Chapter 14 Multinational Capital Budgeting

© RS 2024 (for private use, not to be posted/shared online)

Multinational Capital Budgeting

• Q: How to evaluate a project?

A: NPV. The evaluation of an MNC's projects is similar to the evaluation of a domestic one.

• Data Needed for Multinational Capital Budgeting:

- 1. CFs (Revenues[P & Q] and Costs[VC & FC])
- 2. Maturity (T)
- 3. Salvage Value (SV_T)
- 4. Depreciation
- 5. Taxes (local and foreign, withholding, tax credits, etc.)
- 6. Exchange Rates (S_t)
- 7. Required Rate of Return (k)
- 8. Restrictions to Capital Outflows

International Taxation

• Taxes on Investments

- 1. Capital gains,
- 2. Income (dividends, etc.),
- 3. Transactions.
- Key question for international investors:
- Q: Do they tax foreigners? If so, what are the withholding taxes?

• Two Tax principles

- Residence: Residents taxed on their worldwide income.
- Source: Only income earned **inside** the country is taxed.

When entire income is earned in the country of residence, both principles agree. Otherwise, principles do not agree.

Example:

Situation: A U.S. consultant works 3 months a year in Greece.

Residence principle: She pays taxes on her Greek income in the U.S.

Source principle: She pays taxes on her Greek income in Greece.

- \Rightarrow Greek income can be taxed twice. ¶
- Foreign investments may be taxed in two locations:
 - 1. the investor's country,
 - 2. the investment's country

Convention: Make sure that taxes are paid in at least one country.

⇒ This is why withholding taxes are levied on dividend payments.

• Tax Neutrality

Tax neutrality: No tax penalties associated with international business.

Two approaches:

- (1) Capital import neutrality
- (2) Capital export neutrality.

(1) Capital Import Neutrality

- No penalty/advantage attached to foreign-owned capital
- Foreign and domestic capital compete on equal basis.
- ⇒ Local taxes exempt foreign-source income from local taxes.
- ⇒ For U.S. MNC: Exclusion of foreign branch profits from U.S. taxable income (Exclusion method).

Example: A U.S. MNC's subsidiary pays income tax in Hong Kong (17%), then, the remitted after-tax profits are not taxed in the U.S.. The only tax paid is the foreign tax.

(2) Capital Export Neutrality

- No tax incentive for firms to export capital to a low tax country.
- Same overall tax whether capital remains in the country or not.
- ⇒ Local authorities "gross up" the after-tax income with all foreign taxes; then, apply home-country tax rules to that income, with credit for foreign taxes paid.
- ⇒ For U.S. MNC: Inclusion of "pre-tax" foreign branch profits in U.S. taxable income. A tax credit is given for foreign paid taxes (Credit method).

Example: A U.S. MNC's subsidiary makes a profit in Hong Kong. The overall tax burden will be given by the U.S. tax rate (35%).

- MNC pays income taxes in HK at 17%. It remits after-tax profits to U.S.
- Remitted after-tax profits are grossed-up to original level.
- Grossed-up after-tax profits are taxed in the U.S. at 35%.
- Tax credit for the 17% paid in HK is given.
- Total tax paid: 35% (17% in HK & 18% in US).

Example: Bertoni Bank, a U.S. bank, has a branch in Hong Kong.

Hong Kong branch income: USD 100.

U.S. tax rate: 35%

Hong Kong tax rate: 17%

	Double Taxation	Exclusion Method	Credit Method	
• Hong Kong				
Branch profit	100	100	100	
(17% tax) (i)	<u>17</u>	<u>17</u>	<u>17</u>	
Net profit	83	83	83	
• U.S.				
Net Hong Kong profit	83	83	83	
Gross up	<u>0</u>	<u>0</u>	<u>17</u>	
Taxable income	83	0	100	
(35% tax)	29.05	0	35	
Tax credit	<u>0</u>	<u>0</u>	<u>(17)</u>	
Net Tax due (ii)	29.05	0	18	
Total taxes (i)+(ii)	46.05	17	35	

• Agency Problem: Subsidiary vs Parent

In general, CFs are **difficult** to estimate. **Point estimates** (a single estimated number) is usually submitted by the subsidiary. The Parent will attempt to adjust for CFs uncertainty.

Usually, this is done through the discount rate, *k*. But, many other methods can be used.

Typical problem for an MNC: Agency Problem - Subsidiary vs. Parent.

- Subsidiary wants to undertake more projects.
- Parent only cares about Profitability.
- ⇒ Subsidiary can misstate Revenues, VC, and SV.

• Agency Problem

Example: Project in Hong Kong (Data provided in HKD)

T = 4 years

 $CF_0 = HKD 70M (=USD 10M)$

Revenue: Year 1 (Price per unit (HKD), Quantity)) - 20; 1.00M = 20M

Year 2 (25; 0.95M) = 23.75M

Year 3(30; 0.90M) = 27M

Year 4 (35; 0.85M) = 29.75M

Cost -VC = HKD 5/unit

-FC = HKD 3M

Depreciation = 10% of initial outlay (HKD 7M/year)

 $S_t = 7 \text{ HKD/USD}$ (use RW to forecast future S_t 's)

Taxes: - Income: HK 17%, US 35% (Gross-up, Credit for foreign taxes)

- Withholding tax (in Hong Kong) = 10%

Note: U.S. collects taxes based on worldwide income.

Example (continuation):

 $SV_4 = HKD 25M$

k = 15%

1. Subsidiary's NPV (in HKD including local taxes)

	,	_	,	
	T=1	2	3	4
Revenues	20M	23.75M	27M	29.75M
Cost	5M	4.75M	4.5M	4.25M
	3M	3M	3M	3M
Profit	12M	16M	19.5M	22.5M
Dep.	<u>7M</u>	<u>7M</u>	<u>7M</u>	<u>7M</u>
EBT	5 M	9 M	12.5M	15.5M
Taxes	<u>.85M</u>	<u>1.53M</u>	<u>2.125M</u>	<u>2.635M</u>
EAT	4.15M	7.47 M	10.375M	12.865M
Free CF +SV	11.15M	14.47M	17.375M	44.865M

Example: (continuation)

T=1 2 3

Free CF +SV 11.15M 14.47M 17.375M 44.865M

NPV (in HKD) = $-70M + 11.15M/1.15 + 14.47M/1.15^2 + 17.375M/1.15^3 + 44.865M/1.15^4 = -$ **HKD**12.2869M < 0

Note: If SV_4 is changed to HKD 80M, then NPV = 19.16M > 0! \Rightarrow Subsidiary would submit the project.

• Subsidiary never submits a project with **NPV<0**. SV is important!

2. MNC's NPV (in USD, including all taxes)

	Year 1	Year 2	Year 3	Year 4
CFs to be remitted (HKD)	11.15M	14.47M	17.375M	19.865M+ 25M
$S_t = 7 \text{ HKD/USD}$				
CFs in USD	1.59M	2.067M	2.48M	2.84M+3.57M
Withholding	<u>(.159M</u>)	(.2067M)	(<u>.248M</u>)	(<u>.284M</u>)
CFs remitted	1.431M	1.86M	2.3M	2.56M+3.57M
(US Tax)	(.6M)	(.8M)	(.975M)	(1.125M)
Tax Credit	.281M	.425M	.552M	.376M
Net Tax	<u>(.319M)</u>	<u>(.425M)</u>	(.423M)	<u>(.749M)</u>
EAT	1.114M	1.486M	1.811M	2.09M+3.57M

 $NPV = - USD 10M + 6.5195M = - USD 3.48M < 0. \Rightarrow No!$

Note: Subsidiary will **never** submit a project like this! Subsidiary will inflate some numbers, for example, SV_T .

If $SV_T = \mathbf{HKD} \ \mathbf{80M}$, then

NPV (USD M) = -10 +
$$\{1.114/1.15 + 1.486/1.15^2 + 1.811/1.15^3 + (2.095 + 80/7)/1.15^4\}$$
 = USD 1.01181 M > 0 \Rightarrow Yes. ¶

• Real Options View

Original HK (with **SV**₄ = **HKD 25M**) project has **NPV<0**. Usual view: MNC **rejects** project.

But, MNCs may undertake NPV<0 projects if there are **future benefits** associated with the initial investment. For example, an expansion, development of contacts, power to influence future political events, etc.

An MNC may view the DFI as an option –a *real option*. The initial investment plays the role of a premium paid:

$$p = \text{NPV}_{\text{Initial Investment}} < 0$$

The MNC sets some targets for initial investments (revenue, market share, etc.) that play role of a *strike price*, *X*:

If Realized Target $> X \Rightarrow$ Expand (exercise *real option*).

Real Options View

Overall, MNC undertakes project if

$$E[NPV] = NPV_{Initial\ Investment} + Option\ Value\ of\ Expansion$$

- Think of a real option as a two-phase project:
 - 1) First phase: Test the Market
 - 2) If test is successful: Expand

In many applications, the initial investment also gives a company the option to **delay** further investments. These options have **value**.

Financial options are not complicated to value, inputs (P_t, X, σ) are easy to get. In general, these inputs are not very precise value for real options.

⇒ Real options tend to be difficult to value. Simulations are used.

Example: Malouf Coffee considers expansion to Mexico with two stores: S & B.

- ◆ Expansion is done **simultaneously** (S&B together)
 - Upfront investment is **230.**
 - Probability of failure (F) = 70%
 - -k = .15:
 - CFs for S: **60** (if F) & **140** (if not F)
 - CFs for B: 120 (if F) & 280 (if not F).

E[NPV] = -230 + [(.70) * (60 + 120) + (.30) * (140 + 280)]/1.15 = -10.87 < 0 \Rightarrow No!

Example (continuation):

- ♦ CFs for a **2-phase expansion** (1st S; 2nd B):
 - Initial Investment = 100
 - Expansion Investment = 70 if X (CFs) > 120.
 - Probability of failure (F) for $S = P_1 = .70$
 - Probability of failure (F) for $B = P_2 = .50$ (lower, we learned!)
 - -k = .15

Learning: Lower expansion investment & lower P₂.

• If S (1st-phase) is valued individually:

$$E[NPV_{1st-phase}] = -100 + [(.70) * 60 + (.30) * 140]/1.15 = -26.96 < 0 \implies No!$$

Example (continuation):

• If we evaluate **2-phase investment**:

$$\Rightarrow$$
 E[NPV] = -100 + (.70) * 60/1.15 + (.30) * {(140-70)/1.15 + + [(120) * .50 + (280) * .50]/1.15²} = 0.1512 > 0 \Rightarrow YES!

Higher valuation when real option (flexibility) is introduced.

Technical Note: Discount rate in 2nd-phase should be lower! ¶

- Technical Issues: Not easy to determine P₁ & P₂, and future CFs.
- Value of the Real Option: Firm **learns** from 1st-phase & adapts (expand, delay, or close the project). Limiting downside.
- Many MNCs went to China in the early 1990s with NPV<0 projects. Years later, some expanded, some closed projects and left market.

Adjusting Project Risk

MNCs have many ways methods to adjust for CF uncertainty.

• Adjusting discount rate, k

In general, CF's uncertainty is incorporated through the discount rate, k: Higher uncertainty, $k \uparrow$.

k also incorporates economic & political uncertainty in local country.

But k is a point estimate, an *average risk*. An average risk may cost an MNC: It may wrongly reject projects that have a below average risk.

An MNC may use a range for k, say $\{k_{LB}, k_{UB}\}$.

Using a range $\{k_{LB}, k_{LB}\}$ creates a range for $\{NPV(k_{LB}), NPV(k_{LB})\}$.

Example: Based on $\{k_{LB}, k_{UB}\}$ for the HK project, MNC builds an NPV range

Range for $k : \{k_{LB} = .135, k_{UB} = .165\}$ (with $SV_4 = HKD 80M$, NPV > 0)

 \Rightarrow Range for NPV: {USD 0.535M; USD 1.519M}.

Note: Range is always positive. Good for a project. ¶

• Sensitivity Analysis/Simulation

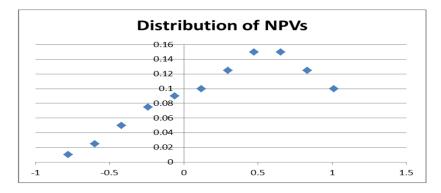
MNCs can use sensitivity analysis to evaluate proposals.

1) Sensitivity Analysis of the impact of CFs on the NPV of project

• Play with different scenarios/Simulation

Steps: a. Assign a probability to each scenario

- b. Get an NPV for each scenario.
- c. Calculate a weighted average (weight=probability) NPV \Rightarrow E[NPV]
- d. If possible, use a risk-reward measure (say, a Sharpe Ratio).
- Breakeven Analysis (same as what we do below for SV).


• Sensitivity Analysis/Simulation

Example: Compute E[NPV] & SD[NPV] for HK project

We create different scenarios for CFs (as a % of submitted CFs)

% of CFs	Probability	NPV (in M)
0.60	0.01	-0.77918
0.64	0.025	-0.60009
0.68	0.05	-0.42099
0.72	0.075	-0.24189
0.76	0.09	-0.06279
0.80	0.10	0.116313
0.84	0.125	0.295412
0.88	0.15	0.474512
0.92	0.15	0.653611
0.96	0.125	0.832711
1	0.10	1.01181
E[NPV]		0.35541
SD[NPV]		0.64477
Prob[NPV<0]	0.25	

• Sensitivity Analysis/Simulation

• Descriptive Stats

E[NPV] = USD 0.355411 M

SD[NPV] = USD 0.644769 M

Prob[NPV < 0] = 0.250000

SR = E[.]/SD[.] = 0.551221

95% C.I. (Normal): (-0.90834M; 1.61916M)

• Sensitivity Analysis/Simulation - Decisions

Parent can base a decision on some risk-reward rule.

For example, a firm may look at the SR (using E[NPV] and SD[NPV]), a range, establishing some ad-hoc tolerable level for the probability of negative NPV, etc.

• Decisions

<u>Rule</u>: Among projects with E[NPV] > 0, Parent compares the SRs (or CIs) for different projects. Then, select project with higher SR (or the CI with the smallest negative part).

- Sensitivity Analysis/Simulation
- 2) Sensitivity Analysis of the impact of SV on NPV
- Different scenarios based on original SV. For example:

% of SVs (in HKD)	Probability	NPV (in M)
0.60 (=HKD 48)	0.05	-1.60192
0.64 (=HKD 51.2)	0.065	-1.34055
0.68 (=HKD 54.4)	0.085	-1.07917
0.72 (=HKD 57.6)	0.1	-0.8178
0.76 (=HKD 60.8)	0.125	-0.55643
0.80 (=HKD 64)	0.15	-0.29505
0.84 (=HKD 67.2)	0.125	-0.03368
0.88 (=HKD 70.4)	0.1	0.227692
0.92 (=HKD 73.6)	0.085	0.489064
0.96 (=HKD 76.8)	0.065	0.750437
1.00 (=HKD 80)	0.05	1.01181
E[NPV]		-0.29505
SD[NPV]		0.866876
Prob[NPV<0]	0.70	

• Sensitivity Analysis/Simulation

 \diamond Breakeven Analysis: Calculate SV^{BE} , such that $NPV(SV^{BE})$ = 0.

$$\Rightarrow$$
 SV^{BE} = { IO - $\sum_{t} \frac{cF_{t}}{(1+k)^{t}}$ } * $(1 + k)^{T}$

The higher SV^{BE}, the more dependent project is on an uncertain SV: \Rightarrow To make the NPV > 0, we need SV_T > SV^{BE}. (Not good!)

Q: Is the SV_{T} reasonable? SV^{BE} helps to answer this question.

Example: Calculate SV^{BE} for HK project.

$$SV^{BE} = -10 + \left\{ \frac{1.114}{(1+.15)} + \frac{1.486}{(1+.15)^2} + \frac{1.811}{(1+.15)^3} + \frac{2.09}{(1+.15)^4} \right\} * (1+.15)^4 =$$
= USD 9.65891 (or HKD 67.61236M)

Check NPV (in USD M) is zero when SV = USD 9.65891:

$$NPV = -10 + \left\{ \frac{1.114}{(1+.15)} + \frac{1.486}{(1+.15)^2} + \frac{1.811}{(1+.15)^3} + \frac{2.09 + 67.61236/7}{(1+.15)^4} \right\} = 0.$$

A parent company compares the SVBE with the reported SV value:

$$SV^{BE} = HKD 67.61236M < SV_4 = HKD 80M.$$
 (Too big!) ¶

Note: If $SV^{BE} \le 0 \Rightarrow$ Good for project. Profitability does not depend on SV.

• Judgment call

In practice, there is a lot of **subjective** judgment.

Experience (MNC's own and consultants) also are incorporated.

Example: Ad-hoc decision

Based on past experience, Parent requires:

- (1) E[NPV] > 0
- (2) Prob[NPV < 0] < 30%.

In HK example, Prob[NPV < 0] = 25% \Rightarrow Accept!

Note: This ad-hoc rule double counts risk, since NPV is calculated using risk-adjusted discount rates! ¶