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I. Proofs and Derivations

A. Derivation of Equation (1)

The average value of informed entry, contingent on enry taking place, is

E [t+ vj + aij | t+ vj + aij > K]

=

∫ 1
K−2

∫ 1
K−t−1

 ∫K−t−1
−1

(∫ 1
K−t−vj (t+ vj + a1j)

1
2da1j

)
1
2dvk

+
∫ 1
K−t−1

(∫ 1
K−t−vj (t+ vj + a1j)

(∫ vj+a1j−vk
−1

1
2da1k

)
1
2da1j

)
1
2dvk

 1
2dvj

 1
2dt

∫ 1
K−2

∫ 1
K−t−1

 ∫K−t−1
−1

(∫ 1
K−t−vj

1
2da1j

)
1
2dvk

+
∫ 1
K−t−1

(∫ 1
K−t−vj

(∫ vj+a1j−vk
−1

1
2da1k

)
1
2da1j

)
1
2dvk

 1
2dvj

 1
2dt

= K + 10
3−K

31 + 6K −K2
.

B. Derivation of Equations (2), (3), and (4)

If the informed entrant entered segment j, the expected value of t + vj , contingent on that

informed entry decision, is

E [ t+ vj | δ1 = j]

=

∫ 1
K−2

∫ 1
K−t−1 (t+ vj)

 ∫K−t−1
−1

(∫ 1
K−t−vj

1
2da1j

)
1
2dvk

+
∫ 1
K−t−1

(∫ 1
K−t−vj

(∫ vj+a1j−vk
−1

1
2da1k

)
1
2da1j

)
1
2dvk

 1
2dvj

 1
2dt

∫ 1
K−2

∫ 1
K−t−1

 ∫K−t−1
−1

(∫ 1
K−t−vj

1
2da1j

)
1
2dvk

+
∫ 1
K−t−1

(∫ 1
K−t−vj

(∫ vj+a1j−vk
−1

1
2da1k

)
1
2da1j

)
1
2dvk

 1
2dvj

 1
2dt

=
−7K3 + 39K2 + 195K + 213

12 (−K2 + 6K + 31)
.

If the informed entrant entered segment k, the expected value of t + vj , contingent on that
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informed entry decision, is

E [ t+ vj | δ1 = k]

=

∫ 1
K−2

∫ 1
K−t−1

 ∫K−t−1
−1 (t+ vj)

(∫ 1
K−t−vk

1
2da1k

)
1
2dvj

+
∫ 1
K−t−1 (t+ vj)

(∫ 1
K−t−vk

(∫ vk+a1k−vj
−1

1
2daij

)
1
2da1k

)
1
2dvj

 1
2dvk

 1
2dt

∫ 1
K−2

∫ 1
K−t−1

 ∫K−t−1
−1

(∫ 1
K−t−vk

1
2da1k

)
1
2dvj

+
∫ 1
K−t−1

(∫ 1
K−t−vk

(∫ vk+a1k−vj
−1

1
2daij

)
1
2da1k

)
1
2dvj

 1
2dvk

 1
2dt

=
−K3 − 3K2 + 105K − 21

6 (−K2 + 6K + 31)
.

If the informed entrant decided to stay out altogether, the expected value of t+ vj , contingent

on that informed non-entry decision, is

E [ t+ vj | δ1 = 0]

=

∫K−2
−1 t12dt+

∫ 1
K−2



∫K−t−1
−1 (t+ vj)

 ∫K−t−1
−1

1
2dvk

+
∫ 1
K−t−1

(∫K−t−vk
−1

1
2da1k

)
1
2dvk

 1
2dvj

+
∫ 1
K−t−1 (t+ vj)


∫K−t−1
−1

(∫K−t−vj
−1

1
2da1j

)
1
2dvk

+
∫ 1
K−t−1


(∫K−t−vj
−1

1
2da1j

)
×
(∫K−t−vk
−1

1
2da1k

)
 1

2dvk

 1
2dvj


1
2dt

∫K−2
−1 t12dt+

∫ 1
K−2



∫K−t−1
−1

 ∫K−t−1
−1

1
2dvk

+
∫ 1
K−t−1

(∫K−t−vk
−1

1
2da1k

)
1
2dvk

 1
2dvj

+
∫ 1
K−t−1


∫K−t−1
−1

(∫K−t−vj
−1

1
2da1j

)
1
2dvk

+
∫ 1
K−t−1


(∫K−t−vj
−1

1
2da1j

)
×
(∫K−t−vk
−1

1
2da1k

)
 1

2dvk

 1
2dvj


1
2dt

=
2
(
−2K4 + 15K3 + 18K2 − 117K − 54

)
3 (−3K3 + 27K2 −K + 321)

.
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C. Proof of Proposition 1

For parsimony, we omit subscripts that identify the uninformed entrant (writing s, mj , and uj

instead of si, mij , and uij).

C.1. Entry in the Same Segment as the Informed Entrant

If δ1 = j, uninformed entry happens in segment j if these two conditions are satisfied:

ϕ (s+mj + uj) + (1− ϕ)E [ t+ vj | δ1 = j] ≥ K

ϕ (s+mj + uj) + (1− ϕ)E [ t+ vj | δ1 = j] ≥ ϕ (s+mk + uk) + (1− ϕ)E [ t+ vk | δ1 = j] .

Replace E [ t+ vj | δ1 = j] and E [ t+ vk | δ1 = j],

ϕ (s+mj + uj) + (1− ϕ) −7K
3+39K2+195K+213

12(−K2+6K+31)
≥ K

ϕ (s+mj + uj) + (1− ϕ) −7K
3+39K2+195K+213

12(−K2+6K+31)
≥ ϕ (s+mk + uk) + (1− ϕ) −K

3−3K2+105K−21
6(−K2+6K+31)

and rearrange,

s+mj + uj ≥ K + 1−ϕ
ϕ

(
K − −7K3+39K2+195K+213

12(−K2+6K+31)

)
mk + uk ≤ mj + uj + 1−ϕ

ϕ

(
−7K3+39K2+195K+213

12(−K2+6K+31)
− −K3−3K2+105K−21

6(−K2+6K+31)

)
to obtain

s+mj + uj ≥ K + 1−ϕ
ϕ
−5K3+33K2+177K−213

12(−K2+6K+31)

mk + uk ≤ mj + uj + 1−ϕ
ϕ

5(−K3+9K2−3K+51)
12(−K2+6K+31)

.

The fraction in the first condition is increasing in K, and except for very small K, is positive —

for very low K, a slightly negative sum of signals s+mj + uj is sufficient to make entry attractive.

The fraction in the second condition is increasing in K and positive for all K — the signals for the

other segment (not chosen by the informed entrant) must be significantly better, for the uninformed

entrant to prefer the other segment. Both fractions attain the value of one if K = 3.

In the following, we convert two signals into compound variables, where the sum of the two

signals is relevant. For two random variables uniformly distributed with supports [−1, 1], the
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probability that their sum is below a value x is

Pr {mj + uj ≤ x} =


∫ x+1
−1

(∫ x−mj

−1
1
2duj

)
1
2dmj if −2 ≤ x ≤ 0∫ x−1

−1
1
2dmj +

∫ 1
x−1

(∫ x−mj

−1
1
2duj

)
1
2dmj if 0 ≤ x ≤ 2.

Solving the integrals and taking derivatives, we obtain the cdf and the pdf

F (x) =


4+4x+x2

8 if −2 ≤ x ≤ 0

4+4x−x2

8 if 0 ≤ x ≤ 2

f(x) =


2+x
4 if −2 ≤ x ≤ 0

2−x
4 if 0 ≤ x ≤ 2.

Replacing x ≡ mj +uj and y ≡ mk +uk, the conditions for uninformed entry can be written as

s+ x ≥ K + 1−ϕ
ϕ
−5K3+33K2+177K−213

12(−K2+6K+31)

y ≤ x+ 1−ϕ
ϕ

5(−K3+9K2−3K+51)
12(−K2+6K+31)

.

These terms (and similar terms for the other cases) are not tractable. As described above, we

therefore assume that K = 1. The conditions can then be rewritten as

s+ x ≥ 1− 1−ϕ
ϕ

1
54

y ≤ x+ 1−ϕ
ϕ

35
54 .

The first condition is satisfied with certainty if −3 ≥ 1− 1−ϕ
ϕ

1
54 , which requires that ϕ is very

low, ϕ ≤ 1
217 = 0.0046083. For larger values of ϕ, entry is not certain.

The second condition is satisfied with certainty if 1−ϕ
ϕ

35
54 ≥ 4⇐⇒ ϕ ≤ 35

251 = 0.13944.

Case (1): 0 ≤ ϕ ≤ 1
217 (ϕ ∈ [0, 0.0046083]).

Uninformed entry is certain after informed entry. The second condition is satisfied with cer-
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tainty. The expected value of uninformed entry is

∫ 1
−1

(∫ 0
−2
(
ϕ (s+ x) + (1− ϕ) 55

54

)
2+x
4 dx+

∫ 2
0

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

)
1
2ds∫ 1

−1

(∫ 0
−2

2+x
4 dx+

∫ 2
0

2−x
4 dx

)
1
2ds

= (1− ϕ)
55

54
.

(The uninformed entrant’s signals average to zero.) This average value is decreasing in ϕ, taking

on values between 55
54 = 1.0185 and 220

217 = 1.0138 over the relevant range of ϕ. [End of Case (1)]

If 1
217 ≤ ϕ, uninformed entry is not certain. Uninformed non-entry is never certain, since that

would require 3 < 1 − 1−ϕ
ϕ

1
54 , which in turn requires that ϕ is negative. So the entry decision

depends on how high the sum of the signals is.

Entry is possible for any signal s if −1 + 2 ≥ 1− 1−ϕ
ϕ

1
54 , which is satisfied if ϕ ∈ (0, 1]. So the

expected value of uninformed entry is

∫ 1
−1
∫{

x|x≥1−s− 1−ϕ
ϕ

1
54

} (ϕ (s+ x) + (1− ϕ) 55
54

)
Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
f(x)dx1

2ds∫ 1
−1
∫{

x|x≥1−s− 1−ϕ
ϕ

1
54

} Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
f(x)dx1

2ds
.

The cutoff x ≥ 1− s− 1−ϕ
ϕ

1
54 is below the upper bound of the support of x if 1− s− 1−ϕ

ϕ
1
54 ≤ 2,

which is always satisfied since s ≤ 1 and ϕ ∈ (0, 1]. The cutoff x ≥ 1− s− 1−ϕ
ϕ

1
54 is above the lower

bound of the support of x if 1− s− 1−ϕ
ϕ

1
54 ≥ −2. That is violated for any s if 1− (−1)− 1−ϕ

ϕ
1
54 <

−2⇐⇒ ϕ < 1
217 , which does not hold. So the lower cutoff is above −2 if the signal s is sufficiently

high. It is above −2 with certainty if 1 − 1 − 1−ϕ
ϕ

1
54 ≥ −2 ⇐⇒ ϕ ≥ 1

109 . So if 1
217 ≤ ϕ ≤ 1

109 ,

the lower cutoff x ≥ 1− s− 1−ϕ
ϕ

1
54 is below the lower bound −2 if s ≥ 3− 1−ϕ

ϕ
1
54 , and above it if

s ≤ 3− 1−ϕ
ϕ

1
54 .

Case (2): 1
217 ≤ ϕ ≤

1
109 (ϕ ∈ [0.0046083, 0.0091743]).
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The second condition is satisfied with certainty. The expected value of uninformed entry is


∫ 3− 1−ϕ

ϕ
1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
f(x)dx1

2ds

+
∫ 1
3− 1−ϕ

ϕ
1
54

∫ 2
−2
(
ϕ (s+ x) + (1− ϕ) 55

54

)
f(x)dx1

2ds


(∫ 3− 1−ϕ

ϕ
1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54
f(x)dx1

2ds+
∫ 1
3− 1−ϕ

ϕ
1
54

∫ 2
−2 f(x)dx1

2ds

) .

The cutoff 1−s− 1−ϕ
ϕ

1
54 is negative if 1−s− 1−ϕ

ϕ
1
54 < 0⇐⇒ s > 1− 1−ϕ

ϕ
1
54 , which is below the cutoff

for the s signal, 3− 1−ϕ
ϕ

1
54 . It is below the lower bound for the s signal: 1− 1−ϕ

ϕ
1
54 < −1⇐⇒ ϕ < 1

109 ,

which holds. So for all s ≤ 3− 1−ϕ
ϕ

1
54 , the cutoff 1− s− 1−ϕ

ϕ
1
54 is negative. The expected value of

uninformed entry is



∫ 3− 1−ϕ
ϕ

1
54

−1

 ∫ 0
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2+x
4 dx

+
∫ 2
0

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

 1
2ds

+
∫ 1
3− 1−ϕ

ϕ
1
54

 ∫ 0
−2
(
ϕ (s+ x) + (1− ϕ) 55

54

)
2+x
4 dx

+
∫ 2
0

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

 1
2ds


(∫ 3− 1−ϕ

ϕ
1
54

−1

(∫ 0
1−s− 1−ϕ

ϕ
1
54

2+x
4 dx+

∫ 2
0

2−x
4 dx

)
1
2ds+

∫ 1
3− 1−ϕ

ϕ
1
54

(∫ 0
−2

2+x
4 dx+

∫ 2
0

2−x
4 dx

)
1
2ds

)
=

1

216
(1− ϕ)

554 554 081ϕ3 − 30 654 939ϕ2 + 141 267ϕ− 217

2660 041ϕ3 − 141 267ϕ2 + 651ϕ− 1
.

This average value is U-shaped in ϕ, taking on values 220
217 = 1.0138 and 1103

1090 = 1.0119 at the

boundaries of the relevant range of ϕ. [End of Case (2)]

If ϕ > 1
109 , the cutoff x ≥ 1 − s − 1−ϕ

ϕ
1
54 is in the interior of the support of x for all s. The

expected value of uninformed entry is

∫ 1
−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
f(x)dx1

2ds∫ 1
−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
f(x)dx1

2ds
.

The cutoff 1 − s − 1−ϕ
ϕ

1
54 is positive if 1 − s − 1−ϕ

ϕ
1
54 > 0 ⇐⇒ s < 1 − 1−ϕ

ϕ
1
54 , which is above
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the lower bound for the s signals, −1, if 1− 1−ϕ
ϕ

1
54 > −1⇐⇒ ϕ > 1

109 , which holds. It is negative

for higher signals s. The expected value of uninformed entry is


∫ 1− 1−ϕ

ϕ
1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
2−x
4 dx1

2ds

+
∫ 1
1− 1−ϕ

ϕ
1
54

 ∫ 0
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
2+x
4 dx

+
∫ 2
0

(
ϕ (s+ x) + (1− ϕ) 55

54

)
Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
2−x
4 dx

 1
2ds




∫ 1− 1−ϕ
ϕ

1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
2−x
4 dx1

2ds

+
∫ 1
1− 1−ϕ

ϕ
1
54

 ∫ 0
1−s− 1−ϕ

ϕ
1
54

Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
2+x
4 dx

+
∫ 2
0 Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
2−x
4 dx

 1
2ds


.

Case (3): 1
109 ≤ ϕ ≤

35
251 (ϕ ∈ [0.0091743, 0.13944]).

The second condition is satisfied with certainty. The expected value of uninformed entry is


∫ 1− 1−ϕ

ϕ
1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx1

2ds

+
∫ 1
1− 1−ϕ

ϕ
1
54

 ∫ 0
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2+x
4 dx

+
∫ 2
0

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

 1
2ds


(∫ 1− 1−ϕ

ϕ
1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

2−x
4 dx1

2ds+
∫ 1
1− 1−ϕ

ϕ
1
54

(∫ 0
1−s− 1−ϕ

ϕ
1
54

2+x
4 dx+

∫ 2
0

2−x
4 dx

)
1
2ds

)
=

65 539 799ϕ4 + 134 755 060ϕ3 + 3742 842ϕ2 + 35 860ϕ− 217

216 (612 523ϕ3 + 17 169ϕ2 + 165ϕ− 1)
.

This average value is increasing in ϕ, taking on values between 1103
1090 = 1.0119 and 27 289 871

25 415 758 = 1.0737

over the relevant range of ϕ. [End of Case (3)]

If ϕ ≥ 35
251 , the second condition may be violated for low x, such that the uninformed entrant

prefers to enter a segment different from that chosen by the informed entrant. The probability of

y ≤ x+ 1−ϕ
ϕ

35
54 is positive for any x.

The probability of y ≤ x+ 1−ϕ
ϕ

35
54 equals one if 2 ≤ x+ 1−ϕ

ϕ
35
54 ⇐⇒ x ≥ 2− 1−ϕ

ϕ
35
54 , which is in

the interior of the support of x if 2− 1−ϕ
ϕ

35
54 ≥ −2⇐⇒ ϕ ≥ 35

251 , satisfied.

The cutoff x ≥ 2 − 1−ϕ
ϕ

35
54 is irrelevant if it is below the cutoff x ≥ 1 − s − 1−ϕ

ϕ
1
54 , i.e., if
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2− 1−ϕ
ϕ

35
54 < 1− s− 1−ϕ

ϕ
1
54 ⇐⇒ s < −1 + 1−ϕ

ϕ
34
54 . That is certain if −1 + 1−ϕ

ϕ
34
54 > 1⇐⇒ ϕ < 17

71 =

0.23944.

If ϕ < 17
71 = 0.23944, we have Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1 for all relevant signals. If ϕ > 17

71 =

0.23944, we may have Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
< 1 for low signals x.

Case (4): 35
251 ≤ ϕ ≤

17
71 (ϕ ∈ [0.13944, 0.23944]).

We have Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1 for all relevant signals. The expected value of uninformed

entry is


∫ 1− 1−ϕ

ϕ
1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx1

2ds

+
∫ 1
1− 1−ϕ

ϕ
1
54

 ∫ 0
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2+x
4 dx

+
∫ 2
0

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

 1
2ds


(∫ 1− 1−ϕ

ϕ
1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

2−x
4 dx1

2ds+
∫ 1
1− 1−ϕ

ϕ
1
54

(∫ 0
1−s− 1−ϕ

ϕ
1
54

2+x
4 dx+

∫ 2
0

2−x
4 dx

)
1
2ds

)
=

65 539 799ϕ4 + 134 755 060ϕ3 + 3742 842ϕ2 + 35 860ϕ− 217

216 (612 523ϕ3 + 17 169ϕ2 + 165ϕ− 1)
.

This average value is increasing in ϕ, taking on values between 27 289 871
25 415 758 = 1.0737 and 6838 135

6087 824 =

1.1232 over the relevant range of ϕ. [End of Case (4)]

If ϕ > 17
71 = 0.23944 and s < −1 + 1−ϕ

ϕ
34
54 , then x ≥ 2 − 1−ϕ

ϕ
35
54 for all relevant signals x, and

therefore Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1 for all x.

If ϕ > 17
71 = 0.23944 and s > −1 + 1−ϕ

ϕ
34
54 , then Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
< 1 if 1− s− 1−ϕ

ϕ
1
54 < x <

2− 1−ϕ
ϕ

35
54 and Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1 if 2− 1−ϕ

ϕ
35
54 < x < 2.

From above: x ≥ 2− 1−ϕ
ϕ

35
54 is in the interior of the support of x.

Is that cutoff positive? 2− 1−ϕ
ϕ

35
54 ≥ 0⇐⇒ ϕ ≥ 35

143 = 0.24476, satisfied. Determines x-integrals.

If ϕ < 35
143 = 0.24476, then 2− 1−ϕ

ϕ
35
54 < 0. If ϕ ≥ 35

143 = 0.24476, then 2− 1−ϕ
ϕ

35
54 ≥ 0.

Check: −1 + 1−ϕ
ϕ

34
54 < 1⇐⇒ ϕ > 17

71 = 0.23944, satisfied.

Where is the additional s-integral split? −1 + 1−ϕ
ϕ

34
54 < 1 − 1−ϕ

ϕ
1
54 ⇐⇒ ϕ > 35

143 = 0.24476.

Determines s-integrals.
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Case (5): 17
71 ≤ ϕ ≤

35
143 (ϕ ∈ [0.23944, 0.24476]).

If ϕ < 35
143 = 0.24476, there are three s-integrals, with supports[

−1, 1− 1−ϕ
ϕ

1
54

]
: Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1,[

1− 1−ϕ
ϕ

1
54 ,−1 + 1−ϕ

ϕ
34
54

]
: Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1, and[

−1 + 1−ϕ
ϕ

34
54 , 1

]
: Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
< 1 if 1− s− 1−ϕ

ϕ
1
54 < x < 2− 1−ϕ

ϕ
35
54 < 0,

and Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1 if 2− 1−ϕ

ϕ
35
54 < x < 0 or 0 < x < 2.

If ϕ < 35
143 = 0.24476, then 2− 1−ϕ

ϕ
35
54 < 0.

Where Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
< 1, the cutoff x+ 1−ϕ

ϕ
35
54 is positive if x+ 1−ϕ

ϕ
35
54 . The lowest feasible

signal is x ≥ 1−s− 1−ϕ
ϕ

1
54 , so the cutoff is positive if 1−s− 1−ϕ

ϕ
1
54 + 1−ϕ

ϕ
35
54 ≥ 0⇐⇒ s ≤ 1+ 1−ϕ

ϕ
34
54 ,

which is always satisfied. In those cases, we have

Pr

{
y ≤ x+

1− ϕ
ϕ

35

54

}
=

4 + 4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

.

The expected value of uninformed entry is



∫ 1− 1−ϕ
ϕ

1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx1

2ds

+
∫ −1+ 1−ϕ

ϕ
34
54

1− 1−ϕ
ϕ

1
54

 ∫ 0
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2+x
4 dx

+
∫ 2
0

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

 1
2ds

+
∫ 1
−1+ 1−ϕ

ϕ
34
54


∫ 2− 1−ϕ

ϕ
35
54

1−s− 1−ϕ
ϕ

1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

) 4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2+x
4 dx

+
∫ 0
2− 1−ϕ

ϕ
35
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2+x
4 dx

+
∫ 2
0

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

 1
2ds




∫ 1− 1−ϕ
ϕ

1
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

2−x
4 dx1

2ds

+
∫ −1+ 1−ϕ

ϕ
34
54

1− 1−ϕ
ϕ

1
54

(∫ 0
1−s− 1−ϕ

ϕ
1
54

2+x
4 dx+

∫ 2
0

2−x
4 dx

)
1
2ds

+
∫ 1
−1+ 1−ϕ

ϕ
34
54


∫ 2− 1−ϕ

ϕ
35
54

1−s− 1−ϕ
ϕ

1
54

4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2+x
4 dx

+
∫ 0
2− 1−ϕ

ϕ
35
54

2+x
4 dx+

∫ 2
0

2−x
4 dx

 1
2ds


= 5

3
1908 193 685ϕ6−7637 053 011ϕ5−8520 448 851ϕ4+4006 515 182ϕ3−859 195 029ϕ2+85 117 725ϕ−3090 277

3205 112 869ϕ5−22 531 859 645ϕ4+9018 225 730ϕ3−1794 767 770ϕ2+171 095 225ϕ−6097 033 .

10



This average value is increasing in ϕ, taking on values between 6838 135
6087 824 = 1.1232 and 184 024 020 085

163 448 760 904 =

1.1259 over the relevant range of ϕ. [End of Case (5)]

Case (6): 35
143 ≤ ϕ ≤

1
3 (ϕ ∈ [0.24476, 0.33333]).

If ϕ > 35
143 = 0.24476, then 2− 1−ϕ

ϕ
35
54 > 0.

First s-integral: 1 − s − 1−ϕ
ϕ

1
54 > 0? We have s < −1 + 1−ϕ

ϕ
34
54 , so 1 − s − 1−ϕ

ϕ
1
54 > 1 −(

−1 + 1−ϕ
ϕ

34
54

)
− 1−ϕ

ϕ
1
54 = 2− 1−ϕ

ϕ
35
54 , which is positive.

Second s-integral: 1 − s − 1−ϕ
ϕ

1
54 < 0? We have s > −1 + 1−ϕ

ϕ
34
54 , so 1 − s − 1−ϕ

ϕ
1
54 <

1−
(
−1 + 1−ϕ

ϕ
34
54

)
− 1−ϕ

ϕ
1
54 = 2− 1−ϕ

ϕ
35
54 , which is positive.

If ϕ > 35
143 = 0.24476, there are three s-integrals, with supports[

−1,−1 + 1−ϕ
ϕ

34
54

]
: Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1,[

−1 + 1−ϕ
ϕ

34
54 , 1−

1−ϕ
ϕ

1
54

]
: Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
< 1 if 1− s− 1−ϕ

ϕ
1
54 < {x, 0} < 2− 1−ϕ

ϕ
35
54

and Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1 if 2− 1−ϕ

ϕ
35
54 < x < 2, and[

1− 1−ϕ
ϕ

1
54 , 1

]
: Pr

{
y ≤ x+ 1−ϕ

ϕ
35
54

}
< 1 if 1− s− 1−ϕ

ϕ
1
54 < 0 < x < 2− 1−ϕ

ϕ
35
54

and Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
= 1 if 2− 1−ϕ

ϕ
35
54 < x < 2.

Where Pr
{
y ≤ x+ 1−ϕ

ϕ
35
54

}
< 1, the cutoff x+ 1−ϕ

ϕ
35
54 is positive if x+ 1−ϕ

ϕ
35
54 . The lowest feasible

signal is x ≥ 1−s− 1−ϕ
ϕ

1
54 , so the cutoff is positive if 1−s− 1−ϕ

ϕ
1
54 + 1−ϕ

ϕ
35
54 ≥ 0⇐⇒ s ≤ 1+ 1−ϕ

ϕ
34
54 ,

which is always satisfied. In those cases, we have

Pr

{
y ≤ x+

1− ϕ
ϕ

35

54

}
=

4 + 4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

.
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The expected value of uninformed entry is



∫ −1+ 1−ϕ
ϕ

34
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx1

2ds

+
∫ 1− 1−ϕ

ϕ
1
54

−1+ 1−ϕ
ϕ

34
54


∫ 0
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

) 4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2+x
4 dx

+
∫ 2− 1−ϕ

ϕ
35
54

0

(
ϕ (s+ x) + (1− ϕ) 55

54

) 4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx

+
∫ 2
2− 1−ϕ

ϕ
35
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

 1
2ds

+
∫ 1
1− 1−ϕ

ϕ
1
54


∫ 0
1−s− 1−ϕ

ϕ
1
54

(
ϕ (s+ x) + (1− ϕ) 55

54

) 4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2+x
4 dx

+
∫ 2− 1−ϕ

ϕ
35
54

0

(
ϕ (s+ x) + (1− ϕ) 55

54

) 4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx

+
∫ 2
2− 1−ϕ

ϕ
35
54

(
ϕ (s+ x) + (1− ϕ) 55

54

)
2−x
4 dx

 1
2ds




∫ −1+ 1−ϕ
ϕ

34
54

−1
∫ 2
1−s− 1−ϕ

ϕ
1
54

2−x
4 dx1

2ds

+
∫ 1− 1−ϕ

ϕ
1
54

−1+ 1−ϕ
ϕ

34
54


∫ 0
1−s− 1−ϕ

ϕ
1
54

4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2+x
4 dx

+
∫ 2− 1−ϕ

ϕ
35
54

0

4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx+

∫ 2
2− 1−ϕ

ϕ
35
54

2−x
4 dx

 1
2ds

+
∫ 1
1− 1−ϕ

ϕ
1
54


∫ 0
1−s− 1−ϕ

ϕ
1
54

4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2+x
4 dx

+
∫ 2− 1−ϕ

ϕ
35
54

0

4+4
(
x+ 1−ϕ

ϕ
35
54

)
−
(
x+ 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx+

∫ 2
2− 1−ϕ

ϕ
35
54

2−x
4 dx

 1
2ds


= −4654 810 753 453ϕ6+8159 906 227 596ϕ5−4589 245 727 745ϕ4+18 316 778 960ϕ3+330 778 051 905ϕ2−61 524 529 500ϕ+3142 790 765

243(22 828 065 289ϕ5−17 743 734 155ϕ4+1023 946 930ϕ3+1033 522 130ϕ2−214 769 275ϕ+11 462 777)
.

This average value is increasing in ϕ, taking on values between 184 024 020 085
163 448 760 904 = 1.1259 and 21 406 545 578

17 982 092 097 =

1.1904 over the relevant range of ϕ. [End of Case (6)]

C.2. Entry in a Different Segment than the Informed Entrant

If δ1 = k, uninformed entry happens in segment j if these two conditions are satisfied:

ϕ (s+mj + uj) + (1− ϕ)E [ t+ vj | δ1 = k] ≥ K

ϕ (s+mj + uj) + (1− ϕ)E [ t+ vj | δ1 = k] ≥ ϕ (s+mk + uk) + (1− ϕ)E [ t+ vk | δ1 = k] .

12



Replacing E [ t+ vj | δ1 = k] and E [ t+ vk | δ1 = k] yields

ϕ (s+mj + uj) + (1− ϕ) −K
3−3K2+105K−21

6(−K2+6K+31)
≥ K

ϕ (s+mj + uj) + (1− ϕ) −K
3−3K2+105K−21

6(−K2+6K+31)
≥ ϕ (s+mk + uk) + (1− ϕ) −7K

3+39K2+195K+213
12(−K2+6K+31)

.

Replacing K = 1, x ≡ mj + uj , and y ≡ mk + uk, the conditions for uninformed entry can be

written as

ϕ (s+ x) + (1− ϕ) 10
27 ≥ 1

ϕ (s+ y) + (1− ϕ) 55
54 ≤ ϕ (s+ x) + (1− ϕ) 10

27

and rearranged to obtain

s+ x ≥ 1 + 1−ϕ
ϕ

17
27

y ≤ x− 1−ϕ
ϕ

35
54 .

Uninformed entry in a segment different from that chosen by an informed entrant is never

certain, since the sum of signals must be larger than one. It is possible if 3 > 1 + 1−ϕ
ϕ

17
27 ⇐⇒ ϕ >

17
71 = 0.23944. It requires a signal s > −1 since −1+2 < 1+ 1−ϕ

ϕ
17
27 for any ϕ ∈ (0, 1). So it requires

s ≥ −1 + 1−ϕ
ϕ

17
27 (which is below one if −1 + 1−ϕ

ϕ
17
27 < 1⇐⇒ ϕ > 17

71).

Given a feasible signal s, the first condition is satisfied if x ≥ 1− s+ 1−ϕ
ϕ

17
27 .

That term is above −2 if 1− s+ 1−ϕ
ϕ

17
27 > −2⇐⇒ s < 3 + 1−ϕ

ϕ
17
27 , which is satisfied.

It is below 2 if 1− s+ 1−ϕ
ϕ

17
27 < 2⇐⇒ s > −1 + 1−ϕ

ϕ
17
27 , which is satisfied.

So the cutoff x ≥ 1− s+ 1−ϕ
ϕ

17
27 is inside the support [−2, 2].

The cutoff x ≥ 1 − s + 1−ϕ
ϕ

17
27 is positive if 1 − s + 1−ϕ

ϕ
17
27 ≥ 0. Since s ≤ 1, this is always

satisfied, so x ≥ 1− s+ 1−ϕ
ϕ

17
27 ≥ 0.

The expected value of uninformed entry is

∫ 1
−1+ 1−ϕ

ϕ
17
27

(∫ 2
1−s+ 1−ϕ

ϕ
17
27

(
ϕ (s+ x) + (1− ϕ) 10

27

)
Pr
{
y ≤ x− 1−ϕ

ϕ
35
54

}
2−x
4 dx

)
1
2ds∫ 1

−1+ 1−ϕ
ϕ

17
27

(∫ 2
1−s+ 1−ϕ

ϕ
17
27

Pr
{
y ≤ x− 1−ϕ

ϕ
35
54

}
2−x
4 dx

)
1
2ds

.

The second condition is not violated with certainty, since that would require−2 > 2− 1−ϕ
ϕ

35
54 ⇐⇒

ϕ < 35
251 = 0.13944, which is not the case.

The second condition is not satisfied with certainty, since it is violated when y = x.

13



Can it happen that x− 1−ϕ
ϕ

35
54 ≤ −2? The lowest feasible x is x ≥ 1−s+ 1−ϕ

ϕ
17
27 . So a truncation

of the y-integral is necessary if 1 − s + 1−ϕ
ϕ

17
27 −

1−ϕ
ϕ

35
54 ≤ −2 ⇐⇒ s ≥ 3 − 1−ϕ

ϕ
1
54 , which requires

3− 1−ϕ
ϕ

1
54 < 1⇐⇒ ϕ < 1

109 = 0.0091743. So it is not necessary to truncate the y-integral.

What remains to be checked is whether x− 1−ϕ
ϕ

35
54 ≷ 0⇐⇒ x ≷ 1−ϕ

ϕ
35
54 .

We have 1−ϕ
ϕ

35
54 > 2 if and only if ϕ < 35

143 = 0.24476. So if ϕ < 35
143 = 0.24476, we have

x < 1−ϕ
ϕ

35
54 with certainty, and the cutoff for the y-integral is at a negative value of y.

Case (a): 17
71 ≤ ϕ ≤

35
143 (ϕ ∈ [0.23944, 0.24476]). The expected value of uninformed entry is

∫ 1
−1+ 1−ϕ

ϕ
17
27

(∫ 2
1−s+ 1−ϕ

ϕ
17
27

(
ϕ (s+ x) + (1− ϕ) 10

27

) 4+4
(
x− 1−ϕ

ϕ
35
54

)
+
(
x− 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx

)
1
2ds

∫ 1
−1+ 1−ϕ

ϕ
17
27

(∫ 2
1−s+ 1−ϕ

ϕ
17
27

4+4
(
x− 1−ϕ

ϕ
35
54

)
+
(
x− 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx

)
1
2ds

= 13 674 671ϕ3+11 678 421ϕ2−2841 591ϕ+163 315
108(167 041ϕ2−34 814ϕ+1909)

This average value is increasing in ϕ, taking on values between one and 1708 115
1702 129 = 1.0035 over the

relevant range of ϕ. [End of Case (a)]

Case (b): 35
143 ≤ ϕ ≤

1
3 (ϕ ∈ [0.24476, 0.33333]).

For high signals x, we have x > 1−ϕ
ϕ

35
54 , and the cutoff for the y-integral is at a positive value of

y. The x-integral needs to be split at x = 1−ϕ
ϕ

35
54 . The expected value of uninformed entry is

∫ 1
−1+ 1−ϕ

ϕ
17
27


∫ 1−ϕ

ϕ
35
54

1−s+ 1−ϕ
ϕ

17
27

(
ϕ (s+ x) + (1− ϕ) 10

27

) 4+4
(
x− 1−ϕ

ϕ
35
54

)
+
(
x− 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx

+
∫ 2

1−ϕ
ϕ

35
54

(
ϕ (s+ x) + (1− ϕ) 10

27

) 4+4
(
x− 1−ϕ

ϕ
35
54

)
−
(
x− 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx

 1
2ds

∫ 1
−1+ 1−ϕ

ϕ
17
27

(∫ 1−ϕ
ϕ

35
54

1−s+ 1−ϕ
ϕ

17
27

4+4
(
x− 1−ϕ

ϕ
35
54

)
+
(
x− 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx+

∫ 2
1−ϕ
ϕ

35
54

4+4
(
x− 1−ϕ

ϕ
35
54

)
−
(
x− 1−ϕ

ϕ
35
54

)2
8

2−x
4 dx

)
1
2ds

= 109 014 882 553ϕ5−26 662 839 701ϕ4+16 895 102 338ϕ3−14 518 477 234ϕ2+3719 279 957ϕ−288 263 305
54(1277 406 719ϕ4−267 992 492ϕ3−183 744 294ϕ2+63 944 212ϕ−5296 321)

This average value is increasing in ϕ, taking on values between 1708 115
1702 129 = 1.0035 and 634 284 143

593 437 995 =

14



1.0688 over the relevant range of ϕ. [End of Case (b)]

C.3. Entry after Informed Non-entry

If δ1 = 0 (non-entry), uninformed entry happens in segment j if these two conditions are

satisfied:

ϕ (s+mj + uj) + (1− ϕ)E [ t+ vj | δ1 = 0] ≥ K

ϕ (s+mj + uj) + (1− ϕ)E [ t+ vj | δ1 = 0] ≥ ϕ (s+mk + uk) + (1− ϕ)E [ t+ vk | δ1 = 0]

Note that E [ t+ vj | δ1 = 0] = E [ t+ vk | δ1 = 0] < 0 if K ∈ [1, 3). Since ϕ < K
3 , the first

condition cannot be satisfied, so there will be no uninformed entry.
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II. Product Differences Across Segments and Examples

of Brand Names Associated with each Segment

Table IAI

Description of Quality Segments

This table provides a brief description for STR segments and examples of brands in each of the segments. STR

distinguishes between Luxury and Upper Upscale hotels. However, since there are very few luxury hotels, we combine

luxury and upper upscale hotels into a single category. Sources: Canina, Enz, and Harrison (2005), Freedman and

Kosová (2012).

Segment Description — Product/Service Quality Example — Chain/Brand Name

Luxury/Upper Upscale

Elegant, distinctive, highest quality décor,

upscale restaurants, full range of first-class

amenities and customized services

Four Seasons, Fairmont, Ritz-Carlton,

Wyndham, Sheraton

Upscale

Well-integrated décor, quality furnishings,

premium guestroom, amenities and

facilities, high staff to guest ratio

Crowne Plaza, Courtyard, Residence Inn

Midscale w/ Food

& Beverage (F&B)

Nicely appointed rooms, range of facilities,

good quality amenities, some special

services available, restaurants

Holiday Inn, Best Western, Four Points

Midscale w/o F&B
Nicely appointed rooms, range of facilities

may be limited, good-quality amenities
Comfort Inn, Hampton Inn

Economy
Clean and comfortable, minimum of

services and amenities
Microtel Inn, Motel 6, Days Inn
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III. NPV of an Economy Hotel

In this section, we describe the data used to compute the NPV of an average economy hotel, as

discussed in Section V.C. of the main article.

The average economy hotel in our sample has 82 rooms and generates annual room revenues

of $928,000. The cost of building such a hotel is $5.255 million, of which $736,000 is the cost of

purchasing land, according to HVS Global Hospitality Service (see Hotel Development Cost Survey

2011). We deflate these amounts to 2009, as performance is measured in 2009 U.S. dollars.

According to STR, 98% of total revenues of economy hotels come from room revenues, variable

operating expenses represent 19.3% of total revenues, and the estimated yearly fixed cost for the

average hotel in our sample is $300,000. Following standard industry practices, we allow 40 years of

depreciation for the initial construction cost. We assume a corporate income tax rate of 35% and we

assume that property taxes can be deducted from taxable income. Using the above revenue, cost,

and depreciation information, the annual unlevered free cash flow for the first 40 years is $342,000.

In addition, hotels regularly undergo renovations. Based on the HVS Hotel Cost Estimating Guide

2011, we estimate capital expenditures of $274,000 every ten years, which create additional tax

shields in years 11 and later.

The typical hotel development is financed using 40% of equity and 60% of debt. To compute

the WACC (discount rate), we use the rates of return suggested by deRoos and Rushmore (2003),

8% for debt and 13% for equity. Assuming that the hotel operates perpetually, and that cash flows

grow at the rate of inflation, we obtain an NPV of $301,000.

Next, we use the parameters from Table IV, Panel A to compute the revenue reduction for

economy hotels built during market booms. A one-standard-deviation increase in the number of

entrants (5.67 hotels) in the same county-year reduces a hotel’s RevPAR by 4.99% in the first

five years of operations, by 4.76% in years 5-10, by 2.38% in years 10-20, and by 5.67% in years

20-30. Using the weight each period represents in the total present value of room revenues a hotel

produces, room revenues are reduced by 3.5%. Applying the same assumptions we used above to

compute the NPV of the hotel, a hotel opened during a market boom has an NPV of $2,000. That

is a reduction of $299,000 in NPV.
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IV. Within-County Herders’ Performance

Table IAII

Within-County Herders’ Performance: Herders, Leaders, and Laggards

This table reports the results for counties in which five or more hotels were built in a single year at least once. The

dependent variable is hotel performance, log(RevPAR), in a year t over the period 2000 to 2009. The regressions

control for county-fixed effects and include the same controls as our empirical equation (6) together with our detrended

measure Cohort Effect. We use dummies to indicate whether hotel i belongs to Herders (that is, hotels built during

peak years for a given county) or Laggards/Leaders (that is, hotels built three, two, or one years after/before the

peak year), based on its year of construction h and county c. In all regressions, robust standard errors are adjusted

for heteroskedasticity and county-level clustering. *, **, and *** indicates significant at the 10%, 5%, and 1% level,

respectively.

Variable log(RevPAR)

Cohort Effectih 0.0022
(0.0023)

Leadersich−3 (3 years before peak) -0.0051
(0.0074)

Leadersich−2 (2 years before peak) -0.0075
(0.0073)

Leadersich−1 (1 year before peak) -0.0079
(0.0066)

Herdersich (peak year) -0.0152**
(0.0076)

Laggardsich+1 (1 year after peak) -0.0135*
(0.0079)

Laggardsich+2 (2 year after peak) -0.0134
(0.0114)

Laggardsich+3 (3 year after peak) -0.0011
(0.0081)

Controls Yes
Location type fixed effects Yes
Org. form fixed effects Yes
Brand fixed effects Yes
Year-fixed effects Yes
County fixed effects Yes
County clustering Yes
R2 0.7607
N 100,714
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V. Same-Segment and Other-Segment Entrants

at the ZIP Code Level

Table IAIII

Same-Segment and Other-Segment Entrants at the ZIP Code Level

This table replicates Table VII, replacing Entrants (same segment) and Entrants (other segments), which are con-

structed at the county level, by Entrants in Zip (same segment) and Entrants in Zip (other segments), which count

the number of hotels entering in the same year and ZIP code (in the same and other quality segments) as hotel

i. Similarly, Hotels in County (same segment) and Hotels in County (other segments) are replaced by Hotels in

Zip (same segment) and Hotels in Zip (other segments). In all regressions, robust standard errors are adjusted for

heteroskedasticity and county-level clustering. *, **, and *** indicates significant at the 10%, 5%, and 1% level,

respectively.

Hotel Age
“1-5” “6-10” “11-20” “21-30” “>30”

log(RevPAR) log(RevPAR) log(RevPAR) log(RevPAR) log(RevPAR)
Variable (1) (2) (3) (4) (5)

Cohort Effectih -0.0124*** 0.0003 -0.0014 -0.0059 1.2370***
(0.0037) (0.0031) (0.0024) (0.0061) (0.4652)

Entrants in Zipich (same segment) -0.0196*** -0.0146** 0.0041 0.0123 0.0103
(0.0071) (0.0070) (0.0085) (0.0168) (0.0666)

Entrants in Zipich (other segments) -0.0202*** -0.0096** -0.0177** -0.0212** -0.0472
(0.0061) (0.0042) (0.0073) (0.0090) (0.0614)

Hotels in Zip (same segment) -0.0059** -0.0038** -0.0025 -0.0032 -0.0120
(0.0023) (0.0018) (0.0024) (0.0030) (0.0077)

Hotels in Zip (other segments) 0.0009 -0.0008 -0.0002 -0.0000 0.0018
(0.0011) (0.0009) (0.0012) (0.0015) (0.0030)

Controls performance year (t) Yes Yes Yes Yes Yes
Entry year h controls Yes Yes Yes Yes Yes
Location type fixed effects Yes Yes Yes Yes Yes
Org. form fixed effects Yes Yes Yes Yes Yes
Brand fixed effects Yes Yes Yes Yes Yes
Year-segment fixed effects Yes Yes Yes Yes Yes
County clustering Yes Yes Yes Yes Yes
R2 0.6606 0.7014 0.7160 0.7228 0.7263
N 33,022 42,818 63,284 30,925 1,782
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