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Lecture 1 – Review of Statistics and Linear Algebra (NOT Covered) 
This lecture reviews basic probability concepts, from random variables to the Law of Large 
Numbers and the Central Limit Theory. In the Appendix, the lecture introduces Linear Algebra 
and its compact notation. 

 
Random Variable 
In probability and statistics, a random variable (RV), or stochastic variable, is described 
informally as a variable whose values depend on outcomes of an experiment (or phenomenon). 
An experiment is an act or a process with an unknown outcome. For example, the CEO of Apple 
announces a new product, the effect on the price of Microsoft is unknown, thus, the price of 
Microsoft is a RV. 
 
Definitions & Notation: 
Ω: The sample space –the set of possible outcomes from an experiment. 
An event A is a set containing outcomes from the sample space. 
Σ: The collection of all possible events involving outcomes chosen from  Ω. (Formally: Σ is a σ -
algebra of subsets of the sample space.) 
P is a probability measure over Σ.  P assigns a number between [0,1] to each event in Σ. 
 
Remarks: 
- A random variable is a convenient way to express the elements of Ω as numbers rather than 
abstract elements of sets. 
- A random variable X is a function.  
- It is a numerical quantity whose value is determined by a random experiment. 
- It takes single elements in outcome set Ω, which can be abstract elements, and maps them to 
points in R.  
 
Example: We compute the weekly sign of stock returns of two unrelated firms: Positive (U: up) 
or negative (D: down).  
 
The sample space is Ω = {DD; DU; UD; UU}.  
 
Possible events (A):  
 - Both firms have the same signed return: {U,U} & {D,D}.   
 - At least one firm has positive returns: {U,U}; {D,U} & {U,D}. 
 - The first firm is has positive returns: {U,U} & {U,D}  
 



Collection of all possible events: Σ = [Φ, {U,U}, {U,D}, {D,U}, {D,D}, {UU, UD}, {UU, DU}, 
{UU, DD}, {DD, DU}, {DD, UD}, {DU, DD}, {UU, DU, UD}, {UD, DU, DD}, {UU, UD, 
DU, DD}] 
 
Define RV: X = “Number of Up cycles.” Recall, X takes Ω into χ, & induces PX from P.  
Then, 
 χ  = {0; 1; 2}  
 Σχ = {Φ; {0}; {1}; {2}; {0;1}; {0;2}; {1;2}; {0;1;2}}. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming U and D have the same probability, P[U] = P[D] = ½, we define PX: 
 Prob. of 0 Ups = PX[0] = P[{DD}] = ¼ 
 Prob. of 1 Ups = PX[1] = P[{UD; DU}] = ½ 
 Prob. of 2 Ups = PX[2] = P[{UU}] = ¼ 
 Prob. of 0 or 1 Ups = PX[{0; 1}] = P[{DD; UD; DU}] = ¾  
 Prob. of 0 or 2 Ups = PX[{0; 2}] = P[{DD; UU}] = ½ 
 Prob. of 1 or 2 Ups = PX[{1; 2}] = P[{DU; UD; DD}] = ¾ 
 Prob. of 1, 2, or 3 Ups = PX[{0; 1; 2}] = P[{DD; DU; UD; UU}] = 1 
 Prob. of "nothing" = PX[Φ] = P[Φ] = 0 
 
The empty set is simply needed to complete the σ-algebra (a technical point). Its interpretation is 
not important since P[Φ] = 0 for any reasonable P. 
 
Technical detail: P is the probability measure over the sample space, Ω, and PX is the probability 
measure over χ, the range of the random variable. 
 
 
Example: IBM Returns 
We buy a share IBM at USD 120 today and plan to sell the share next week. The return of IBM 
next week depends on how the market values IBM next week –this is the experiment.  
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The sample space is continuous, from -100% (worst case scenario) to potentially a huge 
undefined positive number. We set Ω = {rt : r ε [-1, K], K>0}.  
 
Possible events:  
 - IBM returns are positive.   
 - IBM returns are higher than the 0.5%. 
 - IBM returns are lower than 10%.  
 
The collection of all possible events, Σ, is very, very large. We use a probability distribution, for 
example, the normal distribution, to describe the likelihood of possible events. 
 
 
Probability Function & CDF 
Definition – The probability function, p(x), of a RV, X. 
For any random variable, X, and any real number, x, we define 
 p(x) = P[ X = x ] = P[ {X = x} ],   
where {X = x} = the set of all outcomes (event) with X = x. 
 
Definition – The cumulative distribution function (CDF), F(x), of a RV, X. 
For any random variable, X, and any real number, x, we define 
 F(x) = P[ X ≤  x ] = P[ {X ≤ x} ], 
where {X ≤ x} = the set of all outcomes (event) with X ≤ x. 
 
Example: Two dice are rolled and X is the sum of the two upward faces. Sample space S = { 
2:(1,1), 3:(1,2; 2,1), 4:(1,3; 3,1; 2,2), 5:(1,4; 2,3; 3,2; 4,1), 6, 7, 8, 9, 10, 11, 12}. 
 
Graph: Probability function: 
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Note: {X = x} = ϕ for all other x. 
 
Graph: CDF  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PDF for a Continuous RV 
Definition: Suppose that X is a random variable. Let f(x) denote a function defined for -∞ < x < 
∞ with the following properties: 

1. 𝑓 𝑥  ≥ 0 
2. 𝑓 𝑥 𝑑𝑥 1. 

3. 𝑃 𝑎 𝑋 𝑏 𝑓 𝑥 𝑑𝑥 
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F(x) is a step function  

 F x 



Then, f(x) is called the probability density function (pdf) of X. The random variable X is called 
continuous.  
 
• PDF 
 
 
 
 
 
 
 
 
 
 
 
 
• If X is a continuous random variable with probability density function, f(x), the cumulative 
distribution function of X is given by: 
  𝐹 𝑥  𝑃 𝑋 𝑥 𝑓 𝑡 𝑑𝑡 

 
• CDF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Also because of the FTC (fundamental theorem of calculus): 
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PDF for a Discrete RV 
A random variable X is called discrete if 
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All the probability is accounted for by values, x, such that p(x) > 0.  
 
• For a discrete random variable X the probability distribution is described by the probability 
function p(x), which has the following properties: 
 
 
 
 
 
 

 
 
 
Bernouille and Binomial Distributions 
Suppose that we have a Bernoulli trial (an experiment) that has 2 results: 

1. Success (S) 
2. Failure (F) 
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Suppose that p is the probability of success (S) and q = 1 – p is the probability of failure (F). 
Then, the probability distribution with probability function: 
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is called the Bernoulli distribution. 
 
• We observe an independent Bernoulli trial (S, F) n times. Let X be the number of successes in 
the n trials. Then, X has a binomial distribution:  
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where 
1.  p = the probability of success (S), and 
2.  q = 1 – p = the probability of failure (F) 

 
Example: If a firm announces profits and they are “surprising,” the chance of a stock price, P, 
increase is 85%. Assume there are n=20 (independent) announcements. 
Let X be the number of increases in the stock price following surprising announcements in the n 
= 20 trials. 
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The Poisson Distribution 
Suppose events are occurring randomly and uniformly in time. 
• The events occur with a known average. 
• Let X be the number of events occurring (arrivals) in a fixed period of time (time-interval of 
given length).  
• Typical example: X = Number of crime cases coming before a criminal court per year (original 
Poisson’s application in 1838.)  
• Then, X will have a Poisson distribution with parameter λ: 
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• The parameter λ represents the expected number of occurrences in a fixed period of time. The 
parameter λ is a positive real number. 
 
Example: On average, a trade occurs every 15 seconds. Suppose trades are independent. We are 
interested in the probability of observing 10 trades in a minute (X=10). A Poisson distribution 
can be used with λ = 4 (4 trades per minute). 
 
• Poisson probability function 
 

 
 
Poisson Distribution: Illustration 
Suppose a time interval is divided into n equal parts and that one event may or may not occur in 
each subinterval. 
 
 n subintervals 



 

 

 - Event occurs 
 - Event  does not occur 
 
X = # of events is Bin(n,p) 
As n → ∞, events can occur over the continuous time interval 

 
X = # of events is Poisson(λ) 
 
Poisson Distribution: Comments 
• The Poisson distribution arises in connection with Poisson processes - a stochastic process in 
which events occur continuously and independently of one another.  
 
• It occurs most easily for time-events; such as the number of calls passing through a call center 
per minute, or the number of visitors passing through a turnstile per hour. However, it can apply 
to any process in which the mean can be shown to be constant.   
 
• It is used in finance (number of jumps in an asset price in a given interval); market 
microstructure (number of trades per unit of time in a stock market); sports economics (number 
of goals in sports involving two competing teams); insurance (number of a given disaster -
volcano eruptions/hurricanes/floods- per year); etc. 
 
Example: The number of named storms over a period of a year in the Caribbean is known to 
have a Poisson distribution with λ = 13.1 
Determine the probability function of X. 
Compute the probability that X is at most 8. 
Compute the probability that X is at least 10. 
Given that at least 10 hurricanes occur, what is the probability that X is at most 15? 
Solution: 
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0 0.000002        10 0.083887      
1 0.000027        11 0.099901      
2 0.000175        12 0.109059      
3 0.000766        13 0.109898      
4 0.002510        14 0.102833      
5 0.006575        15 0.089807      
6 0.014356        16 0.073530      
7 0.026866        17 0.056661      
8 0.043994        18 0.041237      
9 0.064036        19 0.028432      
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The Normal distribution 
A random variable, X, is said to have a normal distribution with mean m and standard deviation s 
if X is a continuous random variable with probability density function f(x): 
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Normal distribution: Properties 
1. Indexed by two parameters: 𝜇 (central parameter) & 𝜎 (spread parameter). 
 
2. Symmetric around 𝜇, which is the location of the maximum of f(x). 
Check:  
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The last equality holds when 𝜇 = x. Thus, 𝜇 is an extremum point of f(x). Since f(x) is a pdf, it is 
the mode. 
 
3. The inflection points of f(x) are 𝜇 – 𝜎, 𝜇 + 𝜎. (Check: set f’’(x) = 0 and solve for x.) 
 
Normal distribution: Comments 
• The normal distribution is often used to describe or approximate any variable that tends to 
cluster around the mean. It is the most assumed distribution in economics and finance: rates of 
return, growth rates, IQ scores, observational errors, etc. 
 
• The central limit theorem (CLT) provides a justification for the normality assumption when n is 
large. 
 
Notation:  PDF: x ~ N(μ,σ2)   



  CDF: Φ(x) 
 
 
The Expectation of X: E(X) 
The expectation operator defines the mean (or population average) of a random variable or 
expression. 
 
Definition 
Let X denote a discrete RV with probability function p(x) (probability density function f(x) if X is 
continuous) then the expected value of X, E(X) is defined to be: 

 
     i i
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and if X is continuous with probability density function f(x) 

 
   E X x f x d x



 

 
 

Sometimes we use E[.] as EX[.] to indicate that the expectation is being taken over f X(x) dx 
 
 
Interpretation of E(X) 
1. The expected value of X, E(X), is the center of gravity of the probability distribution of X. 
2. The expected value of X, E(X), is the long-run average value of X. (To be discussed later: Law 

of Large Numbers) 
 

 
 
 
E[X]: The Normal Distribution 
Suppose X has a Normal distribution with parameters m and s.  
Then, E[X] = m. 
 
Proof: 
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Making the substitution: 
 
     
 
Then, 
 
 
 
 
 
 
Using the following results: 
 
 
 
 
 
 
Expectation of a function of a RV 
Let X denote a discrete RV with probability function p(x), then the expected value of g(X), 
E[g(X)], is defined to be: 
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and if X is continuous with probability density function f(x) 

     E g X g x f x d x




    
 

Examples: g(x) = (x – μ)2   E[g(x)] = E[(x – μ)2]  
   g(x) = (x – μ)k   E[g(x)] = E[(x – μ)k]  
 
Example: Suppose X has a uniform distribution from 0 to b.  Then: 
 
 
Find the expected value of  A = X2 .  
 
If X is the length of a side of a square (chosen at random from 0 to b) then A is the area of the 
square 
 
 
 
 
  = 1/3, the maximum area of the square 
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Median: Another central measure 
A median is the numeric value separating the higher half of a sample, a population, or a 
probability distribution, from the lower half.  
 
Definition: Median 
The median of a random variable X is the unique number m that satisfies 
the following inequalities: 
  P(X ≤ m) ≥ ½  and   P(X ≥ m) ≥ ½. 
 
For a continuous distribution, we have that m solves: 
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Note: If the mean > median > mode (= most popular observation), the distribution will be 
skewed to the right. If the mean < median < mode, the distribution will be skewed to the left. 
 
• Calculation of medians is a popular technique in summary statistics and summarizing statistical 
data, since it is simple to understand and easy to calculate, while also giving a measure that is 
more robust in the presence of outlier values than is the mean.  
 
An optimality property 
A median is also a central point which minimizes the average of the absolute deviations. That is, 
a value of c that minimizes 
   E(|X – c|) 
is the median of the probability distribution of the random variable X. 
 
Example: Let X have an exponential distribution with parameter 𝜆. The probability density 
function of X is: 
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The median m solves the following integral of X: 
  
    
 
 
 
 
That is, m = ln(2)/λ. 
 
 
Moments of Random Variables 
The moments of a random variable X are used to describe the behavior of the RV (discrete or 
continuous).  
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Definition: Kth Moment 
Let X be a RV (discrete or continuous), then the kth moment of X is: 
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Definition: Central Moments 
Let X be a RV (discrete or continuous). Then, the kth central moment of X is defined to be: 
 

𝜇 𝐸 𝑋 𝜇   
∑ 𝑥 𝜇 𝑝 𝑥 if 𝑋 is discrete

𝑥 𝜇 𝑓 𝑥 𝑑𝑥 if 𝑋 is continuous
 

 
where m = m1 = E(X) = the first moment of X. 
 
• The central moments describe how the probability distribution is distributed about the center of 
gravity, m.  
 
• The first central moments is given by:  
  𝜇 𝐸 𝑋 𝜇  
 
• The second central moment depends on the spread of the probability distribution of X about m. 
It is called the variance of X and is denoted by the symbol σ2 = var(X): 
  𝜇 𝐸 𝑋 𝜇  = var(X) =  𝜎  
 
The square root of var(X) is called the standard deviation of X and is denoted by the symbol s = 
SD(X). We also refer to it as volatility: 

  𝜇 𝐸 𝑋 𝜇  = 𝜎 
 
 
Moments of a RV: Skewness 
The third central moment:  
  𝜇 𝐸 𝑋 𝜇  
 
𝜇  contains information about the skewness of a distribution. 
 
• A popular measure of skewness: 

  𝛾  

 
• Distribution according to skewness: 
 
1) Symmetric distribution 



 
 
 
 
 
 
 
 
 
 
 
 
 
2) Positively (right-) skewed distribution (with mode < median < mean) 
 

 
 
 
3) Negatively (left-) skewed distribution (with mode > median > mean) 
 

 
 
• Skewness and Economics 
- Zero skew means symmetrical gains and losses.  
- Positive skew suggests many small losses and few rich returns.  
- Negative skew indicates lots of minor wins offset by rare major losses.  
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• In financial markets, stock returns at the firm level show positive skewness, but at the 
aggregate (index) level show negative skewness.  
 
• From horse race betting and from U.S. state lotteries there is evidence supporting the 
contention that gamblers are not necessarily risk-lovers but skewness-lovers: Long shots are 
overbet (positive skewness loved!). 
 
 
Moments of a RV: Kurtosis 
The fourth central moment:  
  𝜇 𝐸 𝑋 𝜇  
 
It contains information about the shape of a distribution. The property of shape that is measured 
by this moment is called kurtosis, usually estimated by 

  γ2 = . 

 
• The measure of (excess) kurtosis:   

  γ2 = 3 = 3 

 
• Distributions: 
1) Mesokurtic distribution 
 

 
 
 
 
 

 
 
 
 
 
2) Platykurtic distribution 
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3) Leptokurtic distribution (usual shape for asset returns) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moments and Expected Values 
Note that moments are defined by expected values. We define the expected value of a function of 
a continuous RV X, g(X), as 

 𝐸 𝑔 𝑋 𝑔 𝑥 𝑓 𝑥 𝑑𝑥 

• If X is discrete with probability function p(x) 
 
  𝐸 𝑔 𝑋 ∑ 𝑔 𝑥 𝑝 𝑥 ∑ 𝑔 𝑥 𝑝 𝑥  
 
Examples: g(x) = (x – μ)2   E[g(x)] = E[(x – μ)2]  
  g(x) = (x – μ)k   E[g(x)] = E[(x – μ)k] 
 
• We estimate expected values with sample averages. The Law of Large Numbers (LLN) tells us 
they are consistent estimators of expected values.  
 
 
Estimating Moments 
We estimate expected values with sample averages. For example, the first moment, the mean, 
and the second central moment, the variance, are estimated by: 
 

 𝑋  
∑

 

 𝑠 = 
∑

   (N-1 adjustment needed for E 𝑠 𝜎 ) 

 
• Besides consistent, they are both are unbiased estimators of their respective population 
moments (unbiased = “on average, I get the population parameter”). That is,  
 E 𝑋  μ  “population parameter” 
 E 𝑠 𝜎  
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The Law of Large Numbers (LLN) 
Long history: Gerolamo Cardano (1501-1576) stated it without proof. Jacob Bernoulli published 
a rigorous proof in 1713. 
 
Theorem (Weak LLN) 
Let X1, … , XN be n mutually independent random variables each having mean 𝜇 and a finite 
variance σ2 -i.e, the sequence {xN} is i.i.d. 

Let 𝑋  
∑

. 

Then, for any  > 0 (no matter how small)  
 P[|𝑋 - μ| < 𝛿 ] = P[ μ -  𝛿 <  𝑋 < μ+ 𝛿] → 1,   as N →  ∞ 
 
• There are many variations of the LLN. It is a general result: A sample average as the sample 
size goes to infinite tends to its expected value. Also written as: 

    𝑋N →  μ.  (convergence in probability) 
 
 
The Central Limit Theorem (CLT) 
The Central Limit Theorem (CLT) states conditions for the sequence of RV {xN} under which 
the mean or a sum of a sufficiently large number of xi’s will be approximately normally 
distributed.  
 
Let X1, X2, …, XN be a sequence of i.i.d. RVs with finite mean 𝜇, and finite variance σ2. Then, as 
N increases, 𝑋N, the sample mean, approaches the normal distribution with mean μ and variance 
σ2/N. 
 
This theorem is sometimes stated as: 

    √
_

 →  𝑁 0,1  

where  →   means “the limiting distribution (asymptotic distribution) is” (or convergence in 
distribution). 
 
• Many version of the CLT. Two versions are commonly used in economics and finance:  
- The one above is the Lindeberg-Lévy CLT, with {xN} are i.i.d., with finite μ and finite σ2.  
- The other one is the Lindeberg-Feller CLT. It requires {xN} are independent, with finite μi, 
σi

2<∞, Sn =Σi xi, sn
2= Σi σi

2 and for ε>0,  
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Note:  
Lindeberg-Levy assumes random sampling –observations are i.i.d., with the same mean and 
same variance. 
Lindeberg-Feller allows for heterogeneity in the drawing of the observations --through different 
variances. The cost of this more general case: More assumptions about how the {xN} vary. 
 



• The CLT gives only an asymptotic distribution. We usually take it as an approximation for a 

finite number of observations. In these cases, the notation goes from → to →.  
 
Technical Note: The Berry–Esseen theorem (Berry–Esseen inequality) attempts to quantify the 
rate at which the convergence to normality takes place.  
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where ρ = E(|X|) < ∞ and C is a constant (best current C=0.7056). 
 
 
Asymptotic Distribution 
An asymptotic distribution is a hypothetical distribution that is the limiting distribution of a 
sequence of distributions.  
 
We will use the asymptotic distribution as a finite sample approximation to the true distribution 
of a RV when N -i.e., the sample size- is large.  
 
Practical question: When is N large? 
 
 
Sampling Distributions 
All statistics, T(X), are functions of RVs and, thus, they have a distribution. Depending on the 
sample, we can observe different values for T(X), thus, the finite sample distribution of T(X) is 
called the sampling distribution.  
 
For the sample mean, 𝑋, if the Xi’s are normally distributed, then the sampling distribution is 
normal with mean μ and variance σ2/N. Or 
    𝑋 ~ N(μ, σ2/N). 
 
Then, E[𝑋] = μ 
 Var[𝑋] =  σ2/N   variance of sample mean decreases as N increases! 
 
The SD of the sampling distribution is called the standard error (SE). Then, SE(𝑋) = σ/sqrt(N).  
 
We usually associate the standard error with the precision of the estimate. That is, the precision 
of the estimation of the mean increases as N increases.  
 
• Below, we show the sampling distribution for the sample mean of a normal population for 
different sample sizes (N). 
 



 
 
Note: As N→∞, 𝑋→ μ      –i.e., the distribution becomes a spike at μ! 
 
Note: If the data is not normal, the CLT is used to approximate the sampling distribution by the 
asymptotic one, usually, after some manipulations. Again, in those cases, the notation goes from 

→ to →.  
 
• For the sample variance σ2, if the Xi’s are normally distributed, then the sampling distribution is 
derived from this result:  
   (N – 1) s2/2 ~ 𝜒 . 
 
It can be shown that a random variable that follows a 𝜒  distribution has a variance equal to 2 
times the degrees of freedom (=2*v). Then,  
 Var[(N-1) s2/2 ] = 2 * (N – 1)    Var[s2] = 2 * 4 /(N – 1) 
  
Then, SE(s2) = SD(s2) = 2 * 2/ 𝑁 –  1 . 

Note: If the data is not normal (& N is large), the CLT can be used to approximate the sampling 
distribution by the asymptotic one: 

  𝑠   → N(2,  ∗  1 / 𝑁) 

where  =  (recall when data is normal,  = 3).  

 
Remark: The precision of the estimation increases as N increases.  
 
This remark is especially relevant in Finance, where we derive relations between expected 
returns and risk factors, like market risk or volatility. As we gather more data, expected returns 
and the volatility of returns will be more precisely estimated. 
 
 
Hypothesis Testing 

, 𝑋 



A statistical hypothesis test is a method of making decisions using experimental data. A result is 
called statistically significant if it is unlikely to have occurred by chance.  
 
• These decisions are made using (null) hypothesis tests. A hypothesis can specify a particular 
value for a population parameter, say q=q0. Then, the test can be used to answer a question like: 
 
Assuming q0 is true, what is the probability of observing a value for the (test) statistic used that is 
at least as big as the value that was actually observed? 
 
• Uses of hypothesis testing:  
 - Check the validity of theories or models.  
 - Check if new data can cast doubt on established facts.  
 
• In general, there are two kinds of hypotheses:  
 (1) About the form of the probability distribution  
 Example: Is the random variable normally distributed? 
 
 (2) About the parameters of a distribution function  
 Example: Is the mean of a distribution equal to 0? 
 
• The second class is the traditional material of econometrics. We may test whether the effect of 
income on consumption is greater than one, or whether the size coefficient on a CAPM 
regression is equal to zero.  
 
 
• Hypothesis testing involves the comparison between two competing hypothesis (sometimes, 
they represent partitions of the world). 
 - The null hypothesis, denoted H0, is sometimes referred to as the maintained hypothesis.  
 - The alternative hypothesis, denoted H1, is the hypothesis that will be considered if the  
  null hypothesis is “rejected.” 
 
Idea: We collect a sample of data X = {X1, …, XN}.  We construct a statistic T(X) = f(X), called 
the test statistic. Now we have a decision rule: 
 - If T(X) is contained in space R, we reject H0 (& we learn). 
 - If T(X) is in the complement of R (RC), we fail to reject H0. 
 
Note: T(X), like any other statistic, is a RV. It has a distribution. 
 
Example: Suppose we want to test if the mean of IBM annual returns, μIBM, is 10%.  That is, H0: 
μIBM = 10%.  
 
From the population, we get a sample: {X1962, X1963, …, XN=2020}, with N=59. We use T(X) = 𝑋, 
which is unbiased, consistent, and, assuming X is normally distributed, we know its distribution, 
𝑋 ~ N(μ, σ2/N).  
 
  



 
 
 
 
 
 
 
 
Now, we need to determine the rejection region, R, such that if  
   T(X) = 𝑋 ∉ [TLB, TUB]   Reject H0: μIBM = 10%.  
 
That is,  
  R = [𝑋  TLB, TUB 𝑋] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Q: How do we determine TLB and TUB and, thus, make a decision? 
 
Hypothesis Testing: Steps 
We present the classical approach, a synthesized approach, known as significance testing. It 
relies on Fisher’s p-value: the probability, of observing a result at least as extreme as the test 
statistic, under H0.  
 
We follow these steps: 
Step 1. Identify H0 & decide on a significance level (α%) to compare your test results. 
 

Step 2. Determine the appropriate test statistic T(X) and its distribution under the assumption 
that H0 is true. 
 

Step 3. Calculate T(X) from the data. 
 

Step 4. Decision Rule:  

Calculate T(X) = 𝑋 

Get a sample (size N) 
IBM returns {X

1962
, X

1963
, …, X

2020
} 

T
LB

 T
UB

 

R
C
: (T
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, T
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).  



  Reject H0 if the p-value is sufficiently small, that is, we consider T(X) in R (we learn). 
  Otherwise, we reach no conclusion (no learning). 
 
• Q: What p-value is “sufficiently small” as to warrant rejection of H0?  
Rule:  If p-value < α (say, 5%) ⟹ test result is significant: Reject H0. 
 If the results are “not significant,” no conclusions are reached (no learning here). Go back 
 gather more data or modify model. 
 
• The father of this approach, Ronald Fisher, favored 5% or 1%. 
 
Example: From the U.S. Jury System 
 H0: The defendant is not guilty 
 H1: The defendant is guilty 
 
In statistics we learn when we reject. In this case, we learn a defendant is guilty when the jury 
finds the defendant guilty, by rejecting H0. 
 
Example: From the U.S. Jury System 
Step 1. Identify H0 & decide on a significance level (α%) 
 H0: The defendant is not guilty 
 H1: The defendant is guilty 
Significance level α = “beyond reasonable doubt,” presumably small level. 
 
Step 2. After judge instructions, each juror forms an “innocent index” T(X)i. 
 
Step 3. Through deliberations, jury reaches a conclusion T(X) = ∑ T(X)i. 
 
Step 4. Decision Rule:  
  If p-value of T(X) < α  Reject H0. That is, guilty! 
 If p-value of T(X) > α  Fail to reject H0. That is, non-guilty.  
 Alternatively, we build a rejection region around H0.  
 
Note: Mistakes are made. We want to quantify these mistakes. 
 
• Failure to reject H0 does not necessarily mean that the defendant is not guilty, or rejecting H0 
does not mean necessarily the defendant is guilty. Type I error and Type II error give us an idea 
of both mistakes. 
 
Definition: Type I and Type II errors 
A Type I error is the error of rejecting H0 when it is true. A Type II error is the error of 
“accepting” H0 when it is false (that is, when H1 is true).  
 
Notation: Probability of Type I error: α = P[X  R |H0 is true] 
  Probability of Type II error: β = P[X  RC |H1 is true] 
 



 
State of World 

Decision H0 true H1 true (H0 false) 

Cannot reject (“accept”) H0 Correct decision Type II error 

Reject H0 Type I error Correct decision 

 
Need to control both types of error: 
 α = P[rejecting H0 |H0 is true]  
 β = P[not rejecting H0 |H1 is true] 
 
Example: From the U.S. Jury System 
Type I error is the error of finding an innocent defendant guilty. 
Type II error is the error of finding a guilty defendant not guilty.  
 
• In general, we think Type I error is the worst of the two errors, we try to minimize the error of 
sending to jail an innocent person. 
 
 Actually, we would like Type I error to be zero. However, the only way to do this (100% of 
innocent defendants are found not guilty) is to never reject H0. Then, we maximize Type II error. 
 
• There is a clear trade-off between both errors. Traditional view: Set Type I error equal to a 
small number (defined in the U.S. court system as “beyond reasonable doubt”) and design a test 
that minimizes Type II error. 
 
The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this traditional view. 

Example: We want to test if the mean is equal to μ0. Then, 

1. H0: μ = μ0. 

 H1: μ  μ0. 

2. Appropriate T(X): t-test (based on σ unknown and estimated by s). 
 Determine distribution of T(X) under H0. Sampling distribution of 𝑋, under H0:  
  𝑋 ~ N(μ0, σ2/N).  

Then, distribution of T(X) under H0: 

  t = 
  μ

s
√

 ~ t
N-1

   – when N  > 30, t  ~ N(0, 1).  

3. Compute t, t ̂, using 𝑋, μ0, s, and N. Get p-value(t ̂). 

4. Rule: Set an α level. If p-value(t ̂) < α   Reject H0: μ = μ0. 

 Alternatively, if |t ̂| > tN-1,α/2 (=1.96, if α=.05)  Reject H0: μ = μ0. 



 

Technical Note 1: In step 2, the distribution of the t-test, t, is exact only if {X} follows a normal 
distribution, otherwise, the distribution is asymptotic (for this we need a large N); that is  

  t = 
  μ

s
√

  →  N(0, 1).  

Technical Note 2: In step 2, we determine the distribution of t, by using the sampling distribution 
of 𝑋 under H0. If H0 is not true, suppose μ = μ1, then  

  𝑋 ~ N(μ1, σ2/N),  
and, thus, t is distributed N(0, 1) only under H0, since only under H0 the E[𝑋  μ ] = 0. 


