Chapter 5 FX Derivatives

A. FX Futures and Forwards

© RS 2024 (for private use, not to be posted/shared online)

FX Risk

Example: Spec's, the Texas liquor store chain, imports wine from Europe. Spec's has to pay **EUR 5,000,000** on July 2. Today, June 4, the exchange rate is $S_t = 1.10$ USD/EUR.

Situation: Payment due on July 2: EUR 5M. $S_{t=June 4} = 1.10$ USD/EUR.

Problem:	S _t is difficult to forecast	\Rightarrow Uncertainty.
	Uncertainty	\Rightarrow Risk.
	<u>Example</u> : on July 2, $S_{t=June 4}$	$_{\rm p}$ > or < 1.10 USD/EUR

At $S_{t=June 4}$, Spec's total payment would be: EUR 5M * 1.10 USD/EUR = USD 5.50M.

Higher Volatility \Rightarrow Concern!

<u>Graph</u>: Below, we compare two normal distributions for (changes of) S_t . The "blue" distribution, with higher standard deviation (SD = volatility), is riskier, in the sense that extreme values are more likely.

Futures or Forward FX Contracts

<u>Definition</u>: A forward contract is an agreement written today, between two parties (one party is usually a bank), to exchange a *given amount* of currencies at a given *future date* at a *pre-specified exchange rate*, $F_{t,T}$.

Given amount: *Size* Future Date: Maturity = *Delivery Date* = *T*

Forward markets:	Tailor-made contracts (& illiquid). Location: None. Reputation/collateral guarantees the contract.
Futures markets:	Standardized contracts (& liquid). Location: Organized exchanges Clearinghouse guarantees the contract.

FX Futures/Forwards: Basic Terminology				
Two parties:	- A <i>buyer</i> , with the <i>long</i> FC position;			
	- A seller, with the short FC position.			
Short. Agreement to Sell.				
<i>Long</i> : Agreement to Buy .				
Contract Size: Number of units of FC in each contract.				
<i>CME Expiration dates</i> : Mar, June, Sep, and Dec + Two nearby months				
	(on the third Wednesday of expiration month)			
<i>Margin account</i> : Funds deposited with a broker to cover possible losses involved in a futures/forward contract.				
Initial Margin: Initial level of margin account.				
Maintenance Margin: Lower bound allowed for margin account.				
Settlement. FX futures can be cash-settled or physically delivered.				

• Margin Account

A margin account is like a checking account you have with your broker, but it is *marked to market*. At the end of the day, if your contracts make (lose) money, money is added to (subtracted from) your account

Example: March GBP/USD CME futures (contract size = **GBP 62,500**) Today, a traders starts a **long 2 March GBP** contract position (= GBP 125,000).

Tomorrow, the March GBP futures increases by **USD 0.01**, then, USD 1,250 (=**USD .01** * 125,000) are added to the trader's margin account.

If in 2 days, the March GBP futures decreases by **USD 0.02**, then, USD 2,500 (= **-USD .02** * 125,000) are subtracted from the trader's margin account. ¶

	Futures	Forward
Size	Standardized	Negotiated
Delivery Date (T)	Standardized	Negotiated
Counter-party	Clearinghouse	Bank
Collateral	Margin account	Negotiated
Market	Auction market	Dealer market
Costs	Brokerage and exchange fees	Bid-ask spread
Secondary market	Very liquid	Highly illiquid
Regulation	Government	Self-regulated
Location	Central exchange floor	Worldwide

Using FX Futures/Forwards

• Iris Oil Inc. will transfer **CAD 300 million** to its USD account in 90 days. To avoid FX risk, Iris Oil decides to *short* a USD/CAD Forward contract.

<u>Data</u>:

 $S_t = .8451 \text{ USD/CAD}$

 $F_{t,90-day} = .8493 \text{ USD/CAD}$

In 90-days, Iris Oil will receive with certainty:

(CAD 300M) * .8493 USD/CAD = USD 254,790,000.

<u>Note</u>: The exchange rate at in 90 days (S_{t+90}) is, now, irrelevant.

Hedging with FX Futures Contracts

• FX Hedger

FX Hedger reduces the exposure of an *underlying position* to currency risk using (at least) another position (*hedging position*).

Basic Idea of a Hedger

A change in value of an underlying position is compensated with the change in value of a hedging position.

Goal: Make the overall position insensitive to changes in FX rates.

• The Basic Approach: Equal hedge				
Equal hedge:				
Size of $UP = Size$ of HP.				
Example: Long Hedge and Short Hedge				
(A) <i>Long</i> hedge.				
A U.S. investor has to pay NOK 2.5M (Norwegian kroners) in 90 days				
\Rightarrow UP: Short NOK 2.5M .				
HP: <i>Long</i> 90 days futures for NOK 2.5M.				
(B) Short hedge				
A US investor has GBP 1M invested in British oilts				
\rightarrow LUD, Large CDD 1M				
UD: Chart futures for CBD 1M				
HP. Short lutures for GDP INI.				

```
Define:

V_t: value of the portfolio of foreign assets measured in GBP at time t.

V_t^*: value of the portfolio of foreign assets measured in USD at time t.

Example (continuation): Calculating the short hedger's profits.

It's September 12 (t=0). The investor in (b), with a long GBP 1M

position, is uncertain about S_{t=Dec}. Decides to hedge using Dec futures.

Situation: UP = GBP 1M in British bonds.

Data:

F_{sep 12,Dec} = 1.55 \text{ USD/GBP}

Futures contract size: GBP 62,500.

S_{sep 12} = 1.60 \text{ USD/GBP}.

Number of contracts = ?

HP: Investor shorts (sells) Dec futures

GBP 1M / (62,500 GBP/contract) = 16 contracts.
```

Example (continuation): Calculating the <i>short hedge</i> r's profits.						
• On October 29, prices ($S_t \& F_{t,T=Dec}$) have changed. Now we have:						
	<u>Sep 12</u>	<u>Oct 29</u>	Change			
V_t (GBP)	1,000,000	1,000,000	0			
V_t^* (USD)	1,600,000	1,500,000	-100,000			
S _t	1.60	1.50	0.10			
$F_{t,T=Dec}$	1.55	1.45	0.10			
$V_t^* - V_0^* = V_t S_t - V_0 S_0 = V_0^* (S_t - S_0)$ ($V_t = V_0 = GBP 1M$) USD 1.5M - USD 1.6M = -USD 0.1M.						
USD change in HP ("	<mark>short</mark> GBP futu	res position"):				
$-V_0 * (F_{t,T} - F_{0,T}) = \text{Realized gain}$						
(-GBP 1M) * USD/GBP (1.45 - 1.55) = USD 0.1M.						
USD Change in $OP = USD$ Change of $UP + USD$ Change of $HP = 0$						
\Rightarrow This is a <i>perfect</i> hedge! ¶						

6/5/2024

Note: In this example, we had a perfect hedge. The value of OP did not change. But, we were lucky!

Q: Why were we lucky? Because V_t did not change & the *basis* $(F_{t,T} - S_t)$ remained constant.

 $V_{Sep \ 12} = V_{Oct \ 29} = GBP \ 1M$ (F_{Sep \ 12,Dec} - S_{Sep \ 12}) = (F_{Oct \ 29,Dec} - S_{Oct \ 29}) = USD .05

An equal position hedge is not a perfect hedge if:

(1) V_t changes. $(V_t \neq V_0)$

(2) The *basis* $(F_{t,T} - S_t)$ changes.