
Financial Econometrics        Rauli Susmel 
FINA 4397/7354-A  

Second Midterm 
 
Note: Please, follow the instructions received in the email you received this file. 
 
1. (30 points. Modeling Strategies).  
 
a. Starting from a General Unrestricted Model (GUM), using all the variables you can think of that 
make sense to include, select an appropriate (reduced) model for SF, (SF_c).  
a1. Report GUM regression. 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  7.441e-04  1.989e-05  37.408  < 2e-16 *** 
x_usa       -1.185e-03  4.869e-04  -2.434 0.015400 *   
u_sd         1.909e-05  5.248e-06   3.637 0.000315 *** 
x_tech       1.948e-04  1.060e-04   1.838 0.066898 .   
Cind         2.371e-03  2.219e-03   1.069 0.285989     
Mkt_RF      -2.230e-05  9.017e-05  -0.247 0.804850     
SMB         -1.120e-04  8.160e-05  -1.372 0.170845     
HML          3.076e-05  9.993e-05   0.308 0.758360     
RMW         -4.258e-05  1.066e-04  -0.400 0.689695     
CMA          2.864e-06  1.475e-04   0.019 0.984519     
gold         4.776e-06  5.032e-05   0.095 0.924430     
oil          7.147e-07  2.220e-05   0.032 0.974337     
x_usa2      -5.951e-02  2.970e-02  -2.004 0.045830 *   
u_sd2       -1.499e-09  4.328e-07  -0.003 0.997238     
Cind2        1.223e-03  1.152e-02   0.106 0.915531     
x_tech2      3.314e-04  2.472e-04   1.341 0.180914     
Spring      -1.634e-05  1.759e-05  -0.929 0.353480     
Summ         1.750e-05  1.732e-05   1.010 0.312979     
Fall        -3.716e-06  1.754e-05  -0.212 0.832322     
Fin_c       -7.613e-05  1.773e-05  -4.293 2.26e-05 *** 
u_sd_Cind    1.764e-06  2.182e-04   0.008 0.993554     
u_sd_tech   -1.539e-05  1.697e-05  -0.907 0.364891     
u_sd_Spring -4.419e-07  2.915e-06  -0.152 0.879602     
u_sd_Summ   -3.576e-06  2.849e-06  -1.255 0.210182     
u_sd_Fall   -3.010e-08  2.891e-06  -0.010 0.991698     
Cind_Spring  3.368e-03  2.092e-03   1.610 0.108271     
Cind_Summ    9.101e-04  2.261e-03   0.402 0.687589     
Cind_Fall    1.362e-03  1.873e-03   0.727 0.467511     
tech_Spring -2.501e-05  8.405e-05  -0.298 0.766172     
tech_Summ   -1.205e-05  8.477e-05  -0.142 0.887022     
tech_Fall   -1.059e-04  7.862e-05  -1.347 0.178690     
u_sd_Finc   -8.755e-06  2.849e-06  -3.073 0.002280 **  
Cind_Finc   -5.161e-03  1.735e-03  -2.975 0.003123 **  
tech_Finc   -1.363e-04  7.569e-05  -1.801 0.072597 .   
Finc_Spring  1.176e-05  1.315e-05   0.894 0.371997     
Finc_Summ    8.743e-06  1.316e-05   0.664 0.506908     
Finc_Fall   -1.932e-06  1.302e-05  -0.148 0.882141     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 4.152e-05 on 366 degrees of freedom 
Multiple R-squared:  0.7511, Adjusted R-squared:  0.7266  
F-statistic: 30.67 on 36 and 366 DF,  p-value: < 2.2e-16 
 
a2. Report reduced regression. 



Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  7.635e-04  1.133e-05  67.392  < 2e-16 *** 
x_usa       -1.551e-03  3.285e-04  -4.723 3.24e-06 *** 
u_sd         1.643e-05  2.095e-06   7.843 4.12e-14 *** 
x_usa2      -2.251e-02  2.496e-02  -0.902    0.368     
Fin_c       -8.643e-05  1.359e-05  -6.359 5.59e-10 *** 
u_sd_Finc   -9.296e-06  2.354e-06  -3.948 9.31e-05 *** 
Cind_Finc    1.238e-04  2.010e-04   0.616    0.538     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 4.236e-05 on 396 degrees of freedom 
Multiple R-squared:  0.7197, Adjusted R-squared:  0.7154  
F-statistic: 169.4 on 6 and 396 DF,  p-value: < 2.2e-16 
 
c. Did the 2008 Financial Crisis affect SF home prices?  
Yes! Fin_c is very significant in the reduced model. Interaction between Fin_c and Unemployment 
in SD is very significant (& also negative). 
 
d. Do you have evidence of seasonality –i.e., are the dummy variables for Spring, Summer or Fall 
significant? 
No. None of the seasonal dummies shows up as significant, directly or interacting with other 
variables. 
 
e. Check if the errors of your reduced model are normal (use a Jarque-Bera test). 
 Jarque Bera Test 
 
data:  e_sd 
X-squared = 3.3644, df = 2, p-value = 0.186 
 
We cannot reject H0. There is no evidence of non-normality! 
 
f. Check that the model’s errors do not show autocorrelation. 
 Durbin-Watson test 
 
data:  fit_sd_red 
DW = 1.4276, p-value = 9.99e-10 
alternative hypothesis: true autocorrelation is greater than 0 
 
> bgtest(fit_sd_red, order=4) 
 
 Breusch-Godfrey test for serial correlation of order up to 4 
 
data:  fit_sd_red 
LM test = 142.34, df = 4, p-value < 2.2e-16 
 
Both tests reject H0. There is evidence of autocorrelation 
 
g. Check that the model’s errors do not show heteroscedasticity. 
> gqtest(fit_sd_red) 
 
 Goldfeld-Quandt test 
 
data:  fit_sd_red 
GQ = 0.69346, df1 = 195, df2 = 194, p-value = 0.9945 



alternative hypothesis: variance increases from segment 1 to 2 
 
> bptest(fit_sd_red) 
 
 studentized Breusch-Pagan test 
 
data:  fit_sd_red 
BP = 46.169, df = 6, p-value = 2.74e-08 
 
BP test shows strong evidence of heteroscedasticity. 
 
h. If they do show autocorrelation and/or heteroscedasticity, use proper SE to conduct tests of 
significance for the coefficients for the driver variables in the reduced model.   
> t_b_NW 
(Intercept)       x_usa        u_sd      x_usa2       Fin_c   u_sd_Finc   
Cind_Finc  
 27.1990601  -2.3140464   3.6458490  -0.6066121  -3.0638519  -1.9672615   
0.9483826  
 
Relative to OLS, the t-stats get a bit lower, but the same variables are still significant at the 5% 
level. That is, once, we take into account autocorrelation and heteroscedasticity x_usa, u_sd, Finc_c 
and u_sd interating with Finc are significant at 5%. 
 
i. Use an LM test to check if there is monthly seasonality in the residuals of your reduced model. 
> lm_seas <- lm(e_sd ~ Feb + Mar + Apr + May + Jun + Jul + Aug + Sep + 
Oct + Nov + Dec) 
> R2_r <- summary(lm_seas)$r.squared  # extracting  R^2 from fit_lm  
> R2_r 
[1] 0.2007784 
> LM_test <- R2_r * length(e_sd) 
> LM_test 
[1] 80.91368 
> qchisq(.95, df = 11)   # chi-squared (df=2) value at 5% 
level 
[1] 19.67514 
> p_val <- 1 - pchisq(LM_test, df = 11)     # p-value 
of LM_test  
> p_val 
[1] 9.822143e-13 
 
The p-value is very small. There is strong evidence of monthly seasonality in the 
residuals of the reduced model. We should go back to reformulate the model to include 
monthly seasonal variables. If you check summary(lm_seas), you will see that March, 
April, May and July are significant. 
 
 
2. (25 points. Forecasting). You want to forecast log changes in home prices, 𝑝 , using an AR(1) 
model. 
 
a. Estimate an AR(1) model for pt. using data from Jan 1990 to Dec 2020 (estimation period). That 
is, you estimate the following AR(1) model: 
  𝑝 𝜇 𝜙1𝑝 𝜀 .  𝜀 .~ WN. 
Report the regression. 



y <- x_sd 
T1 <- 372  
y_1 <- y[1:(T1-1)]      # Estimation period data 
y_0 <- y[2:T1]       # Estimation period data 
fit_y <- lm(y_0 ~ y_1)      # Fit AR(1) model for e_f,t 
b_y <- fit_y$coefficients 
summary(fit_y) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1.704e-04  2.572e-05   6.627 1.22e-10 *** 
y_1         7.848e-01  3.222e-02  24.360  < 2e-16 *** 
 
b. Using your AR(1) estimates from 2.a, forecast 𝑝  from Jan 2021 to July 2023 (validation period). 
Compute the MSE of your AR(1) forecast. 
T_for <- T-T1 
xx_cons <- rep(1,T_for) 
T_val <- T1 + 1 
y_f0 <-  cbind(xx_cons,y[T1:(T-1)])%*% b_y  # b_est coef from estimation period reg 
S_ar1_f0 <- S[T1:(T-1)]*(1+y_f0)   # Forecast for S_t, using validation data 
e_ar1_f0 <- S[T_val:T] - S_ar1_f0   # Forecasat error 
mse_e_ar1_f0 <- sum(e_ar1_f0^2)/k_for  # MSE 
> mse_e_ar1_f0       # MSE(2) 
[1] 0.2188236 
 
c. Using a the random walk model (RW) for 𝑝 , forecast 𝑝  from Jan 2021 to July 2023. Compute 
the MSE of your RW forecast. 
e_rw_f0 <- S[T_val:T] - S[T1:(T-1)]   # Error for RW model =>  et (1)  
mse_e_rw_f0 <- sum(e_rw_f0^2)/k_for  
> mse_e_rw_f0 
[1] 0.2264603 
 

d. Test the equality of MSEs using an MGN/HLN test. Interpret the test results. 
> ## 2.d Testing Equality of MSE: Mod vs RW 
> z_mgn <- e_rw_f0 + e_ar1_f0  
> x_mgn <- e_rw_f0 - e_ar1_f0  
> fit_mgn <- lm(z_mgn ~ x_mgn)  
> summary(fit_mgn) 
 
Call: 
lm(formula = z_mgn ~ x_mgn) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.5166 -0.3839 -0.0428  0.3279  1.1995  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)    2.665      3.928   0.679    0.503 
x_mgn        -40.732     61.574   0.662    0.514 
 
Residual standard error: 0.7107 on 29 degrees of freedom 
Multiple R-squared:  0.01487, Adjusted R-squared:  -0.0191  



F-statistic: 0.4376 on 1 and 29 DF,  p-value: 0.5135 
 

The p-value of the t-stat of x_mgn is 0.514 (not significant): We cannot reject that both MSEs are 
equal. 
 
 
3. (15 points. ARMA identification). For this question you will use the log changes in oil prices 
(oil). Below, we show the first 17 autocorrelations (you can do this by using the R command: 
acf(oil)): 
 
Autocorrelations of series ‘oil’, by lag 
 
 0      1      2      3      4      5      6      7      8      9 
1.000  0.249 -0.038 -0.106 -0.136 -0.053 -0.034  0.003  0.009 -0.004   
 
  10     11     12     13     14     15     16     17    
0.042  0.035 -0.007 -0.032 -0.050 -0.049  0.015  0.009  
 
 
a. You have T=403 observations. How many autocorrelation are statistically different from 0?.  

C.I.:  .0976  Only 3 autocorrelations are different from 0 (1, 3 & 4) 
 
b. Compute the Ljung-Box test with 3 lags. Interpret the test result. 
LB <- T*(T+2)*((-0.249)^2/(T-1) + -0.038^2/(T-2) + (-0.106)^2/(T-3))  
> LB  
[1] 29.16984 # very significant at 5%, chi-squared[df=3] = 7.31 

 
 Interpretation: The first 3 autocorrelations are jointly different from 0. . 
 
 
c. Using the above ACF, you consider an AR(1) model for changes in oil prices. Is the AR(1) 
process stationary? (Hint: No need to compute moments here, just get 𝜙1.) 

Yes! 𝜙1 = 0.249    Since  | 𝜙1 | < 1, the AR(1) process is stationary. 
 
d. Using your 𝜙1  parameter, compute the accumulated impact of a shock after 3 months. That is, 
the IRF at J=3. Interpret the result  
> IRF_3 <-   (phi_1 + phi_1^2 + phi_1^3)  
[1] 0.3264392  

 
 Interpretation: After 3 months the accumulated shock is 0.326. 
 
 
 
4. True of False (20 points). Briefly justify all your answers. 
a. If errors are heteroscedastic, OLS is biased, but consistent. 
False. Under usual assumptions, if errors are heteroscedastic, OLS is unbiased, and consistent. 
 
b. On average, FGLS estimates should be similar to the OLS estimates. 



True. OLS and FGLS are both consistent. 
 
c. NW SE are not useful when we have no autocorrelation in the residuals.  
True. White SE, if there is heteroscedasticiy, or just OLS SE, if there is no heteroscedasticiy will 
be fine. 
 
d. A Random Walk model without a drift is stationary, since it has a constant mean. 
False. The variance is time dependent; it will be explosive as T grows 
 
e. If the coefficients of an MA(2) process are all greater than 1, the MA(2) process is not 
stationary. 
False. MA processes are always stationary. 


