Optimal debt with unobservable investments: Web-Appendix

Paul Povel*

Michael Raith**

This is the Web-Appendix for Povel, Paul and Michael Raith, "Optimal Debt with Unobservbable Investments," RAND Journal of Economics, Volume 35, No. 3 (Autumn), 2004

* Carlson School of Management, University of Minnesota, Minneapolis, MN 55455; phone: (612) 624 0266; email: povel@umn.edu.

** William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, NY 14627, USA; phone: (585) 275 8380; email: raith@simon.rochester.edu

Appendix B: π as a function of k

In this appendix we discuss how our results change if we allow π to depend on k. Define $\pi(k)$ with $\pi(0) \ge 0, \pi' > 0, \pi'' < 0$, and $\lim_{k\to\infty} y'(k) + \pi'(k) < 1$. A small investment is now associated with a small π , which in turn may affect E's incentives to repay his debt. We show that a debt contract, though not necessarily a simple debt contract, remains optimal.

B.1 Optimality of a debt contract

Proposition 2 holds as stated, with π replaced by $\pi(k^*(W,T,\beta))$. The only part of the proof affected by this change is step 3. By construction, switching from (W,T,β) to (W,T^1,β^1) (with π replaced by $\pi(k^*(W,T,\beta))$) leaves E's payoff unchanged for all (R,\hat{R}) , as long as $k^*(W,T^1,\beta^1) = k^*(W,T,\beta)$. However, if π is not constant, then switching to (W,T^1,β^1) is not payoff-neutral for E if $k \neq k^*(W,T,\beta)$, and $k^*(W,T^1,\beta^1)$ may differ from $k^*(W,T,\beta)$). We can show that (W,T^1,β^1) nevertheless Paretodominates (W,T,β) .

Let $u^1(R, \hat{R}, k) = R - T^1(\hat{R}) + \beta(\hat{R})\pi(k)$, and define $u^0(R, \hat{R}, k)$ analogously for contract (W, T, β) . For $\hat{R} \in \rho_a$, we have

$$u^{1}(R,\hat{R},k) = R - \hat{R} + \left[\beta(\hat{R}) + \frac{\hat{R} - T(\hat{R})}{\pi(k^{*})}\right]\pi(k) = u^{0}(R,\hat{R},k) - [\hat{R} - T(\hat{R})]\left(1 - \frac{\pi(k)}{\pi(k^{*})}\right).$$

Similarly, for $\widehat{R} \in \rho_b$,

$$u^{1}(R,\hat{R},k) = R - T(\hat{R}) - [1 - \beta(\hat{R})]\pi(k^{*}) + \pi(k) = u^{0}(R,\hat{R},k) - [\pi(k^{*}) - \pi(k)][1 - \beta(\hat{R})].$$

For $\hat{R} \notin \rho$, by definition $u^1(R, \hat{R}, k) = u^0(R, \hat{R}, k)$. If E chooses $k < k^*$, then $\pi(k) < \pi(k^*)$ and hence $u^1(R, \hat{R}, k) < u^0(R, \hat{R}, k)$ for all $\hat{R} \in \rho$. By definition of k^* , we then have

$$\begin{split} & \operatorname{E}_{\theta}[\max_{\widehat{R}} u^{1}(R(k^{*},\theta),\widehat{R},k^{*})] - k^{*} = \operatorname{E}_{\theta}[\max_{\widehat{R}} u^{0}(R(k^{*},\theta),\widehat{R},k^{*})] - k^{*} \\ & \geq \operatorname{E}_{\theta}[\max_{\widehat{R}} u^{0}(R(k,\theta),\widehat{R},k)] - k \geq \operatorname{E}_{\theta}[\max_{\widehat{R}} u^{1}(R(k,\theta),\widehat{R},k)] - k. \end{split}$$

(Notice that we are not assuming truthtelling for any $k \neq k^*$ under either contract.) This means that E would never choose $k < k^*$ under (W, T^1, β^1) ; hence $k^*(W, T^1, \beta^1) \ge k^*(W, T, \beta)$, possibly with strict inequality since for $k > k^*$ the second inequality above is reversed. The contract (W, T^1, β^1) is incentive compatible if for all R and $\hat{R} < R$,

$$u^{1}(R, R, k) - u^{1}(R, \widehat{R}, k) = \widehat{R} - R + [\beta^{1}(R) - \beta^{1}(\widehat{R})]\pi(k) \ge 0.$$
(B1)

The term $\beta^1(R) - \beta^1(\hat{R})$ must be nonnegative. Suppose not: then $\beta^1(R) < \beta^1(\hat{R})$ would imply $\beta^1(R) < 1$ and therefore $T^1(R) = R$, as well as $T^1(R) < T^1(\hat{R}) < R$, a contradiction. Hence, since (B1) holds for $k = k^*$, it must also hold for any larger k.

Step 4 of Proposition 2 can be applied to show that (W, T^1, β^1) must satisfy (7) and (8). Is expected stage-4 payoff can then be written as

$$\int_{\underline{\theta}}^{D/y(k)} y(k)\theta f(\theta) \mathrm{d}\theta + [1 - F(D/(y/k))], \tag{B2}$$

which is increasing in y(k). Thus, if Ts payoff is higher with (W, T^1, β^1) than with (W, T, β) for $k = k^*$, the same must be true for any larger k. As before, E can appropriate this increase by designing a new contract (W, T^2, β^2) .

B.2 Investment incentives and the optimal contract

Suppose E and I write a simple debt contract $(W, T, \overline{\beta})$, where $\overline{\beta}(R) = 1 - (D - R)/\pi(k_0)$ and E and I expect E to choose k_0 . Clearly, we can restrict our attention to contracts that set $W = k_0$. Define $u(R, \widehat{R}, k) = R - T(\widehat{R}) + \beta(\widehat{R})\pi(k)$. If E invests k, for $\widehat{R} \ge D$ we have $u(R, \widehat{R}, k) = R - D + \pi(k)$, and for $\widehat{R} < D$

$$u(R,\hat{R},k) = R - \hat{R} + \left(1 - \frac{D - \hat{R}}{\pi(k_0)}\right)\pi(k) = R - D + \pi(k) + (D - \hat{R})\left(1 - \frac{\pi(k)}{\pi(k_0)}\right).$$
 (B3)

Since $\pi' > 0$, inspection of (B3) shows that the contract induces truthtelling if $k \ge k_0$. If $k < k_0$, however, E would announce $\hat{R} = 0$ and not make any payment to I. For the contract to be feasible, therefore, E must not have an incentive to choose any $k < k_0$. If in stage 2 E invests k_0 , he subsequently has an incentive to report his funds truthfully, and thus his expected payoff as of stage 2 is

$$y(k_0) - D + \pi(k_0)$$
 (B4)

(recall that $W = k_0$). If he invests $k < k_0$, he will not repay anything in stage 4, and thus his expected payoff in stage 2 is

$$y(k) + \pi(k) + k_0 - k - \frac{D}{\pi(k_0)}\pi(k),$$
 (B5)

which coincides with (B4) for $k = k_0$. Under our assumptions, (B5) has a unique maximum in k for given k_0 ; denote it by $\kappa(k_0)$. I would not agree to lend k_0 if he expected E subsequently to choose $k < k_0$; thus a simple debt contract is feasible only if $\kappa(k_0) \ge k_0$. Define the first-best investment as $k^{FB} = \arg \max y(k) + \pi(k) - k$. Since k^{FB} maximizes the first four terms in (B5), it follows that $\kappa(k^{FB}) < k^{FB}$. This means that no simple debt contract can induce E to choose k^{FB} ; and by continuity, the same holds for all $k \in [\bar{k}, k^{FB}]$ for some $\bar{k} < k^{FB}$.

Denote by k^{SB} the solution to $\max_k y(k) - D(k) + \pi(k)$, where D(k) solves (A4). If $\bar{k} \ge k^{SB}$, then the results of Section 5 continue to hold: A simple debt contract with $W = k^{SB}$ and $\bar{\beta} = 1 - (D - R)/\pi(k^{SB})$ induces the choice of $k^{SB} < k^{FB}$, and is optimal.

If $\bar{k} < k^{SB}$, it may be optimal to write a non-simple debt contract, such as of the form described in Propositions 4 and 5, to induce E to choose $k > \bar{k}$. As in Sections 6 and 7, however, both the benefit and the cost of using a non-simple contract are of first-order magnitude. If the cost of liquidating with higher probability exceeds the benefit of investing $k > \bar{k}$ even at the margin, then the optimal contract is again a simple debt contract, with $W = \bar{k}$ and $\bar{\beta} = 1 - (D - R)/\pi(\bar{k})$.¹

¹ To illustrate, let $y(k) = \sqrt{k}$, $\pi(k) = \alpha y(k)$ for $\alpha > 0$, and assume that θ is uniformly distributed over [0,2]. Then $\bar{k} \ge k^{SB}$, and a simple debt contract is optimal if and only if $\alpha \ge 3/2$. If α is much smaller than 3/2, then a contract of the form (19) is preferred to a simple debt contract (but it is not necessarily the optimal contract); whereas if α is not much smaller than 3/2, a simple debt contract where E invests $\bar{k} < k^{SB}$ is preferred.