statistic is: -2.4313 2.9757 

Critical values for test statistics: 

1pct  5pct 10pct

tau2 -3.43 -2.86 -2.57  Cannot reject H0: unit root at 5% level

phi1  6.43  4.59  3.78

Autoregressive UR – ADF: Example Case 2

Example: We do a ADF test with 12 lags for the monthly stock 
index price (1873 - 2020). We use Case 3 (constant & trend in DGP):

lc.adf_p12 <- ur.df(y=x_p, lags=12, type='trend')

> summary(lc.adf_p12)

Value of test-statistic is: 4.1425 12.1762 15.4108 

Critical values for test statistics: 

1pct  5pct 10pct

tau3 -3.96 -3.41 -3.12  Cannot reject H0: unit root at 5% level

lc.adf_p4 <- ur.df(y=x_p, lags=4, type='trend')

> summary(lc.adf_p4)

Value of test-statistic is: 5.0976 19.1402 23.7456 

Critical values for test statistics: 

1pct  5pct 10pct

tau3 -3.96 -3.41 -3.12  Cannot reject H0: unit root at 5% level

Autoregressive UR – ADF: Example Case 3
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• Phillips and Perron (PP) developed a more comprehensive theory of 
unit root nonstationarity. 

The PP tests are similar to ADF tests, but they incorporate an 
automatic correction to the DF test procedure that allows for 
autocorrelation in the residuals.

• The tests usually produce the same conclusions as the ADF tests, 
but the calculation of the test statistics is more complicated.

Note: There are other unit root tests: ADF-GLS (also called ERS, 
which corrects ADF test for heteroscedasticity), KPSS (Kwaitowski, 
Phillips, Schmidt and Shin), Zivot and Andrews (ZA, which allows for 
structural breaks), etc. We will not cover them in this class.

Autoregressive Unit Root – Other Tests

• Q: How many lags in the ADF test?
Most popular strategy: Select lags using AIC (or BIC).

Some answers include an automatic selection of lags, similar to the 
selection of lags for the Newey and West SE. 

• Q: Do these tests have much power? 
It is difficult to distinguish 𝜙ଵ = 0.98 or 𝜙ଵ = 0.99 from 𝜙ଵ = 1. The 
implications are completely different. In general, we find that these 
tests have low power against “near unit root” alternatives.

If the tests have low power, we may keep as stationary a time series 
that is a non-stationary process. A nonsense regression can happen!

Autoregressive UR – Testing: Issues
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• It is not always easy to affirm that a process has a unit roots. These 
tests have low power against near-unit-root alternatives. 

• There are also size problems (false positives) because we cannot 
include an infinite number of augmentation lags as might be called for 
with MA processes. 

• However, the ADF test is a critical tool we use to identify the 
underlying time series model: ARMA, or trend + ARMA, or ARIMA? 

•  If we select an ARIMA, what is the order of the integration, d? 

• In addition, we if we use an AR(𝑝) to approximate an ARMA(𝑝, 𝑞), 
the ADF can help us determine the right order of approximation, 𝑝. 

Autoregressive UR – Testing: Remarks

• Integration: In a univariate context, 𝑦௧ is 𝐼ሺ𝑑ሻ if  its ሺ𝑑 െ 1ሻ-th 
difference is 𝐼ሺ0ሻ That is, ∆ௗ𝑦௧ is stationary.

 𝑦௧ is 𝐼ሺ1ሻ if  ∆𝑦௧ is 𝐼ሺ0ሻ

• In many time series, integrated processes are considered together 
and they form equilibrium relationships:

- Short-term and long-term interest rates

- Inflation rates and interest rates.

- Income and consumption.

- Spot and Forward rates.

- Dividends and Earnings.

Idea:  Although a time series vector is integrated, certain linear 
transformations of  the time series may be stationary.

Cointegration 
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• An 𝑚x1 vector time series 𝒀௧ is said to be cointegrated of  order 
(𝑑,  𝑏), or 𝐶𝐼ሺ𝑑, 𝑏ሻ, where 0 ൏ 𝑏  𝑑, if  each of  its component 
series 𝑌௜௧ is 𝐼ሺ𝑑ሻ but some linear combination 𝜶′𝒀௧ is 𝐼ሺ𝑑 െ 𝑏ሻ for 
some constant vector 𝜶 ≠ 0.

• Terminology: 𝜶 is called cointegrating vector (long-run parameter). 

Example: We have 2 𝐼ሺ1ሻ variables: Spot, 𝑆௧, and 3-mo forward rates, 
𝐹௧,்ୀଷି௠௢, for the USD/NZD exchange rate. That is, 𝑚 ൌ 2.

If  𝜀௧ ൌ 𝑆௧ െ 𝛽 𝐹௧,்ୀଷି௠௢ ~ 𝐼ሺ0ሻ 𝑆௧ &𝐹௧,்ୀଷି௠௢ are cointegrated
of  order(1, 1) or 𝐶𝐼ሺ1, 1ሻ.

𝜶′ ൌ ሾ1 െ 𝛽ሿ  cointegrating vector

𝒀௧ =
𝑆௧

𝐹௧,்ୀଷି௠௢
 𝜶′𝒀௧ ൌ [1 െ𝛽]

𝑆௧
𝐹௧,்ୀଷି௠௢

= 𝜀௧ ~ 𝐼ሺ0ሻ

Cointegration – Definition

• The cointegrating vector is not unique. For any scalar c

𝑐 𝜶ᇱ𝒀௧ ൌ 𝜶∗′𝒀௧ ~ 𝐼ሺ𝑑 െ 𝑏ሻ 𝜶∗′

• Some normalization assumption is required to uniquely identify . 
Usually, 1 (=the coefficient of  the first variable) is normalized to 1. 
Look at the previous example, where the cointegrating vector is [1 -β].

• The most common case is 𝑑 ൌ 𝑏 ൌ 1. 

• If  the 𝑚x1 vector time series 𝒀௧ contains more than 2 components, 
each being I(1), then there may exist 𝑘 ሺ൏ 𝑚ሻ linearly independent 
1xm vectors 1’, 2’,…, k’, such that 𝜶ᇱ𝒀௧~ 𝐼ሺ0ሻ 𝑘x1 vector 
process, where  = (1,2’,…, k) is a 𝑘x𝑚 cointegrating matrix.

Cointegration – Definition
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• The number of  linearly independent cointegrating vectors is called 
the cointegrating rank: 𝒀௧ is cointegrated of  rank 𝑘.

If  the 𝑚x1 vector time series 𝒀௧ is CIሺ𝑘, 1ሻ with 0 ൏ 𝑘 ൏ 𝑚 CI 
vectors, then, we say that there are 𝑚െ 𝑘 common 𝐼ሺ1ሻ stochastic 
trends.

Cointegration – Definition

Example: Consider the following system of  three processes (𝑚 ൌ3):

where the error terms are uncorrelated WN processes. Since 𝑥ଷ௧ is a 
RW –i.e., 𝐼ሺ1ሻ–, clearly, all the 3 processes are individually 𝐼ሺ1ሻ.

- One CI relationship: 𝑥ଵ௧ , 𝑥ଶ௧, & 𝑥ଷ௧.
Let 𝒀௧ = (𝑥ଵ௧ , 𝑥ଶ௧, 𝑥ଷ௧ሻ′ & 𝜶 =(1, 1, 2)’  𝜶∗′ 𝒀௧ = 𝜀ଵ௧~ 𝐼ሺ0ሻ.

Note: The coefficient for 𝑥ଵ௧ (=𝛼ଵ) is normalized to 1.

- A second CI relationship: 𝑥ଶ௧, & 𝑥ଷ௧
Let 𝜶∗ ൌ (0, 1, -3)’  𝜶∗′ 𝒀௧ ൌ 𝜀ଶ௧ ~ 𝐼ሺ0ሻ.

Cointegration – Example

ttt

ttt

tttt

xx

xx

xxx

31,33

2332

132211










RS – EC2 - Lecture 18

22

Example (continuation):

We have 2 C.I. vectors: 𝜶 & 𝜶∗. They are independent, that is, 

rank 
1 0
1 1
2 −3

ൌ 2 (This is the cointegrating rank.)

• Summary for the system (with three time series –i.e., 𝑚 ൌ 3):

We have: 𝑘 ൌ 2 independent C.I. vectors: 𝜶 & 
𝑚 െ 𝑘 ൌ 1 common stochastic trend (ST): ∑ 𝜀ଷ௧்

௧ୀଵ .

Cointegration – Example

• Intuition for 𝐼ሺ1ሻ case 

𝜶ᇱ𝒀௧ forms a long-run equilibrium. The system cannot deviate too 
far from the equilibrium, otherwise economic forces, say arbitrage or 
competition, will operate to restore the equilibrium. We think of  
cointegrated variables as variables that “move together.”

Example: In the previous example, we have two long-run 
relationships –i.e., two CI relationships:

1) 𝜀ଵ௧ ൌ 𝑥ଵ௧ െ 1 𝑥ଶ௧  2 𝑥ଷ௧.
2) 𝜀ଶ௧ ൌ 𝑥ଶ௧ െ 3 𝑥ଷ௧

Interpretation: Let’s look at CI relation 2). In the long-run, when 𝑥ଷ௧
changes by 1 unit, 𝑥ଶ௧ changes by 3 units. (This is why the CI vector 
is referred as long-run parameters.)

Cointegration – Long-Run Relation
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• When series are cointegrated, the deviations from the long-run 
equilibrium affect the behavior of  the series in the short-run. The 
model that includes the deviations from equilibrium is called “error 
correction model,” or ECM.

In the ECM, the lagged deviations from the long-run equilibrium enter 
linearly in a model of  first differences for the cointegrated variables. 

Suppose we have two cointegrated variables, 𝑆௧ &𝐹௧, with a 
cointegrating vector 𝜶′ = [1 -β]. Then, 

∆𝑆௧ = γ (1 𝑺𝒕ି𝟏 െ β 𝑭𝒕ି𝟏) + 1 ∆𝐹௧ ൅ 𝑢௧

The deviation from long-run equilibrium –i.e, (𝑺𝒕ି𝟏 െ β 𝑭𝒕ି𝟏) 
above– is called the error correction term.

Cointegration – Error Correction Model

Note: Suppose we have two cointegrated variables, say, 𝑆௧ &𝐹௧, but 
we model them ignoring the error correction term. Then, we have a 
misspecified model (biased estimation!).

Example: In the previous example, we have 𝑥ଵ௧ , 𝑥ଶ௧, & 𝑥ଷ௧ are 
cointegrated, with CI vector:  = (1, 1, 2)’

Then, the ECM becomes:
Δ𝑥ଵ௧ ൌ γ 𝜺𝟏𝒕ି𝟏 ൅ 1 Δ𝑥ଶ௧+ 2 Δ𝑥ଷ௧ ൅ 𝑢௧

where 𝜺𝟏𝒕 ൌ 𝑥ଵ௧ െ 1 𝑥ଶ௧  2 𝑥ଷ௧ is the error correction term. 

Technical note: The Granger representation theorem states that if  there 
exists a dynamic linear model with stationary disturbances –i.e., I(0)–
& the data are I(1), then the variables must be cointegrated of  order (1,1).

Cointegration – Error Correction Model
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Residual Based Tests of  the Null of  No CI

• These are test procedures designed to distinguish a system without 
cointegration from a system with at least one cointegrating relationship. 
They do not estimate the number of  cointegrating vectors (the k). 

• Tests are conditional on pretesting (for unit roots in each variable).

• There are two cases to consider.

• CASE 1 - Cointegration vector is pre-specified/known (say, from 
economic theory): 

Construct the hypothesized linear combination that is I(0) by theory; 
treat it as data. Apply a DF unit root test to that linear combination. 

• The null hypothesis is that there is a unit root, or no cointegration.
47

• CASE 2 - Cointegration vector is unknown. It should be estimated.

Thus, if  there exists a cointegrating relation, the coefficient on 𝑌ଶ௧ is 
nonzero, allowing us to express the “static” regression equation as

𝑌ଵ௧ ൌ 𝛽𝑌ଶ௧ ൅  𝑢௧

• Then, apply a unit root test to the estimated OLS residual from 
estimation of  the above equation, but

- Include a constant in the static regression if  the alternative allows 
for a nonzero mean in 𝑢௧.
- Include a trend in the static regression if  the alternative is stochastic 
cointegration –i.e., a nonzero trend for 𝜶′𝒀௧.

Note: Tests for cointegration using a prespecified cointegrating

vector are generally more powerful, but they are rarely used.
48

Residual Based Tests of  the Null of  No CI
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• Engle and Granger propose a 2-steps cointegration test:

Step 1. Test H0(unit root) in each component series 𝑌௜௧ individually, 
using the univariate unit root tests, say ADF, PP tests.

Step 2. If  the H0 (unit root) cannot be rejected, then the next step is 
to test cointegration among the components, i.e., to test whether 
𝜶ᇱ𝒀௧ is 𝐼ሺ0ሻ. 

• In practice, the cointegration vector is unknown. One way to test the 
existence of  cointegration is the regression method –see, Engle and 
Granger (1986) (EG).

• If  𝒀௧ ൌ ሺ𝑌ଵ௧, 𝑌ଶ௧,…, 𝑌௠௧ሻ is cointegrated, 𝜶ᇱ𝒀௧ is I(0) where 𝜶 ൌ
ሺ𝛼ଵ,𝛼ଵ, …, 𝛼௠ሻ. Then, ሺ1/𝛼ଵሻ𝜶 is also a cointegrated vector where 
𝛼ଵ 0. 49

Engle and Granger Cointegration

Engle and Granger Cointegration – Step 1

• EG consider the regression model for 𝑌ଵ௧ :
𝑌ଵ௧ ൌ 𝛿𝐷௧ ൅ 𝜙ଵ𝑌ଶ௧ ൅ … ൅ 𝜙௠ିଵ𝑌௠௧ ൅ 𝜀௧

where 𝐷௧ : deterministic terms.

• Check whether 𝜀௧ is 𝐼ሺ1ሻ or 𝐼ሺ0ሻ :  

- If  𝜀௧ ~ 𝐼ሺ1ሻ , then Yt is not cointegrated.

- If  𝜀௧ ~ 𝐼ሺ0ሻ , then Yt is cointegrated with a normalized 
cointegrating vector 𝜶ᇱ ൌ ሺ1,𝜙ଵ, … ,𝜙௠ିଵሻ .

• Steps:

1. Run OLS. Get estimate 𝜶ෝ ൌ ሺ1,𝜙෠ଵ, … ,𝜙෠௠ିଵሻ
2. Use residuals 𝑒௧ for unit root testing using the ADF or PP tests 
without deterministic terms (constant or constant and trend).

50
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• Step 2: Use residuals 𝑒௧ for unit root test. For example, ADF test: 

∆𝑒௧ ൌ 𝜆𝑒௧ିଵ ൅ ∑ 𝜙௜ ∆𝑒௧ିଵ
௣ିଵ
௜ୀଵ ൅ 𝑎௧

H0 (unit root in residuals = no cointegration): 𝜆 ൌ 0 H1 

(cointegration): 𝜆 ൏ 1

- t-statistic: 𝑡ఒ ൌ  ఒ
෡

ௌഊ෡

- Critical values tabulated by simulation in EG. 

Remark: If  we reject H0, then 𝒀௧ is cointegrated, there is further 
modeling step: Construct the ECM. That is,

∆𝑌ଵ௧= γ 𝑒௧ିଵ ൅ 𝜙ଵ∆𝑌ଶ௧ + 2 ∆𝑌ଷ௧ +... + 𝜙௠ିଵ∆𝑌௠௧ + 𝑢௧
51

Engle and Granger Cointegration – Step 2

• Critical values tabulated by simulation in EG. 

• We expect the usual ADF distribution would apply here. But, 
Phillips and Ouliaris (PO) (1990) show that is not the case under H0

(no-cointegration). They tabulated the corrected distributions. 

Hansen (1992) improved on these distributions, getting adjustments 
for different DGPs with trend and/or drift/no drift. 52

Engle and Granger Cointegration – Table
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Example: We test if there is cointegration between dividends and 
earnings. We use Shiller’s monthly dataset (1873:1 - 2020:9). 
Sh_da <-
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Shiller_2020data.csv",head=TRUE,sep=
",")

x_earn <- Sh_da$E # Extract Earnings

x_div <- Sh_da$D # Extract Dividends

x_earn_ts <- ts(x_earn, start=c(1873,1), frequency=12) 

plot(x_earn_ts, main ="S&P500 Earnings (1873 - 2020)")

Engle and Granger Cointegration – E & D

Example (continuation):
x_div_ts <- ts(x_div,start=c(1873,1),frequency=12) 

plot(x_div_ts, main ="S&P500 Dividends (1873 - 2020)")

• Both series, Earnings and Dividends, show a clear trend.

Engle and Granger Cointegration – E & D
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Example (continuation):

Step 1: ADF Tests for Unit Roots with 4 and 12 lags for Earnings.

• lc.df_earn_t <- ur.df(y=x_earn, lags=4, type='trend')

> summary(lc.df_earn_t)

Value of test-statistic is: -2.8983 3.2865 4.6402  Cannot reject H0: unit root at 5% level

Critical values for test statistics: 

1pct  5pct 10pct

tau3 -3.96 -3.41 -3.12

• lc.df_earn_t_12 <- ur.df(y=x_earn, lags=12, type='trend')

> summary(lc.df_earn_t_12)

Value of test-statistic is: -0.7685 1.9611 1.9807  Cannot reject H0: unit root at 5% level

• The ADF cannot reject H0 (unit root) for Earnings.

Engle and Granger Cointegration – E & D

Example (continuation):

Step 1: ADF Tests for Unit Roots with 4 and 12 lags for Dividends.

• lc.df_div_t <- ur.df(y=x_div, lags=4, type='trend')

> summary(lc.df_div_t)

Value of test-statistic is: 1.627 4.3152 4.96  Cannot reject H0: unit root at 5% level

Critical values for test statistics: 

1pct  5pct 10pct

tau3 -3.96 -3.41 -3.12

• lc.df_div_t_12 <- ur.df(y=x_div, lags=12, type='trend')

> summary(lc.df_div_t_12)

Value of test-statistic is: 3.7214 10.732 13.512  Cannot reject H0: unit root at 5% level

• The ADF cannot reject H0 (unit root) for Dividends.

Engle and Granger Cointegration – E & D
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Example (continuation):

Step 2: 

A. Run cointegrating regression. Get coefficients. Keep residuals. 

B. Test residuals for a Unit Root with 4 and 12 lags.

Step 2-A. Regress Dividends against Earnings

• coint_div_earn <- lm(x_div ~ x_earn)

> summary(coint_div_earn)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.554824 0.080139   6.923 6.12e-12 ***

x_earn 0.399444 0.002524 158.286  < 2e-16 ***   = (1, 0.399444)’
---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.001 on 1796 degrees of freedom

Multiple R-squared:  0.9331,    Adjusted R-squared:  0.9331 

Engle and Granger Cointegration – E & D

Example (continuation):
Step 2-A. Extract residuals and plot them

• res_div_earn <- coint_div_earn$residuals # Extract Residuals

x_res_div_earn_ts <- ts(res_div_earn,start=c(1873,1),frequency=12) 

> plot(x_res_div_earn_ts, main ="Residuals from Cointegrating Regression (1873 - 2020)")

• The clear trend in both series is gone from residuals.

Engle and Granger Cointegration – E & D



RS – EC2 - Lecture 18

30

Example (continuation):
Step 2-B. Test residuals for unit roots

• lc.adf_res_div_earn <- ur.df(y=res_div_earn, lags=4, type='drift')

> summary(lc.adf_res_div_earn)

Value of test-statistic is: -9.2459 42.8014 

Critical values for test statistics: 

1pct  5pct 10pct

tau2 -3.43 -2.86 -2.57  Reject H0: unit root at 5% level.

• lc.adf_res_div_earn_12 <- ur.df(y=res_div_earn, lags=12, type='drift')

> summary(lc.adf_res_div_earn_12)

Value of test-statistic is: -6.8064 23.2198  Reject H0: unit root at 5% level

• We reject H0: The linear combination (Dividendst  0.554824 
0.399444 Earningst) is stationary. That is, there is a long-run relation: 
When Earnings increase by $1, Dividends increase by $0.40.

Engle and Granger Cointegration – E & D

Example (continuation): Now, we build the ECM:
d_x_div <- diff(x_div)

d_x_earn <- diff(x_earn)

fit_ecm <- lm(d_x_div ~ res_div_earn[-T] + d_x_earn)

> summary(fit_ecm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.032851 0.002197  14.953  < 2e-16 ***

res_div_earn[-T] -0.014309 0.000745 -19.207  < 2e-16 ***  Significant at 5% level.

d_x_earn -0.007241 0.002296  -3.153  0.00164 **  Negative sign?
---

Residual standard error: 0.09298 on 1794 degrees of freedom

Multiple R-squared:  0.1708,    Adjusted R-squared:  0.1699 

F-statistic: 184.7 on 2 and 1794 DF,  p-value: < 2.2e-16

• If  error is positive (dividends too high relative to long-run relation), 
next period there is a negative adjustment in dividends. Good, 
intuitive. But, sign for changes in Earnings points to misspecification!

Engle and Granger Cointegration – E & D
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Example (continuation): Check the residuals for autocorrelation:
res_ecm <- fit_ecm$residuals

acf_res <- acf(res_ecm)

Highly autocorrelated residuals! Very likely because of misspecified lag 
structure for dependent variable: 

 Add lags of ∆Dividendst in regression.

Engle and Granger Cointegration – E & D

Example (continuation): We add 4 d_x_div lags to regression.

p_lag <- 4 # Select # of lags for test (set p)

div_lag <- matrix(0,T-p_lag,p_lag) # Matrix to collect lagged residuals

a <- 1

while (a<= p_lag) { # Do loop creates matrix (e_lag) with lagged e

za <- d_x_div[a:(T-p_lag+a-1)]

div_lag[,a] <- za

a <- a+1

}

d_x_earn_p <- d_x_earn[(p_lag+1):T] # Adjust for new sample size: T – p_lag

ec_term_p <- ec_term[(p_lag+1):T]

dyn_ecm4 <- lm(d_x_div[(p_lag+1):T] ~ div_lag + ec_term_p + d_x_earn_p)

summary(dyn_ecm4)

Engle and Granger Cointegration – E & D
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Example (continuation): 
> summary(dyn_ecm4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.0014896 0.0006921   2.152  0.03150 *  

div_lag1 0.0733874 0.0241628   3.037 0.00242 ** 

div_lag2 -0.0117834 0.0321913  -0.366  0.71438    

div_lag3 0.0323275 0.0321303   1.006  0.31449    

div_lag4 0.8526806 0.0245515  34.730 < 2e-16 ***  Significant lag structure

ec_term_p -0.0022602 0.0002484  -9.098  < 2e-16 ***  Negative sign, as expected.

d_x_earn_p 0.0036109 0.0007041   5.128 3.24e-07 ***  Positive sign!

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02753 on 1786 degrees of freedom

Multiple R-squared:  0.9276,    Adjusted R-squared:  0.9274 

F-statistic:  3814 on 6 and 1786 DF,  p-value: < 2.2e-16

Engle and Granger Cointegration – E & D

Example (continuation): 

• The sign for Change in Earnings is reversed. We have a positive 
relation: A positive (negative) change in Earnings increases (decreases) 
dividends.

Note: The model was misspecified, the dynamic lag structure for 
Change in Dividends was missing. 

• In the ECM we still have the negative relation (the “correction”) 
between errors and dependent variable, Change in Dividends.

Engle and Granger Cointegration – E & D


