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A.1 Cost of Misreporting Depends on (r — y) Instead of (r — q)

The cost of misreporting could be a function of (r — y)? instead of (r — q)*. One reason is that y is
observable (eventually), while g is not. Such a cost would be uncertain, since the realization of y
is uncertain. We could model the cost of misreporting as - (r — E[y])* + 2E [(1’ — y)z] (the first

term can easily be omitted), which can be rewritten as

~ S+ R (oot r@a- [T eo-gafeder [T ef @)
=S o=+ g (-t -20-gEl+ [ 2fea)

=5 =+ 5 (=97 -0+02)

= B (r— g+ 22

Now consider a compensation contract w = (@, B,d) such that @ = a + 20% B=B+E0=06—¢;

4

and x; 4«2 = c. The CEO’s expected payoff would be

E [a+3r+3y—§(r—y)] —gvﬂr (a+3r+3y—g(r—y)) —ELZ—ﬂ(r—E[y])Z—%E [(r—y)z}

2 2
—ElaaeBrady—cir—u| -F A Brady—c(r—y)) _S2_Kitr 2 K2 oo
—E[a+ﬁr+5y ¢(r y)} 2Var<1x+ﬁr+5y ¢ (r y)) 2L 5 (r—q) i
:E[E—f—ﬁr—i—éy]—%Var(&—l—ﬁr—f—éy)—§L2—¥(r—q)z—%az
_pla_®p Pvara 82 Mtk 2
_E[cx i +ﬁr+5y} 2Var(zx+ﬁr+5y) 2L > (r—gq)
_a_"2 : P2 82 Ttk 42
=a- -0 + pr+6- Ey] 2(5(7 2L 5 (r—gq)
_ P25 812 S )2
=+ Br+JE [y 20(5 2L 2(r q)°,

which is the payoff described in equation (4). Thus, our assumption that the cost of misreporting

depends on (r — gq) is equivalent to assuming that it depends on (v — v).
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A.2 Derivation of the Incentive Constraints, (10) and (11)

The incentive constraints are

U(Th, wh) Z U(Th,ZUg) (Al)
U(Tg, ZUg) Z U(Tg, wh). (AZ)
Using (5),
ﬁZ 0.2 + 0 2
U (T, wy) > g + 2% - %(ﬁ + (ﬁgzgé)ﬁ% (A3)
ﬁZ 0.2 + ) 2
U(ty,wy) > ap + 2—’2 — %(5,% + (’BhZé’h)TEZ (A4)
Using (8), (9), and (5),
p? o2 +6,)?
U (T, wy) >U (10, wy) — (ocg + Z—ﬁ — %55 + (ﬁfzge)q?
ﬁj_ﬂ;’z 2 (;BIZ+5£)2 2
+ <[Xﬁ + 2 2 5( =+ Zg Th (A5)
p? o2 +6,)?
U(ty, we) >U (T, wy) — (Déh - 2*’; — %(ﬁ + (‘thgh)r,f
B _ po* (ﬁh—|—5h)2 2

Simplify, to obtain (10) and (11).

A.3 Proof of Lemmal

The benevolent planner’s objective function is (3). The first-order conditions are

AP SR SISO SN A
a,BZ-S(T”w) =k (gBi — et + cBiti + cit7) =0
;&S(n,w) = —; (Bit? — T2 + 6t + g0%6ip) =0

Combine the two first-order conditions and solve for  and 6, to obtain B} and J;".

The lowest-rent implementation sets «, such that the low-talent participation constraint (9) is
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binding, which can be solved for &},

2 2 \2 2 2 o
. [po* (c®p)”  (ectp+1) TN o

With U(1y, w;) = 0, the high-talent incentive constraint (10) implies that the high-talent participa-
tion constraint is not binding, so it can be ignored. The incentive constraints (10) and (11) can be

rewritten as (replacing U (1, w;) = 0)

(cr?p+1)"- @) (2 2y

U(m, wy,) > 29 W T
25 11)% . (65)?
0> U(ty, w}) — (eo p+2; (%) (77 —17) -

Substitute U (T, w};) using (5), and isolate aj,

(@) () 0P o g (1)
ay = 29 (G -1) - e (5h)2—7(5h)2+ 23 (61)* 7
. (co?o+1)(5)? cpo?)? o2 cpo® +1

iz LN oy ({02 o e LT (e

The lowest value of &), that satisfies the conditions is

co2o+1)% (12 — 2 co?p)? 2 co?0 +1)* 2
* ( P ) (h 6) (5Z)2_<( ch) _pg _|_('02g)h (5;1‘)2. (A8)

ah - 2g

The high-talent incentive constraint is binding, while the low-talent incentive constraint is slack.

The surplus generated by a low-talent CEO is (using (3))

2

Strup) = (p+1) 87 - L (eop+1)7 67— O 62— LG i )
2 2 2 2
U (o2 . (o +1) T +g0%p T} 2 )2
g (1) o - = 2g (P +1) - (%0)
The large fraction equals 5; replace, and simplify, to obtain
2
S(t, w}) = é (cpo® +1) 6. (A10)
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The surplus is thus strictly positive if a low-talent CEO is hired. Since with &y = «; a low-talent
CEQ’s expected net payoff is zero, this implies that the firm’s profit is strictly positive if it hires a
low-talent CEO. Similarly, a high-talent CEO’s surplus under the contract wj is
2

S(ty, w}) = ﬁ (coo® +1) 5. (A11)
Since 0; > ¢} and T, > T, this implies that S(t,, w};) > S(7, w}), so a benevolent planner wants
both CEO types to be active.

A high-talent CEO’s expected payoff is (using B = co?p - 07, (5), (12) and (A8))

U(Th,ZUZ) — (CUZP + 1)2 (T}% — TZZ) (5;)2 _ (W _ ﬁ + (CO—Z‘O_‘_l)ZT}%> (5;)2

29 2c 2 29
2)2 2 2 2
cpo o coo” +1 .

_ (CUzp + 1)2 (Tl’% B T/Z) (5*)2
= Zg ),

A high-talent CEO’s expected payoff is smaller than the surplus she generates (cf. (A11)), and thus

the firm’s profit is positive, if

2 2 2/ 2 2

Ty 2 e (ca?o+1)" (5 = 17) 2

— >

Zg (CpO' + 1) 5h - 2g ((sﬁ)
1 T}% 2

* > * X
C02p+17;%_T€25h = (5Z)
That is satisfied, since
1 T}% * TI% * (kN2 \2
C‘TZP+1T2—725h> co?p +1) T2 + go? % = (Gn)" > (3)"-

h ¢ © B T 80P

So the firm’s profit is positive if it hires a high-talent CEO.
There exists a continuum of contracts that implement the efficient outcome. They are found
by increasing ay and «;, such that the ICs remain satisfied. The upper bound to the set of efficient

contracts is where a low-talent CEO extracts all the surplus she generates. That is the case if her
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expected payoff (cf. (5)),

(Cpaz)z (6Z)2 . ﬁ (5;)2 + (Cp02+1)2 (5*)2 2

u , kok — )k
(T[ Wy ) Xy + 2c

equals the surplus she generates (using S(1y, w; ) as described in (A10)),

2
T,
S(t, w})) = é (coo® +1) 57, (A12)
and solving for a;* yields
sk TKZ 2 * (CPO-Z)Z *\2 P‘TZ %2 (CPUZ + 1)2 *\2 2
& :g(cp‘f +1) 07 — | =5 0)" = 5 (67) +T(5e) 7
Expand the first term, using (12),
sk TIZ 2 * 5; (CPUZ)Z *\2 P‘TZ %2 (Cp0-2+1)2 *\2 _2
& =5 (coo* +1) 4 o - oo 0) =5 (0) A+ s — (0) T
g ( 7 c 8
(ca2p+1)r%+g¢72p)
and simplify to obtain
Wt = pa? - (67)7. (A13)

The firm's profit then equals zero.) Incentive compatibility is maintained if &), is increased, such
P q p y
that a}* > &) + (a;* — &) without violating the low-talent incentive constraint, (11). The highest

feasible a;* is thus defined by ay = a;* and a binding incentive constraint for a low-talent CEO,

U(tg, wi*) = U(T, w") — - (63)* (T — T7)

(where w}™* = (a}*, B},6})). Replace U(ty, w;*) = S(t, w}*),

(co?0+1)°

S(T&wz*) = u(Th/w}t*) - 2g

(00)* (zi = 7).
and replace both U (7, w;*) and S(1y, w;*), to obtain

(co0?)? 00? o (cpo?+1) (co?p+1)? .

w2 POt 2 ©w2 2
o () 5 () +72g (05)" T

2
T
ﬁ (cpo? +1) 6] = a* +
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Solve for &} *, to obtain

2

2 2 2 2
wk E 2 * (CpO'z) _ pO-Z (CPU + 1) T *\2
=5 (cpo” +1) 6, < o Ea BT (0;)°. (A14)

A high-talent CEO’s expected payoff is smaller than the surplus she generates if

S(Th,w;j*) > U(Th, ZU;;*)

T2 i » Cp0'22 o2 P02 o cp(72+12 o2
ﬁ(cpo—2+1)(5h>“h +< 2C) () —7(5;1) +7( 2¢ ) R

2 2 2)2 2 2 2
T (oo0? 4 1) 57 > T (epo? 4 1) 55— [ (P07) pe®  (epot +1)7 5\ o
2 (coo” +1) 5; >2g (coo” +1) 6} o >+ 2% 7 | (65)
(co0?)? (coo? +1)?

+ (07)* 7

2
x\2 oo *\2
2 () 5 (0p)" + 29

202 2
Ll'% 2 * LZZ 2 * (Cp02+1) (Th _Té) *\2
2 (coo” +1) &5 > 2 (cpo” +1) 6} + < 2% (55)

26 > 125 + (cp0? +1) (F ) (57)°

2 G > 12 i + (coo® + 1) (17 — 17) G 2
h (co?0+1) 77 + go?p ¢ (co?0+1) 17 + go?p e b (co?0+1) T2 + gop
2
2 2 2
2 Th 2 T 2 2 2 T
- - 1) (2 — >0
K (co?0+1) 77 + go?p K (co?0+1) 7 + go?p (cpo +1) (5 = 77) <(c02p +1) 2 + g02p>

2 (co?p + 1) T2t} + (T + 17) g0?p

>0
((co?p+1) 17 + gvzp)z ((co?p+1) 12 + go?p)

87’0 (1 — )

That is satisfied, so the firm’s profit is positive if it hires a high-talent CEO.

A-7



A.4 Properties of Efficient Contracts

P} 2

% ) T '(1.40'2p
i T 93¢ (co2 2 2, 7 <0
de dc (co?p +1) 77 +go?p ((co?p +1) 2 + go2p)
0 ., 0 (e o?pt? (7 + g0?p)
ol = 3T P T ooly 2 2 >0
¢ ¢ (cor?o+1) T +80%0  ((co?p +1) T2 + g02p)
o . _ 0 T 7 (e +3g)
2,% T 552 2 2 2, 2 <0
dop 90?p (co?p +1) 77 + gop ((co?p +1) T2 + go2p)
Bi = co? i = i >0
dr?p"t  do?p p(CUZP+1)TiZ+8‘72P ((c02p+1)7i2+g(72p)2
O g9 T go%p 0
o7 ' ot 2(002P+1)T +g0% ((co?p +1) T2 + g02p)*
( co*o?
2!81 ~ 52¢ c’o— 2 2, ng 7 >0
oT; T (co?p+1) 17 + 8020 ((co2p 4 1) T2 + g02p)
9 d 1 ( cp??
—L(t, w! co?p+1 L
dc (Twp) = ac( P )g (CUZP+1)T2+g‘72P ((C(72p+1)rl.2+g(72p)2
0 0 1 ’l’-2 7.3
—L(t,w) = —— (cc?p+1 J :
dop i) aUZP( b )g (c?p+1)T7 +g0% ((c02p+1)ri2+g(72p)2
0 0 1 72 co?o+1) t? (co?p+1) T2 + 3g0?
7L(~Q’w;’<) (C(Tp—i-l)f 5 i . — = ( P ) i ( [% ) i 8 p2
T o7 g '(co?p+1) 7 +go?p 8 ((co?p +1) T2 + g02p)
2
o2 U _
11_1‘)%‘31 N ll_r%c P (co?p +1) T2+ g0%0
2 2
lim¢; = lim U = U
c—0 =0 (co?p +1) T2 gcfzp +g0?p
lim L} (7, w) = lim (co?0 +1) —7

g (co?p+1) T2 +g0%  gTF+g0%p
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2

T
lim B = lim coc?p - L =
AP = A e (co?p +1) 77 + go?p
2
lim 67 = lim — =0
c—00 c—00 (C(sz + 1) T + gg—zp
1 (e 1
lim L(7, w}) = lim (co?p +1) =7 d =7
c—00 ! c—00 I'§ (ca'zp + 1) Tzz + go’zp g
2
T
lim Bf = lim co?p - - =
720—0 & 72p—0 P (co?0+1) T* + go?p
2
lim 4] = lim — =1
72p—0 0200 (co?p 4+ 1) T2 + go?p
1 T2 1
lim L(t,w!) = lim (cc?o+1) =T i =1
200 (T wi) Uzp%()( P )g “(co2p+1)T2+g0% g
T2 cT?
lim Bf = lim co?p- L = i
2300 hi oo L (co?04+1) 17 +g0%0 cT?+g
72
lim ¢ = lim — =0
02p—r00 02p—co (co?p + 1) T2 + g0p
1 2 1 3
lim L(g,w;) = lim (co’p+1)=1— i 5 == CZTZ
02p—00 72p—00 g (co?p+1)17+g0%0 gcTi+g

A.5 Additive Effort and Talent

Assume that y = KL + kT; + ¢, i.e., effort and talent have an additive effect on performance instead

of having a multiplicative effect. The CEO’s indirect utility function is then

2
u:oc+,8r+(5(KL+kTi)—%(52—§L2—§(r—(KL+kTZ-))2.
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To find the optimal choices of L and r, given a contract w, solve

_ 0 , Pt 5 8.0 € NV
O—aL<o¢—|—,Br+5(KL+kTZ)—25 _EL —E(r—(KL%—kTZ))

2
0=2 <uc+ﬁr+5(KL+kTi) A - (KL+kTZ-))2>

~or 2 2 2

0 = 6K — gL + cKr — cK*L — cKkT;
0= B —cr+cKL + ckT;

to obtain

L(t,w) = Kﬁgﬂs

:sz P

r(t,w) + 5 k.
The optimal level of effort L(t;, w) — given a contract w — would thus be independent of talent,

and the optimal level of misreporting

_eBto B (2Bt
r(Ti,w)—(KL(Ti,w)—kkTi)_KZT—I—E—FkTZ (1@ : +le>
B

c
would also be independent of talent.

A benevolent planner would maximize

2
n;e}xKL—kkTi P 2 (r—KL — kTi>2

¢
2 2 2
Substituting L(7;, w) and r(7;, w), the benevolent planner maximizes

2 2
maxK . KM +ij — ﬂ&z _ g <KM)

B.o g 2 2 g
2
_E (sz—i—'g—f—kTi—K'K‘B—'—é—kTi)
2 g c g
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The FOCs are

B\ ¢ (K2%+§+kn—f<.f<%—kn)2
. K-K%+kn—%52—§(1<%)z
S —§<K2%”+§+k~q—1<-1<%”—kri>2

The benevolent planner’s optimal contract sets §* = co?p - 6* and

KZ
~ (co?p + 1) K2+ gop’

*

The efficient contract creates incentives that do not depend on the talent level. In equilibrium,
irrespective of the talent level,

_ Kcazp +1 K?

Lz w’) g (co?p+1)K+go%’

The expected compensation of the two talent types differ only because the more talented CEO’s
reported performance is higher. The extent of misreporting is identical, so the separating incentive

constraints are satisfied if a pooling contract is offered.

A.6 Proof of Lemma?2

The firm’s objective is to maximize
ETT = pi, (S(m, wp) — U(T, wn)) + (1= pu) (S(t0, w0p) — U, wy)) (A15)

subject to the incentive constraints (cf. (10) and (11)),

2
U(ty, wy) > U(t, wy) + (M;g&g) (77 —17) (Al6)
2
U(ty,we) > U(y, wp) — W (7 —7) (A17)
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and the binding participation constraint for a low-talent CEO (cf. (9))
U(ty, wy) = 0.

From (A16), the high-talent participation constraint is satisfied if the low-talent participation con-
straint is satisfied. We show below that the firm wants to employ both types of CEQO, so the
low-talent participation constraint is satisfied, and that the high-talent participation constraint is
not binding since B, + &, > 0.

The high-talent incentive constraint (A16) must be binding: if it was not, then the firm could
profitably reduce U (T, wy) by reducing aj,, without violating any of the constraints. The IC thus

can be rewritten as )
(Betd)” (2 o
Zg (Th - ) :
We can temporarily ignore the low-talent incentive constraint (A17) and verify later that it is sat-
isfied.

The program can thus be simplified,

u<Th, wh) =0+

max EIT = p, | S(t, wy) — M (7 —12) | + (1= pu) S(p, wp)
BirOnBe,de 28 (

Substitute S(1,, wy,) and S(7y, wy) using (3),

BiOn,BeSe

2 2 2 2
max EIT =pj, ((Zf (B +0n) — pZZ(Sﬁ— ;g(ﬁhﬂL(Sh)z— [23';) _ (Bet o) (Tzf—Tzz)>
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The first-order conditions (with reference to dy, By, d;, and B,) are

0= T aza—l’f(ﬁ + 1) (A19)
= Pn ¢ PO On < htOon
0=py (%= T (g, 15— B A20
= P E—E(,Bh‘f‘ h)—7 (A20)
2 2
0= —Ph(m;éé) (i =) + (1~ pn) (Z — P08 — Z (Be +5€)> (A21)
) 2 2
0= _Phw (% =) + (1= pa) Cf - ;f (Be+ ) - ’i”) : (A22)

Combining the first two FOCs yields
B =co?o-5) (A23)

and 5Zf = J;. (Note: the contract offered to a high-talent CEO is efficient.) Similarly, combining
the third and fourth FOC yields

B = co?p- 5. (A24)

and 5Zf as described in (13). The equilibrium value of (xzf is found by rewriting the low-talent

participation constraint,

2)2 2 2 2 24 1)2 2
U ) = af + BT ()P 0 () (BT U ()i,

2c 29
and solving it for azf , which yields
2 2)2 2 2.2
sf_ [(po? _ (ep®)”  (cp? +1)" T [ op)?
“ ( 2 2 2¢ (57)" (A25)

f

The value of )’ is found by rewriting the binding high-talent incentive constraint,

2 2D (1)} (- )

U(Th/ wh) = 2g — Ty

o W) 5 (@) O ) O )
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and solving it for oczf , which yields

2 2 2 2
s [ po? B (cpo?) B (coo? +1)" 17 55\ 2
b = ( 2 2¢ 2g (‘5 ) ‘ (A26)

We now verify that the low-talent incentive constraint is slack:
(cpo® +1)* A\ (2 _ 2
0>U(Th,Wh)_2g<5h > (Th_Tf)'
The high-talent incentive constraint is binding,
(coo? +1)? N
The low-talent incentive constraint can thus be rewritten as
2 2 2 2
(cp® +1)" rsp\2 5 oy (pr®+1)" (N2 5
0> 29 (‘5;) (v — ) — 23 (5h) (o — )

The result follows if 5Zf > (5Zf . That is the case, since 5Zf = ¢}, which is strictly larger than J; (cf.
(12)), and that in turn is strictly larger than (5Zf .

Next, we show that the firm’s profit is positive with either of the CEO types. Using (7), (A25)
and (A24),

s TZ s s T2 s 2 C 0—2 2
(7, w]) = Eﬁ (cp0? +1) & — o — Ep (coo® +1)° (5zf) - PC )

Gy

coo? +1) T2 + po’g
2¢ ’

2
- ng (cpa2 +1) (SZf — <z52f)2 (cpa2 +1) (

That is positive if
7 f

2 S,
(coo? +1) T2 + po2g ¢

which is the case, since the fraction on the left-hand side equals 47, and 6; > (5Zf . Similarly, using
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(7), (A26) and (A23),

2 2 N2
) = T (o 1) 6 — o — T (cpo? +1)% () = LT (1)’
I, w, ) = s (coo” +1) 6, —ay g (coo” +1) (5h) : <5h)

2 2_ 2 2 2
T (po? Sf (epo? (27 — 77) (cpo® +1) +po’g ¢ s\2
= (coo” +1) 6, — (cpr® +1) 2% (5h ) :
That is positive if
(212 — 17) (cpo? +1) +po?g = 2
Replace 57,

T2 TZ
h > h .
(277 —7) (cpo? +1) +po2g = 217 (co?p +1) +2g02p

That is satisfied, and the firm’s profit is strictly positive if 7, > 0.

For completeness, we now show that the firm always wants both types of CEO to accept a con-
tract. Specifically, the firm could offer contracts that are incentive compatible but so unattractive
that a low-talent CEO rejects and a high-talent CEO accepts, but her expected payoff is zero. Thus,
the firm would be able to extract the entire surplus if the CEO has high talent, but it would lose
the entire surplus if the CEO has low talent. That is not beneficial (and the firm prefers to hire
both types) if (1 — py,) Szf > phUZf . From (A27) and (A23),

(cc?p+1)°

2
U(Th,wzf) = ((5?) (77 — 17) (A28)

and from (3) and (A24),

2 2 2 2 5 2
S(v,w) = T (oo +1) 0 = O (o) = L (oo +1)7 (o) - (er?p)”

2 2 (7). (a2)

We want to show that
(1= pi) S(ww) = pull(m, /) > 0.
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Replace S(ty, wzf ) and U(T, wzf ) using (A28) and (A29), to obtain

2 2.)2
po T 2 sf  (co?p)”
(1—p)§f<g(cap+l) 5 é(cazp—kl) 5/—2C§/)
(cc?p+1)° :
—PhT(T}%— 42)5£f>0
%1 ) (1) 67 (11 (corp+ 1) 0 = S TRy B0t (LT ) 5 g
g 2 % 2 1—py 2 2 £

2 co?p+1) T2 + ¢o?p + p” co?p+1) (7 — 77
7

The fraction inside the parenthesis is equal to 5%1(, so the requirement is
14

2

2g £ (1—py) (cazp +1) -5zf >0,

which is satisfied.

A.7 Properties of Equilibrium Contracts in the Single-Firm Setup

The comparative statics for ﬁzf and 5Zf are omitted since they can be found above (recall that
f — grand 5 = 67).

aésf_ 9 2
0% = e (earp 1 1) T+ g+ 1B (cop + 1) (12— )
2
:—02p<1+ Ph T%_T/‘Z) i <0
- ) 2
1=p ((c02p+1)r +80%0 + E (co?p +1) (T —Tg))

9 sf_ 0 co?pT?

ac't  dc(co?p +1) 77 + go2p + o (co?p +1) (T — 77)

2 2 2 2 2
— 0% 14087, P T U >0
7 L—pn 17 (ca?p+1) 17 + 80?0 + 1f’;ﬂ (co?0+1) (17 —77)
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a (sz a Téz

do2p ¢ :802p (co?p +1) T2 + go2p + £ p” - (co?p+1) (2 —1?)
2
) 2
:_<c+g2+c Pr i 2T€>< 2 2 2 Tgph 2 ) <0
T 1= 7 (co?p+1) 77 + 80?0 + 1= (CUP+1)(Th_T£)
W o

do2p"t 9020 (co2p +1) 7+ go?p + 1% (ca?0+1) (17 — 17)

2 2 2
l—pp 77 ) ((wzp +1) 17 +80%0 + 55 (co?p +1) (77 — 77) >

9 55f_i sz

o T 0 (e + 1) + g0 + L (o?p 1) (7~ 77)

B 1p’;h(cap+1)r + g0 ~0
= 2

<(c02p+ 1) 77 + go%p + 2 (co?p +1) (77 — T€)>

ph co?o + 1) T2 + ¢0?
254 —C‘Tpaa(sf_wp e kil >0

2
((cazp +1) 17 + go%p + W (co?0+1) (7 — T}))

9 55f — i TZZ
oty * 97 (cop +1) 17 + gop + 12 (co?p +1) (77 — 77)
Ph (C(T P+1) Tg
= — 7 <0
<(C(72p+1)’fé + 80?0 + 1~ ph - (co?p +1) (T _T/)>
2 (co?p +1) T2
aa2/5?[ = cazpaaz‘szf = —co’p SAGARN 2 <0
T T ((cazp+ 1) 17 + go%0 + 1245 (co?p + 1) (T — le))
i(ssf: J i
apn © Opn (co2p +1) T2 + 020 + 2 ph - (co?p +1) (77 — 77)
1 _ 2\ 2
_ (co?p + )(Th )T <0

2
(1—pp)? ((cazp +1) 17 + go%p + @ (co?0+1) (7 — Tf))
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— (1, - _Z = 1
aazp (Té wy ) ao.ng"[é (C(T o+ ) (C(sz—l— 1) T€2 +g0-2p 4+ P (C0'2,0+1) (T}% _ ng)

1_ph
3
L
T (e 2 4 oo2p 4 Pi (g2 SNt 0
((CU’ p+1)77 +g0%p + 2 (co?p +1) (7] —T£)>
EL(T W) = 91, (co?p +1) i
oc T oy ! (co?p+1) 77 + gop + 125 (eo?p +1) (T — 77)
020213
= i 5 >0
((cazp +1) 17 +go%p + % (co?0+1) (17 — Tf))
2 223
2 L)) = o (e +1) gy = o ;>0
ac acg (co?o+1) 77 +80%0  ((co2p +1) 12 + go?p)
co?p - T? 72
lim B = lim £ = £ <1=lim§p
el o (co?p+1) 17 + g0+ 1 (ec?o+1) (- 17) g+ (G- 1)
2
lim 6/ = lim ¢
Cc—00 c—00

=0=limJ;
(co?p +1) 77 + 80?0 + 125 (ca?o +1) (T — 77) e

2
T,
lim B = lim co?p - £ =0
i ¢ = limcop (co?p +1) 77 + go%p + 124 (co?p + 1) (77 — 77)
2 T2
lim 5;f = lim — 2 T 2 22\ 2 PR Ty o
=0 c%O(c0p+1)T€+g0p+m(c0p+l)(rh—ré) 7+ 8070 + H (12 —17)
sf 2 T
lim = lim cop- =0= lim Bj
gZFHOﬁ 0200 (co?0 +1) 17 +go%p + 1P (co?p +1) (T — 77) 02p—0 Pi
72 72
lim &/ = lim L = L <1= lim &
0200 200 (co?p +1) 77 + go%p + (- (co?p + 1) (77— 77) 7+ 12 (5 — 17) !
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lim g7 = Jim o’ - i
p—eo | oo (c02p +1) 7+ g0%p + £ (oo + 1) (7 - 1F)  ctF g+t (T - 17)
2
T
lim 6 = lim t =0
Pp—oo L a0 (co2p 4+ 1) T2 4 g0%0 + it (cop +1) (5 — 17)

A.8 Profit Positive if High-talent CEO Accepts Low-talent Contract w;*

It is always possible to poach a low-talent CEO by offering her the efficient contract w;* =
(a}*, B}, 0;). Offering that contract lets the firm break even if it hires a low-talent CEO, and if a
high-talent CEO accepts it, the firm actually benefits: Using (7), we have I1(7,, w;*) > I1(1y, w;*)
if

T}% 2 * *k TI? 2 2 1 ox\2 (CUZP)2 )2
s (cop+1)6; —af _E(CU p+1)"(5) —f((sz)
2 2 2,2
>0 (e +1)0) — it = L (e’ 1) (51)7 o) (5py2,

or

2 2
200 P+ 1, 2 « 200 p+ 1, 2 «

That is satisfied, since Tf > ng

(co?p+1) 67 < 1).

and the term in parentheses is positive (from (12), we have

A.9 Proof of Proposition 3

The firms’ equilibrium contract is defined by the program (14)-(16). A high-talent CEO’s decisions
must be distorted, since as shown above, the set of efficient contracts is incentive compatible but
leads to positive profits for the firm. Clearly, one of the incentive constraints (15) and (16) must
be binding: If not, the distortion in a high-talent CEO’s decisions could be mitigated, increasing
the surplus she generates. As before, we ignore one of the incentive constraints and assume that
the other is binding. However, as we will show, the binding constraint is the low-talent incentive
constraint (16). (The low-talent incentive constraint is slack in the equilibrium contract in the

single-firm setup.)
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With a binding low-talent incentive constraint (16), and ignoring the high-talent incentive con-

straint (15), we can rewrite the firms’ optimization program as a Lagrangian:

— ok (:Bh + 5h)2 2 2
max L = S(t, wy) — A | S(1p, w}*) + ~———— (1, — 77) — S(Th, wp)
.Bhléhl)L zg

(The equilibrium value of &;, can be found later, by setting a high-talent CEO’s equilibrium ex-
pected payoff equal to the surplus she generates.) Replacing S(t,, wj,) using (3) and S(7y, w;*)

(which equals S(7, w})) using (A10) and (12), the firm’s optimization program is

2 2 2 2
U PI" 2 T 2 Ph
=1 o) — -p — b o) — ot
max L= (Bt 0n) = 50 = 50 (Bu 0" — 5
2 2 (ﬁ 46 )2
N 241 l h T On 2 _ 2
(23 ) et D g T 2g ()

2 2 2 2
T _PTT o Ty 2_ P
+A<g (Bn +0n) > o g(5h+5h) )

The first-order conditions are

gfh :O:f—pazéh 5(5}14’5 ) /\’Bh+5h (7 —17) +A (’f—pazéh—rﬁ(ﬁh%-éh))

(A31)
2 2 2
% —0= Zf (cpe” +1) (co?o+ 1?75 +g0% = Z;h) S
+ 5+ a) — P~ T (py+ - B (A32)
Rewrite (A30) and (A31) as
BT (py o) — B
A= Buton (2 : 28 G T C B (A33)
(T =) — g (Bt o) +

o % — %6, — T (B +5) a

5 2 2 *
Bt (72 — 72) — T + po28y + - (By + &)
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Combining the two equations yields

2 2 2 2
BT (B + ) — B B L — 0?6y, — T (Bu+0n)

2 2 - 2 2 4
—ﬁh;‘sh (7 — 1) — % + % (Br +6n) + %’7 —ﬁ”;‘s” (t? —12) — %” + po25, + % (B + %n)

which can be simplified to yield

B = ca’p - 5. (A35)
Substitute that in (A32),
72 72 (co?p+1)
0=— =L (coo?+1 £ — 02 (17 — 17
2g(p )(C02P+1)T€2+g(72p 2g h(h 6)
7 po? 7 2 (co?0)?
+ Eh (cc?o+1) 6, — 75% — é (cc?o+1)" 6 — 5 52, (A36)

and rearrange,

4
T

0= Zlg (cpo? +1) (= ((co?p+1) (i — ) + ¢ (co®p +1) +g0%p) - &F + 277 - 6y

to obtain

2, (cg2p+1)rf(T}f—T@z)z—k—gﬁp((Tg)z—(Tf)2>
(co?p+1) T2 +g02p
oy =

(co?p +1) (217 — 12) + go2p

The solution is found by considering the limit case as the disutility from bearing risk goes to
zero (because either p or ¢ go to zero): In that case, long-term compensation based on realized
performance becomes a highly effective incentive tool, and the optimal contract should set §;, = 1
(which is equal to the efficient level J; if 02p = 0, cf. (12)). That is the case if the square root is

added, not if it is subtracted,

?(-12)’

2
T + 2 2 2
h 7 (5 -T) 1
272 — 72 22— 12
h ¢ h ¢
2(.2 2)\2
2 Tf(Th_Té)
T — | 2 (2 .2 2
h 7 Cn-m-7) T <1
2 2 = 2 2 ~ 52 2 :
2Th—T£ ZTh—TE 2Th—T€

So the optimal value of Jj, is ), as defined in (17).
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We can now determine af, using the requirement that U (1, wf,) = S(1,, wf,). Using (5) and (3),

o B0 e (Bt 0)° jg‘sﬁfrﬁ = (g4 a5) — P (60— 2 (B 00 - ),
Replace 5 = co?p - 67, and rearrange, to obtain
aj, = f (co?p +1) &, - ;’3 (co?p+1)" (57)° - (”Z")Z (35)°- (A37)
The equilibrium value of ay equals
W =it =a%p- ()7, (A38)

the value of &, that lets a low-talent CEO fully extract the efficient surplus it generates under an
efficient contract.

We now verify that the high-talent incentive constraint (15) is satisfied:

*ok ;T 2
S(t, w§) > S(t, w;*) + W (77 —17) -

Recall that the low-talent incentive constraint (16) is binding, i.e.,

(B + 52)2 (2 —12).

S(ty, wf) = ST, w)*) + 22 —

h {4

So the requirement is that

5 2 SR 2
(ﬁh ;‘g h) (T,f—TEZ) > (:Bg ;—g e) (T;% _Tg)'

Since B = co?p - 8¢ and B} = co?p - 6}, the requirement is that 6 > 6;. We show in the proof of
Corollary 4 (below) that é; > ¢;. Since ; > 67 (cf. (12)), this implies that 5] > 4;.
The low-talent participation constraint is satisfied, since by construction, U (1, w§) = S(7, w§) =
S(ty, w;) > 0, and the high-talent participation constraint is then also satisfied, since g + 7 > 0.
The remainder of this proof shows that there are no profitable deviation strategies for the
firms. A deviation contract is one of the following: (1) a separating contract that a low-talent CEO

accepts and a high-talent CEO rejects; (2) a separating contract that a high-talent CEO accepts and
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a low-talent CEO rejects; or (3) a pooling contract that both types accept. (A profitable deviation
to separating contracts that both types accept is not feasible, since by construction, the postulated
equilibrium separating contract is the optimal separating contract.)

The first deviation cannot be profitable: Under the equilibrium contract, a low-talent CEO
generates the highest possible surplus and fully extracts it. Any departures from that contract are
either rejected, or they lead to losses for the firm.

The second deviation consists of a contract that a high-talent CEO accepts but a low-talent CEO
rejects. Say, the deviation contract offered to a high-talent CEO is w; = (a4, B4, d4). A high-talent
CEO prefers the deviation contract w to the separating contract wy, if U (1, wy) > U(T,, wf,), i-e.,

if (cf. (5))

(Ba +04)°
28

B:  po?
Mt 5T

(B)° _ o7 o, (Bt )

2 c _
T, >y + 2¢ e

2
%+ 2c 2
A low-talent CEO will not accept the deviation contract wy targeted at a high-talent CEO if U (7, w§) >

U(Ty, wy). Since her incentive constraint (16) is binding, that holds if U (1, w}) > U(t, wy), i.e., if

2 2
BY  po?,  (Batda)’ (Bi)"  po* 2 (Bit6)
Kg + 2 > (Sd + zg Té = K 2 5 ((Sh) + Zg T(

Combine the two inequalities:

2 C 5C 2
L P (55)% — Mﬁ

2¢ M M2 2 Vh 2¢
2 2
Pi 0 (Bt (B) 0o oz, (Bit )
c

2

2 2 2 c)2
ad+/23;l_9(2755+(ﬁd+5d) 2 e (B7)

T£2+DCZ+ 2 >

2 c )2 2 c )2
4+ 04 B +46 4+ 64 B +46
Burof o (8) o o, (iral,

8 8 8 8

((ﬁd +6)° (B +5ﬁ)2> (2 —12) >0

29 B 29 n

That requires (B4 + 64) > (B, + 65), i.e., a distortion of a high-talent CEO’s incentives worse than
under the separating contract. (We show in the proof of Corollary 4 (below) that ; > J;, which
implies 5 > f;.) But such a contract reduces the surplus that a high-talent CEO generates, and
thus the rent she can extract. It would not be accepted, unless it violates the firm’s break-even

constraint, which would make the deviation unattractive to the firm.
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The third possible deviation is to a pooling contract that both CEO types accept. Such a devia-
tion pooling contract is feasible if pj, is sufficiently large, which leads to the equilibrium existence
condition p, < p,. The upper bound p, is the value of p;, at which the firm breaks even, and
a high-talent CEO is indifferent between the equilibrium contract wj, and the deviation pooling

contract w?

mool+ SUch a deviation pooling contract wzool must maximize a high-talent CEO’s ex-

pected payoff, such that she prefers this contract to the separating equilibrium contract, such that
a low-talent CEO also prefers the deviation pooling contract, and such that the firm breaks even
on average

The reason for focusing on maximizing a high-talent CEO’s payoff under the deviation pool-
ing contract is that a low-talent CEO prefers a pooling deviation contract w‘; 001 t0 her separating
equilibrium contract wj (i.e., U(T, w‘; vo1) > U(Ty, w))) if a high-talent CEO weakly prefers w‘; ool 1O

her equilibrium contract wj, (i.e., U(Ty, w‘; wo1) = U(T, wj)): Using (5),

2
lgiool + 55001
U(Tg, wlzool) = U(Th/ wiool) - < 2g ) (TP% B Tliz) :

Since U (1, w5, ;) > U (1, w,), we have

d
pool

2
d d
pool +5pool> ( > >

p
U(ty, wh,y) > U, wf) — ( 29 Ty =),

and using (5), substitute U(1,, wj ) to obtain

2
c C 2 d d
(5h+5h) (Tz 72) . ( P00’+5P001> (Tz 2)‘

U (T, Whoo) > U (T, wf,) + 2¢ ] 2g n T

By construction, a low-talent CEO is indifferent between the equilibrium separating contracts:
U(ty, w§) = U(ty, wf,). Thus,

d c (TP% - TZZ ) c c\2 d i \?
U(Tﬁr wpool) > U(Tg, w() + T (:Bh + 5h) - (:Bpool + (spool) :
A deviation pooling contract is feasible only if it reduces the distortion in a high-talent CEO’s
incentives: Otherwise, the overall surplus would be reduced (under the separating contract, a low-

talent CEQ’s incentives are efficient), and since both types of CEO prefer the pooling contract, the

zero-profit condition must be violated. So we have ﬁfml + (5;) o < B+ 65, and thus U(1y, wf, ool) >
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U(ty, w$) whenever U(T,, w

pool) Z U(Th, wi)

When constructing a pooling deviation, the firm’s problem is

r%%xU(Th, w)

sth. E;[II(t,w)] =0
Using (6), the zero-profit constraint can be rewritten as
Ei[tL(t,w)] —a— B Ei[r(t,w)] =6 Ei [tL(7,w)] =0,

and using (1) and (2), it can be rewritten as

E {n;n(ﬁwﬂ —a—BE, [;ﬁwwwﬂ 5.F, {n;n(ﬁwﬂ 0

Using (5), replace U(ty, w) and rewrite the firm’s program as

B po?,  (B+9) ,

maxU(T,w) = o+ 50 =0
1 2 :32
sth o= (2 (B+0)(1-p=0) )-E[] -

Replace & in the objective function using the constraint,
1 2
rrl}%xU(Tz,w) = <g(5+5) (1—,8—(5)) - E;i [17] ——+E—T +
and the first-order conditions are

0= (;(1—2;5—25)) B[] _§+ (ﬁ;‘s)rg
0= <; (1—2[%—25)) - E; [17] —pa%—i—@rﬁ
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Combine them to obtain

ﬁ?)ool = CPUZ ) 52001 (A40)

o £, [
Pool ™ 2 (cpo? +1) - E; [T7] — (coo? + 1) T2 + g0

(A41)

Note that this requires that p, is sufficiently large,

_ (epo? +1) 7y +g0%
2(co?p+1) (57— 77)

ph>1

Otherwise, both ,B‘; 001 and (52 001 Would be negative, discouraging effort, so the contract w‘; 001 Could
not be an improvement.

Using the zero-profit constraint in the firm’s program, find «,
d L, 2 2 o L o 12 21 (s ) 22 (i )2
ot = ¢ (0 +1) B[] S = (cp0? + 1) B[]+ (o) = (0)” (8emt)

d
(Spoul
d
‘Spool

Expand the first summand by and replace 5§ oo i that fraction’s denominator,

1 2(cpo?+1) )-Ei[t?] — (cpo?+1) T2 +gpo? 2
“iool :§ (Cp0'2—|—1) - E; [Tzz] ’ ( ( )) [ ] (CP ) s (5zool>

1 2 2 2 2
o g (Cp0'2 + 1) - Ej [le] ) (52001) —¢ (pO.Z) (52001)
 2(cpo? + 1)2 - E; [t?] — (cpo? + 1)27,3 + (cpo* + 1) gpo? ' ((5:1 )2
8
1 2 2 2 2
o § (Cp(72 + 1) - Ej [le] ’ ((Szool> —¢ (paz) (§Zool>
1 2 2 oo (s V21 2 2 o5 (xd
_gz (CPU + 1) El [Ti ] ((Spool> g (CPU + 1) Ty ((spool)
2 2 (s 2 1 2 2 por21 (s z N2 (sd )2
+ (CPU + 1) po (5;7001) g (CPU + 1) Ei [Tl] (5;7001) ¢ (pU ) <5pool>
_1 2 d 2 1 2 d 2
=g (e +1)7-Ei[77] (oat) "~ g (@ +1) T (&0t

+ (cpo? +1) po? (5;’5001)2 —c (po?)’ (5iooz)2,
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to obtain
! —1@ﬁ+n?E[](M)?—(ca+n - (s )+a (o f
pool — g [ pool g [ pool P pool | *
Calculate U(Th,wiool) using (5), replacing ,Bpool = cpo? 5pool'
2 2
cpa? 2 cpo? +1
U(Th/ w?)ool) :aflool + ( 2 ) <5zool> pz (5;7001) + (Zg) (5pool> (A42)
1 2 2 2
% (CPUZ + 1) - E;i [ ] (5;7001) - § (CpO' + 1) (5;3001) + U P (5;7001)
2 ) 2
po* 2 po cpo=+1 2
+C( 2) (5;9001) - pT (5;7001) + ( 2g ) TI% (5;5001) (A43)
1 2 2 1 2
=5 (CPUZ + 1) - Ei [ T ] (5;7001) o E (CpU + 1) ((Spool>
o2 00> 2 2
+07 (a,) ) () (Ad4)
2
- g0 p)) (o) - (A%5)

= (; (coo? +1)? - E; [12] — 21g (co?p+1) ((ccr p+1) 1

When pj, is so high that such a deviation contract is feasible only at the margin, the payoff
) is equal to U(Ty,, w$,), which in turn equals S(1,, wf). Using (3) and B, = cpo? - 5¢,

U(Th,w‘;wl i
2 2 2
[ 2 P
T P A4
—0 2¢ (B+9) e (A46)

2
S(,wf) = & (+6)
2

2 2 2
P 60— 2 (o) @7 - O

Tz
= (ccrz,oJrl)(Sfl—7
T2 1
(c0?p 1) 5 = 52 (0o 1) (e +1) i + 80°) (45" (A48)
So we have U (T, wiool) = U(ty, wy) if
1 2 2 2 1 2 2 2 2 a2
(2 (oo 41 B 7]~ 5 (e 1) (e +1) - 80%0) ) (5
(A49)

T2 . 1 c
(cr?p+1) 3} — 50 (co”p+1) ((eo”p +1) 7 + 37) (55)

The right-hand side does not depend on p;,. The left-hand side is increasing in pj, if it is increasing
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in E; [t?], since %Ei (7] = a%h (pnt? + (1= py) 12) = (17 — 17) and since pj, enters 5;001 only

through E; [t?]. Using (A39) to describe U(T, wfm o)

2 2 2 2
U (T Whoot) = <; (B+0)(1—p~ 5)> Ei [77] - % + g—c - (ﬁ;;)r,f,

and applying the envelope theorem (cf. the two first-order conditions), we find

U ) =% (B Obur) (1= Bt O]
QU (T, Whyo) OBGopr  OU(Th whyy) 065,
Bhonr O [77] 0y OFi 7]
- (‘Sﬁool + 'B‘;ool) (1 - 5?1001 - (Szool> / (A50)

which is positive if (52 ool T ﬁ;ﬂ oo < 1. That must be the case if the firm is to break even: If (52 ool T
”;5 ool > 1, then a high-talent CEO’s incentives would more distorted than under the separating

contract wj, since under that contract we have g} +4; < 1:

(c02p+1)rf(r}%fr€2)2+g02p (75)27(7[,2)2
(C(sz + 1) Ti% + (CUZP + 1) \/ (c02p+1)TZ+g[7(2p )

C 5C —
Pt % (co?o +1) (277 — 77) + 80?0
) 5 ) 2 o, g% 2 (39%0)*((co?p+1) (202 —7F)+go%p)
(CU P+ 1) T+ (C(T P+ 1) \/(Th Tt (C‘TZP+1)) (wzp—‘rl)z((czrzp+l)rf+gt72p)
N (co?p +1) (277 = 77) + 80?p
_ (1) g+ e+ 1) (G- 7 + ty)

(co?p+1) (277 — 12) + go?p
=1

In addition, a low-talent CEO’s incentives would be distorted instead of being efficient, since
d *.
Pt + (1= p) 77 S 7
2(cpo?+1) (pptF + (1 — pu) T7) — (cpo? + 1) 12+ g0%p ~ (cpo? +1) 17 + gop
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(pntie + (L= pn) ) (c00® +1) 7 + (p7i; + (1= pu) T7) g0
> 2 (T + (1= pu) ) (cpo? +1) 77 — (cpo® +1) 417 + gopT}

(P + (1= pu) 7 =77 ) g
> (2(pt + (U= p) @) = 7 = (i + (1= pa) 7)) (epo” +1) 7

2 2

pn (T —77) 8070 > — (1= py) (coo® + 1) (5 — 17) 7,

which is satisfied.

So the overall surplus would be reduced if 5%

pool T ﬁ‘;ool > 1, and both types of CEO would

prefer the pooling contract, which means that the zero-profit condition must be violated. Hence,
we must have (5go ol ﬁ‘; 0ol < 1 for a pooling deviation to be feasible. Therefore, we must have

2 U(t, w

9P > 0.

pool)
We can now solve (A49) for p;, which defines an upper bound p, such that if p;, < p,, there

exists no profitable pooling deviation contract. Rearrange and simplify (A49),

< (epo? 1) ((coo?+1) B [72) = 5 ((co0? +1) 7 = 50%p) ) (o)’

= ; (coo” +1) <Th =5 ! ((coo® +1) 77 + gop) (57) ) (A51)

1 2
((epe?+1) - Er 2] = 5 ((epe®+ 1) 7 ~ g0%) ) (6
1
= (Th 5 — = ((cpa +1) 77 + g0°p) ((Sf,)z> (A52)
Substitute 5Z oo and simplify,

Ei [7]

1

2
cpo? 4+ 1) - E; [T?] — (cpo? + 1) 7 +gc72p>

— <T,3 - % ((cpo® +1) 77 + go%p) (5;)2> (A53)

% <2 (coo? +1) - E; [¥7] — (cpo® +1) 17 +gc72p) ( X

1 (Ei [77])° - <1'2 I ((cpo? +1) T +go?p) (‘5c)2>
22(cpo® +1) - Ei [77] — (cpo? +1) T + g0%p v h h
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—2 (272 & — ((cp0® +1) T + g0%p) (55)%) (cpo® +1) - Ei [77]

+ ((epo? +1) 7 — go2p) (272 - & — ((cpo® +1) 72 + g0°p) (55)°)

0= (E [77])°

Solve this quadratic equation in E; [t?], to obtain the cut-off value'

(MﬁmfﬂWWﬁﬂw¢wWww+m ~ ((cpo? +1) 7 — go%0) &(¢5)),

&) = (21,% -85 — ((cpo® +1) T + go°p) (52)2> )

Since by definition, (E; [7]),_. = (poT7 4+ (1 — po) T7), the corresponding upper bound p, is then

o = (El [qu])max Ty
R

which after substituting (E; [t7]) _ yields

1 o (@) o2+ 1) = (@0 + 1) 5 - go%0) €(65)

T,
= (68 (cpr® +1) — -+~
A S T

Substitute ((cpo? + 1) 2 + go?p) = 5* L and &(0¢), to obtain

c 2 c 2 2 c 2
3 R [ P 3 AR
Po = r—— + e . (A54)

1 The equation has a second solution, in which the square root is subtracted. However, at that value, U(7,, wi 0 ol) is

decreasing in py,, which is inconsistent with the contract being feasible. As shown above (see the text around equation
(A50)), U(Ty, wZ 001) 18 increasing in py, in the range where pooling deviation contracts are feasible. As is easily con-

firmed, with very high values of py, (5Z oo 18 close to J; in contrast, the distortion in é; does not depend on py,. So for
very high values of pj,, we must have U(T,, w
the relevant cut-off for E; [?].

W, d ) > U(t,w), and the solution in which the square root is added is
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A.10 Properties of the Existence Condition

An equilibrium separating contract exists if p, < p,, where p, is defined in (A54).

For low values of 1y, p, is positive but smaller than one. We have:

2 2 2
24 [t R (@) vt () - (7))
i h (ca?p+1) 7 +go%p 277
im _
70 (co?0+1) (272 — 12) + g0?p (co?p +1) 272 + go?p
2 21, 2
N D ) I W P (Zpi12grs?p) | _ (200 22 2
T}g}) R (5;; - (ca?p+1)2t;+g02p B 2 o (CU P+ ) ((C02p+1)2‘r}%+g(72p>
(co?p+1)T2+g02p
So
2
2, 1)22 25
. (CpU +1) i ((CD’2P+1)2T2+g(72p>
lim p, = - b
=0 T
21 1)2.2 25, 2\’ 2 2 o020\ 22 (co? 2 ?
(cpo?+1)"12 ((wZNl)ZT%JrgUZp) —((cpo?+1) 12 —g02p) T (co?p+1) ( (w2p+1)2r£+g‘72p>
g
i

(2(co®+1) )" + \/ (4(co% + 1) T2g0% + (30%0)%) " — (g0%)’
- (2(co?p+1) 72 + g02p)°
2
(2 (co?p+1) T,f)Z + \/<4 (co?p+ 1) T2g0?p + (gcrzp)2>

< 2
(2 (co?p +1) T + go?p)

=1.
So lim, 0 po € (0,1). For increasing values of 7/, p, decreases, and in the limit as 7, = T,

we have p, = 0, i.e., the separating equilibrium does not exist. It is easily confirmed that (A49) is
U(ty, wy),

satisfied in the limit as 7, — T;: Rearrange (A49), to define AU = U(T,, w‘; vol) —

1 2 1 2
AU = <g (e +2)" (pumic + (1= pu) 70) = 5 (e + 1) (e +1) 75 gvzp)) (et

L (co?0+1) ((co?o+1) T2 + g0%p) (65)>. (A55)
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We have lim, 4, o

. H c _ g%
pool — hmTz—H’h 5h - (Sh’ SO

T%i_}n}hAU <g (cpo? —1—1) 7 — 218 (cc?0+1) ((co?p+1) 17 — g0 p)> (85)

;’3 (cc®p+1) -3 + 21g (cop+1) ((co®p +1) il +80%) (67)°
5o (@p+1) (2(epr +1) 7 = (eop+1) 7+ %) (57
- 21g (ca?o+1) ((co?p +1) 7 +80°p) (5;)°

=0.

Also, the slope of AU in 77 is negative in the limit as 7, — T:

9 1, 2
ainzAU = (1= pu) P (coo” +1) (5p00l>

(cpo? 4+ 1) (2 (co? +1) (putt + (1 — pn) T7) — (co?p +1) T2 + g(sz) (2(%01 ( 5iool>)

+ 2¢

(co?p+1) 7 (0)  (coPo+1) ((co?p+1) 7 +g0%) (265 (3555))
- A 3 . (A56)

and taking limits,
2 2 1 2
lim -2 AU = —p, coleptVn
o 0T} ((co?p+1) 7 + go%p)”

(Note that the slope is zero if pg = 0, so lim¢,_,, p, = 0.) That is, the existence condition is the
most restrictive when the adverse selection problem is almost insignificant; and it becomes less
restrictive as the adverse selection problem becomes more relevant (i.e., the talent levels become

more different).

A.11 Properties of Equilibrium Contracts under Competition for Talent

The comparative statics for 8 and 47 are omitted since they can be found above (recall that
p ‘ y =By

and & = 57).
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) (wzp-i-l)l’f(Tf—'fgz)z“‘g”zp((fﬁ)z_(Téz)z)
C 5 T, +

0 5 — (co?p+1)77 +80%p
ac " 9c (co20 +1) (272 — 77) + g0%p0
72(73)2(02,1) s(F- Té) o (wzpﬂ)rfz(T,gffg)agazp((Tg)%(Tg)z)
((caZerl)‘r[Jrgazp) h (602p+1)‘réz+gt72p 5 2 5 5
2 22 222 (V2 (2\2) (wzp+1)(2rzfrz)+gazp v P( T — Tf)
5| T (-77) e ”((Th) -(?) ) e
(wzp+1)'ré2+g0'2p

(co?p+1) (27 — 77) + go?p

(2 (20)’s (7-7)

J (co2pt1)2 (,3 }) +g(72p<(rﬁ)2_(.r%)2)
(

co2o+1) 77 +302p

+ 65 - 0%p (217 — T7)

(co?p+1) (277 — T2) + go%p
< 0.

9 .
3.8, > 0:

2 \/(c02p+1) 2(-2) +g[72p<( 3)27(1})2)

Ty (ca?p+1)T7+g0%p

EIBC = i0(72
acth = ac P (co?p +1) (277 — 77) + go?p

d
= 0%pd, + CUZP&‘SE
2\2/ 2 \2 M
(Té) (‘7 p) g((mzp+1)rg+gnzp)2
J (o) (F ) v (2) (7)) 2 (202 12
B O—ZIO&Z - Cazp (wzp+1) 2 202p 2 op (2Th - TZ) 5,’;

(co?p+1) (217 — 72) + go%p e (co?p+1) (217 — 12) + go2p

(2 o) )

J () () e ()" (7)')
c 2

1
(co2o+1) T} +302p
o, —co

_ o 277 — T} + g0?p
(co?0 +1) (277 — 17) + go?p

(et + 1) (2 — ) + g0%p
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That’s positive if

(@) (o) s )

((502p+1)Té2+g02p)2
J (602p+1)1'[2(Tgfr[z)ergvzp((T}%)zf(T[Z)2>
2 2 - 2 2 50'2 TZ (72
2o i T, TE2+ gz; Y 5> e . ( P+12) it zp .
(co?p+1) (217 — 12) + go%p (co?p+1) (217 — 12) + go2p

) 2
(0%0)"8 (% = T7) cmprnrors O

\/(wzp—i-l)rf (T}%—Tf)zﬁ—gazp((rf)z— (Tf)z)

(co?p+1)T2+802p

(27 — 17 +g0%p) ) > ¢

Since &}, > 67, a sufficient condition is

2 2
(%) 8 (% — %) ey

\/(cazpﬂ)rg(r,fr})2+gazp((rg)2(r})z)

(217 — 17 + g0°p) > ¢

(co?p+1)T2+g02%p
Since
2
2 202 2\2, 2 2\2_ (-2)2 (C(Tz +1)T?+ o? i
(ca p+1)1'[ (Th*T[) +go p((Th) *(T[) ) 2 o T8 pTz%*ng
(co?p+1) T2 +g0%p - (Th — U (co?p+1)TP+g0%0 7
the sufficient condition is
(0)’8 (3% = ) oy
> ) 5 p) 8\, €/ (co?p+1)t2+g02p
(27, — 17 + g0°p) > ¢ ——
. (602p+1)7/,2+802p;é_é
J— 1 €
(Th TZ) (co?p+1)T24g02p
i
2 2 2 2 12 (c?p+1)T7+g0%p
(27 — 7 +g0°p) > c(c®p)"g —
(w%—i—l)rf—i—ga%éq%
(co?p+1)T24g02p
Since the square root is larger than one, a sufficient condition is
) 2 2 \2 7
2T, — 1) +gop) >c(0p) g
S )2l S Ty e

(217 — 7 + g0%p) ((ca®o +1) 7 + go?p) — ¢ (%p)” g} > 0
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7 (27 = 17) (ec?p +1) +21580°0 + 0p’g* > 0,

which is satisfied.

%L(Th, wi) > 0:

d c J c d c
2\2( 2,\2 (7134/2)
(T({) (U p) § ((CUZP+1)142'+8729)2
(ctfszrl)T%(T}%—T%)2+g02p((75)2—(rf)z)
_ c02p+1)1£2+g02p U2p (ZT}% — ng) c
T (co?p+1) (277 —12) +g0%  (co?o+1) (212 —T2) + g0 "
(s
¢ ((thzp+l)Tez+gt72P>2
(caszrl)sz(1'%77[2)2+g¢72p((7%)2—('([2)2)
o2 27} — 17 + 80%p 5 — ca?p (eo?p 1)} +80%
(co?p +1) (277 — 17) +go%p " (co?o +1) (27 — 77) + 8070
2\2( 2.\2 (T}%_Tg)
<Té) (0— p) § ((C02p+1)‘r[2+g(72p)2
$ (002p+1)T£2(Ti*sz)z‘Fgﬂzp((Tg)zf(TZZ)Z>
(co2p+1)T2+g02p 0-4p2g
2 ‘ c
=—(cop+1 + .
(co’p+1) (co?p+1) (217 — 12) + go?p (co?p +1) (272 — 17) 4 g0%p h
That’s positive if
( 2 2) (T/z)z
T — T 2 2 o2 \2
(C(sz n 1) ((ca o+1)T 480 p) < 551
(cotp+1)e (2—72) +go?p( ()~ (2)°)
(co?p+1)T2+g0%p
2 oy (cotpt1)T
(Th o 5) (wzp-i-l)rf—i-;(rzp ﬁ
o

(C(sz‘f’l)'([z(Tﬁ*T%>2+gUzp(<I}3)27(Téz)z)
(co?p+1)77 +80%p
The square root in the fraction on the left-hand side is larger than (T}% — ng) (see (A57)), so the

condition is satisfied if
(co?p+1) 77 5
(coc?o+1) 17 +g0%0 O
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We show in the proof of Corollary 4 (below) that §; > §;. Since §; > J; (cf. (12)), this implies that
0, > 6;, so the right-hand side is larger than one. The left-hand side is smaller than one, so the

condition is satisfied.

8(52 0, <O0:
(co2p+1) 77 Th*T/) +ga2p(( }12)2—(@32)2)
) T + (co?p+1)T2+g02%p
902 W= Bazp (co?p + 1) (212 — 17) + go?p

< ) ( o p+l 1+g0'2p)2

(wszrl)ng( 2 Z) +qz72p(('r}%)27('r£2)2>
(co?p+1)77 +g02p o

= — h 2 .2
(oo +1) 277 —1}) +g0%0  (co?p+1) (217 — T7) + g0?p (c (25 —7) +3)

2
2 .2 7
(Th Té )g(wzp+l) +gt72p

(ce2on) (F=2) s ((2)"-(2)")
B (C0'2p+])7£+gl72,0 5 — (C (ZT}% - T£2) + g) 5¢
(o +1) 22 —1F) +go%p  (co?p+1) (212 — 1) +g0%p

That’s negative if

) 7

(Th a TZ) g(c02p+1)i’[2+ga2p

\/(czrzp—&-l) (Th —Té) +g02p((rﬁ)2—

5 < (c (2% —17) +8) 0.
(%))

(co?p+1)T2+g0%p

We show in the proof of Corollary 4 (below) that §; > J;. Since 6;, > & (cf. (12)), this implies that
8¢ > 6;. Since the square root in the denominator on the left-hand side is larger than (77 — 77)

(see (A57)), a sufficient condition is

2
T

co?0+1) 17 + go?p

8 c(2t; —17) +g

That is satisfied, since the fraction is smaller than one.
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9 .
307 By, > 0:

2. (cazp—i-l)T[z(T,f—rf)z—i-iazp((rf)z—(Tf)z)
P} ) h (co?p+1)T2 48020

= (o
9070 = a7 P (o 1) (22— ) + 8%

()

((c p+1 +q¢72p)2
$ (czf2p+l)'r (T& T%) +q02p((rﬁ)2—(‘rf)2)

= cdj, + cazp (1) ot _ O (C (ZT}% - Téz) + g)

(ca?0 +1) (277 = 77) +g0%0  (co?p+1) (277 — 77) +g0%p

(-7)

( (c02p+1)75 +g¢72p) 2

$ G s B2

co?pgT}

o ((c02p+1)(ZT}ffTZZ)+g02p)cfc02p(c(2’r§f"r£2)+g) c (co2p+1) 7 +g02p

B (co?p+1)(27; 77 ) +80%p " (oo + 1) (217 — 12) + go%p
(7-7)
((cﬂ2p+l) 1,+5,172p)2
J (602p+1)1’22( 2 éZ) gvzp(('r;%)zf(‘r[z>2)
c 2

co2p+1 o2p
o, +cop ori)iiss

4
8T

_ c (25— 77)
 (co?p+1) (212 — 12) 4+ g02p

(co?0+1) (277 — 17) + g0%p

> 0.
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o (Tl%fff?)

¢ ((672p+1)‘r€2+g(72p)2

«wzwz( ) rsoe( () (2)7)

272

h 0 h

_ (T gty
(c?p+1) 27 —7) +g0%  (co?p+1) (217 —7) +g02p "
s (id)
8% ((wzpﬂ)r%Jrgthp)z
(mzp+1)rg(T}f,fg)hgﬂp((%){(%)2)
R o
h

* (co?p+1) (217 — 12) + go?p
2_.2

o7t (7-7)

! ((wzp+1)‘ré2,+g172p)2
\j (cazp+1) 1272

2
T

(2 Tf)ﬂgazp((#){(rg)z)

(co?p +1) (272 — 77) 4 g0%p

g

(o

h
(c02p+1)rg+gvzp
2 [
= (co 1
(C o+ ) (CUZP+1) (2,(5_—%2) +g02P

That’s negative if

 (co?p+1) (272 — 72) + g0

5.

201 1) (2 — 72 73
(CU pt ) (Th TZ) ((cazp+1)rf+g02p)2 < 5
h
(c02p+1)1'£2(Tﬁfr,?)2+g02p(<'qf)zf(Tg)z)
(co?p+1)77 +80%p
(¢ +1) (G = %) ()
h t) ((co2p+1)12+80%p) ﬁ
2 2 > 9y

T—T

)2+g¢72p((’r}3)2— (T

4

))

\/(ca2p+1)752(

We show in the proof of Corollary 4 (below) that ] > J;.

(co?p+1)T24g02p

(sz > 6;. So the right-hand side is larger than one. The fraction on the left-hand side is larger than

(T]% — ng) (see (A57)), so a sufficient condition is

(co?p+1) 77

Since 6;, > J; (cf. (12)), this implies that

((ca?p+1) 17 + go?p)

which is satisfied.
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Limits:

2 o) (G- wgee ()= ()°)
T+ (co2p+1)T2+g02%p
lim ¢;, = lim % = lim
c—00 c—00 (CU’zp + 1) (ZTh — TZ) + gU'Zp
(co?p+1)77 (Th—Tf) +g02p ((le)z—('féz)z) 2
2
) l T, + \/ (co2p+1)T2+g0%p y , Tﬁ + 72 (ThT[z Tf) 1
- o> = o =
Jim pj, = lim cop (co?p+1) (272 — 17) + g0?p oo p(C‘TZP +1) (27 - 77)
2, oy () e ((2)-(2)) (G- +gazp(( 7) (%))
st — i T+ (ca?p+1)T2+g0%p T T T/ +80%p
imo; = lim - >0
>0 T 50 (co?p+1) (277 — 17) + g0?p (27 — 77) + go%p
5 (cop+1)72 (2-77) 43020 ()"~ (7))
i . T T (co?p+1) T2 +g02p
L P Y T e
o @) see(()'- (7))
i T 2+g02p
= lim co? : =0
= (22 — 12) + go?p

T+ (co2p1) T2 +g0%p T, T\ — > /

> \/(C‘TZP+1)T[ (T;%*T() +g(72p((’rh )2 (sz)2> 2

lim 6, = lim =
2p—0 " 0290 (co?p+1) (277 — 12) + go?p 272 — T

2, [ o) (=) 40 () (%))
| . i T+ (co2p+1)T2+g02%p
im = lim co? =0
290 Bi 200 o (co?0+1) (272 — 12) + g0o?p
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T, +

X \/(cazp+1)fz(fﬁ—ff)2+gﬂﬂ((Tﬁ)z—(T?)Z)

e | (co?p+1) 1} +g0%p
im J; = lim : =0
om0 " g2prs0s (co?p+1) (217 — 77) + go2p
) (co2p+1)72 (2 —77) +g0’2p<(T]%)2—(TC,2)2)

| i T+ (co?o+1)T7+g02p

m = lim C(T
UZ!HOO’B 2p—rc0 P (co?p+1) (217 — 12) + go%p

» (—72) (c(p—2) 72 +8(2+72))
T+ et tg
= >0

¢ (25 —7¢) +¢

Misreporting:

lim r (7, wy) — q(t, wy,)

c—00
C
= lim “2
>0 C
TZ i (Co’zp-‘rl) (Th—TZ) +g0'2p<<1}%)2—(T[/2)2)
oy h (co?p+1)T?+g02%p
= Iim 0'
TP (co?p+1) (21’5 — TZZ) +g0?%p
3 4 2L
= lim ¢? '
e Pleozp 1) (2 — 1)
=0.

A.12 Proof of Corollary 4

In all setups, we have g = co?p - 8. Using (1), (2), and g = T;L, we immediately obtain that L, r and

q are increasing in 4. From (17) and (12), we have 4;, > ¢ if

5 \/(cazp—i-l)rgz(Tf—'réz)z—&—gcﬂp((r}f)z—(Tf)z)

T+ (co2p+1)T3+g02p T;%

(co?p+1) (272 — T2) + go?p ” (co?p +1) T2 + go2p’
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or, equivalently,

(co2p+1)T2+g0%p 57
2 _ 72) ‘ i

2
T+ (Th T (co2p+1)T2+g02%p T;%
(co?p +1) (277 — ) + go2p (co?p +1) T + go?p’

Since the square root is larger than one, we have

277 — 17
(co?0+1) (27 — 77) +g0%0

oy >

The fraction on the right-hand side is larger than ¢;, since 75, > 7. Thus, we have 6, > ¢;. That
in turn implies that §; > J; since §; > 4; (see (12)). Comparing (13) and (12) shows that and we
have 5 < 6;.

In all setups, we have B = co?p - 4, so the incentive power is increasing in 6. As just shown,

5> =57 and 6 < 67 = 65,50 ¢ > 9 = ¢ and ¢ < 9} = ¢t

A.13 Proof of Corollary 5

Using g = 1L, (2) and (1),

(@) =g () = 7 o)+ L (prs) = E

In all setups, the equilibrium contract sets B = co?pé. The result then follows from (5zf <o) =195
and 6 = 57 < 5 .

A.14 Derivation of Equation (18)

The surplus under competition is

E; [S(wi, wi)] = pnS(m, wy) + (1= pu)S(T, wp).
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Replace S(t,, w$) and S(ty, w}) using (3); replace i = co?p - 6;; and replace &7, B and &; using
(12), (A35) and (17), to obtain

2 1 2 2 2
2(erp 1) T+ 80 pé,ﬁ) 5+ (1= py) (cpo® +1) ;25;.

1 1
E; [S(T;, wf c?p+1) | =17 — —1
[S(wi,wi)] = pu (co”p +1) <g g T

T
Replace the fraction inside the parentheses by (cf (12)), to obtain

c Tz 1 % oC c\2 Tz *
E; [S(w,w§)] = py (co?o +1) ﬁ% (25h5h — (&) ) + (1= py) (cpo® +1) ééé. (A58)

As is easily verified, this surplus is decreasing in 4} : The more severe the distortion in a high-talent
CEO's effort, the lower the surplus.

The surplus in the single—ﬁrm setup is
i i, W; ) Ph (Ih/ wh) ( Ph) (Ig, wy )

Replace S(t,, wy) and S(7y, w;f ) using (3); replace B} = co?p - 6;; and replace 6, ﬁzf and (5Zf using
(12), (A24) and (13), to obtain

2 1 1, (co?o+1)2+g02
E; [S(Ti, wff)] = (cpa2 +1) ;;5; +(1—py) (cazp +1) (ng‘ — 2grf(vp+l)2‘+ggp52f> 5?(.

T

Replace the fraction inside the parentheses by (%(Cf. (12)), to obtain

2 2 2
E [5(t,0)] = pi (coo? +1) 267 4+ (1— p) (co?p+1) L= (2505 — (67)7).  (a59)
29 28 6;

Since 5Zf < 67, E; [S(Ti, w?f )] increases in (SZf ; that is, if the distortion is stronger (5Zf is lower),
surplus is reduced.

Define the change in surplus caused by introducing competition for talent,

AS =E; [S(x, wf)] — Ei [ S(x,w])|
7 1 2 \2
=p(eop+1) oo 50 (2618~ (6)" = (")

71 2 . 2
+ (1= py) (cpo® +1) ﬁy <(5f) —26;6 + (5jf) >
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Rearrange to obtain (18).

A.15 Proof of Proposition 6

The formal results we prove are the following:
(ii) (a) AS < 0 if(72p is large and c small. (b) lim, o0 AS < 0; (c)lim¢, 5, AS = 0and lim, .+, a%AS >
0; (d) limy, 1 AS < 0; (e) limy, 0 AS = 0 and limp, 0 52-AS < 0.

A.15.1 Proof of Proposition 6(i)(a), lim,_,, AS > 0.

As is easily verified, lim; e 5Zf = lim; e (SEf = lim; 06, = limc0d; = 0. The contracts

provide incentives to exert effort exclusively through B, the compensation based on the reported

performance:
2,2
R o pT, _
B B = i B = i s 2 v g0t
co?pt? 72
lim 8 = lim ! _ / <1
ST IR e D g+ By ) (F7) | T iy (-
o [l (o) et ()~ (7))
lim B — L co?o (co?p+1) T +go%p .
g P =l oo (co?p+1) (212 — 12) + go2p B
2,2
. c 1 T copT, .
lim fy = lim p; = lim (co2p+1) T2+ g0% 1

Thus, a distortion remains in the single-firm setup, so in the limit as manipulation becomes in-
finitely costly, the competitive setup is more efficient than the single-firm setup. Equilibrium exis-
tence is not an issue: Since lim,_,o, 6; = 0 and lim_co cpo8;, = 1, we have lim;_,« (cpo? + 1) 8 =
1. Therefore,

lim ((27,3 -85 — ((cpo® + 1) 77 + go°p) ((5,2)2) (coo? + 1))

Cc— Q0
92 T 2 c 2 1 2 2000\2 2 . 2 c\2
=27; - lim (cpo” +1) &) — 7j; - lim (cpo” +1)7 (&) — go™p - lim (cpo™ +1) ()

=217 — 17 -0,
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and thus

lim p, =
L

T2 1 2
(=) - o+ ot (5 - - - ) ),

which equals 1.

A.15.2 Proof of Proposition 6(i)(b,c), lim, 0 AS > 0 and lim,_,o AS > 0.

Consider the incentives in the limit as ¢ — 0 (the results are identical for the limit p — 0),

2

T
lim 6/ = lim &, = li h =1
et o eatt (co?p+1) T2 + go?p
7 7
lim 6/ = lim L _ ; <1
e=0 " 050 (co?p +1) T + g02p + 2 (co?o +1) (T —77) 7+ (1)
5 (wzp—i-l)rf(Tf—rz)2+gc72p((r§)2—(Tj)2>
Ty T (ca?p+1) T2 +g0?%p
lim ¢, = lim 5 =1
70 70 (co?0+1) (277 — 17) +g0%p
2
lim 6 = lim 5} = lim e —1
00 70 0—0 (co?p + 1) 17 + gop

A low-talent CEO’s decisions in the single-firm setup remain distorted, while they are efficient
in the competitive setup; so the surplus produced under the single-firm setup is smaller. The

separating equilibrium exists, because lim, g p, = 1: Since lim,_,o J;, = 1, we have

lim pp = ((21,3 — (240))- 112+ \/((zf,g — (2 +0))* = (12— 0) (212 — (T,g+o)))>

c—0 Th — Te

=1.

A.15.3 Proof of Proposition 6(ii)(a), AS < 0 if ¢%p is large and c small

Since the effects of ¢ and p are similar, we focus on changes in z, where z = ¢%p. Define (simplify-

ing the notation slightly)

AS(pi) = (1=pa) (Si = S7) = pu (S =S5
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If p, > 0, and the surpluses S; and Sj, are positive and finite, that is negative if

(1=p) (s;-s)

<1.
pu (S —S5)

We first consider the case when ¢ = 0. Observe that (using (18))

S* _ sz
lim lim =% £
c—0z—00 SZ — SIZ

2
? 1 7 7
2g ( 7 ) (cz+1)T2+gz (cz+1)rg+gz+lf—’};h(cz+1)(T,ff'(fz)

= lim lim =0 (A60)

c—0z—00 2 2 2
) (cz+1)'r£2(r}%715) +gz((‘r}%) 7(‘((2) )

2 Tt 7 >

T 1 (cz+1)rf+gz B T

2g 2 (cz+1) (212 —12 ) +g2 (cz+1)T;+g2
(cz+1)1}%+qz
Also, from (A63),

and since 6; > J; (cf. the proof of Corollary 4),

2
AS (1) = — (co%p +1) ;l !

— (55 —5)? <.

Hence for any p;, € [0,1], we can find z (pj) such that if z > z (p;,) then

AS(pr) = (1=pi) (i =7 ) —pu(Si =) 0.

(1-py)(8;-57)
(Si=si)  ~
e if we let z be sufficiently large (say if z > z, (pj,) for some number z. (py,)). This means that when

From equation (A60) we know that for any arbitrary number e € (0,1) we can make

z >z (pn),
AS (pr) = (1= pi) (S0 = ST ) = pu (S} = $5)
< epi(Sy—S5) —pu (Si—S5)  Gsince (1—pi) (S; =S7) <e-pu(S; =)
= (e~ 1) pu (S} — Sf)

<0.
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Define

z(py) = inf{x|z > x = AS (p;) <0}.

There exists z, defined as

Z= JCrg[%},)l(];(x).

Now we can state the result: If z > z, then AS (p;,) < 0 for all p;, € [0,1]. Now, fix any z > Z.
Since p, (z) € (0,1), if py, < p, (z) then the competitive equilibrium exists and it's weakly less
efficient than the single firm equilibrium.

By continuity, the same result holds for small ¢ > 0. The results AS (0) = 0 and AS (1) < 0
hold generally, for any c. Next,

2 2 2 ’
L st 28 2 (cz+1)77+8z  (cz+1)Ti+gz+1k (cz+1) (7—2)
. S[ - S[ BERT (CZ+1)T£2+82 ) h
,}Lr?osz_sgz_zlg?o o0 2
T2+ (CZ+1)T[ (Thf‘[[) +gz((‘rh) 7(‘({) )
li 1 h (cz+l)r§+gz - Tf
28 7 ) (cz+1) (21272 ) +g2 (cz+1)TP+gz
(cz+1)'r%+gz
2 P (G-12)’ (e +8) (2 -7) +5)’ 2
CTZ TZ*TZ 'l'2 Tz
(O etss et =) (e49) [ -r0) (v 5-r) T TG
which is strictly positive if ¢ > 0. However, for small ¢, the term is small:
lim &2 pﬁrj(fﬁ—yz)z(crf—i-g) (C(ZTHZ—TZZ)-i-g)Z
c—0 - ( ) )+ ( . 2))2( 2y ) 2( 2 2)7( 2 ) (TZ,TZ)CT%(T’37TE>+8(T}%+T42'> 2
(( pr) (et +8)+pne( T —1; cty+g) | et (T —77 T, +8 =T s
2 2
i pit) (7 —12) (0+¢) (0+9)
0 2 2 oy 0+g(m+T) i
(L=pn) (0+8)+0)°(0+g) [ 0= (0+8)\/ (77— T7) — s
2.4 (2 2
—lim 2. Phl (% — )
2
=0 g2 (1= pu)” (7 +17)
=0.

We can thus repeat the steps to obtain the result.
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A.15.4 Proof of Proposition 6(ii)(b), lim,_,o AS < 0.

Using (18),

2 2
lim AS = —py, (co? p—|—1) L lim (85— 0;)* + (1 — pu) (coo® +1) lim 2251 (5* _5Zf)

T—0 g (Sh T—0 T—0
We have
2
T
lim 5/ = 1im 6 = h =5
Tglg}) nlir}) (co?p+1) T,f +g0%p h
2
lim 6/ = lim i =0
o0 T 5 (co?p + 1) T2 + g0%p + 1B (co?o+ 1) (2 — 77)
0y (co?p+1)77 (T}%*Ti) +g02p ((T,f)zf(‘réz)z)
T+ (ca?p+1)T7+g0%p 272
lim ¢6;, = lim = h 5
70 70 (co?0+1) (272 — 12) + go?p 2(co?0+1) T+ go?p
R T
lim 6; = lim §; = lim — =
7—0 7—0 70 (co?p + 1) 17 + go?p
SO
2
72 2 2
1 2T T
lim AS = — 1 h — h 0
S pr(crp+1) 50 2905 (2 (co?0+1) 12 +g0%0  (co?p+1) T+ g0’2p> *
_ 1 (co?p+1) (%p7)"g

Pn ,
277 ((co?0 +1) T2 + g02p) (2 (cop + 1) 2 + go2p)’

which is negative.

A.15.5 Proof of Proposition 6(ii)(c), lim,_,;, AS = 0 and lim,_,, a%AS > 0.

As is easily verified, lim, 7, 6; = lim, 4 5Zf = J;. The incentives are the same and they are

efficient, since with identical talent there is no benefit from distorting the incentives. So the surplus
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is the same in both setups, and thus AS = 0. The derivative of AS with respect to 77 is

0 2 T}%l c gy 9 g

aT;
_ 2 1) 2 ( (55— s V(9 5 ) (50— 6f)
+ (1= py) (p0” +1) o ((@ 5 ) + T 5 |5 (6 - o)

1 (1 /. R

¢ a7

The limit as 7 — T3, is

. 3 2 1 c % d c
T}gy}—h a—T/ZAS =—Pn (CU P+ 1) Zg 5* T}lir‘lfh (2 (5h B 5h) aT/25h>

1
— 2 PR
+ (1= py) (cpo” + 1) 2

. *_sf2 2 1 i sf 1 sf 0 *_isf
xrlgrr}h<(§g 57) t iy (a%(s)((s[ 5 ) +, %2(55 o)) 5220 T

The second term vanishes in the limit as 7, — T3, since lim,_,, 5Zf = lim¢, 4, 6; =6,

2 2

lim ¢, = lim T[ = T

Y=, w=T (0?0 +1) T + 8020 + 115 (co?p + 1) (77 — 7)) co?pT; + T +g0%p
. N T;" r;%
lim é; = lim 5 3 = 3 5 ,

T Ty w—w (co?o+1) 17 +g0%0  co?pti + T + g0%p

and since the limits of the corresponding derivatives are positive and finite,

lim -2 6 = lim - Tﬁ
7=70T2 | = 9t (coo +1) T2 + go2p + L 5 (co?p+1) (17— 17)
go’p + 1 (co? P+1)Tﬁ
- Jim z
T (e +1) TP+ g0%0 + 15 (co?0 +1) (¢~ 7F) )
B = 5 (co?p +1) 17 + go?p
((co2p +1) 7 + go%p)’*
2 2 2
lim ié* = 1li I o = lim gop — 89°p
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So

.0 (c?o+1)T7 1 . B
T}zl—% TTZZAS — b 29 (57 TEI—% 2% = %) 871'152571
T2+ (mzp+1)r[2(;% g) +gU2p(<r}%)2—(TZ,)2>
2 h (cnzp+1)‘rk +g02p _ 1—3
(co2p+1) (212 —72 ) +g0%p (co?p+1)7;+g0%p
cop+1 1 .
= —ph —( p ) ~ llm 2 2 2
2g (5 T—Th ) (Cﬂszr])T(z(T}%*T%) +g(rzp(('r;%) —(TE) )
T+ (c02p+1) £2+g0
x 017 (co?p+1) (ZTh -7 )+g02p
| (e () sl () (7))
2 (6172p+l)‘l'£ +g02p B T}%
(co2p+1) (212 —12 ) +80%p (co?p+1)T;+80%p
(wzp-%-l)z(rg TZ)T[ (wzp-H)(ZT%—TZ,)pvzg-#(gazp)z
p (co?p+Vm1 . - | é((wzpﬂ)fugazp})z é ((eo?o1) (275 —72) %)
= — h—i .
Zg 5; T—T (co2p+1) é( 2 6) *8‘72P((T§)2—(r£2)2)
(cazp+1) 2+gr72p
2 (c?p+1)77 (3 -77) +g‘729<(T3)2*(TZ>2) 2
+ | 7+ i) P (co?p+1)
X
((ca2p+l)(2rf—’r3)+g02p)2
2 2 2
cocp+1) 1+ g p
:_Ph (CO.ZP+1) ( ) h . 22 .
29 ((czrzp—i—l)rh +g(72p)
(c02p+1)rf(rﬁ—ng)2+g02p((-r}§)2—(T})2>
(co2p+1)T2+g0%p

2 (c02p+1)2(11%—75)r/2 (w p+1)( }2 )pazg+(g¢72p)2

4
( o p+1 r +ga

X lim
Tp— T

(e ) ((co?p+1) (22— 72) + 80%)
T

i z/)*g"zf’(( ) -

(502p+1) 7 +q<72p

2
7

)

(co?p+1)T; (Th*T/> +g(72p(<
(co?p+1)7] +g0%p

J (c02p+1)‘r (

2 2
+ T;%‘i‘ Tl?) 7(712))

(co?p+1)

A-49




1 co?p+1
~ Py 2 2 2.)2
8 ((ca?p+1) 7 + go?p)
2 22\ 2 2 \2
—TZ (ca p+1) (Th —T[)T (ca p+1)(2'rh —T()p(T g+(ga p) C0'2 +1 2T2 . Tz + 0_2
¢ ((CU’2P+1 T +302P)2 (( P ) ( h E) § P)

I
qu—% +\/(C(72p+1) 2(12—13) +g[72p<(rl12)27(1[2)2> (T]/%+\/(cazp+l) 2(t2-12) +gazp((T/1z)2(T;)z)) (CUZP_H)

(ca?p+1)77 +g0%p (ca?p+1)77 +g0%p

2 2
2 (cazp—i-l) ~0~12+(c02p+1)ﬁp02g+(g(fzp) 5 5 2
1 cr?p+ 1 T (cp e rery) (e 1) 73+ 87%)

Pn 2
8 ((co20+1) 12 + ¢o? (co?p+1)T2-0+802p-0 (co?p+1)T2-0+802p-0 2
(( p ) h g p) + (CUZP+1)Th +gt72p Th + (CUZP+1)Th +802P (CU’ p + 1)

co?p+1 1
= —p ( ; . =y (—tfpoig-1 +O)> :
8 ((co?p +1) 7 + go2p)
S0 2 2,2
1
lim iAS =py (e’ +1) Tpo 57
=T O] ((ca?p +1) T2 + g02p)

which is positive.

A.15.6 Proof of Proposition 6(ii)(d), lim,, .1 AS < 0.

lim 5f = lim Tf
p—1 L gt (co2p + 1) T2 4 go2p + ph - (co?p +1) (7 — 17)
= lim (1 — ) TE
pi=1 (1= p) ((co?p +1) 77 + g02p) + pi (co?p +1) (77 — 17)
0
N Plggl 0+ (co?p+1) (77 — 17)
=0. (A62)

The distortion in the single-firm setup becomes extreme, but the expected value of the lost surplus
goes to zero as pj, grows. In contrast, since J; does not depend on pj, the distortion remains
unchanged in the competitive setup, and the expected value of the lost surplus grows with pj,.
Thus, limy, 1 55-AS < 0.

In taking this limit, p, may cross the threshold p,, above which a separating equilibrium does
not exist. It is straightforward to find numerical examples for which AS < 0 and either p, > p,

or p, < po. Forexample,if 7y =1, 7, =2,c=1,0 =1,p =1,and g = 1 then AS < 0 implies
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pr > Po. But AS < 0and p, < p, for p, € (0.76946,0.96707) if we change T, to T, = % (we then
have p, = 0.96707).

A.15.7 Proof of Proposition 6(ii)(e), lim,, .0 AS = 0 and lim,, o %AS < 0.

Using (18),

pr—0 pr—0

I% 1 C *\2 . 1 * Sf 2
lim AS = lim —p, (cch-l—l)gE(éh—(Sh) + lim (1= py) (cpo? +1)§57 (cs,Z —56) .

Changes in pj, have no effect on 4}, §;, or 47, while

2 2
lim 6/ = lim — S I el =]
pr—0 pwo(cap—i—l)*f +g0?p + 2 ~(ca?o+1) (7 —17)  (co?p+1) 77 +g0%p
So
2 13 2 2 zz 2
—0. (A63)
Using (18),
2 AS=— (co%+1) %1 (65— 67)2 — (cpo? + 1) 71 (5 (ssf)
aph zg 5* h h zg 5* ¢

7 1 sf 9 ssf
+ (1= py) (cpo? +1) =L 265 2(% 5 ) (1) 5,0

— 0 s 0 gx _ 0 gk _
Wehave—aphé ap}(S aphéf 0, and

sf_ im ) TZZ

pu—00py, © ) Opn (co2p +1) T2 + go2o + 722 b (co?p +1) (77— 17)

T€2(1_1p )2 (CU P+1) (Th _TK)

= lim —
phﬁo

2
((cazp +1) 17 + g0 + ﬁ (co?p+1) (17 — Tf))

(et +1) % (- 2)
(e + 1)+ 30%)°
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So

d 2 TP% 1 c * 2 1 sf 2
lim -8 = — (c?p+1) AL —51) = (cpo® +1) L 25 i (6 — o)
2 2 2
+ (cpo® +1) —l* 2. lim <5/ 5;f) (c?o+1) 77 (G — 77 )2
28 6; pr—0 ((co?p +1) T2 + g020)

1 .
~ (co®p +1) ig@ﬁ—%)z

<0.

A.16 Proof of Proposition 7

In the single-firm setup, the high-talent incentive constraint is binding, while in the competitive

case, the low-talent incentive constraint is binding. Thus, using (10) and (11),

sf sf
—|—5
Auf: ( 28 ) (TP%_TEZ)
C+§C 2
Aﬁz(ﬁhzgh)(ﬁ%—’fez)-

Since we have
B, + 85 > By + 61 > Bi + 67 > B + 57,
it follows that A, — Asf > 0.
Compensation inequality may increase or decrease, depending on the parameters. Figure 1
plots A, — Aff for different values of p;, (on the horizontal axis) and ¢ € {%, 1,2,4,8}), 0 =1,
p=11=1 17 =2 and g = 1. For these examples, A}, — A“;{ is positive if c is sufficiently small,

and negative if pj, and c are sufficiently large. However, this effect does not hold for all parameter
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constellations. If c =1, p = 1, 7y = 1, and 1;, = 2, the derivative of AS, — AZ{ with respect to c,

a(A;—A%)z‘f(A;—AiJ)

oc
VIIRY: (t2-12)
_ (C(sz + 1) T;% (TZ) (U P) g((cﬁp—&-l)r}—i—gﬂp)z
8 2 2(22_2\? 2)\2_ (2)?
(co2p+1)72 (2 —12) " +g020( (7)) —(7?)
((CU’ZP + 1) (ZTF% - TZZ) +g02p) \/ : (}202;+1)T3+g(7(2ph . )
o+l 7 (212 — 17) &

g Pleorp+1) 22 —12) + g0

2
1
+ ”’;*r%azp (6

co?o+1 7?2 *
+ pipa2 ((2T§ —17) (cpo® +1) + T—%pazg) (87)°

28
co?p +1 2_ 2 .
— gg(TZp ((cp(f2 +1) 7 +poig + 15%% ((cpo? +1) 77 +2p(72g)) (83)7,

is negative (as expected) if g is below 3 (for any py,), but it is positive if ¢ > 6 (again assuming

Ozl,pzl,rgzl,andrh:2).
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