Second Midterm

Note: Please, follow the instructions received in the email you received this file.

1. (30 points. Modeling Strategies).

a. Starting from a General Unrestricted Model (GUM), using all the variables you can think of that make sense to include, select an appropriate (reduced) model for SF, (SF_c). a1. Report GUM regression.

Coefficients:

coerricient.		<u>.</u>	_			
(Intercept)	7.441e-04	Std. Error 1.989e-05	37.408	< 2e-16		
x_usa	-1.185e-03	4.869e-04		0.015400		
u_sd		5.248e-06		0.000315		
x_tech	1.948e-04	1.060e-04	1.838	0.066898		
Cind	2.371e-03	1.060e-04 2.219e-03	1.069	0.285989		
Mkt_RF	-2.230e-05	9.017e-05	-0.247	0.804850		
SMB	-1.120e-04	8.160e-05	-1.372	0.170845		
HML	3.076e-05	9.993e-05	0.308	0.758360		
RMW	-4.258e-05	1.066e-04		0.689695		
CMA	2.864e-06			0.984519		
gold	4.776e-06			0.924430		
oil	7.147e-07	2.220e-05		0.974337		
x_usa2	-5.951e-02	2.970e-02		0.045830	*	
u_sd2		4.328e-07		0.997238		
Cind2	1.223e-03	1.152e-02		0.915531		
				0.180914		
x_tech2	3.314e-04 -1.634e-05	1.759e-05	1.341	0.353480		
Spring	-1.0340-05	1.7590-05				
Summ	1.750e-05			0.312979		
Fall	-3.716e-06	1.754e-05 1.773e-05		0.832322	ماد ماد ماد	
Fin_c				2.26e-05	***	
u_sd_Cind		2.182e-04		0.993554		
u_sd_tech	-1.539e-05	1.697e-05 2.915e-06		0.364891		
u_sd_Spring				0.879602		
u_sd_Summ	-3.576e-06	2.849e-06		0.210182		
u_sd_Fall	-3.010e-08	2.891e-06		0.991698		
	3.368e-03	2.092e-03		0.108271		
Cind_Summ	9.101e-04			0.687589		
Cind_Fall	1.362e-03	1.873e-03		0.467511		
tech_Spring		8.405e-05		0.766172		
tech_Summ	-1.205e-05	8.477e-05		0.887022		
tech_Fall	-1.059e-04	7.862e-05		0.178690		
u_sd_Finc	-8.755e-06	2.849e-06	-3.073	0.002280	**	
Cind_Finc	-5.161e-03	1.735e-03	-2.975	0.003123	**	
tech_Finc		7.569e-05	-1.801	0.072597		
Finc_Spring	1.176e-05			0.371997		
Finc_Summ	8.743e-06	1.316e-05		0.506908		
Finc_Fall	-1.932e-06	1.302e-05		0.882141		
Signif. code	es: 0 '***	' 0.001'**'	0.01 '*	*' 0.05 '·	.'0.1''1	
	·			0.00		
Residual standard error: 4.152e-05 on 366 degrees of freedom Multiple R-squared: 0.7511, Adjusted R-squared: 0.7266						
F-statistic	: 30.67 on	36 and 366 r	$F_{1} = \frac{1}{2}$	alue: < 2	2e-16	
F-statistic: 30.67 on 36 and 366 DF, p-value: < 2.2e-16						

a2. Report reduced regression.

Coefficients:

		Std. Error					
(Intercept) 7	.635e-04	1.133e-05	67.392	< 2e-16	* * *		
x_usa -1							
u_sd 1	.643e-05	2.095e-06	7.843	4.12e-14	***		
x_usa2 -2	.251e-02	2.496e-02	-0.902	0.368			
Fin_c -8	.643e-05	1.359e-05	-6.359	5.59e-10	***		
u_sd_Finc -9	.296e-06	2.354e-06	-3.948	9.31e-05	***		
Cind_Finc 1	.238e-04	2.010e-04	0.616	0.538			
Signif. codes:	0 '***'	0.001 '**'	0.01 ''	''0.05' .	.'0.1''1		
Residual standard error: 4.236e-05 on 396 degrees of freedom							
Multiple R-squared: 0.7197, Adjusted R-squared: 0.7154							
F-statistic: 169.4 on 6 and 396 DF, p-value: < 2.2e-16							

c. Did the 2008 Financial Crisis affect SF home prices?

Yes! Fin_c is very significant in the reduced model. Interaction between Fin_c and Unemployment in SD is very significant (& also negative).

d. Do you have evidence of seasonality –i.e., are the dummy variables for Spring, Summer or Fall significant?

No. None of the seasonal dummies shows up as significant, directly or interacting with other variables.

e. Check if the errors of your reduced model are normal (use a Jarque-Bera test). Jarque Bera Test

data: e_sd X-squared = 3.3644, df = 2, p-value = 0.186

We cannot reject H₀. There is no evidence of non-normality!

f. Check that the model's errors do not show autocorrelation. Durbin-Watson test

data: fit_sd_red
DW = 1.4276, p-value = 9.99e-10
alternative hypothesis: true autocorrelation is greater than 0

> bgtest(fit_sd_red, order=4)

Breusch-Godfrey test for serial correlation of order up to 4

data: fit_sd_red LM test = 142.34, df = 4, p-value < 2.2e-16

Both tests reject H₀. There is evidence of autocorrelation

g. Check that the model's errors do not show heteroscedasticity.
> gqtest(fit_sd_red)

Goldfeld-Quandt test

data: fit_sd_red GQ = 0.69346, df1 = 195, df2 = 194, p-value = 0.9945 alternative hypothesis: variance increases from segment 1 to 2

> bptest(fit_sd_red)

studentized Breusch-Pagan test

data: fit_sd_red BP = 46.169, df = 6, p-value = 2.74e-08

BP test shows strong evidence of heteroscedasticity.

h. If they do show autocorrelation and/or heteroscedasticity, use proper SE to conduct tests of significance for the coefficients for the driver variables in the reduced model.

> t_b_NW
(Intercept) x_usa u_sd x_usa2 Fin_c u_sd_Finc
Cind_Finc
27.1990601 -2.3140464 3.6458490 -0.6066121 -3.0638519 -1.9672615
0.9483826

Relative to OLS, the t-stats get a bit lower, but the same variables are still significant at the 5% level. That is, once, we take into account autocorrelation and heteroscedasticity x_usa , u_sd , Finc_c and u_sd interating with Finc are significant at 5%.

```
i. Use an LM test to check if there is monthly seasonality in the residuals of your reduced model.
> lm_seas <- lm(e_sd ~ Feb + Mar + Apr + May + Jun + Jul + Aug + Sep +
Oct + Nov + Dec)
> R2_r <- summary(lm_seas)$r.squared # extracting R^2 from fit_lm</pre>
> R2_r
[1] 0.2007784
> LM_test <- R2_r * length(e_sd)</pre>
 LM_test
[1] 80.91368
> qchisq(.95, df = 11)
level
                                           # chi-squared (df=2) value at 5%
[1] 19.67514
\overline{p} p_val <- 1 - pchisq(LM_test, df = 11)
                                                                      # p-value
of LM_test
> p_val
[1] 9.822143e-13
```

The p-value is very small. There is strong evidence of monthly seasonality in the residuals of the reduced model. We should go back to reformulate the model to include monthly seasonal variables. If you check summary(lm_seas), you will see that March, April, May and July are significant.

2. (25 points. Forecasting). You want to forecast log changes in home prices, p_t , using an AR(1) model.

a. Estimate an AR(1) model for p_t . using data from Jan 1990 to Dec 2020 (estimation period). That is, you estimate the following AR(1) model:

 $p_t = \mu + \phi_1 p_{t-1} + \varepsilon_t.$ $\varepsilon_t \sim WN.$ Report the regression. $y \leq x sd$ T1 <- 372 # Estimation period data $y 1 \le y[1:(T1-1)]$ $y \ 0 < -y[2:T1]$ # Estimation period data fit $y <- lm(y \ 0 \sim y \ 1)$ # Fit AR(1) model for e f,t b y \leq - fit y\$coefficients summary(fit y)Coefficients: Estimate Std. Error t value Pr(>|t|)1.704e-04 2.572e-05 6.627 1.22e-10 *** 7.848e-01 3.222e-02 24.360 < 2e-16 *** (Intercept) 1.704e-04 2.572e-05 y_1 b. Using your AR(1) estimates from 2.a, forecast p_t from Jan 2021 to July 2023 (validation period). Compute the MSE of your AR(1) forecast. T for $\leq T-T1$ xx cons <- $rep(1,T_for)$ T val <- T1 + 1 y f0 <- cbind(xx cons,y[T1:(T-1)])%*%b y# b est coef from estimation period reg S ar1 f0 <- S[T1:(T-1)]*(1+y f0) # Forecast for S t, using validation data e ar1 f0 <- S[T val:T] - S ar1 f0 # Forecasat error mse e arl f $0 \le sum(e arl f<math>0^2)/k$ for # MSE > mse_e_ar1_f0 # MSE(2) [1] 0.2188236

c. Using a the random walk model (RW) for p_t , forecast p_t from Jan 2021 to July 2023. Compute the MSE of your RW forecast.

e_rw_f0 <- S[T_val:T] - S[T1:(T-1)] mse_e_rw_f0 <- sum(e_rw_f0^2)/k_for > mse_e_rw_f0 [1] 0.2264603 # Error for RW model \Rightarrow et (1)

```
d. Test the equality of MSEs using an MGN/HLN test. Interpret the test results.
> ## 2.d Testing Equality of MSE: Mod vs RW
> z_mgn <- e_rw_f0 + e_ar1_f0
> x_mgn <- e_rw_f0 - e_ar1_f0
> fit_mgn <- lm(z_mgn ~ x_mgn)</pre>
> summary(fit_mgn)
Call:
lm(formula = z_mgn ~ x_mgn)
Residuals:
                 1Q Median
                                      3Q
     Min
                                               Мах
-1.5166 -0.3839 -0.0428 0.3279 1.1995
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                  3.928
(Intercept)
                                                        0.503
                   2.665
                                            0.679
x_mgn
                 -40.732
                                 61.574
                                            0.662
                                                        0.514
Residual standard error: 0.7107 on 29 degrees of freedom
```

Multiple R-squared: 0.01487, Adjusted R-squared: -0.0191

F-statistic: 0.4376 on 1 and 29 DF, p-value: 0.5135

The p-value of the t-stat of x mgn is 0.514 (not significant): We cannot reject that both MSEs are equal.

3. (15 points. ARMA identification). For this question you will use the log changes in oil prices (oil). Below, we show the first 17 autocorrelations (you can do this by using the R command: acf(oil)):

Autocorrelations of series 'oil', by lag $\begin{smallmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1.000 & 0.249 & -0.038 & -0.106 & -0.136 & -0.053 & -0.034 & 0.003 & 0.009 & -0.004 \end{smallmatrix}$

a. You have T=403 observations. How many autocorrelation are statistically different from 0?. C.I.: $\pm .0976 \implies$ Only 3 autocorrelations are different from 0 (1, 3 & 4)

b. Compute the Ljung-Box test with 3 lags. Interpret the test result. LB <- $T^{(T+2)}((-0.249)^{2/(T-1)} + -0.038^{2/(T-2)} + (-0.106)^{2/(T-3)})$ > LB [1] **29.16984** # very significant at 5%, chi-squared[df=3] = 7.31

Interpretation: The first 3 autocorrelations are jointly different from 0. .

c. Using the above ACF, you consider an AR(1) model for changes in oil prices. Is the AR(1)process stationary? (Hint: No need to compute moments here, just get ϕ_1 .) Yes! $\phi_1 = 0.249$ \Rightarrow Since $|\phi_1| < 1$, the AR(1) process is stationary.

d. Using your ϕ_1 parameter, compute the accumulated impact of a shock after 3 months. That is, the IRF at J=3. Interpret the result > IRF_3 <- (phi_1 + phi_1^2 + phi_1^3)
[1] 0.3264392</pre>

Interpretation: After 3 months the accumulated shock is 0.326.

4. True of False (20 points). Briefly justify all your answers. a. If errors are heteroscedastic, OLS is biased, but consistent. False. Under usual assumptions, if errors are heteroscedastic, OLS is unbiased, and consistent.

b. On average, FGLS estimates should be similar to the OLS estimates.

True. OLS and FGLS are both consistent.

c. NW SE are not useful when we have no autocorrelation in the residuals. True. White SE, if there is heteroscedasticiy, or just OLS SE, if there is no heteroscedasticiy will be fine.

d. A Random Walk model without a drift is stationary, since it has a constant mean. False. The variance is time dependent; it will be explosive as T grows

e. If the coefficients of an MA(2) process are all greater than 1, the MA(2) process is not stationary.

False. MA processes are always stationary.