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IA.A. Report as a Signal of Effort

This section of the Internet Appendix analyzes a variation of our model in which the report

is a signal of the manager’s effort choice rather than the firm’s cash flow. Section IV.D of the

manuscript includes a description of this alternative model and a summary of the results.

IA.A.1. The Model

We study an agency model with two risk-neutral parties, a board of directors and a manager,

that takes place over times 0, 1, 2, and 3. At time 0, the board (the principal) chooses the

firm’s governance system (explained below) and hires a manager (the agent) to run the firm. The

board represents the interests of shareholders and offers the manager a contract that maximizes

the value of the firm, net of the cost of managerial compensation. At time 1, the manager exerts

an unobservable effort to enhance the value of the firm. At time 2, the firm’s accounting system

produces a public report concerning the manager’s performance. A key feature of our model is

that this report can be manipulated by the manager. At time 3, the firm’s terminal cash flow v is

realized and paid out to shareholders.

The firm’s cash flow is either high (v = vh) or low (v = vℓ < vh). The distribution of v depends

on the manager’s effort choice e ∈ {0, 1}. If the manager exerts high effort (e = 1), v is equal to

vh with probability one; if she exerts low effort (e = 0), v is equal to vh with probability λ < 1

and equal to vℓ with probability 1 − λ. The manager’s private utility cost of exerting high effort,

denoted by c, is drawn from a uniform distribution over the interval [0, c̄]; the cost of low effort

is normalized to zero. The manager’s effort choice e and effort cost c are her private information

and hence cannot be used for contracting purposes. To make the problem interesting, we assume

that c̄ > (1 − λ)(vh − vℓ), which ensures that inducing high effort is suboptimal when a high cost

of effort c is realized.

Prior to the realization of the cash flow v, the firm’s accounting system generates a report r,

providing noisy information to the market about the manager’s effort choice (and thus the value of

the firm). This report can take on one of two values, rh or rℓ. Absent any managerial intervention,
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the report is correlated with the manager’s effort choice as follows:

prob [r = rh | e = 1] = prob [r = rℓ | e = 0] = δ, (IA.1)

where δ ∈
(
1
2 , 1
)
. For simplicity, we assume that the report r is independent of the firm’s cash

flow v, conditional on the manager’s effort choice e. Note that r is nevertheless an informative

signal about v: A favorable report rh increases the likelihood of a high effort choice and hence

of a high cash flow, whereas an unfavorable report rℓ decreases it. The parameter δ captures the

quality of the firm’s accounting system. It represents various accounting standards and conventions

in the economy as well as firm- and auditor-specific factors such as the transparency of the firm’s

operations and the auditor’s experience in the industry.

Although the report is produced by the firm’s accounting system, the manager can influence its

outcome—for example, by exploiting any leeway in accounting rules or by hiding information from

the auditor. Specifically, we assume that, by incurring a utility cost g, the manager can turn an

unfavorable report rℓ into a favorable report rh with probability ϕ. We allow for the possibility of

mixed-strategy equilibria and denote by m ∈ [0, 1] the probability with which the manager takes

such an action.

The manipulation cost g may reflect the time spent coming up with creative ways to manage

the firm’s earnings or the effort involved in convincing an auditor to sign off on a biased report.

This cost is influenced by the legal system in which the firm operates, but firm-specific factors are

also relevant, such as the rigor of the firm’s accounting system and internal controls, the skills and

independence of the firm’s accounting and internal audit teams, the independence and experience of

the board’s audit committee, the choice of external auditors, etc. The firm commits to its broader

governance system before the manager signs the contract, and the cost g captures the ease or

difficulty of manipulating the report r. Note that the cost g accrues to the manager, not the firm.

However, the firm bears an indirect cost of manipulation: When the equilibrium contract induces

selective manipulation, the manager anticipates that she may incur the disutility g after exerting

high effort, which makes it more costly to incentivize effort.

We assume that the board of directors can improve the firm’s governance—and hence increase

the manager’s manipulation cost—at no cost to the firm. That is, at time 0 the board can choose
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any g ≥ 0, without having to spend any resources. The board chooses the firm’s governance

system and the manager’s contract to maximize the value of the firm, net of the cost of managerial

compensation. A contract specifies the manager’s compensation as a function of the report r and

the terminal cash flow v. The manager is risk neutral, has no wealth, and is protected by limited

liability so that all payments must be nonnegative. Her reservation level of utility is normalized to

zero.

IA.A.2. Equilibrium Analysis

In this section, we solve for the manager’s optimal compensation contract. Our specification of

the set of available contracts is without loss of generality in the sense that it is fully consistent with

the revelation principle. Thus, we can restrict attention to truthful direct revelation mechanisms.

In the ensuing analysis, let w(r, v|c) denote the compensation scheme under the direct mech-

anism. The fact that the manager has no wealth means that all compensation payments must

be nonnegative. This implies that the manager’s participation constraint is trivially satisfied: By

choosing to exert zero effort and to not manipulate the report, the manager can always achieve a

nonnegative payoff.

IA.A.3. Preliminary Results

We first show that, under the optimal contract, the manager’s effort choice is characterized

by a cost threshold ĉ such that the manager exerts high effort if and only if c < ĉ. This follows

immediately from incentive-compatibility considerations. Suppose a manager with a cost of effort

c finds it optimal to choose the high effort level. A manager with a strictly smaller cost c′ < c faces

exactly the same feasible actions and continuation payoffs as the manager with a cost c: If she

also chooses the high effort level, then the continuation payoffs for each feasible action are identical

for c and c′, but the payoff of the manager with the lower cost c′ is larger because her cost of

effort is smaller. The continuation payoffs after choosing the low effort level are identical for the

two managers, because the cost of exerting low effort is zero. It must therefore be optimal for a

manager with a cost c′ < c to also choose the high effort level. Conversely, if a manager with a cost

of effort c finds it optimal to choose the low effort level, then a manager with a strictly higher cost

c′′ > c must also find it optimal to choose the low effort level.
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LEMMA 1: There exists a threshold ĉ ∈ [0, c̄] such that the optimal contract induces high managerial

effort (i.e., e = 1) for all c < ĉ and low managerial effort (i.e., e = 0) for all c > ĉ.

Note that the manager is never indifferent between the high and the low effort level, except

when her cost of effort is exactly at the threshold, c = ĉ. In equilibrium, under an optimal contract

shareholders are also indifferent between inducing high and low managerial effort when c = ĉ, but

not for any other realizations of c.2 Since both shareholders and the manager are indifferent if

and only if the zero-probability event c = ĉ occurs, we can ignore mixed strategies concerning the

manager’s effort choice e.

Our next result concerns the manipulation decision that the optimal contract induces the man-

ager to take. We demonstrate that this decision depends on the manager’s cost of effort only

through its effect on the manager’s effort choice e. This is not surprising, because the cost c has no

direct effect (besides its effect on effort choice) on the manipulation decision that the firm wants

to induce: For a given effort choice e, the cost c does not affect the firm’s cash flow v or the report

r and, hence, has no impact on the shareholders’ expected payoff.

LEMMA 2: For any two effort costs c and c′, for which the optimal contract induces the same effort

choice e, the optimal contract also induces the same manipulation decision m.

Lemma 1 shows that, under the optimal contract, the manager’s effort choice is identical for all

realizations of the cost parameter c below the threshold ĉ and for all realizations above the threshold

ĉ. Together with the result in Lemma 2, this implies that any allocation resulting from an optimal

direct mechanism can be implemented through a menu of contracts that pools all managers of type

c < ĉ and of type c > ĉ.

LEMMA 3: The optimal mechanism can be implemented by offering the manager a menu of con-

tracts that pools all types c ∈ [0, ĉ) and all types c ∈ (ĉ, c̄].

Without loss of generality, we can thus set w(r, v|c) = w1(r, v) for all c ∈ [0, ĉ) and w(r, v|c) =

w0(r, v) for all c ∈ (ĉ, c̄], where the subscript 1 (respectively, 0) indicates the region of parameter

values c for which the optimal contract induces high (respectively, low) managerial effort. The

optimal compensation scheme can hence be characterized by the menu W = {w0,w1}, where

2We analyze the optimal choice of the cost threshold ĉ in Proposition 5 below.
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we = (we(rh, vh), we(rℓ, vh), we(rh, vℓ), we(rℓ, vℓ)). For notational convenience, we also define the

manipulation schedule M = (m0,m1) ∈ [0, 1]2 as the manipulation choices that the board wants

to induce, where me is the desired manipulation choice for a given effort choice e.

IA.A.4. The Principal’s Problem

The optimal contract that the board offers the manager maximizes the shareholders’ expected

payoff, that is, the firm’s expected cash flow net of the manager’s expected compensation. We

solve for the optimal contract in three steps. First, for a given cost threshold ĉ and manipulation

schedule M, we characterize the compensation scheme W and manipulation cost g that induce the

manager to exert high effort if and only if c ≤ ĉ and to make the desired manipulation decisions

at minimum cost to the firm. Second, for a given cost threshold ĉ, we compare the firm’s profit

across different manipulation schedules M. We show that it is never optimal to incentivize the

manager to manipulate a low report when she exerted low effort, which allows us to restrict our

attention to contracts that may or may not induce manipulation when the manager exerted high

effort. Third, for each potentially optimal manipulation schedule, we solve for the cost threshold

ĉ that maximizes the firm’s expected profit. We then compare the expected profits generated by

these contracts and determine which contract is optimal for a given set of parameter values.

To simplify the notation, let πe,me(r, v) denote the probability that a report r ∈ {rh, rℓ} and a

cash flow v ∈ {vh, vℓ} is produced when the manager chooses effort level e ∈ {0, 1} and makes the

manipulation decision me ∈ [0, 1]. For example, if the manager exerts high effort (e = 1), the firm

generates a high cash flow with certainty; it generates a high report with probability δ in case the

manager chooses not to manipulate (m1 = 0) and with probability δ+(1−δ)ϕ in case the manager

chooses to manipulate (m1 = 1). Thus, we have π1,m1(rh, vh) = δ+ (1− δ)ϕm1. The probabilities

of the other possible outcomes are defined analogously (see the proof of Proposition 1). Based on

the results stated in Lemmas 2 to 3, we can then express the manager’s expected compensation as

(
ĉ

c̄

)∑
r,v

π1,m1(r, v)w1(r, v) +

(
1− ĉ

c̄

)∑
r,v

π0,m0(r, v)w0(r, v). (IA.2)

For a given cost threshold ĉ and manipulation schedule M, the optimal contract C = (W, g)
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minimizes the expected payment to the manager subject to the nonnegativity constraints

g ≥ 0, w0(r, v) ≥ 0, w1(r, v) ≥ 0, ∀r ∈ {rh, rℓ}, v ∈ {vh, vℓ}, (IA.3)

and the following incentive compatibility (IC) constraints that ensure that the manager takes

the desired actions: First, to induce the manager to follow the manipulation schedule M, the

compensation scheme has to satisfy the constraints

ϕ [w1(rh, vh)− w1(rℓ, vh)]− g


≤ 0 if m1 = 0,

= 0 if m1 ∈ (0, 1),

≥ 0 if m1 = 1,

(IA.4)

ϕ
[
λ
(
w0(rh, vh)− w0(rℓ, vh)

)
+ (1− λ)

(
w0(rh, vℓ)− w0(rℓ, vℓ)

)]
− g


≤ 0 if m0 = 0,

= 0 if m0 ∈ (0, 1),

≥ 0 if m0 = 1.

(IA.5)

These constraints ensure that the manager’s expected benefit from manipulation, which turns an

unfavorable report rℓ into a favorable report rh with probability ϕ, outweighs (respectively, does

not outweigh) her manipulation cost g when me = 1 (respectively, when me = 0).

Second, for the manager to exert high effort when c < ĉ and to exert low effort when c > ĉ, we

must have

∑
r,v

π1,m1(r, v)w1(r, v)− ĉ− (1− δ)gm1 ≥ max
m∈[0,1]

∑
r,v

π0,m(r, v)w1(r, v)− δgm, (IA.6)

∑
r,v

π0,m0(r, v)w0(r, v)− δgm0 ≥ max
m∈[0,1]

∑
r,v

π1,m(r, v)w0(r, v)− ĉ− (1− δ)gm. (IA.7)

The above IC constraints take into account the fact that the manager’s effort choice affects the

distribution of the firm’s report r and hence the likelihood that the manager will incur the manip-

ulation cost g. The probability of an unmanipulated low report is 1− δ when the manager exerts

high effort and δ when the manager exerts low effort.
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Finally, to ensure that the manager truthfully reports her effort cost c, it must be that

∑
r,v

π1,m1(r, v)w1(r, v)− c− (1− δ)gm1 ≥

max
e∈{0,1},m∈[0,1]

∑
r,v

πe,m(r, v)w0(r, v)− e
(
c+ (1− δ)gm

)
− (1− e)δgm, ∀c ∈ [0, ĉ), (IA.8)

∑
r,v

π0,m0(r, v)w0(r, v)− δgm0 ≥

max
e∈{0,1},m∈[0,1]

∑
r,v

πe,m(r, v)w1(r, v)− e
(
c+ (1− δ)gm

)
− (1− e)δgm, ∀c ∈ (ĉ, c̄]. (IA.9)

For a given cost threshold ĉ and manipulation schedule M, the principal’s optimization problem

is thus to minimize the manager’s expected compensation in (IA.2), subject to the constraints in

(IA.3)–(IA.9).

IA.A.5. No Manipulation vs. Selective Manipulation

In this section, we derive the optimal contract for various manipulation schedules M ∈ [0, 1]2,

taking the cost threshold ĉ as given. We demonstrate that it is never optimal to incentivize the

manager to manipulate a low report when she exerted low effort.

We begin our analysis by characterizing the optimal no-manipulation contract, that is, the

optimal contract that induces the manager to never manipulate the report, irrespective of her

chosen effort level. The following proposition shows that the optimal no-manipulation contract

rewards the manager only when both the firm’s cash flow and its report are high (i.e., when v = vh

and r = rh), which allows for the strongest inference that the manager exerted high effort. The

cost of manipulation, gn, is set such that manipulation is never optimal for the manager.

PROPOSITION 1: For any cost threshold ĉ ∈ [0, c̄], the optimal no-manipulation contract Cn

consists of a compensation scheme

wn
0 (r, v) = wn

1 (r, v) =


ĉ

δ−λ(1−δ) if r = rh and v = vh,

0 otherwise,

(IA.10)
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and a manipulation cost

gn ≥ ϕ ĉ

δ − λ(1− δ)
. (IA.11)

This contract induces the manager to exert high effort if c ≤ ĉ and low effort if c > ĉ, and to follow

the manipulation schedule m0 = m1 = 0, at minimum cost.

Despite the fact that the manager has private information about her cost of effort c, shareholders

cannot benefit from offering the manager a menu of type-specific contracts with different compen-

sation schemes depending on the (truthfully reported) cost of effort. The reason is that both the

principal and the agent are risk neutral in our setting: Both parties care only about the expected

value of payments, contingent on the manager’s actions e and m. Thus, any compensation scheme

that leads to the same expected contingent payments as the one in (IA.10) is optimal, as long as

it satisfies the incentive compatibility constraints. For example, the compensation scheme could

include lotteries after r and v have been realized or it could offer a fixed payment if the manager

announces a cost c > ĉ (instead of a payment that is contingent on r and v). It also means that

setting the compensation scheme w0 equal to w1 is optimal: This choice of w0 (i) incentivizes a

manager with a cost c > ĉ to exert low effort, and (ii) ensures that the expected compensation of

a low-effort manager is equal to the minimum amount required by the truth-telling constraint in

(IA.9). Intuitively, there are no real effects if a manager with a cost c > ĉ falsely reports a cost

below ĉ, as long as she thereafter chooses the desired effort level e = 0 and does not manipulate.

We next turn to the optimal contract that prompts the manager to implement the manipulation

schedule m0 = 0 and m1 = 1, that is, that induces the manager to manipulate a low report if she

exerted high effort, but not if she exerted low effort. We refer to such a contract as a selective-

manipulation contract.

PROPOSITION 2: For any cost threshold ĉ ∈ [0, c̄], the optimal selective-manipulation contract Cs

consists of a compensation scheme

ws
0(r, v) = ws

1(r, v) =


ĉ

δ−(1−δ)(λ−ϕ+λϕ) if r = rh and v = vh,

0 otherwise.

(IA.12)
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and a manipulation cost

gs =
λϕ ĉ

δ − (1− δ)(λ− ϕ+ λϕ)
. (IA.13)

This contract induces the manager to exert high effort if c ≤ ĉ and low effort if c > ĉ, and to follow

the manipulation schedule m0 = 0 and m1 = 1, at minimum cost.

As in the no-manipulation case, the manager only receives a compensation when the outcome

v = vh and r = rh is observed, which allows for the strongest inference that the manager exerted

high effort. The cost of manipulation, gs, is chosen such that only a manager who exerted high

effort has an incentive to manipulate a low report rℓ. It should not be chosen larger than necessary,

because the manager anticipates that she may have to incur the cost gs if she exerts high effort, and

an increase in gs therefore requires an increase in the promised compensation. Thus, the principal

optimally sets gs equal to λϕws(rh, vh), the minimum amount required to prevent the manager

from manipulating a low report when she exerted low effort.

Our next result shows that it is never optimal for shareholders to incentivize the manager to

manipulate a low report when she exerted low effort or to play a mixed manipulation strategy when

she exerted high effort.

PROPOSITION 3: An optimal contract (i) does not induce manipulation after low effort and (ii)

does not induce a randomized manipulation decision after high effort.

A contract that incentivizes a manager who exerted high effort to use mixed strategies when

making her manipulation decision cannot be optimal for two reasons. First, compared to the

selective-manipulation contract Cs, which always induces manipulation of a low report rℓ after

high effort, inducing such behavior with a probability of less than one makes the public report

r less informative about the manager’s effort choice. Second, inducing m1 ∈ (0, 1) requires a

higher manipulation cost g > gs because the cost must make a manager who chose the high

effort level (and hence correctly anticipates a high cash flow vh) indifferent between manipulating

and not manipulating. In contrast, under the selective-manipulation contract Cs a manager who

exerted low effort is kept indifferent, whereas a manager who exerted high effort strictly prefers

manipulation. Inducing mixed strategies over the choice of m1 thus causes two inefficiencies for

shareholders: The link between effort and compensation is weakened, and the required increase in

10



the manipulation cost g makes it more costly for shareholders to incentivize high managerial effort.

Similarly, incentivizing manipulation by a manager who exerted low effort has a negative effect: It

reduces the informativeness of the report about the manager’s effort choice and hence increases the

compensation payment required to induce high managerial effort.

Proposition 3 implies that, for any desired cost threshold ĉ, the optimal contract is either the

no-manipulation contract Cn defined in Proposition 1 (which prevents manipulation entirely) or

the selective-manipulation contract Cs defined in Proposition 2 (which permits manipulation only

after high effort). The following proposition compares the manager’s expected compensation under

these two contracts (taking the threshold ĉ as given).

PROPOSITION 4: Let κ = (1−δ)(1−λ)
δ−λ(1−δ) ∈ (0, 1). Then,

1. for any cost threshold ĉ ∈ (0, κc̄), the expected compensation under the no-manipulation con-

tract Cn defined in Proposition 1 is strictly higher than the expected compensation under the

selective-manipulation contract Cs defined in Proposition 2;

2. for any cost threshold ĉ ∈ (κc̄, c̄], the expected compensation under the no-manipulation con-

tract Cn defined in Proposition 1 is strictly lower than the expected compensation under the

selective-manipulation contract Cs defined in Proposition 2.

Proposition 4 shows that the board offers a selective-manipulation contract if it wants to im-

plement a low cost threshold ĉ, and a no-manipulation contract if it prefers to induce a high cost

threshold ĉ. To understand this result, we need to analyze the expected payments to the manager

under the two contracts. Selective manipulation has two effects. First, it makes the report r more

informative about the manager’s effort choice: It increases the likelihood that a high-effort manager

generates a favorable report rh from δ to δ+(1− δ)ϕ, while leaving the likelihood that a low-effort

manager produces such an outcome unchanged. This improved informativeness allows for a more

efficient compensation contract: It reduces the payment required to induce a high level of effort.

Second, the selective-manipulation contract must prevent a manager who exerted low effort from

manipulating. This is achieved by setting a sufficiently high cost of manipulation gs. However,

this cost must be borne by a manager who exerted high effort and, due to bad luck, generated an

unfavorable report rℓ. Anticipating this possibility, the manager hence becomes more hesitant to

11



exert high effort in the first place: Manipulating a low report selectively when e = 1 effectively

increases the manager’s cost of exerting high effort by the amount of her expected manipulation

cost, (1 − δ)gs. This makes it more costly for shareholders to incentivize effort provision. The

increase in the payment ws(rh, vh) necessary to induce high effort partly undoes the reduction in

ws(rh, vh) made possible by the improved informativeness of the report r.

For a manager with a cost c > ĉ, the net effect of switching to a selective-manipulation contract

is easy to determine. The probability of receiving a compensation payment is the same under both

contracts, λ(1 − δ), but the payment is lower under the selective-manipulation contract. Thus, a

low-effort manager earns a lower expected compensation under the selective-manipulation contract.

For a manager with a cost c < ĉ, in contrast, the expected compensation is increased. The promised

payment is lower, but selective manipulation increases the probability of receiving a payment. The

increased probability more than offsets the reduction in the payment and, as a result, a high-effort

manager’s expected compensation under the selective-manipulation contract exceeds that under

the no-manipulation contract:3

(δ + (1− δ)ϕ)

(
ĉ

δ − λ(1− δ) + (1− δ)(1− λ)ϕ

)
> δ

(
ĉ

δ − λ(1− δ)

)
. (IA.14)

This does not mean, however, that a high-effort manager receives a higher expected utility un-

der the selective-manipulation contract. On the contrary, the increase in the manager’s expected

compensation is more than offset by the cost of manipulation that she expects to incur. This is

intuitive. The effort IC constraint in (IA.6) is binding under both contracts, so if switching from

a no-manipulation contract to a selective-manipulation contract reduces the low-effort manager’s

expected payoff (it does, because of the improved informativeness of r), it must also reduce the

high-effort manager’s expected payoff (net of the expected cost of manipulation).

When considering whether to offer a selective-manipulation contract, the firm trades off the

reduction in expected compensation due to the improved informativeness of the report against the

increased cost of inducing effort caused by the expected cost of manipulation. Which of these two

effects dominates depends on how likely the firm is to face either a low-cost or a high-cost manager,

3The expressions on the left- and right-hand side of inequality (IA.14) are identical for ϕ = 0, and the expression

on the left-hand side is increasing in ϕ.
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which in turn depends on the choice of the cost threshold ĉ. For low values of ĉ, the manager is

unlikely to exert high effort and hence to manipulate the report. In this case, shareholders prefer

the selective-manipulation contract, because the deadweight loss due to the manager’s manipulation

cost is small compared to the reduction in the expected compensation due to improved information

transmission. For high values of ĉ, the opposite is the case. The manager is likely to exert high

effort and hence to incur the manipulation cost. Shareholders thus prefer the no-manipulation

contract, because the deadweight loss due to the manager’s manipulation cost is large compared to

the reduction in the expected compensation due to improved information transmission.

An inspection of κc̄, the maximum value of the cost threshold ĉ for which shareholders pre-

fer the selective-manipulation contract to the no-manipulation contract, shows that it decreases

in both δ and λ. This is consistent with the intuition described above. A more informative un-

manipulated report (higher δ) reduces the benefit of selective manipulation, thereby making the

selective-manipulation contract relatively less attractive. A higher λ improves the chances of a low-

effort manager generating a high cash flow vh, which makes it more beneficial for her to manipulate

a low report rℓ. Since manipulation by a low-effort manager is never optimal, this means that the

manipulation cost gs must be increased, which in turn requires an increase in the compensation

payment ws(rh, vh) (to incentivize a low-cost manager to exert high effort). Thus, an increase in λ

makes selective manipulation less attractive for the firm.

IA.A.6. Optimal Contract

Our analysis in Section IA.A.5 shows that the optimal contract to implement a given cost

threshold ĉ is either a no-manipulation contract or a selective-manipulation contract. We now

endogenize the board’s choice of the threshold ĉ and analyze which of these two contracts is optimal

in different situations. We show that the board’s decision depends on the size of the ratio vh−vℓ
c̄ .

The numerator, vh − vℓ, is the increase in cash flow that effort can generate; it is divided by c̄,

which captures the average cost of effort (since c is uniformly distributed over the interval [0, c̄]).

We interpret this ratio as a measure of the productivity of effort. This is intuitive if the ratio is

multiplied by (1 − λ), since (1 − λ) (vh − vℓ) is the expected value of the incremental cash flow

when high effort is exerted instead of low effort. We show that when effort is only moderately

productive, the board chooses a low threshold ĉ and implements it using a selective-manipulation
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contract. In contrast, when effort is highly productive, the board implements a higher threshold ĉ

using a no-manipulation contract. As a first step, we derive the optimal value of the threshold ĉ

for each type of contract.

PROPOSITION 5: Under the no-manipulation contract Cn defined in Proposition 1, firm value is

maximized at a cost threshold of

ĉn = max

{
1

2

(
(1− λ)(vh − vℓ)−

λ(1− δ) c̄

δ − λ(1− δ)

)
, 0

}
. (IA.15)

In contrast, under the selective-manipulation contract Cs defined in Proposition 2, firm value is

maximized at a cost threshold of

ĉs = max

{
1

2

(
δ − (1− δ)(λ− ϕ+ λϕ)

δ − (1− δ)(λ− ϕ)

)(
(1− λ)(vh − vℓ)−

λ(1− δ) c̄

δ − (1− δ)(λ− ϕ+ λϕ)

)
, 0

}
.

(IA.16)

Under both types of contract, the board may optimally choose not to incentivize effort provision:

If the expected value-added of high effort, (1 − λ)(vh − vℓ), is small, the optimal cost threshold ĉ

is equal to zero (which is implemented by setting all compensation payments equal to zero). The

board implements a positive cost threshold ĉ > 0 (and hence induces high effort provision by a

manager with a cost c < ĉ) only if effort is sufficiently productive. An inspection of (IA.15) and

(IA.16) reveals that ĉn = 0 if ĉs = 0, but not vice versa. This means that, for some parameter

values, the board incentivizes effort provision by the manager only under the selective-manipulation

contract. The expression for ĉs in (IA.16) immediately implies the following result.

COROLLARY 1: The optimal contract implements a cost threshold ĉ > 0 (i.e., incentivizes the

manager to exert high effort with a strictly positive probability) if and only if

vh − vℓ
c̄

>
λ(1− δ)

(1− λ) [δ − (1− δ)(λ− ϕ+ λϕ)]
. (IA.17)

Having determined the optimal cost threshold ĉ under the no-manipulation and the selective-

manipulation contract, we can now solve for the optimal contract by analyzing which of these two

contracts generates a higher firm value when the cost threshold is chosen optimally (i.e., when ĉ is

set to ĉn under the no-manipulation contract and to ĉs under the selective-manipulation contract).
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PROPOSITION 6: If the condition

vh − vℓ
c̄

≤ 1− δ

δ − λ(1− δ)

(
1

1− λ
+

√
δ − (1− δ)(λ− ϕ)

δ − (1− δ)(λ− ϕ+ λϕ)

)
(IA.18)

is satisfied, then the optimal contract is the selective-manipulation contract Cs defined in Proposition

2. If the above condition is not satisfied, then the optimal contract is the no-manipulation contract

Cn defined in Proposition 1.

As discussed above, the ratio vh−vℓ
c̄ determines which contract is optimal. There are three

distinct regions. If vh−vℓ
c̄ is so small that condition (IA.17) is violated, the board optimally offers

a contract that induces low effort for any cost of effort c > 0 (by setting ĉ = 0). In this case,

both the selective-manipulation contract (with ws(rh, vh) = 0 and gs = 0) and the no-manipulation

contract (with wn(rh, vh) = 0 and gn = 0) generate the same firm value. For intermediate values

of vh−vℓ
c̄ such that both conditions (IA.17) and (IA.18) are satisfied, the board optimally offers a

selective-manipulation contract that induces high effort if c < ĉs and incentivizes manipulation of

a report rℓ if the manager exerted high effort. For high values of vh−vℓ
c̄ such that condition (IA.17)

is satisfied but condition (IA.18) is violated, the board optimally offers a no-manipulation contract

that induces high effort if c < ĉn and prevents all manipulation.

These results about the optimal contract are consistent with the intuition we provided in Section

IA.A.5, comparing the costs of implementing a given threshold ĉ using either a no-manipulation

contract or a selective-manipulation contract. As discussed above, a selective-manipulation contract

is preferred by the board when ĉ is low, since the improved informativeness under such a contract

decreases the expected compensation of a low-effort manager (with c > ĉ), whom the board is more

likely to face when ĉ is low. In contrast, a no-manipulation contract is preferred by the board

when ĉ is high, since selective manipulation makes inducing high effort more costly and, as a result,

increases the expected compensation of a high-effort manager (with c < ĉ), whom the board is

more likely to face when ĉ is high. An inspection of (IA.15) and (IA.16) shows that both ĉn and ĉs

are increasing in vh−vℓ
c̄ .
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IA.A.7. Proofs

Proof of Lemma 1. We prove this result by contradiction. Suppose the result does not hold.

Then, there must exist a cost c0 > 0 that induces effort choice e = 0 and a cost c1 > c0 that induces

effort choice e = 1. Thus, letting U(e,m, c) denote the manager’s expected utility if she chooses

effort e and manipulation strategy m when facing a cost of effort c (that she reports truthfully),

we must have

U(0,m0, c0) ≥ U(1,m1, c0), (IA.19)

U(1,m1, c1) ≥ U(0,m0, c1), (IA.20)

where me denotes the manager’s optimal manipulation choice for a given effort choice e. Further-

more, let Û(e,m, c, c′) denote a type-c manager’s expected utility from choosing e and m when

she mimics the behavior of a type-c′ manager (i.e., claims to be of type c′ and chooses e and m

accordingly). Since a type-c0 manager prefers not to mimic the behavior of a type-c1 manager, we

have

U(0,m0, c0) ≥ Û(1,m1, c0, c1) > U(1,m1, c1), (IA.21)

where the last inequality follows from the fact that c1 > c0. Similarly, since a type-c1 manager

prefers not to mimic the behavior of a type-c0 manager, we have

U(1,m1, c1) ≥ Û(0,m0, c1, c0) = U(0,m0, c0), (IA.22)

where the equality follows from the fact that the effort cost does not directly affect the manager’s

expected utility if she chooses low effort e = 0. Clearly, the two inequalities in (IA.21) and (IA.22)

are inconsistent with each other, proving that such a case cannot exist. The result must therefore

be true.

Proof of Lemma 2. For a given effort choice e, the manager’s cost of effort does not affect

the distribution of the firm’s cash flow v or the report r. Thus, if the manager chooses the same

effort level e when her effort cost is either c or c′, her continuation payoffs and hence her incentives

to engage in manipulation are the same in both cases. Furthermore, since the firm’s cash flow
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v depends on the manger’s effort cost only through its effect on the manager’s effort choice e, if

shareholders find it optimal to induce the manager to manipulate an unfavorable report rℓ with

probability m when her effort cost is c, doing so must also be optimal when the manager’s effort

cost is c′, as long as the manager’s optimal effort choice is the same for c and c′.

Proof of Lemma 3. From Lemma 1, it follows that all manager types c ∈ [0, ĉ) choose the same

effort e = 1 and hence make the same manipulation decision m1 (Lemma 2). Thus, these types face

the same probability of generating outcome (r, v), for all r ∈ {rh, rℓ} and v ∈ {vh, vℓ}. This means

that, under an incentive-compatible mechanism, these types must all receive the same expected

compensation. Otherwise, they would all report to be of the type that generates the highest

expected compensation. Without loss of generality, we can therefore set w(r, v|c) = w1(r, v), for

all c ∈ [0, ĉ). An analogous argument holds for all manager types c ∈ (ĉ, c̄], so that, without loss of

generality, we can set w(r, v|c) = w0(r, v), for all c ∈ (ĉ, c̄].

Proof of Proposition 1. We derive the optimal no-manipulation contract by first considering

a simplified optimization problem and then showing that the solution to this simplified problem is

also a solution to the full optimization problem in (IA.2)–(IA.9).

To simplify the notation, let πe,me(r, v) denote the probability that a report r ∈ {rh, rℓ} and a

cash flow v ∈ {vh, vℓ} is produced when the manager chooses effort level e ∈ {0, 1} and follows the

manipulation schedule me ∈ [0, 1]. That is,

π1,m1(rh, vh) = δ + (1− δ)ϕm1, (IA.23)

π0,m0(rh, vh) = λ(1− δ + δ ϕm0), (IA.24)

π1,m1(rℓ, vh) = (1− δ)(1− ϕm1), (IA.25)

π0,m0(rℓ, vh) = λ δ(1− ϕm0), (IA.26)

π1,m1(rh, vℓ) = 0, (IA.27)

π0,m0(rh, vℓ) = (1− λ)(1− δ + δ ϕm0), (IA.28)

π1,m1(rℓ, vℓ) = 0, (IA.29)

π0,m0(rℓ, vℓ) = (1− λ)δ(1− ϕm0). (IA.30)
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Also, define ∆πm0,m1(r, v) = π1,m1(r, v)− π0,m0(r, v).

We begin by rewriting the principal’s objective function in (IA.2). Setting e = 0 and m = m0

on the right-hand side of (IA.8) yields

∑
r,v

π1,m1(r, v)w1(r, v) ≥
∑
r,v

π0,m0(r, v)w0(r, v) + ĉ+G(m0,m1), (IA.31)

where G(m0,m1) denotes the difference in the manager’s expected manipulation cost when she

exerts high rather than low effort, that is, G(m0,m1) = [(1− δ)m1 − δm0] g. Similarly, setting

e = 1 and m = m1 on the right-hand side of (IA.9), we have

∑
r,v

π0,m0(r, v)w0(r, v) ≥
∑
r,v

π1,m1(r, v)w1(r, v)− ĉ−G(m0,m1). (IA.32)

An inspection of (IA.31) and (IA.32) shows that both constraints must be binding, and the prin-

cipal’s objective function can therefore be written as

min
w0,w1,g

∑
r,v

π1,m1(r, v)w1(r, v)−
(
1− ĉ

c̄

)(
ĉ+G(m0,m1)

)
. (IA.33)

We next consider a simplified optimization problem. In particular, we solve for the optimal

compensation scheme w1 that implements an effort choice characterized by the threshold ĉ ∈ (0, c̄]

for a given manipulation schedule m0 = m1 = 0 and (temporarily) ignore the contracting variables

w0 and g, the effort-choice constraint in (IA.7) (for the case when c > ĉ), and the truth-telling

constraints in (IA.8) and (IA.9). Since G(m0,m1) = 0 when m0 = m1 = 0, the simplified problem

is thus given by

min
w1

∑
r,v

π1,0(r, v)w1(r, v)−
(
1− ĉ

c̄

)
ĉ (IA.34)

s.t.
∑
r,v

∆π0,0(r, v)w1(r, v) ≥ ĉ (IA.35)

w1(r, v) ≥ 0, ∀r ∈ {rh, rℓ}, v ∈ {vh, vℓ} (IA.36)

Denoting the Lagrangian multiplier of the constraint in (IA.35) by ν and the respective multipliers

of the limited liability constraints in (IA.36) by ξr,v, we derive the first order condition of the above
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optimization problem with respect to w1(r, v) as

π1,0(r, v)− ν∆π0,0(r, v)− ξr,v = 0, (IA.37)

with the complementary slackness condition ξr,vw1(r, v) = 0. We first show that the IC constraint

in (IA.35) must be binding. For the constraint to be satisfied for any ĉ > 0, the payment w1(rh, vh)

or w1(rℓ, vh) must be strictly positive because ∆π0,0(rh, vℓ) < 0 and ∆π0,0(rℓ, vℓ) < 0. (Note that

∆π0,0(rℓ, vh) may be positive or negative, whereas ∆π0,0(rh, vh) is always positive.) If the constraint

in (IA.35) were not binding for any ĉ > 0, the expected compensation in (IA.34) could therefore be

reduced by lowering one of these positive payments without violating any constraints. Optimality

thus requires that the IC constraint in (IA.35) be binding and that ν > 0. Since π1,0(r, v) = 0 and

∆π0,0(r, v) < 0 for the two outcomes (rh, vℓ) and (rℓ, vℓ) and since ν > 0, the first order condition

in (IA.37) implies that ξrh,vℓ > 0 and ξrℓ,vℓ > 0. Thus, complementary slackness requires that

w1(rh, vℓ) = w1(rℓ, vℓ) = 0. Furthermore, for the IC constraint in (IA.35) to hold for ĉ > 0, at least

one of the two remaining payments, w1(rh, vh) and w1(rℓ, vh), must be positive. However, they

cannot both be positive: If ξrh,vh = ξrℓ,vh = 0, the first order condition in (IA.37) would require

that

δ

δ − λ(1− δ)
=

π1,0(rh, vh)

∆π0,0(rh, vh)
= ν =

π1,0(rℓ, vh)

∆π0,0(rℓ, vh)
=

1− δ

1− δ − λδ
, (IA.38)

which cannot hold since δ > 1
2 and λ > 0. Consequently, the IC constraint in (IA.35) implies that

either

w1(rh, vh) =
ĉ

∆π0,0(rh, vh)
=

ĉ

δ − λ(1− δ)
and w1(rℓ, vh) = 0 (IA.39)

or

w1(rh, vh) = 0 and w1(rℓ, vh) =
ĉ

∆π0,0(rℓ, vh)
=

ĉ

1− δ − λδ
. (IA.40)

The latter case is only feasible if 1− δ − λδ > 0, since the payment w1(rℓ, vh) would otherwise be

negative and hence violate the limited liability constraint in (IA.36). However, even if the payment

scheme w1(rh, vh) = 0 and w1(rℓ, vh) > 0 is feasible, it is never optimal. To see this, consider an

increase in w1(rh, vh) to ε1 > 0 and a decrease in w1(rℓ, vh) by ε2 > 0 such that the IC constraint
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in (IA.35) remains binding, that is,

ε2 =
∆π0,0(rh, vh)

∆π0,0(rℓ, vh)
ε1 =

δ − λ(1− δ)

1− δ − λδ
ε1. (IA.41)

Such a change in payments would change the manager’s expected compensation by

π1,0(rh, vh) ε1 − π1,0(rℓ, vh) ε2 = δ ε1 − (1− δ)
δ − λ(1− δ)

1− δ − λδ
ε1 = − λ(2δ − 1)

1− δ − λδ
ε1, (IA.42)

which is negative since δ > 1
2 and 1 − δ − λδ > 0. A positive payment w1(rℓ, vh) can therefore

not be optimal. The optimal compensation scheme is hence given by w1(rh, vh) = ĉ
δ−λ(1−δ) and

w1(rℓ, vh) = w1(rh, vℓ) = w1(rℓ, vℓ) = 0. This is intuitive: The expected compensation in (IA.34) is

minimized if the manager receives a positive payment only in the state of nature with the highest

likelihood ratio
π1,0(r,v)
π0,0(r,v)

, which is state (rh, vh) in which both the report and the terminal cash flow

signal high managerial effort.

Now consider the “no-manipulation” contract Cn = (wn
0 ,w

n
1 , g

n) with wn
1 (rh, vh) = ĉ

δ−λ(1−δ)

and wn
1 (rℓ, vh) = wn

1 (rh, vℓ) = wn
1 (rℓ, vℓ) = 0 as above, wn

0 (r, v) = wn
1 (r, v) for all r ∈ {rh, rℓ} and

v ∈ {vh, vℓ}, and gn ≥ ϕwn
1 (rh, vh). Since w0 and g are not part of the simplified problem, this

contract is clearly a solution to the simplified problem in (IA.34)–(IA.36). Furthermore, since the

objective functions in (IA.33) and (IA.34) are identical whenm0 = m1 = 0 and since the constraints

in (IA.35) and (IA.36) are implied by the constraints in (IA.6) and (IA.3), respectively, the contract

Cn is also a solution to the full optimization problem characterized in Section IA.A.4 if it satisfies

the additional constraints in (IA.3)–(IA.9).

The contract Cn clearly satisfies the nonnegativity constraints in (IA.3). Furthermore, any

gn ≥ ϕwn
1 (rh, vh) satisfies the manipulation incentive constraints in (IA.4) and (IA.5) when m0 =

m1 = 0.

Since gn ≥ ϕwn
1 (rh, vh), the right-hand side of (IA.6) is maximized by setting m = 0: The ex-

pected gain from manipulating, λδϕwn
1 (rh, vh), is lower than the expected cost, δgn. The constraint

in (IA.6) then becomes identical to the constraint in (IA.35) and is binding. The right-hand side of

(IA.7) is also maximized by settingm = 0: the expected gain from manipulating, (1−δ)ϕwn
0 (rh, vh),

cannot exceed the expected cost, (1 − δ)gn, when gn ≥ ϕwn
1 (rh, vh). Since wn

0 = wn
1 , this means
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that the expression on the right-hand side of (IA.7) is identical to the expression on the left-hand

side of (IA.6) when m1 = 0. Furthermore, the expression on the left-hand side of (IA.7) is identical

to the expression on the right-hand side of (IA.6) when m0 = 0 because the right-hand side of

(IA.6) is maximized by setting m = 0, as demonstrated above. Thus, the result that (IA.6) is

binding implies that (IA.7) is also binding.

The truth-telling constraint in (IA.8) is implied by the constraint in (IA.6) when e = 0 on the

right-hand side of (IA.8). To see this, note that, for c = ĉ, (IA.6) is identical to (IA.8) when e = 0

because wn
0 = wn

1 . Thus, (IA.8) must be satisfied for all c ≤ ĉ when e = 0. When e = 1, the

constraint in (IA.8) is (weakly) more restrictive when m = 0 on the right-hand side: the expected

gain from manipulating is (1−δ)ϕwn
0 (rh, vh) and hence cannot exceed the expected cost of (1−δ)gn

since gn ≥ ϕwn
1 (rh, vh). This means that the constraint is trivially satisfied when e = 1 because, for

m = 0 (and m1 = 0), the expression on the left-hand side equals the expression on the right-hand

side. Similarly, the truth-telling constraint in (IA.9) is implied by the constraint in (IA.7) when

e = 1 on the right-hand side of (IA.9). To see this, note that, for c = ĉ, (IA.7) is identical to (IA.9)

when e = 1 because wn
0 = wn

1 . Thus, (IA.9) must be satisfied for all c ≥ ĉ when e = 1. When

e = 0, the constraint in (IA.9) is (weakly) more restrictive when m = 0 on the right-hand side:

the expected gain from manipulating is λδϕwn
1 (rh, vh) and hence is lower than the expected cost

of δgn since gn ≥ ϕwn
1 (rh, vh). This means that the constraint is trivially satisfied when e = 0

because, for m = 0 (and m0 = 0), the expression on the left-hand side equals the expression on the

right-hand side.

Proof of Proposition 2. The derivation of the optimal contract that induces manipulation by

the manager when she exerted high effort but not when she exerted low effort (i.e., when c < ĉ)

is similar to that of the optimal no-manipulation contract. We again first consider a simplified

optimization problem that minimizes the cost of implementing an effort choice characterized by the

threshold ĉ for a given manipulation schedule m0 = 0 and m1 = 1 and then show that its solution

is also a solution to the full optimization problem in (IA.2)–(IA.9). The simplified problem consists

of the objective function in (IA.33) (ignoring the contracting variable w0), which is equivalent to

the objective function in (IA.2) as demonstrated in the proof of Proposition 1, the effort-choice

constraint in (IA.6) for the case when c < ĉ (both for m = 0 and m = 1 on the right-hand side),
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and the nonnegativity constraint for w1 in (IA.3). Since G(m0,m1) = (1 − δ)g ≥ 0 when m0 = 0

and m1 = 1, the simplified problem is thus given by

min
w1,g

∑
r,v

π1,1(r, v)w1(r, v)−
(
1− ĉ

c̄

)(
ĉ+ (1− δ)g

)
(IA.43)

s.t.
∑
r,v

∆π0,1(r, v)w1(r, v) ≥ ĉ+ (1− δ)g (IA.44)

∑
r,v

∆π1,1(r, v)w1(r, v) ≥ ĉ+ (1− 2δ)g (IA.45)

w1(r, v) ≥ 0, ∀r ∈ {rh, rℓ}, v ∈ {vh, vℓ} (IA.46)

Denoting the Lagrangian multiplier of the constraint in (IA.44) by ν, the multiplier of the constraint

in (IA.45) by µ, and the respective multipliers of the limited liability constraints in (IA.46) by ξr,v,

we derive the first order condition of the above optimization problem with respect to w1(r, v) as

π1,1(r, v)− ν∆π0,1(r, v)− µ∆π1,1(r, v)− ξr,v = 0, (IA.47)

with the complementary slackness condition ξr,vw1(r, v) = 0, and the first order condition with

respect to g as

−
(
1− ĉ

c̄

)
(1− δ) + ν(1− δ) + µ(1− 2δ) = 0. (IA.48)

We first show that it is optimal to set w1(rh, vℓ) = w1(rℓ, vℓ) = 0. Suppose this is not the case

(i.e., w1(r, vℓ) > 0 for r = rh or r = rℓ). If w1(r, vℓ) > 0, complementary slackness requires that

ξr,vℓ = 0. But since π1,1(r, v) = 0, ∆π0,1(r, v) < 0, and ∆π1,1(r, v) < 0 for the two outcomes

(rh, vℓ) and (rℓ, vℓ), this implies that the first order condition in (IA.47) can only be satisfied if

ν = µ = 0 (the multipliers have to be nonnegative), which means that the IC constraints in (IA.44)

and (IA.45) are not binding. This, in turn, implies that it is uniquely optimal to set w1(rh, vh) =

w1(rℓ, vh) = 0 because π1,1(rh, vh) > 0 and π1,1(rℓ, vh) > 0. But this makes it impossible to elicit

high effort for any nonzero ĉ: since ∆π0,1(rh, vℓ) < 0 and ∆π0,1(rℓ, vℓ) < 0, (IA.44) is violated if

w1(rh, vh) = w1(rℓ, vh) = 0. Thus, we must have that w1(rh, vℓ) = w1(rℓ, vℓ) = 0.

We next argue that the IC constraints in (IA.44) and (IA.45) must both be binding. Suppose
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this is not the case. If the constraint in (IA.44) is slack, we must have ν = 0. The first order

condition in (IA.48) then implies that µ < 0 (since δ > 1
2). But this violates the condition

that the multiplier µ has to be nonnegative at the optimum. Thus, the constraint in (IA.44)

must be binding. Similarly, if the constraint in (IA.45) is slack, we must have µ = 0. Since

a payment w1(r, v) can only be strictly positive if ξr,v = 0, the first order condition in (IA.47)

then implies that ν =
π1,1(r,v)
∆π0,1(r,v)

=
π1,1(r,v)

π1,1(r,v)−π0,0(r,v)
. However, this expression either exceeds one (if

π1,1(r, v) > π0,0(r, v) > 0) or it is nonpositive (if π1,1(r, v) < π0,0(r, v)). In both cases, it violates

the first order condition in (IA.48) when µ = 0, which requires that ν = 1 − ĉ
c̄ ∈ (0, 1] for any

nonzero ĉ. Thus, the constraint in (IA.45) must be binding.

Since both IC constraints in (IA.44) and (IA.45) must be binding at the optimum, we obtain the

following expression for g by subtracting (IA.45) from (IA.44) (and using the fact that w1(rh, vℓ) =

w1(rℓ, vℓ) = 0):

g =
1

δ

∑
r,v

(
∆π0,1(r, v)−∆π1,1(r, v)

)
w1(r, v) (IA.49)

=
1

δ

∑
r,v

(
π0,1(r, v)− π0,0(r, v)

)
w1(r, v) (IA.50)

= λϕ
(
w1(rh, vh)− w1(rℓ, vh)

)
. (IA.51)

Note that, with this choice of g, the two IC constraints in (IA.44) and (IA.45) become identical.

We can therefore drop one of the constraints. Substituting g into the objective function in (IA.43)

and the constraint in (IA.44), we can rewrite the optimization problem as

min
w1

∑
r,v

π1,1(r, v)w1(r, v)−
(
1− ĉ

c̄

)[
ĉ+ (1− δ)λϕ

(
w1(rh, vh)− w1(rℓ, vh)

)]
(IA.52)

s.t.
∑
r,v

∆π0,1(r, v)w1(r, v) = ĉ+ (1− δ)λϕ
(
w1(rh, vh)− w1(rℓ, vh)

)
(IA.53)

w1(rh, vh) ≥ 0, w1(rℓ, vh) ≥ 0, w1(rh, vℓ) = 0, w1(rℓ, vℓ) = 0 (IA.54)

As before, denote the Lagrangian multiplier of the constraint in (IA.53) by ν and the multipliers

of the limited liability constraints by ξrh,vh and ξrℓ,vh . The first order conditions with respect to
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w1(rh, vh) and w1(rℓ, vh) are then

δ + (1− δ)ϕ−
(
1− ĉ

c̄

)
(1− δ)λϕ− ν

[
δ − (1− δ)(λ− ϕ+ λϕ)

]
− ξrh,vh = 0, (IA.55)

(1− δ)(1− ϕ) +

(
1− ĉ

c̄

)
(1− δ)λϕ− ν [(1− δ)(1− ϕ+ λϕ)− λδ]− ξrℓ,vh = 0, (IA.56)

where we have substituted in the expressions for π0,0(r, v) and π1,1(r, v) from (IA.23)–(IA.26). For

the IC constraint in (IA.53) to hold for ĉ > 0, at least one of the payments w1(rh, vh) and w1(rℓ, vh)

must be positive. However, they cannot both be positive. If they were, complementary slackness

would require that ξrh,vh = ξrℓ,vh = 0. But then the first order conditions in (IA.55) and (IA.56)

would imply that

δ + (1− δ)ϕ−
(
1− ĉ

c̄

)
(1− δ)λϕ

δ − (1− δ)(λ− ϕ+ λϕ)
=

(1− δ)(1− ϕ) +
(
1− ĉ

c̄

)
(1− δ)λϕ

(1− δ)(1− ϕ+ λϕ)− λδ
, (IA.57)

or, equivalently, that

ĉ

c̄
= 1 +

2δ − 1

(1− δ)(1− λ)ϕ
, (IA.58)

which cannot be the case because δ > 1
2 and ĉ ≤ c̄. Consequently, the IC constraint in (IA.53)

implies that either

w1(rh, vh) =
ĉ

δ − (1− δ)(λ− ϕ+ λϕ)
and w1(rℓ, vh) = 0 (IA.59)

or

w1(rh, vh) = 0 and w1(rℓ, vh) =
ĉ

(1− δ)(1− ϕ+ λϕ)− λδ
. (IA.60)

In the former case, the payment w1(rh, vh) is positive because δ > 1
2 . In the latter case, the payment

w1(rℓ, vh) is positive only if (1 − δ)(1 − ϕ + λϕ) − λδ > 0. Thus, the latter payment scheme may

not be feasible because it may violate the limited liability constraint in (IA.54). However, even if

it is feasible, this payment scheme is never optimal. To see this, consider an increase in w1(rh, vh)

to ε1 > 0 and a decrease in w1(rℓ, vh) by ε2 > 0 such that the IC constraint in (IA.53) remains
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binding, that is,

ε2 =
∆π0,1(rh, vh)− (1− δ)λϕ

∆π0,1(rℓ, vh) + (1− δ)λϕ
ε1 =

δ − (1− δ)(λ− ϕ+ λϕ)

(1− δ)(1− ϕ+ λϕ)− λδ
ε1. (IA.61)

Such a change in payments would change the manager’s expected compensation by

[
π1,1(rh, vh)−

(
1− ĉ

c̄

)
(1− δ)λϕ

]
ε1 −

[
π1,1(rℓ, vh) +

(
1− ĉ

c̄

)
(1− δ)λϕ

]
ε2

=

[
δ + (1− δ)

(
ϕ−

(
1− ĉ

c̄

)
λϕ

)]
ε1 −

[
(1− δ)

(
1− ϕ+

(
1− ĉ

c̄

)
λϕ

)]
ε2 (IA.62)

= −
λ
[
2δ − 1 +

(
1− ĉ

c̄

)
(1− δ)(1− λ)ϕ

]
(1− δ)(1− ϕ+ λϕ)− λδ

ε1, (IA.63)

which is negative since δ > 1
2 and (1− δ)(1− ϕ+ λϕ)− λδ > 0. A positive payment w1(rℓ, vh) can

therefore not be optimal. The optimal solution to the problem in (IA.43)–(IA.46) is thus given by

the compensation scheme w1(rh, vh) = ĉ
δ−(1−δ)(λ−ϕ+λϕ) , w1(rℓ, vh) = w1(rh, vℓ) = w1(rℓ, vℓ) = 0,

and the manipulation cost g = λϕw1(rh, vh).

Now consider the selective-manipulation contract Cs = (ws
0,w

s
1, g

s) with ws
1(rh, vh) =

ĉ
δ−(1−δ)(λ−ϕ+λϕ) , ws

1(rℓ, vh) = ws
1(rh, vℓ) = ws

1(rℓ, vℓ) = 0, gs = λϕws
1(rh, vh) as above, and

ws
0(r, v) = ws

1(r, v) for all r ∈ {rh, rℓ} and v ∈ {vh, vℓ}. Since w0 is not part of the simplified

problem, this contract is clearly a solution to the simplified problem in (IA.43)–(IA.46). Further-

more, since the objective functions in (IA.33) and (IA.43) are identical when m0 = 0 and m1 = 1

and since the constraints in (IA.44), (IA.45), and (IA.46) are implied by the constraints in (IA.6)

and (IA.3), the contract Cs is also a solution to the full optimization problem characterized in

Section IA.A.4 if it satisfies the additional constraints in (IA.3)–(IA.9).

The contract Cs clearly satisfies the nonnegativity constraints in (IA.3). Furthermore, gs =

λϕws
1(rh, vh) satisfies the manipulation incentive constraints in (IA.4) and (IA.5) when m0 = 0

and m1 = 1 ((IA.4) is slack and (IA.5) is binding).

Since gs = λϕws
1(rh, vh), the right-hand side of (IA.6) is the same for m = 0 and m = 1: the

expected gain from manipulating, λδϕws
1(rh, vh), is equal to the expected cost, δgs. The constraint

in (IA.6) then becomes identical to the constraint in (IA.44) and is binding. The right-hand side
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of (IA.7) is maximized by setting m = 1: the expected gain from manipulating, (1− δ)ϕws
0(rh, vh),

exceeds the expected cost, (1 − δ)gs = (1 − δ)λϕws
1(rh, vh). Since ws

0 = ws
1, this means that the

expression on the right-hand side of (IA.7) is identical to the expression on the left-hand side of

(IA.6) when m1 = 1. Furthermore, the expression on the left-hand side of (IA.7) is identical to

the expression on the right-hand side of (IA.6) when m0 = 0 because the right-hand side of (IA.6)

is maximized by setting m = 0, as demonstrated above. Thus, the result that (IA.6) is binding

implies that (IA.7) is also binding.

The truth-telling constraint in (IA.8) is implied by the constraint in (IA.6) when e = 0 on

the right-hand side of (IA.8). To see this, note that, for c = ĉ, (IA.6) is identical to (IA.8) when

e = 0 because ws
0 = ws

1. Thus, (IA.8) must be satisfied for all c ≤ ĉ when e = 0. When e = 1,

the constraint in (IA.8) is more restrictive when m = 1 on the right-hand side: the expected gain

from manipulating is (1 − δ)ϕws
0(rh, vh) and hence exceeds the expected cost of (1 − δ)gs since

gs = λϕws
1(rh, vh). This means that the constraint is trivially satisfied when e = 1 because, for

m = 1 (and m1 = 1), the expression on the left-hand side equals the expression on the right-hand

side. Similarly, the truth-telling constraint in (IA.9) is implied by the constraint in (IA.7) when

e = 1 on the right-hand side of (IA.9). To see this, note that, for c = ĉ, (IA.7) is identical to (IA.9)

when e = 1 because ws
0 = ws

1. Thus, (IA.9) must be satisfied for all c ≥ ĉ when e = 1. When

e = 0, the constraint in (IA.9) is (weakly) more restrictive when m = 0 on the right-hand side: the

expected gain from manipulating is λδϕws
1(rh, vh) and hence equals the expected cost of δgs since

gs = λϕws
1(rh, vh). This means that the constraint is trivially satisfied when e = 0 because, for

m = 0 (and m0 = 0), the expression on the left-hand side equals the expression on the right-hand

side.

Proof of Proposition 3. We prove this result by showing (i) that any contract that induces

manipulation decisions m0 > 0 and m1 = 0 is dominated by the no-manipulation contract Cn

derived in Proposition 1, (ii) that any contract that induces manipulation decisions m0 > 0 and

m1 = 1 is dominated by the selective-manipulation contract Cs derived in Proposition 2, and (iii)

that any contract that induces manipulation decisions m0 ≥ 0 and m1 ∈ (0, 1) is dominated by the

no-manipulation contract Cn as well.

As shown in the proof of Proposition 1, the manager’s expected compensation can be written
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as ∑
r,v

π1,m1(r, v)w1(r, v)−
(
1− ĉ

c̄

)(
ĉ+ (1− δ)gm1 − δgm0

)
. (IA.64)

Since g ≥ 0, the manager’s expected compensation if m0 > 0 can therefore not be lower than

∑
r,v

π1,m1(r, v)w1(r, v)−
(
1− ĉ

c̄

)(
ĉ+ (1− δ)gm1

)
, (IA.65)

the expected compensation if m0 = 0.

First, consider the case where m0 > 0 and m1 = 0. The IC constraint in (IA.6) then requires

that ∑
r,v

∆π0,0(r, v)w1(r, v) ≥ ĉ. (IA.66)

This constraint is identical to the IC constraint in (IA.35) of the simplified problem analyzed in the

proof of Proposition 1. Furthermore, the objective function of that problem in (IA.34) is identical

to (IA.65) if m1 = 0. The optimal no-manipulation contract Cn thus minimizes (the lower bound

of) the manager’s expected compensation in (IA.65) (with m1 = 0) subject to the IC constraint

in (IA.66) and the limited liability constraints w1(r, v) ≥ 0. But these constraints also have to

be satisfied by any contract that implements the manipulation decisions m0 > 0 and m1 = 0.

Furthermore, the additional constraints in (IA.3)–(IA.9) cannot reduce the manager’s expected

compensation. Hence, any contract that implements the cost threshold ĉ and the manipulation

decisions m0 > 0 and m1 = 0 is dominated by the no-manipulation contract Cn.

Next, consider the case where m0 > 0 and m1 = 1. The IC constraint in (IA.6) then requires

that ∑
r,v

∆π0,1(r, v)w1(r, v) ≥ ĉ+ (1− δ)g, (IA.67)

and that ∑
r,v

∆π1,1(r, v)w1(r, v) ≥ ĉ+ (1− 2δ)g. (IA.68)

These constraints are identical to the IC constraints in (IA.44) and (IA.45) of the simplified prob-

lem analyzed in the proof of Proposition 2. Furthermore, the objective function of that problem in

(IA.43) is identical to (IA.65) if m1 = 1. The optimal selective-manipulation contract Cs thus mini-

mizes (the lower bound of) the manager’s expected compensation in (IA.65) (with m1 = 1) subject
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to the IC constraints in (IA.67) and (IA.68) and the limited liability constraints w1(r, v) ≥ 0. But

these constraints also have to be satisfied by any contract that implements the manipulation deci-

sions m0 > 0 and m1 = 1. Furthermore, the additional constraints in (IA.3)–(IA.9) cannot reduce

the manager’s expected compensation. Hence, any contract that implements the cost threshold ĉ

and the manipulation decisions m0 > 0 and m1 = 1 is dominated by the selective-manipulation

contract Cs.

Finally, consider the case where m0 ≥ 0 and m1 ∈ (0, 1). In this case, a manager who chose the

high effort level must be indifferent between choosing m1 = 0 and m1 = 1. Thus, the IC constraints

in (IA.4) and (IA.6) require that

g = ϕ
(
w1(rh, vh)− w1(rℓ, vh)

)
(IA.69)

and that ∑
r,v

∆π0,m1(r, v)w1(r, v) ≥ ĉ+ (1− δ)gm1. (IA.70)

Since ∆π0,m1(rh, vh) = δ + (1 − δ)ϕm1 − λ(1 − δ) and ∆π0,m1(rℓ, vh) = (1 − δ)(1 − ϕm1) − λδ,

substituting (IA.69) into (IA.70) yields

∑
r,v

∆π0,0(r, v)w1(r, v) ≥ ĉ, (IA.71)

which is identical to the effort IC constraint in (IA.35) of the simplified problem considered in the

proof of Proposition 1. Furthermore, using (IA.69) we can write the lower bound of the manager’s

expected compensation in (IA.65) as

∑
r,v

π1,m1(r, v)w1(r, v)−
(
1− ĉ

c̄

)[
ĉ+ (1− δ)ϕ

(
w1(rh, vh)− w1(rℓ, vh)

)
m1

]
, (IA.72)

which is equivalent to

∑
r,v

π1,0(r, v)w1(r, v)−
(
1− ĉ

c̄

)
ĉ+

ĉ

c̄
(1− δ)ϕ

(
w1(rh, vh)− w1(rℓ, vh)

)
m1, (IA.73)

because π1,m1(rh, vh) = δ+(1−δ)ϕm1 and π1,m1(rℓ, vh) = (1−δ)(1−ϕm1). Since g ≥ 0 and hence
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w1(rh, vh) ≥ w1(rℓ, vh), the manager’s expected compensation can therefore not be lower than

∑
r,v

π1,0(r, v)w1(r, v)−
(
1− ĉ

c̄

)
ĉ, (IA.74)

the expected compensation in the no-manipulation case given by (IA.34). The optimal no-

manipulation contract Cn thus minimizes (the lower bound of) the manager’s expected compen-

sation subject to the IC constraint in (IA.71) and the limited liability constraints w1(r, v) ≥ 0.

But these constraints also have to be satisfied by any contract that implements the manipulation

decisions m0 ≥ 0 and m1 ∈ (0, 1). Furthermore, the additional constraints in (IA.3)–(IA.9) cannot

reduce the manager’s expected compensation. Hence, any contract that implements the cost thresh-

old ĉ and the manipulation decisions m0 ≥ 0 and m1 ∈ (0, 1) is dominated by the no-manipulation

contract Cn.

Proof of Proposition 4. From the objective function in (IA.33) and the compensation scheme in

Proposition 1, it follows that, for any cost threshold ĉ ∈ [0, c̄], the expected compensation required

to induce the manager to exert high effort if and only if c ≤ ĉ and to follow the no-manipulation

schedule m0 = m1 = 0 is given by

Ewn(ĉ) = π1,0(rh, vh)w
n
1 (rh, vh)−

(
1− ĉ

c̄

)
ĉ =

(
λ(1− δ)

δ − λ(1− δ)
+

ĉ

c̄

)
ĉ. (IA.75)

Similarly, from (IA.33) and Proposition 2, it follows that the expected compensation necessary to

induce the manager to exert high effort if and only if c ≤ ĉ and to follow the selective-manipulation

schedule m0 = 0 and m1 = 1 is given by

Ews(ĉ) = π1,1(rh, vh)w
s
1(rh, vh)−

(
1− ĉ

c̄

)(
ĉ+ (1− δ)gs

)

=

(
δ + (1− δ)ϕ−

(
1− ĉ

c̄

)
(1− δ)λϕ

δ − (1− δ)(λ− ϕ+ λϕ)
− 1 +

ĉ

c̄

)
ĉ (IA.76)

=

( [
1 +

(
ĉ
c̄

)
ϕ
]
(1− δ)λ

δ − (1− δ)(λ− ϕ+ λϕ)
+

ĉ

c̄

)
ĉ. (IA.77)
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For any cost threshold ĉ > 0, the expressions in (IA.75) and (IA.77) imply that Ews(ĉ) <
(>) Ew

n(ĉ)

if and only if [
1 +

(
ĉ
c̄

)
ϕ
]
(1− δ)λ

δ − (1− δ)(λ− ϕ+ λϕ)
<
(>)

λ(1− δ)

δ − λ(1− δ)
, (IA.78)

or, equivalently, if and only if

ĉ

c̄
<
(>)

(1− δ)(1− λ)

δ − λ(1− δ)
. (IA.79)

Proof of Proposition 5. For a given cost threshold ĉ ∈ [0, c̄], the value of the firm (net of

the cost of managerial compensation) under the optimal no-manipulation contract Cn specified in

Proposition 1 is given by

Vn(ĉ) =

(
ĉ

c̄

)
vh +

(
1− ĉ

c̄

)(
λ vh + (1− λ) vℓ

)
− Ewn(ĉ), (IA.80)

where the expected compensation Ewn(ĉ) is given by (IA.75) in the proof of Proposition 4. Sub-

stituting the expression in (IA.75) into the above equation yields

Vn(ĉ) = V0 + (1− λ)(vh − vℓ)

(
ĉ

c̄

)
−
(

λ(1− δ)

δ − λ(1− δ)
+

ĉ

c̄

)
ĉ, (IA.81)

where V0 = λvh + (1 − λ)vℓ. Note that Vn is a strictly concave function of ĉ with V ′
n(c̄) <

(1 − λ)(vh − vℓ)/c̄ − 2 < 0 because, by assumption, (1 − λ)(vh − vℓ) < c̄. Thus, if V ′
n(0) ≥ 0,

the optimal cost threshold that maximizes Vn is uniquely determined by the first order condition

ĉn =
1

2

(
(1− λ)(vh − vℓ)−

λ(1− δ) c̄

δ − λ(1− δ)

)
. (IA.82)

If V ′
n(0) < 0, the above expression is negative and the optimal cost threshold is zero.

Similarly, the value of the firm under the optimal selective-manipulation contract Cs specified

in Proposition 2 is given by

Vs(ĉ) =

(
ĉ

c̄

)
vh +

(
1− ĉ

c̄

)(
λ vh + (1− λ) vℓ

)
− Ews(ĉ), (IA.83)
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where the expected compensation Ews(ĉ) is given by (IA.77). Substituting the expression in (IA.77)

into the above equation yields

Vs(ĉ) = V0 + (1− λ)(vh − vℓ)

(
ĉ

c̄

)
−

( [
1 +

(
ĉ
c̄

)
ϕ
]
λ(1− δ)

δ − (1− δ)(λ− ϕ+ λϕ)
+

ĉ

c̄

)
ĉ, (IA.84)

where, as before, V0 = λvh + (1− λ)vℓ. Similarly to Vn, Vs is a strictly concave function of ĉ with

V ′
s (c̄) < (1− λ)(vh − vℓ)/c̄− 2 < 0. Thus, if V ′

s (0) ≥ 0, the optimal cost threshold that maximizes

Vs is uniquely determined by the first order condition

ĉs =
1

2

(
δ − (1− δ)(λ− ϕ+ λϕ)

δ − (1− δ)(λ− ϕ)

)(
(1− λ)(vh − vℓ)−

λ(1− δ) c̄

δ − (1− δ)(λ− ϕ+ λϕ)

)
. (IA.85)

If V ′
s (0) < 0, the above expression is negative and the optimal cost threshold is zero.

Proof of Corollary 1. From Proposition 3, we know that, for any cost threshold ĉ, the opti-

mal contract is either the no-manipulation contract Cn defined in Proposition 1 or the selective-

manipulation contract Cs defined in Proposition 2. Proposition 5 shows that the optimal cost

threshold under the no-manipulation contract, ĉn, is zero whenever the optimal cost threshold un-

der the selective-manipulation contract, ĉs, is zero. Thus, a necessary and sufficient condition for

the optimal contract to induce high effort is that ĉs > 0, which is equivalent to the condition in

(IA.17).

Proof of Proposition 6. From Proposition 3, we know that, for any cost threshold ĉ, the

optimal contract is either the no-manipulation contract Cn defined in Proposition 1 or the selective-

manipulation contract Cs defined in Proposition 2. Furthermore, Proposition 5 shows that firm

value under the no-manipulation contract (respectively, the selective-manipulation contract) is

maximized at a cost threshold of ĉn (respectively, ĉs). Thus, to prove the result it suffices to show

that Vs(ĉs) ≥ Vn(ĉn) if and only if (IA.18) is satisfied, where, as in the proof of Proposition 5,

Vn(ĉ) denotes the firm value under the no-manipulation contract and Vs(ĉ) the firm value under

the selective-manipulation contract.

The result that Vs(ĉs) ≥ Vn(ĉn) trivially holds if ĉn = 0 because max{Vs(ĉs), Vs(0)} ≥ Vs(0) =

Vn(0). Furthermore, since the right-hand side of (IA.18) exceeds the right-hand side of (IA.17), it
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follows that ĉs > 0 if (IA.18) is not satisfied. But if ĉs > 0, the fact that Vs(ĉs) < Vn(ĉn) implies

that ĉn > 0 as well. Thus, we are left to show that Vs(ĉs) ≥ Vn(ĉn) if and only if (IA.18) is satisfied

in case ĉs > 0 and ĉn > 0.

If ĉn > 0, it follows from (IA.15) and (IA.81) that

Vn(ĉn) = V0 +
1

c̄

[(
(1− λ)(vh − vℓ)−

λ(1− δ) c̄

δ − λ(1− δ)

)
ĉn − ĉ2n

]
= V0 +

ĉ2n
c̄
. (IA.86)

Similarly, if ĉs > 0, from (IA.16) and (IA.84) we have

Vs(ĉs) = V0 +
1

c̄

[(
(1− λ)(vh − vℓ)−

λ(1− δ) c̄

δ − (1− δ)(λ− ϕ+ λϕ)

)
ĉs

−
(

δ − (1− δ)(λ− ϕ)

δ − (1− δ)(λ− ϕ+ λϕ)

)
ĉ2s

]
(IA.87)

= V0 +

(
δ − (1− δ)(λ− ϕ)

δ − (1− δ)(λ− ϕ+ λϕ)

)
ĉ2s
c̄
. (IA.88)

Thus, Vs(ĉs) ≥ Vn(ĉn) if and only if

δ − (1− δ)(λ− ϕ+ λϕ)

δ − (1− δ)(λ− ϕ)

(
(1− λ)(vh − vℓ)−

λ(1− δ) c̄

δ − (1− δ)(λ− ϕ+ λϕ)

)2

≥

(
(1− λ)(vh − vℓ)−

λ(1− δ) c̄

δ − λ(1− δ)

)2

. (IA.89)

Since ĉn and ĉs are positive, we can rewrite this condition as

(
1−

√
δ − (1− δ)(λ− ϕ)

δ − (1− δ)(λ− ϕ+ λϕ)

)
(1− λ)(vh − vℓ)

c̄
≥

λ(1− δ)

δ − (1− δ)(λ− ϕ+ λϕ)
− λ(1− δ)

δ − λ(1− δ)

√
δ − (1− δ)(λ− ϕ)

δ − (1− δ)(λ− ϕ+ λϕ)
, (IA.90)

or, since the term under the square root sign is greater than one, as

(1− λ)(vh − vℓ)

c̄
≤

λ(1−δ)
δ−(1−δ)(λ−ϕ+λϕ) −

λ(1−δ)
δ−λ(1−δ)

√
δ−(1−δ)(λ−ϕ)

δ−(1−δ)(λ−ϕ+λϕ)

1−
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

. (IA.91)

32



The term on the right-hand side of (IA.91) can be rearranged as follows:

λ(1−δ)
δ−(1−δ)(λ−ϕ+λϕ) −

λ(1−δ)
δ−λ(1−δ)

√
δ−(1−δ)(λ−ϕ)

δ−(1−δ)(λ−ϕ+λϕ)

1−
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

=
1− δ

δ − λ(1− δ)
+

λ(1−δ)
δ−(1−δ)(λ−ϕ+λϕ) −

1−δ
δ−λ(1−δ) +

(
1−δ

δ−λ(1−δ) −
λ(1−δ)

δ−λ(1−δ)

)√
δ−(1−δ)(λ−ϕ)

δ−(1−δ)(λ−ϕ+λϕ)

1−
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

(IA.92)

=
1− δ

δ − λ(1− δ)
+

λ(1−δ)
δ−(1−δ)(λ−ϕ+λϕ) −

1−δ
δ−λ(1−δ) +

(1−δ)(1−λ)
δ−λ(1−δ)

√
δ−(1−δ)(λ−ϕ)

δ−(1−δ)(λ−ϕ+λϕ)

1−
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

(IA.93)

=
1− δ

δ − λ(1− δ)
+

(1− δ)(1− λ)

δ − λ(1− δ)


λ(1−δ)

δ−(1−δ)(λ−ϕ+λϕ)
− 1−δ

δ−λ(1−δ)
(1−δ)(1−λ)
δ−λ(1−δ)

+
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

1−
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

 (IA.94)

=
1− δ

δ − λ(1− δ)
+

(1− δ)(1− λ)

δ − λ(1− δ)

 λ
1−λ

(
δ−λ(1−δ)

δ−(1−δ)(λ−ϕ+λϕ) −
1
λ

)
+
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

1−
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

 (IA.95)

=
1− δ

δ − λ(1− δ)
+

(1− δ)(1− λ)

δ − λ(1− δ)

− δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ) +

√
δ−(1−δ)(λ−ϕ)

δ−(1−δ)(λ−ϕ+λϕ)

1−
√

δ−(1−δ)(λ−ϕ)
δ−(1−δ)(λ−ϕ+λϕ)

 (IA.96)

=
1− δ

δ − λ(1− δ)
+

(1− δ)(1− λ)

δ − λ(1− δ)

√
δ − (1− δ)(λ− ϕ)

δ − (1− δ)(λ− ϕ+ λϕ)
. (IA.97)

Thus, Vs(ĉs) ≥ Vn(ĉn) if and only if

vh − vℓ
c̄

≤ 1− δ

δ − λ(1− δ)

(
1

1− λ
+

√
δ − (1− δ)(λ− ϕ)

δ − (1− δ)(λ− ϕ+ λϕ)

)
. (IA.98)

33



IA.B. Numerical Work

This section of the Internet Appendix provides details about the numerical analysis of how

Γ changes in response to changes in λ1 and λ0. As we state in Section III.C of the manuscript,

“numerical calculations show that Γ increases in λ0 and decreases in λ1.” This conclusion is

based on a number of numerical examples that we considered and that we illustrated in a series of

animated 2D and 3D plots. We now briefly describe how we created these plots.

As a first step, we take the parameter values from Figure 1 and vary either λ0 or λ1. We do so

using Scientific WorkPlace 5.5, which allows us to create animated GIF files. The two corresponding

animated two-dimensional plots (one for changes in λ0 and one for changes in λ1) can be found in

the folder IA-C Animated GIFs of the Replication Code ZIP file available on the Journal of Finance

website (see the files 2D Figure 1 increase lam0.gif and 2D Figure 1 increase lam1.gif).

To make the GIFs more easily accessible, the HTML file view animated GIFs.htm displays

all animated GIF files simultaneously (there are 17 animated GIF files in total). The first two

animated plots show that Γ increases in λ0 and decreases in λ1.

The remaining animated GIFs show the same effects for a broader set of parameter values. They

are three-dimensional plots with the variables δ and θ on two axes (with all feasible values shown:

δ
(
1
2 , 1
]
, θ ∈ [0, 1]) and with either λ0 or λ1 increasing (within their respective feasible ranges).

Specifically, in the first seven 3D animated pictures we continuously increase (in the animation)

λ0 ∈
[
0, 12λ1

)
, with λ1 fixed at different levels: λ1 ∈

{
1
8 ,

1
4 ,

1
2 ,

3
4 ,

7
8 ,

19
20 ,

999
1000

}
. In the remaining

3D animated pictures we continuously increase (in the animation) λ1 ∈ (2λ0, 1], with λ0 fixed at

different levels: λ0 ∈
{

1
100 ,

1
16 ,

1
8 ,

1
4 ,

3
8 ,

7
16 ,

49
100

}
. These animated pictures suggest that Γ increases in

λ0 and decreases in λ1. A static example of such a 3D plot is shown here:

Red: min{Γ, 1}; Gray: min{Λn,Λs}.
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The code for these plots can be found in the LATEX file plots 2D 3D.tex of the Replication

Code ZIP file available on the Journal of Finance website. Note that this code requires the use of

Scientific WorkPlace 5.5. After opening the file in Scientific WorkPlace 5.5, click on a picture, then

on the red dot symbol at the bottom right of the picture; this opens the “VCam Plot” window,

which allows the export of animated plots as GIF files.
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