# Chapter 5 FX Derivatives

# **B. FX Options**

© RS 2024 (for private use, not to be posted/shared online)

## **Options: Brief Review**

#### Terminology

Major types of option contracts:

- *calls* give the holder the right to buy the underlying asset
- *puts* give the holder the right to sell the underlying asset.

Terms of an option must specify:

- Exercise or strike price (X): Price at which the right is "exercised."
- Expiration date (T): Date when the right expires.
- *Type*. When the option can be exercised: Anytime (*American*)

At expiration (European).

The right to buy/sell an asset has a price: The premium, paid upfront.



#### The Black-Scholes Formula

• Options are priced based on the Black-Scholes formula. For a call option on a stock, whose price is  $S_t$ :

$$C_t = S_t N(d1) - X e^{-i*(T-t)} N(d2)$$

where

T: time to maturity,

X: strike price,

 $\sigma$ : stock price volatility, &

$$\begin{split} N(d) &= \int_{-\infty}^{d} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \\ d1 &= [\ln(S_t/X) + (i + \sigma^2/2) \ (T - t)] / (\sigma \sqrt{T - t}), \\ d2 &= [\ln(S_t/X) + (i - \sigma^2/2) \ (T - t)] / (\sigma \sqrt{T - t})) = d1 - \sigma \sqrt{T - t}. \end{split}$$

• Black and Scholes (1973) changed the financial world by introducing their Option Pricing Model. Many applications.

2

#### The Black-Scholes Formula

• Almost all financial securities have some characteristics of financial options, the Black-Scholes model can be widely applied.

• The variation for a call FX option is given by:

$$C_t = e^{-i_f * (T-t)} S_t N(d1) - X e^{-i_d * (T-t)} N(d2)$$

- The Black-Scholes formula is derived from a set of assumptions:
  - Risk-neutrality.
  - Perfect markets (no transactions costs, divisibility, etc.).
  - Log-normal distribution with constant moments.
  - Constant risk-free rate.
  - Costless to short assets.
  - Continuous pricing.

- The Black–Scholes model does not fit the data. In general:
  - Overvalues deep OTM calls & undervalue deep ITM calls.
  - Misprices options that involve high-dividend stocks.
- The Black-Scholes formula is taken as a useful approximation.
- Limitations of the Black-Scholes Model
  - Trading is not cost-less: Liquidity risk (difficult to hedge)
  - No continuous trading: Gap risk (can be hedged)
  - Log-normal distribution: Not realistic (& cause of next limitations).
  - Underestimation of extreme moves: Left tail risk (can be hedged)
  - Constant moments: Volatility risk (can be hedged)

### **Trading in Currency Options**

#### • Markets for Foreign Currency options

(1) Interbank (OTC) market centered in London, NY, & Tokyo. OTC options are tailor-made as to amount, maturity, and exercise price.

(2) Exchange-based markets centered in Philadelphia (PHLX, now NASDAQ), NY (ISE, now Eurex) and Chicago (CME Group).

- PHLX options are on spot amounts of 10,000 units of FC (MXN 100K, SEK 100K, JPY 1M).
- PHLX maturities: 1, 3, 6, and 12 months.
- PHLX expiration dates: March, June, Sept, Dec, plus 2 spot months.
- Exercise price of an option at the PHLX or CME is stated as the price in USD cents of a unit of foreign currency.

| OPTIONS     |                       |               |      |        |                                    |  |  |
|-------------|-----------------------|---------------|------|--------|------------------------------------|--|--|
| PH          | PHILADELPHIA EXCHANGE |               |      |        |                                    |  |  |
|             |                       | Calls         | Puts |        |                                    |  |  |
|             | Vol.                  | Last          | Vol. | Last   |                                    |  |  |
| Euro        |                       |               |      | 135.54 | $ = \frac{S_t = 1.3554}{USD/FUR} $ |  |  |
| 10,000 Euro | )-cent                | s per unit. ← |      |        | - Size                             |  |  |
| 132 Feb     |                       | 0.01          | 3    | 0.38   |                                    |  |  |
| 132 Mar     | 3                     | 2.74          | 90   | 0.15   |                                    |  |  |
| 134 Feb     | 3                     | (1.90 ←       |      |        | $P_{call} = USD .019$              |  |  |
| 134 Mar     |                       | 0.01          | 25   | 1.70   |                                    |  |  |
| 136 Mar     | 8                     | 1.85          | 12   | 2.83   |                                    |  |  |
| 138 Feb     | 75                    | 0.43          |      | 0.01   |                                    |  |  |
| 142 Mar     | 1                     | 0.08          | 1    | 7.81 < | $- P_{put} = \mathbf{USD} .0781$   |  |  |
|             |                       |               |      |        |                                    |  |  |
| X=Strike    | T=E:                  | xpiration     |      |        |                                    |  |  |
|             |                       |               |      |        |                                    |  |  |

| OPTIONS               |        |                      |      |                                  |  |  |  |
|-----------------------|--------|----------------------|------|----------------------------------|--|--|--|
| PHILADELPHIA EXCHANGE |        |                      |      |                                  |  |  |  |
|                       |        | Calls                | Puts |                                  |  |  |  |
|                       | Vol.   | Last                 | Vol. | Last                             |  |  |  |
| Euro                  |        |                      |      | $135.54 \leftarrow S_t = 1.3554$ |  |  |  |
| 10,000 Euro           | -cents | per unit.            |      |                                  |  |  |  |
| 132 Feb               |        | ך 0.01               | 3    | ך 0.38                           |  |  |  |
| 132 Mar               | 3      | 2.74                 | 90   | 0.15                             |  |  |  |
| 134 Feb               | 3      | 1.90 <sup>11</sup> M |      |                                  |  |  |  |
| 134 Mar               |        | 0.01                 | 25   | 1.70                             |  |  |  |
| 136 Mar               | 8      | 1.85                 | 12   | 2.83                             |  |  |  |
| 138 Feb               | 75     | 0.43 - OTM           | [    | 0.01 - <sup>ITM</sup>            |  |  |  |
| 142 Mar               | 1      | 0.08                 | 1    | 7.81                             |  |  |  |
|                       |        |                      |      |                                  |  |  |  |
|                       |        |                      |      |                                  |  |  |  |

• Note on the value of Options For the same maturity (*T*), we should have: value of ITM options > value of ATM options > value of OTM options • ITM options are more expensive, the more ITM they are. Example: Suppose  $S_t = 1.3554$  USD/EUR. We have two ITM Mar puts:  $X_{put} = 1.36$  USD/EUR  $X_{put} = 1.42$  USD/EUR. premium (X = 1.36) = USD 0.0170 premium (X = 1.42) = USD 0.0781. ¶



| • Iris Oil decides to use the $X = .84 \text{ USD/CAD}$ put $\Rightarrow$ Cost: USD 2.04M.  |                               |                                        |                                    |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|------------------------------------|--|--|--|
| At $T = t+90$ , there will be two scenarios:                                                |                               |                                        |                                    |  |  |  |
|                                                                                             | Option is                     | ITM (exercise                          | d –i.e., $S_t < X=0.84$ )          |  |  |  |
|                                                                                             | Option is OTM (not exercised) |                                        |                                    |  |  |  |
| Position                                                                                    | Initial CF                    | <b>S</b> <sub>t+90</sub> < .84 USD/CAD | $S_{t+90} \ge .84 \text{ USD/CAD}$ |  |  |  |
| Option (HP)                                                                                 | USD 2.04M                     | (.84 – S <sub>t+90</sub> ) * CAD 300M  | 0                                  |  |  |  |
| Underlying (UP)                                                                             | 0                             | S <sub>t+90</sub> * CAD 300M           | S <sub>t+90</sub> * CAD 300M       |  |  |  |
| Total CF                                                                                    | USD 2.04M                     | USD 252M                               | S <sub>t+90</sub> * CAD 300M       |  |  |  |
| Net CF in 90 days:<br>USD 252M $-$ USD 2.04M $=$ USD 249 96M for S $\infty \leq 84$ USD/CAD |                               |                                        |                                    |  |  |  |
| $S_{t+90} * CAD 300M - USD 2.04M$ for $S_{t+90} \ge .84 USD/CAD$                            |                               |                                        |                                    |  |  |  |
| Worst case scenario (floor): USD 249.96M (when put is exercised.)                           |                               |                                        |                                    |  |  |  |
| <u>Remark</u> : The final CFs depend on $S_{t+90}!$                                         |                               |                                        |                                    |  |  |  |



| • '<br>no | • With options, there is a choice of strike prices (& premiums). A feature not available in forward/futures.                                                                                                                           |            |                                        |                                        |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|----------------------------------------|--|--|
| • :       | • Suppose, Iris Oil also considers the $X = .82$ put $\Rightarrow$ Cost: USD 0.63M                                                                                                                                                     |            |                                        |                                        |  |  |
| A         | Again, at $T = t+90$ , we will have two scenarios:                                                                                                                                                                                     |            |                                        |                                        |  |  |
|           | Position                                                                                                                                                                                                                               | Initial CF | <b>S</b> <sub>t+90</sub> < .82 USD/CAD | <b>S</b> <sub>t+90</sub> ≥ .82 USD/CAD |  |  |
|           | Option (HP)                                                                                                                                                                                                                            | USD 0.63M  | (.82 – S <sub>t+90</sub> ) * CAD 300M  | 0                                      |  |  |
|           | Underlying (UP)                                                                                                                                                                                                                        | 0          | S <sub>t+90</sub> * CAD 300M           | S <sub>t+90</sub> * CAD 300M           |  |  |
|           | Total CF                                                                                                                                                                                                                               | USD 0.63M  | USD 246M                               | S <sub>t+90</sub> * CAD 300M           |  |  |
| l<br>U    | Net CF in 90 days:State of the controlUSD 246M - USD 0.63M = USD 245.37Mfor $S_{t+90} < .82$ USD/CAD $S_{t+90} * CAD 300M - USD 0.63M$ for $S_{t+90} \ge .82$ USD/CADWorst case scenario (floor): USD 245.37M (when put is exercised). |            |                                        |                                        |  |  |



| Hedging with FX Options                                           |                                                           |  |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
| Hedging wi                                                        | Hedging with Options is Simple                            |  |  |  |  |  |  |
| Situation 1:                                                      | Underlying position: long in foreign currency.            |  |  |  |  |  |  |
|                                                                   | Hedging position: long in foreign currency <i>puts</i> .  |  |  |  |  |  |  |
| Situation 2:                                                      | Underlying position: short in foreign currency.           |  |  |  |  |  |  |
|                                                                   | Hedging position: long in foreign currency <i>calls</i> . |  |  |  |  |  |  |
| OP = underlying position (UP) + hedging position (HP-options)     |                                                           |  |  |  |  |  |  |
| Value of OP = Value of UP + Value of HP + Transactions Costs (TC) |                                                           |  |  |  |  |  |  |
| Profit from $OP = \Delta UP + \Delta HP$ -options + TC            |                                                           |  |  |  |  |  |  |

Advantage of options over futures:
⇒ Options simply expire if S<sub>t</sub> moves in a beneficial way.

• Price of the asymmetric advantage of options: The TC (insurance cost).

• We will present a simple example, where the size of the hedging position is equal to the hedging options ("Naïve" or "Basic Approach").

**Example**: A U.S. investor is long **GBP 1 million**. She hedges using Dec put options with **X** = **USD 1.60** (ATM). Underlying position:  $V_0 = GBP 1,000,000$ .  $S_{t=0} = 1.60 USD/GBP$ . Size of the PHLX contract: GBP 10,000. **X** = **USD 1.60**  $P_{t=0} = premium of Dec put = USD .05$ . TC = Cost of Dec puts = 1,000,000 \* USD .05 = **USD 50,000**. Number of contracts = **GBP 1,000,000** / GBP 10,000 = 100 contracts. On December  $S_{T=Dec} = 1.50 USD/GBP \Rightarrow$  option is exercised (ITM put)  $\Delta UP = V_0 * (S_T - S_0) = GBP 1M * (1.50 - 1.60) USD/GBP = - USD 0.1M.$  $\Delta HP = V_0 * (X - S_T) = GBP 1M * (1.60 - 1.50) USD/GBP = USD 0.1M.$  **Example:** If at T,  $\mathbf{S}_{T=Dec} = \mathbf{1.80} \text{ USD/GBP} \implies \text{option is not exercised (OTM put)}.$  $\Delta UP = \mathbf{V}_0 * (\mathbf{S}_T - \mathbf{S}_0) = \mathbf{GBP} \mathbf{1M} * (\mathbf{1.80} - \mathbf{1.60}) \text{ USD/GBP} = \text{USD } 0.2\text{M}$   $\Delta HP = 0 \qquad \text{(No exercise)}$   $\Delta OP = \text{USD } 200,000 - \text{USD } \mathbf{50,000} = \text{USD } 150,000. \P$ 

The price of this asymmetry is the premium: USD 50,000 (a sunk cost!).

### **FX Options: Hedging Strategies**

• Hedging strategies with options can be more sophisticated:

 $\Rightarrow$  Investors can play with several exercise prices with options only.

**Example**: Hedgers can use:

- Out-of-the-money (least expensive)
- At-the-money (expensive)
- In-the-money options (most expensive)
- Same *trade-off* of car insurance:
  - Low premium (high deductible)/low floor or high cap: Cheap
  - High premium (low deductible)/high floor or low cap: Expensive

| OPTIONS                                |                       |             |      |        |                       |  |  |
|----------------------------------------|-----------------------|-------------|------|--------|-----------------------|--|--|
|                                        | PHILADELPHIA EXCHANGE |             |      |        |                       |  |  |
|                                        |                       | Calls       | Puts |        |                       |  |  |
|                                        | Vol.                  | Last        | Vol. | Last   |                       |  |  |
| Euro                                   |                       |             |      | 135.54 |                       |  |  |
| 10,000 Euro                            | > -cent               | s per unit. |      |        |                       |  |  |
| 132 Feb                                |                       | 0.01        | 3    | ך 0.38 |                       |  |  |
| 132 Mar                                | 3                     | 0.74        | 90   | 0.15   | OTM                   |  |  |
| 134 Feb                                | 3                     | 1.90        |      |        |                       |  |  |
| 134 Mar                                |                       | 0.01        | 25   | 1.70   | $P_{put} = USD .0170$ |  |  |
| 136 Mar                                | 8                     | 1.85        | 12   | 2.83   | $P_{put} = USD .0283$ |  |  |
| 138 Feb                                | 75                    | 0.43        |      | 0.01 - | ITM                   |  |  |
| 142 Mar                                | 1                     | 0.08        | 1    | 7.81   |                       |  |  |
| Swedish Kr                             | Swedish Krona 15.37   |             |      |        |                       |  |  |
| 100,000 Swedish Krona -cents per unit. |                       |             |      |        |                       |  |  |

**Example:** It is February 2, 2011. UP = Long bond position **EUR 1,000,000**. HP = EUR Mar put options:  $\mathbf{X} = \mathbf{134}$  and  $\mathbf{X} = \mathbf{136}$ .  $S_t = 1.3554$  USD/EUR. (A) Out-of-the-money Mar 134 put. Total cost = USD .0170 \* **1,000,000** = USD **17,000** Floor = **1.34** USD/EUR \* EUR **1,000,000** = USD 1,340,000. Net Floor = USD 1.34M – USD .017M = USD 1.323M (B) In-the-money Mar 136 put. Total cost = USD .0283 \* **1,000,000** = USD 28,300 Floor = **1.36** USD/EUR \* EUR **1,000,000** = USD 1,360,000 Net Floor = USD 1.36M – USD .0283M = USD 1.3317M • As usual with options, under both instruments there is some uncertainty about the final cash flows. ¶

