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1 Introduction

Investors’ beliefs about risks and returns continually evolve as they process new information

about the market and the economy. While the rational expectations assumption is analyti-

cally convenient, in practice, agents expend enormous resources on developing information,

or generating signals, to reduce uncertainty regarding unknown structural parameters that

drive consumption and dividends. Therefore, a challenge for researchers is to model the dy-

namic evolution of investors’ beliefs based on realistic signals (or information structures) with

quantitative asset pricing implications that are consistent with the data (see, e.g., Hansen

2007). However, for analytic tractability, the existing literature examines the role of parame-

ter learning only with specialized cases of uncertainty and information environments. In this

paper, we examine general equilibrium asset pricing implications of learning multivariate

and possibly time-varying valuation-related structural parameters through noisy correlated

signals (such as, aggregate or macroeconomic news).1

We find that multivariate learning on both consumption and dividend mean-growth-

rates, under empirically plausible correlation structures of aggregate signals, endogenously

generates intertemporal co-uncertainty, that is, the dynamic covariance of agents’ (Bayesian)

parameter estimates. In turn, intertemporal co-uncertainty creates a large equilibrium equity

premium with recursive utility (Epstein and Zin 1989) even if dividends have no fundamental

link to consumption in an endowment economy. Indeed, we show that this learning-induced

risk premium never decays when the unknown parameters are time-varying, i.e., there are

latent states.

We develop a generalized framework for joint learning when agents confront multivariate

and possibly time-varying valuation-related structural parameters but dynamically learn

through noisy joint signals—that is, signals that are interconnected with (or linked to)

multiple unknown parameters. To fix ideas, consider the case where agents face unknown

parameters that drive stock returns and output growth. Then, aggregate signals such as

changes in corporate tax rates or economic assessments by monetary authorities affect beliefs

1The empirical importance of noisy signals, such as macroeconomic news shocks, in dynamic settings
is highlighted by a growing literature (see Kurmann and Otrok 2013, Ghosh and Constantinides 2017, and
Ai and Bansal 2018 among many others). Also, see Kumar et al. (2008) and the references therein for the
examples in static settings.
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on both future returns and output growth. Such signals, which are empirically prevalent,

are irreducible to independent signals on individual (unknown) parameters; rather, they

are examples of signals with correlated noisy components. Thus, our joint learning setting

includes as special cases many asset pricing models with learning in the literature.2

But what are the novel economic implications of considering asset pricing in this gener-

alized learning setting? To motivate our main results, it is helpful to consider a concrete

joint learning setting. Suppose an agent learns about the mean consumption and divi-

dend growth rates, µc and µd, via possibly correlated aggregate signals sc = µc + esc and

sd = µd + ρesc + esd, which include the information from observed growth rates. Then the

agent’s Bayesian parameter uncertainty comprises of four distinct components: static un-

certainty, static co-uncertainty, intertemporal uncertainty, and intertemporal co-uncertainty.

Here, static uncertainty refers to the conditional (or posterior) variance of µc (at each infor-

mation set). This is the usual parameter uncertainty or estimation risk in a one-period model

with a single unknown parameter. With two unknowns, µc and µd, static co-uncertainty

refers to the contemporaneous conditional covariance of the unknown parameters. How-

ever, because estimates of µc and µd (or the posterior means) dynamically evolve due to the

Bayesian learning process, intertemporal uncertainty and intertemporal co-uncertainty refer

to the dynamic variance and covariance, respectively, of the agent’s Bayesian estimates.

Our paper presents two main results. First, we find that intertemporal co-uncertainty, as

a by-product of learning through joint signals, translates into two key elements of the equity

premium: (1) an endogenous long-run risk (Bansal and Yaron 2004) created by time-varying

estimates on µc when the agent prefers early resolution of uncertainty (Collin-Dufresne et al.

2016), and (2) the endogenous exposure of dividends to this long-run risk. Intuitively,

positive intertemporal co-uncertainty aggravates future consumption-risk diversification and

investment opportunities, implying a high negative covariance between future marginal util-

ity and stock returns. The demand for risky assets is, therefore, ceteris paribus declining in

2Johannes et al. (2016) also describe their learning problem as “joint learning” in the sense that agents
face multiple unknown parameters. The key difference is that our joint learning framework allows correlated
signals (as aggregate joint signals). Meanwhile, the signals in Kumar et al. (2008) are indeed joint signals
consistent with our definition although they study the cross-section of equity returns based on the unknown
fixed parameters in partial equilibrium. Bansal and Shaliastovich (2010), and Harbaugh et al. (2016) use
multiple independent signals that, therefore, reduce to a single signal with the sample mean and variance as
sufficient statistics for the reduced signal.
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intertemporal co-uncertainty.

Second, the correlation structure of signals is a key determinant of intertemporal co-

uncertainty and its effect on equity risk premium. We show that with dynamic learning

on multivariate parameters (positive) intertemporal co-uncertainty equals the expected re-

duction in static co-uncertainty by future signals. To facilitate intuition, consider the case

of univariate parameter uncertainty, where highly accurate signals have dramatic effects on

Bayesian parameter estimation and substantially reduce static uncertainty. Therefore, in-

tertemporal variance of parameter estimates depends on the decline in static (parameter)

uncertainty. Our result is the multivariate cross-moment extension of this univariate case.

Hence, reduction in static co-uncertainty through processing of correlated signals is accom-

panied by dynamically covarying parameter estimates (i.e., intertemporal co-uncertainty).

This “trade-off” (dictated by the Bayesian learning process) has a substantial impact on

asset demand because intertemporal co-uncertainty is associated with long-run risk, while

static co-uncertainty is associated with short-run risk.3 Therefore, learning with correlated

signals can amplify (or boost) long-run risk.

Considering correlated signals has other implications as well. For example, the relation

of information quality and equity premium becomes non-monotonic when the signals are

negatively correlated, in contrast to some of the literature.4 In addition, the equity risk

premium increases with the volatility of idiosyncratic persistent components in dividends.

In our empirical analysis, we find evidence that the signals on the GDP and corporate

earnings are highly correlated. From the Survey of Professional Forecasters (SPF) conducted

by Federal Reserve Bank of Philadelphia, we estimate the implied signal correlations by

applying Bayes’ theorem to the observed forecast errors from 1968:Q4 to 2019:Q3. The

estimation results are consistent with our long-run risk model calibrations that generate the

historical equity premium.

To summarize, our study makes three contributions. First, we separate intertemporal

co-uncertainty from conventional parameter uncertainty and show its significant effects on

general equilibrium asset pricing. Second, our analysis highlights the importance of cor-

3We relate this trade-off to Frankel and Kamenica (2019)’s argument: the value of information and cost
of uncertainty should be measured specific to the agent’s decision problem.

4See Veronesi (2000), Ai (2010), and Brevik and d’Addona (2010).
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related signals in asset pricing with learning. Third, we suggest how to estimate signal

correlation from survey data.

Our study presents a novel channel for the effects of learning on the equity risk premium

in general equilibrium. The existing literature presents two main channels for parameter

uncertainty to affect the equity premium. The first channel analyzed by Weitzman (2007)

exploits the fact that an agent’ posterior belief on the consumption growth follows a t-

distribution when the consumption growth follows a normal distribution with unknown mean

and volatility.5 As Geweke (2001) shows, expected utility diverges with heavy-tailed t-

distributed consumption growth and, therefore, any level of equity premium can be attained

by manipulating prior beliefs or truncation points in tails. The learning models in Gvozdeva

et al. (2015) and Johannes et al. (2016) partially benefit from this channel when they generate

the large risk premium.

The second channel in the literature emphasizes endogenous long run risks that arise with

Bayesian updating of fixed unknown parameters (Gvozdeva et al. 2015 and Collin-Dufresne

et al. 2016). This channel fundamentally differs from our joint learning framework in two

aspects. First, our learning-induced risk premium never decays when unknown parameters

are time-varying (i.e., in a stationary latent state model).6 In contrast, endogenous long-run

risk and risk premium with learning on fixed unknowns gradually dissipate, exhibiting a non-

stationary process as learning reduces (static) uncertainty regarding the fixed parameters.

Hence, these papers neither recognize nor fully utilize intertemporal co-uncertainty due to

absence of learning through joint signals. Instead, they rely on the first channel (heavy-

tail effects) or amplified static uncertainty that slows down the learning process to allow

matching of observed historical equity premium before further decay.

Second, intertemporal co-uncertainty can create, not just amplify, the risk premium. In

contrast, learning in Gvozdeva et al. (2015) and Collin-Dufresne et al. (2016) only amplifies

existing priced macroeconomic risk, implying that their learning models cannot increase

the risk premium if an asset generates cash flows independent of aggregate consumption.

5As Bakshi and Skoulakis (2010) point out, the equity premium is still difficult to justify with a power
utility if volatility (as a normal scale mixture) is truncated at a reasonable level.

6Time-varying multiple unknowns are motivated by the large theoretical and empirical asset pricing
literatures on time-varying risks (e.g., Merton 1973, Engle et al. 1987, Bollerslev et al. 1988, Bansal and
Yaron 2004). These stationary dynamics are of interest from an econometric viewpoint.
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In our model, the agent knows with certainty that asset payoffs and the economy are not

intrinsically linked. Yet, she also expects that her estimates on the asset’s profitability and

the macroeconomic fundamentals will covary due to correlated aggregate signals, creating

endogenous long-run risk and dividend exposure.7 Our stationary latent state model can

generate the historical equity risk premium (6% per year) without an exogenously imposed

link between consumption and dividends or with low elasticity of intertemporal substitution

(EIS) (for example, 0.5).8

The paper proceeds as follows. Section 2 motivates the analysis of joint learning. Section

3 studies general relationships among estimation uncertainties in joint learning. Section 4

further develops asset pricing implications of joint learning. Section 5 addresses empirical

aspects of joint learning. Section 6 discusses future research directions and concludes.

2 Motivation

In this section, we motivate our analysis by demonstrating significant novel implications of

learning on multiple unknowns through joint signals (that is, joint learning). We do so by

extending a well known model in the literature where there is learning on a fixed unknown

parameter. In particular, we show that joint learning can create a risk premium for an asset

that is fundamentally idiosyncratic, that is, when there is no correlation between payout and

consumption risk.

2.1 Joint Learning in a Bivariate-Normal Model

To demonstrate the possibilities introduced by joint learning, we generalize the i.i.d. learning

model in Collin-Dufresne et al. (2016) as follows. Consider a representative-agent endowment

economy. The log of growth rates gt+1 = [gc,t+1 gd,t+1]
> of consumption Ct and dividends

Dt of a risky portfolio are drawn from an independent and identically distributed (i.i.d.)

7Dynamic multivariate learning connects news on the asset’s future cash flows with news on future
macroeconomic shocks, rather than scaling up the risk prices of macroeconomic shocks.

8Note this is not due to behavioral biases or mistakes in valuations, but a by-product of Bayesian learning.
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bivariate normal distribution:

gt+1 = µ + eg,t+1, where eg,t+1
iid∼ N (0,Σg) and Σg =

 σ2
c ρgσcσd

ρgσcσd σ2
d

 , (1)

where gc,t+1 = log Ct+1

Ct
, gd,t+1 = log Dt+1

Dt
, and µ = [µc µd]

>. The representative agent knows

the variance-covariance matrix Σg exactly, including the correlation ρg between consumption

and dividend growth rates, but does not know the mean-growth-rate vector µ.

The agent observes an aggregate signal st+1 = [sc,t+1 sd,t+1]
> at t + 1, which represents

all the information available to the agent including growth realizations gt+1:

st+1 = µ + es,t+1, where es,t+1
iid∼ N (0,Σs) and Σs =

 σ2
sc ρsσscσsd

ρsσscσsd σ2
sd

 . (2)

We denote the observed history of aggregate signals at t by the profile st = {s1, ..., st}. The

agent then makes inference on µ at time t, conditional only on st, because st includes all

available information by construction. Therefore, the growth history gt, conditional on st,

contains no additional information; that is, p(µ|st,gt) = p(µ|st). In general, the growth

shocks eg,t+1 = [egc,t+1 egd,t+1]
> and the signal noises es,t+1 = [esc,t+1 esd,t+1]

> can be

correlated, and their cross-covariance matrix is as follows.

Jgs =

 cov(egc,t+1, esc,t+1) cov(egc,t+1, esd,t+1)

cov(egd,t+1, esc,t+1) cov(egd,t+1, esd,t+1)

 and Jsg = J>gs. (3)

The agent is ex-ante unbiased and her prior beliefs are equivalent to observing n periods

of aggregate signals. Hence, at t = 0, the agent has prior beliefs given by

µ ∼ N (µ̂0,Σµ,0) , where µ̂0 =

 µc

µd

 and Σ−1µ,0 = nΣ−1s . (4)

Using Bayes’ theorem, we express the agent’s posterior beliefs on µ at any t ≥ 1, conditional
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on her information set Ft = {st}, as follows.

µ|Ft ∼ N (µ̂t,Σµ,t) , where µ̂t =

 µ̂c,t

µ̂d,t

 and Σµ,t =

 σ2
c,t ρµ,tσc,tσd,t

ρµ,tσc,tσd,t σ2
d,t

 , (5)

where the posterior mean and covariance matrix (µ̂t,Σµ,t) can be recursively computed as

µ̂t = µ̂t−1 + Ks,t(st − µ̂t−1), (6)

Σ−1µ,t = Σ−1µ,t−1 + Σ−1s .

Here, Ks,t = Σµ,tΣ
−1
s = 1

n+t
I is the (2 × 2) Kalman gain matrix associated with aggregate

signals and I is an identity matrix.9 Equation (6) indicates how joint signals can create a

risk premium for an idiosyncratic asset (ρg = 0). The agent’s Bayes-rational estimates on µc

and µd can covary due to learning from positively correlated aggregate signals st. As we will

establish in the next section, the endogenous intertemporal covariation in these estimates can

generate a risk premium in equilibrium even though the agent knows that the consumption

and dividend dynamics are independent. This intuition is only a precursor to the deeper

implications of joint learning that we develop in the analysis below and Section 3.

2.2 Joint-Learning and the Equity Premium

We now examine the effect of joint learning on the agent’s beliefs and risk premium in

the model setup in the previous section. Following Epstein and Zin (1989), the stochastic

discount factor (SDF) for recursive preferences has the form

Mt+1 = δθG
− θ
ψ

c,t+1R
θ−1
c,t+1, (7)

where Gc,t+1 = Ct+1

Ct
is the aggregate gross growth rate of per-capita consumption and

Rc,t+1 = Wt+1+Ct+1

Wt
is the gross return on the total wealth portfolio Wt that pays out the

aggregate consumption stream {Ct}. Among the preference parameters, 0 < δ < 1 is a time

9We can simplify Equation (6) to µ̂t = n
n+tµ0 + t

n+ts
t and Σµ,t = 1

n+tΣs, where st is the sample average
of the signals sτ for τ = 1, 2, ..., t. However, we keep the recursive form in (6) because it can easily extend
to consider situations with time-varying parameters.
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discount factor, γ ≥ 0 is the risk aversion parameter, ψ ≥ 0 is the elasticity of intertemporal

substitution (EIS), and θ = (1 − γ)/(1 − 1
ψ

). The stochastic discount factor in (7) implies

the following Euler equation conditional on the agent’s information set Ft:

E[δθG
− θ
ψ

c,t+1R
θ−1
c,t+1Ri,t+1|Ft] = 1, (8)

where Ri,t+1 is the gross return of any asset i in the economy. Using this Euler equation,

we solve for the wealth-consumption and the price-dividend ratios by log-linearizing asset

returns recursively from the limiting case with perfect information at sufficiently large t.10

Following Campbell and Shiller (1988), the log wealth-consumption ratio zc,t and the log

price-dividend ratio zd,t are linear functions of the state variable µ̂t given in Equation (5):

zc,t = log
Wt

Ct
= A0c,t + A1cµ̂t = A0c,t +

(
1− ψ−1

1− κ1c

)
µ̂c,t, (9)

zd,t = log
Pt
Dt

= A0d,t + A1dµ̂t = A0d,t +

(
−ψ−1

1− κ1d

)
µ̂c,t +

(
1

1− κ1d

)
µ̂d,t, (10)

where both κ1c and κ1d are the constants between zero and one, determined by log-linearization.

In (9) and (10), uncertainty regarding unknown parameters is a deterministic state variable

(that is, it is non-random), consistent with a bivariate normal learning setting with unknown

means and a known variance-covariance matrix. Therefore, A0c,t and A0d,t contain informa-

tion about Σµ,t. However, the impact of EIS (ψ) on A1c and A1d through intertemporal

substitution and wealth effects is similar to that elucidated in Bansal and Yaron (2004).

The innovation in the log of the SDF, mt+1, conditional on the agent’s information set is

mt+1 − E[mt+1|Ft] = −λg(gt+1 − µ̂t)− λs,t(st+1 − µ̂t) (11)

= −λgeg,t+1 − λs,tes,t+1 − (λg + λs,t)uµ,t+1, (12)

where λg = γIc = γ[1 0], λs,t = (1−θ)κ1cA1cKs,t+1, and µ̂t = E[gt+1|Ft] = E[st+1|Ft]. The

last shock uµ,t+1 = µ− µ̂t ∼ N (0,Σµ,t) is a random variable that represents the parameter

uncertainty (or estimation risk) regarding µ at time t in the agent’s posterior beliefs, where

10The approach is similar to Bansal and Yaron (2004), extending to the case of unknown parameters.
The details are provided in the online Appendix A.1.
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Σµ,t is specified in (5). On the other hand, the innovation in the log of risky portfolio return

(rm,t+1) is

rm,t+1 − E[rm,t+1|Ft] = βg(gt+1 − µ̂t) + βs,t(st+1 − µ̂t) (13)

= βgeg,t+1 + βs,tes,t+1 + (βg + βs,t)uµ,t+1, (14)

where βg = Id = [0 1] and βs,t = κ1dA1dKs,t+1. Using (12) and (14), we finally express the

log-return counterpart of the equity risk premium RPt = −Cov(rm,t+1,mt+1|Ft) as

E[rm,t+1|Ft]− rf,t +
1

2
V ar[rm,t+1|Ft] =βgΣgλ

>
g︸ ︷︷ ︸

from growth

+ βs,tΣsλ
>
s,t︸ ︷︷ ︸

from signal

+ βs,tJsgλ
>
g︸ ︷︷ ︸

signal×growth

+ βgJgsλ
>
s,t︸ ︷︷ ︸

growth×signal

+ (βg + βs,t)Σµ,t(λg + λs,t)
>︸ ︷︷ ︸

from static (co)-uncertainty in µ

. (15)

The first term βgΣgλ
>
g,t on the right hand side of (15) is the conventional risk premium

γCov(gc,t, gd,t) when the mean growth rates are known. The last term is related to Σµ,t,

which represents current static parameter uncertainty at t. Quantitatively, the last term is

negligible because Σµ,t is only a fraction 1/n of Σs initially at t = 0 (see Equation (4)) , and

it further decreases deterministically over time at the rate O(t−1).

Most importantly, the three terms in the middle of the right hand side of (15) represent

the risk premium associated with the agent’s learning process. While integrating these three

terms with the last term in (15), we rewrite them in detail using (6), (11) and (13) to explain

how the effects of joint learning differ from its special cases that are studied in the literature.

RPss
∆
= βs,tΣ

∗
sλ
>
s,t = κ∗1cκ

∗
1d

(
γ − 1

ψ

)
V ar(µ̂c,t+1|Ft)

[
Cov(µ̂c,t+1, µ̂d,t+1|Ft)

V ar(µ̂c,t+1|Ft)
− 1

ψ

]
, (16)

RPsg
∆
= βs,tJ

∗
sgλ
>
g = κ∗1dγ

[
Cov(µ̂d,t+1, egc,t+1|Ft)−

1

ψ
Cov(µ̂c,t+1, egc,t+1|Ft)

]
, (17)

RPgs
∆
= βgJ

∗
gsλ
>
s,t = κ∗1c

(
γ − 1

ψ

)
Cov(µ̂c,t+1, egd,t+1|Ft), (18)

where Σ∗s = Σs + Σµ,t, J∗sg = J∗sg + Σµ,t, J∗gs = J∗gs + Σµ,t, κ
∗
1c = κ1c/(1 − κ1c) > 0, and

κ∗1d = κ1d/(1− κ1d) > 0.
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Note RPss in (16) captures the joint-learning-induced long-run risk. If an agent has

preferences for early resolution of uncertainty (γ > 1
ψ

), then RPss is positively related to

(Belief Beta)t
∆
=

(Intemporal Co-Uncertainty)t
(Intemporal Uncertainty)t

=
Cov(µ̂c,t+1, µ̂d,t+1|Ft)

V ar(µ̂c,t+1|Ft)
. (19)

Here, we define belief beta, analogous to the CAPM beta, as the ratio of intertemporal co-

uncertainty, Cov(µ̂c,t+1, µ̂d,t+1|Ft), to intertemporal uncertainty, V ar(µ̂c,t+1|Ft), when the

agent’s estimates µ̂c,t+1 and µ̂d,t+1 covary over time. If intertemporal co-uncertainty is large

relative to intertemporal uncertainty, the belief beta can exceed a threshold ψ−1 and joint

learning raises the risk premium. The belief beta, given intertemporal uncertainty, is there-

fore positively related to the risk premium when there is a preference for early resolution

of uncertainty. The other terms RPsg and RPgs in the risk premium represent interaction

effects between the growth shocks and aggregate signals, which we explore in Section 4. In

our i.i.d. bivariate normal model, however, we assume Jgs = Jsg = 0 to ‘shut down’ these

secondary channels; therefore, both terms RPsg and RPgs are zero here.

In general, intertemporal co-uncertainty (that is, the numerator of belief beta) has a more

unambiguous effect on the risk premium, given (γ > 1
ψ

), than intertemporal uncertainty

(that is, the denominator). For example, when we increase intertemporal uncertainty by

more accurate signals, the risk premium in (16) can either increase or decrease depending

on the sign of the last term, which consists of belief beta and EIS. In contrast, when we

change signal correlation, intertemporal uncertainty remains the same but the risk premium

increases with intertemporal co-uncertainty, regardless of the value of EIS.

Comparisons to the Learning Models in the Literature

We now return to the benchmark i.i.d.-learning model of Collin-Dufresne et al. (2016). The

model presumes that (1) consumption and dividend growth rates are perfectly correlated,

gd,t = φµgc,t, and (2) realized growth rates coincide with aggregate signals, st = gt. These

assumptions imply restrictions in parameters, such as µd = φµµc, ρg = ρs = 1, and Σs =

Σg = Jsg = Jgs, in our general setup. In particular, they use φµ = 1 and ψ = 1; therefore,

10



the model implies RPss = RPsg = 0, and RPgs reduces to, by applying (6) and Σµ,t = 1
n+t

Σs,

RPgs = κ∗1c

[
γ − 1

ψ

]
V ar(µc|Ft+1). (20)

We caution that Equation (20) can give a somewhat misleading impression that the

risk premium generated by learning is, in general, driven by the parameter uncertainty in

the mean consumption growth rate µc, say, V ar(µc|Ft), which we call static uncertainty to

distinguish it from static co-uncertainty Cov(µc, µd|Ft) and intertemporal (co)-uncertainty

Cov(µ̂c,t+1, µ̂d,t+1|Ft). As we mentioned above, in our general setup this static uncertainty

has only a minimal quantitative effect through the last term of (15). However, this point

is obscured in the literature because seemingly innocuous assumptions make intertemporal

(co)-uncertainty—which is generated by the dynamics of beliefs in the learning process—

indistinguishable from static (co)-uncertainty—which is based only on a ‘snapshot’ of beliefs.

Furthermore, the extant literature on the effect of learning on asset prices in general

equilibrium suggests that learning from signals—for example, from scheduled macroeconomic

announcements (Ai and Bansal 2018)—always increases the risk premium when an agent

prefers early resolution of uncertainty (γ > 1
ψ

). Our general learning setup shows this is not

necessarily true. Note the last term in (16) can be negative if EIS is low or belief beta is

small. Joint learning, therefore, can increase the risk premium even with preferences for late

resolution of uncertainty (γ < 1
ψ

).

In summary, our general learning environment highlights the presence of learning-induced

risk premium channels that appear to have been ignored in the literature. The analysis

indicates that with joint signals on multiple unknown parameters, an asset’s risk premium

mirrors how agents’ posterior beliefs on economic and financial fundamentals covary over

time, rather than how the fundamentals themselves are truly correlated or how uncertain

they are. The next section quantitatively confirms this argument.

2.3 Numerical Examples

Correlated signals on multiple unknowns affect the risk premium through intertemporal

co-uncertainty. To demonstrate this, we compare three different correlation structures for
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growth shocks and aggregate signals in the i.i.d. bivariate model at hand:

(i) Corr(gc,t, gd,t) = ρg = 0.55, st = gt, and thus, Corr(sc,t, sd,t) = ρs = 0.55,

(ii) Corr(gc,t, gd,t) = ρg = 0 and Corr(sc,t, sd,t) = ρs = 0.55 where st is independent of gt,

(iii) Corr(gc,t, gd,t) = ρg = 0 and Corr(sc,t, sd,t) = ρs = 0.80 where st is independent of gt,

where the correlation coefficient 0.55 matches the estimate from Bansal and Yaron (2004).

The first case (i) emulates the benchmark model in Collin-Dufresne et al. (2016) because

the annunciated assumptions imply Σs = Σg = Jsg = Jgs. The only difference is that

Collin-Dufresne et al. (2016) additionally assume gd,t = gc,t, resulting in ρg = ρs = 1 and

µ̂d,t = µ̂c,t. We find, however, that case (i) inherits all asset pricing implications from their

i.i.d. model; hence, case (i) is an appropriate benchmark specification for cases (ii) and (iii).

In cases (ii) and (iii), we isolate the main joint learning channel (16) by assuming st and gt

are independent; that is, Jgs = 0. Aggregate signals st, however, include information from

gt; therefore, they are possibly correlated. Section 4 finds that such cases can further boost

the risk premium with joint learning.

We solve our model at quarterly frequency while calibrating the parameters following

Collin-Dufresne et al. (2016) and Bansal and Yaron (2004). The calibration details and com-

putation results are reported in Table 1. For all three cases, static uncertainty in consumption

mean growth rate V ar(µc|Ft) and intertemporal co-uncertainty Cov(µ̂c,t+1, µ̂d,t+1|Ft) grad-

ually dissipate as the agent learns about the true fixed mean-growth-rates µ. Therefore, the

annualized conditional (cumulative) equity premium declines over time, consistent with the

benchmark model in Collin-Dufresne et al. (2016).

Two new patterns emerge regarding cases (ii) and (iii), however. First, joint learning

with correlated aggregate signals can create an equity premium even if the underlying growth

rates of consumption and dividends are uncorrelated. For the first 100 years, the annualized

average equity premium is 5.88%, 4.83%, and 8.33% for (i)-(iii), respectively. Although this

i.i.d. model is not fully realistic, the equity premium generated by joint learning is still

comparable to the benchmark case (i). Second, increasing the signal correlation ρs leads to

a higher equity premium. We note that these patterns are not a coincidence. To see this,
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note that the last two terms in Equation (16), by applying (28), can be written

V ar(µ̂c,t+1|Ft)
[
Cov(µ̂c,t+1, µ̂d,t+1|Ft)

V ar(µ̂c,t+1|Ft)
− 1

ψ

]
=

σscσsd
(n+ t)(n+ t+ 1)

[
ρs −

1

ψ

σsc
σsd

]
. (21)

Other things being equal, the risk premium increases with signal correlation ρs and can be

positive if ρs is sufficiently large. Intuitively, highly correlated signals amplify the covariance

in agents’ point estimates µ̂c,t+1 and µ̂d,t+1. As a result, the risky portfolio becomes more

exposed to consumption risk (based on the the representative agents’ posterior beliefs), and

the asset ceteris paribus requires a higher risk premium.

A comparison of (ii) and (iii) also reveals that the risk premium is mainly driven by in-

tertemporal co-uncertainty and not by static uncertainty. For both cases, static uncertainty

is identical in any given quarter t; therefore, static uncertainty cannot explain the equity pre-

mium difference between these two cases. On the other hand, intertemporal co-uncertainty

increases with signal correlation similar to the increase in the equity premium observed in

(ii) and (iii). Thus, by varying the signal correlation, we can clarify the differential impact

of static uncertainty versus intertemporal co-uncertainty on the equilibrium risk premium

because the signal correlation affects only off-diagonal elements in the covariance matrix

Σµ,t = 1
n+t

Σs from (6).

The simplicity of this i.i.d. model, however, is accompanied by many issues. First, learn-

ing on fixed parameters results in a gradually declining equity premium with non-stationary

belief dynamics. This can generate the misconception that learning-induced equity premium

is always decaying and asymptotically unsustainable. Second, it may appear that a simple

i.i.d. model with the assumptions µc = µd and ρg = 0 generates the same learning-induced

risk premium for an idiosyncratic asset, regardless of the signal correlation ρs. Therefore, one

might want to conclude that considering multiple unknowns is unnecessary. However, when

the parameters are time-varying, the asset is no longer idiosyncratic under such assumptions.

Finally, learning on fixed parameters unwittingly distorts the relationship between signal cor-

relation and intertemporal co-uncertainty. We address these issues in Section 3 and 4 through

an analysis of joint learning with multivariate unknown time-varying parameters.
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3 Co-Uncertainty, Learning, and Correlated Signals

The foregoing analysis illustrates the significant economic implications of joint learning on

equilibrium asset prices. We now examine in more generality some fundamental concepts

for joint learning—that is, Bayesian learning in generalized information environments—that

we developed above. This analysis will be useful for understanding the effects of signal

correlation on Bayesian learning on multiple unknowns.

3.1 Static and Intertemporal Covariance of Beliefs

For concise notation, we first define static and intertemporal co-uncertainty matrices. The

following definition generally applies to unknown parameters and distributions, and is not

restricted to location parameters or an i.i.d. bivariate normal distribution considered in the

previous section.

Definition 1. (Static and Intertemporal Beliefs) If an agent has posterior beliefs µ̂t =

E(µ|Ft) on a vector of unknowns µ at time t conditional on her information set Ft, then

static and intertemporal co-uncertainty matrices are defined, respectively, as

Static co-uncertainty matrix: Σµ,t
∆
= Cov(µ|Ft), (22)

Intertemporal co-uncertainty matrix: Σ
µ̂t+1

t
∆
= Cov(µ̂t+1|Ft), (23)

In words, the static co-uncertainty matrix is the contemporaneous conditional variance-

covariance matrix of the unknowns and provides a ‘snapshot’ of posterior beliefs. In contrast,

the intertemporal co-uncertainty matrix is the variance-covariance matrix of innovations in

the posterior means (or Bayesian point estimates) of the unknowns. Note that Σµ,t includes

static uncertainty and co-uncertainty as its diagonal and off-diagonal elements, respectively,

whereas Σ
µ̂t+1

t does the same with respect to intertemporal uncertainty and co-uncertainty.

The following result dynamically links static and intertemporal co-uncertainty matrices.11

Proposition 1. (Trade-off Between Static and Intertemporal Beliefs) In Bayesian

learning on a vector of unknowns µ, the static and intertemporal co-uncertainty matrices, if

11Equation (24) is a multivariate version of Equation (9) in Fogli and Veldkamp (2011).
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they exist, jointly satisfy the following condition for each t:

Σ
µ̂t+1

t = Σµ,t − E(Σµ,t+1|Ft), (24)

where Σµ,t = Cov(µ|Ft) and Σ
µ̂t+1

t = Cov(µ̂t+1|Ft) are the static and intertemporal co-

uncertainty matrices at time t, respectively, and µ̂t+1 = E(µ|Ft+1) is the posterior mean of

µ at time t+ 1.

The proof of this proposition follows from noting that Σµ,t and Σµ,t+1 denote prior and

posterior static co-uncertainty matrices, respectively, and hence (24) is equivalent to the law

of total covariance:

Cov(µ|Ft) = Cov(E(µ|Ft+1)|Ft) + E(Cov(µ|Ft+1)|Ft) = Cov(µ̂t+1|Ft) + E(Σµ,t+1|Ft).

We note that Equation (24) is not an implication of a stylized asset pricing model; rather, it

is a representation of a general mathematical fact: the intertemporal co-uncertainty matrix

at time t equals the expected reduction (or negative innovation) in the static co-uncertainty

matrix for the next period.12

Proposition 1 implies a fundamental trade-off in learning in generalized environments

considered in this paper. Suppose an agent faces static (co)-uncertainty regarding multiple

unknowns but has some information available about them. Incorporating this information

in a Bayesian learning process can reduce the posterior static (co)-uncertainty. However,

Equation (24) implies that now the agent faces a new risk of (co)-varying parameter estimates

in exchange for reducing the posterior static (co)-uncertainty. In asset pricing contexts, this

trade-off can be either beneficial or costly. In some cases, the agent can be worse-off with

learning and requires a higher risk premium. In Section 4, we generalize this intuition by

considering cases of multivariate parameter uncertainty where learning can either increase

or decrease static co-uncertainty depending on signal correlation.

Furthermore, Proposition 1 motivates a useful heuristic on the relative economic impor-

12Frankel and Kamenica (2019) show that information and uncertainty are coupled in that the expected
reduction in uncertainty always equals the expected amount of information generated if measures of infor-
mation and uncertainty arise from the same decision problem.
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tance of static and intertemporal (co)-uncertainty. Consider a static or one-period version

of (24) in which the true values of parameters are revealed at t + 1. Then the static and

intertemporal co-uncertainty covariance matrices become identical, that is, Σ
µ̂t+1

t = Σµ,t and

the model solution presents static (co)-uncertainty as the key variable of interest. But in a

dynamic multivariate normal setting—such as the i.i.d bivariate normal model considered in

the previous section—the agent’s Bellman equation can be written

V (Wt, µ̂t,Σµ,t) = max

(
(1− β)c

ψ−1
ψ

t + βR
[
V (Wt+1, µ̂t+1,Σµ,t+1)|Ft

]ψ−1
ψ

) ψ
ψ−1

, (25)

where the state variables at t are wealth Wt and the first two moments (µ̂t,Σµ,t) that

represent the posterior distribution of parameters. Intertemporal co-uncertainty resides in-

side R[·|Ft] of Equation (25) and therefore will generally will be an integral component in

agents’ dynamic optimization and hence equilibrium risk premium. In particular, holding

fixed (Wt, µ̂t,Σµ,t), a different signal correlation structure can dramatically change the value

function through the intertemporal co-uncertainty channel.

3.2 Correlated Signals for Fixed vs. Time-Varying Parameters

A possible intuition that may be advanced to explain the results of the i.i.d. model in

Section 2 proceeds along the following lines: There are two parameters, each of which has

its own signal; and if these two signals are positively correlated, the Bayes’ estimates on

the parameters tend to change in the same direction. Somewhat surprisingly, this straight-

forward intuition is incorrect, at least conditionally. As a counter example, consider the

simple bivariate normal model in Equation (2). If static co-uncertainty is zero, i.e., the two

parameters are uncorrelated in the agent’s posterior beliefs, then from (24) a positive sig-

nal correlation implies negative intertemporal co-uncertainty. But if, instead, the posterior

static co-uncertainty is positive, then uncorrelated signals generate a positive intertemporal

co-uncertainty. These facts are puzzling with respect to the candidate intuition given above,

but they are consistent with the more general result below, which is a direct application of

Proposition 1.13

13The proof is on the online Appendix A.2.
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Proposition 2. (Sign of Intertemporal Co-Uncertainty) If the signal and the poste-

rior beliefs on unknown location parameters follow Equations (2) and (5), respectively, then

intertemporal co-uncertainty at t is positive, that is, cov(µ̂c,t+1, µ̂d,t+1|Ft) > 0, if and only if

ρs < ρµ,t

(
(1− ρ2µ,t) +

σ2
sc

σ2
c,t

+
σ2
sd

σ2
d,t

)
σc,tσd,t
σscσsd

1

1 + ρ2µ,t
. (26)

Note that all the terms in the right-hand side of (26) are positive except the first term

ρµ,t. Therefore, roughly speaking, intertemporal co-uncertainty is positive when the signal

correlation is lower than a (scaled) prior static co-uncertainty in terms of correlation ρµ,t.
14

To better understand Proposition 2, it is useful to rewrite Proposition 1 for our i.i.d.

model by relocating terms.

Cov(µ̂t+1|Ft)︸ ︷︷ ︸
Intertemporal

+ Σµ,t+1︸ ︷︷ ︸
Posterior

static

= Σµ,t︸︷︷︸
Prior
static

= (Fixed at time t), (27)

where E(Σµ,t+1|Ft) = Σµ,t+1 is known at t because of the deterministic evolution of Σµ,t.

The precision matrix additivity property, Σ−1µ,t+1 = Σ−1µ,t + Σ−1s by Bayes’ theorem, implies

that a higher signal correlation results in higher posterior static co-uncertainty, which lowers

intertemporal co-uncertainty since the right-hand-side of (27) is fixed. This trade-off effect is

shown graphically in Figure 1. The horizontal axes show the signal correlation; the vertical

axes show posterior static co-uncertainty in Panel (a) and intertemporal co-uncertainty in

Panel (b), respectively. The three thin black lines correspond to different levels of prior

static co-uncertainty (in terms of the correlation): ρµ,t = (−0.7, 0,+0.7). These graphs show

two natural determinants for static and intertemporal co-uncertainties. First, higher signal

correlation conditionally increases posterior static co-uncertainty but decreases intertemporal

co-uncertainty. Second, holding fixed the signal correlation, higher prior static co-uncertainty

conditionally increases both posterior static and intertemporal co-uncertainties.15

Propositions 1 and 2, therefore, raise a seeming contradiction to the results in Section 2

which show positive correlations create positive intertemporal co-uncertainty. The resolution,

14Signal noisiness also affects intertemporal co-uncertainty. See Figure A.1 in the online Appendix A.3.
15The two counter examples mentioned previously combine these two facts.
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however, is in the prior specification and non-stationary dynamics of posterior beliefs in the

benchmark models in the literature. In particular, the initial prior covariance matrix Σµ,0

is assumed to be proportional to the signal covariance matrix, i.e., Σµ,0 = n−1Σs where n

is a scalar. This prior specification is common in the literature and seemingly reasonable

because prior information is equivalent to observing n signals at t = 0 (Collin-Dufresne et al.

2016). However, this seemingly innocuous assumption forces both the posterior static co-

uncertainty matrix (Σµ,t+1) and intertemporal co-uncertainty matrix, Cov(µ̂t+1|Ft), to be

proportional to the signal covariance matrix Σs as follows.

Cov(µ̂t+1|Ft) = Σµ,t −Σµ,t+1 =
1

n+ t
Σs −

1

n+ t+ 1
Σs =

1

(n+ t)(n+ t+ 1)
Σs, (28)

where Σ−1µ,t = Σ−1µ,t−1 + Σ−1s = (n + t)Σ−1s . This result falsely suggests that positively cor-

related signals generally produce (both) large static co-uncertainty and large intertemporal

co-uncertainty in the i.i.d. model.16 Note that when we increase signal correlation under this

prior specification, we automatically also increase prior static co-uncertainty. Consequently,

we observe the patterns in Table 1, consistent with the upward-sloping thick gray lines in

Figure 1 instead of thin black lines.

The special aspects of the conventional prior specification are, however, not the main

issue. A deeper issue is the non-stationary dynamics of beliefs in i.i.d. models. Even if

we properly specify the prior distribution when we change signal correlation, the impact of

prior beliefs attenuates over time. The static and intertemporal co-uncertainty matrices,

therefore, converge to the one that is proportional to the signal covariance matrix, that

is, TΣµ,T → Σs and T 2Cov(µ̂T+1|FT ) → Σs as T → ∞. Consequently, higher signal

correlation will eventually lead to larger intertemporal co-uncertainty although it is small or

even negative at the outset.

Instead, if the unknown parameters are time-varying, then innovations in parameter-

dynamics allow the posterior beliefs to follow a stationary process where (co)-uncertainty

never dissipates through learning and signal correlation only partially affects belief dynamics.

As a result, we recover the original conditional relationships implied by Proposition 2 and

16Intertemporal co-uncertainty is positive because static co-uncertainty in terms of covariance falls over
time although static co-uncertainty in terms of correlation remains the same.
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Figure 1 Panel (b); in particular, lower signal correlation generates larger intertemporal

co-uncertainty, which is confirmed in the next section.

4 Joint-Learning on Time-Varying Parameters

4.1 Model Setup

This section analyzes joint learning on time-varying parameters, i.e., latent states, in the

well known long-run risk framework of Bansal and Yaron (2004). The dynamics of hidden

long-run components xt = [xc,t xd,t]
>, aggregate signals st = [sc,t sd,t]

>, and realized

consumption and dividend growth shocks gt = [gc,t gd,t]
> are as follows.17

xt+1 = Fxt + ex,t+1,

st+1 = xt + es,t+1, (29)

gt+1 = µ + xt + eg,t+1,

where F =

 Fx 0

0 Fx

 , ex,t+1
iid∼ N (0,Σx) , and Σx =

 σ2
xc ρxσxcσxd

ρxσxcσxd σ2
xd

 . (30)

To isolate the effects of joint learning, we assume that the shocks ex,t+1 are independent

of both eg,t+1 and es,t+1. The conditional mean-growth-rate vector xt in (29) is unknown

while the unconditional mean-growth-rate vector µ = [µc µd]
> is known. The agent’s

information set is Ft = {gt, st} but this is summarized by Ft = {st} because the aggregate

signal history st contains all available information, including the realized growth rates history

gt, by definition. Therefore, the short-run growth shocks eg,t+1 = [egc,t+1 egd,t+1]
> and the

signal noises es,t+1 = [esc,t+1 esd,t+1]
> in aggregate signals are possibly positively correlated

17Alternatively, we can model the aggregate signal st+1 as a forward-looking signal: st+1 = xt+1 + es,t+1.
This alternative specification does not alter the overall results, however.
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as follows: eg,t+1

es,t+1

 iid∼ N [0,Σgs] , Σgs =

 Σg Jgs

J>gs Σs

 , Σg =

 σ2
c ρgσcσd

ρgσcσd σ2
d

 ,
Σs =

 σ2
sc ρsσscσsd

ρsσscσsd σ2
sd

 , and Jgs =

 ρgsσgcσsc 0

0 ρgsσgdσsd

 , (31)

where ρg ≥ 0 and ρgs = Corr(egc,t, esc,t) = Corr(egd,t, esd,t) ≥ 0. In the cross-covariance

matrix Jgs from (3), we set the cross-correlations Corr(egd,t, esc,t) and Corr(egc,t, esd,t) to

zero because their signs are ambiguous.

In sum, at each decision point, the representative agent knows all the parameters except

xt and makes Bayesian inference on it conditional on the history of signals. By solving a

Kalman filter, the agent’s posterior belief on xt at t converge to the stationary process:

xt|Ft ∼ N (x̂t,Π) and x̂t = Fx̂t−1 + Ks(st − x̂t−1), (32)

where Ks = FΠ(Π + Σs)
−1 is the Kalman gain matrix and Π is the conditional covariance

matrix of xt under the agent’s posterior beliefs after the Kalman filter converges to the

steady state. We consider the state variable x̂t as predictive in that E[gt+1|Ft] = µ+ x̂t and

E[st+1|Ft] = x̂t.

To examine the effects of joint learning, we generalize consumption and dividend dynam-

ics of the benchmark constant-volatility model in Bansal and Yaron (2004). In our model,

the consumption and dividend growth rates have their own separate long-run components

xc,t and xd,t, respectively, so that the agent learns on multiple unknowns. Nonetheless, our

specification is linked to Bansal and Yaron (2004) through the following implied parameters:

φxd =
Cov(xc,t, xd,t|xt−1)
V ar(xc,t|xt−1)

and χxd =
σxd
σxc

=
SD(xd,t|xt−1)
SD(xc,t|xt−1)

, (33)

where φxd measures the exposure of the long-run component in dividend growth to the cor-

responding long-run consumption growth, while χxd measures the scale of xd,t as a volatility

ratio of the innovations in xd,t and xc,t. We note that Bansal and Yaron (2004) examine the
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special case χxd = φxd since xd,t = φxdxc,t in their specification. In contrast, we explore the

implications of multiple unknowns, i.e., xd,t 6= φxdxc,t, under the condition χxd ≥ φxd when

the dividend process has an idiosyncratic persistent component that is independent of con-

sumption. If ρx—that is, the correlation between innovations in xc,t and xd,t—is zero, then

the dividend long-run component is completely idiosyncratic because there is no underlying

link to consumption.

Parameter Calibration and Detection Error Probability

We set the baseline parameters at monthly frequency following Bansal and Yaron (2004),

as shown in Table 2. Calibrating the parameters in long-run risk models, however, is con-

troversial; the main criticism in the literature targets Fx, the persistence of long-run con-

sumption growth. On top of that, we find new calibration challenges due to unobservable

long-run components. Consider, in particular, the parameters φxd and χxd. Estimating these

parameters with high precision can be very difficult because the long-run components in con-

sumption and dividends are unobservable to the agent, as well as econometricians. Rather

than focusing on issues relating to estimation methods or data, we present the underlying

estimation uncertainty using detection error probability metrics in the context of parameter

calibration.

The detection error probability (henceforth, DEP) measures the probability that an

econometrician errs when attempting to detect the correct parameter values. Suppose that

the econometrician considers two differently calibrated models: an original calibration (O)

and an alternative calibration (A). With equal prior weights on (O) and (A), the DEP is the

average probability of the two possible calibration error likelihoods:

Detection Error Probability =
Pr(choose A | O is true) + Pr(choose O | A is true)

2
. (34)

In short, DEP is the average of Type-I errors; two parameter sets are indistinguishable by a

statistical test if DEP is larger than 5%, or even 10% depending on the significance level.

We report the DEPs associated with φxd and χxd in the online Appendix A.4. The DEP

between φxd = 0 and φxd = 3 is higher than 10% with 70 years of monthly data, so is the
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DEP between χxd = 3 and χxd = 6. The results suggest that the long-run component in

dividends may be purely idiosyncratic and larger than is typically assumed. Furthermore, as

shown in Jagannathan and Liu (2019), the parameters in the dividends process are not very

stable; therefore, the agent faces large uncertainty in dividend dynamics. This high level of

uncertainty may translate to high volatility (σxd) of the idiosyncratic long-run component in

dividends under the agent’s posterior beliefs. We, therefore, explore the long-run risk model

with the values of φxd and χxd in these ranges.

4.2 Risk Premium in Joint Learning

Model Solutions We solve the model using log-linearization. The solution expressions are,

therefore, similar to those of the i.i.d. model in Section 2. In particular, the intertemporal

co-uncertainty component in the equity premium is almost identical to Equation (16) because

βsΣsλ
>
s = κ∗∗1cκ

∗∗
1d

(
γ − 1

ψ

)
V ar(x̂c,t+1|Ft)

[
Cov(x̂c,t+1, x̂d,t+1|Ft)

V ar(x̂c,t+1|Ft)
− 1

ψ

]
, (35)

where κ∗∗1c = κ1c/(1 − κ1cFx) and κ∗∗1d = κ1d/(1 − κ1dFx). The only notable difference is

that the unknown state is now xt rather than µ. As suggested by the similarity of the

expressions, our long-run risk model inherits the asset pricing implications of intertemporal

co-uncertainty from the i.i.d. model in Section 2. In particular, intertemporal co-uncertainty

drives the risk premium in a recursive utility framework. The main difference, however, is

that now negatively correlated signals—rather than positively correlated signals—generate

large intertemporal co-uncertainty and a high risk premium, as explained in Section 3.2.

We summarize the main results in Table 2 and include the solution details in the online

Appendix A.5

Learning Solely from Realized Growth Rates Panel A of Table 2 shows the bench-

mark cases in which an agent learns only from realized growth rates. This specification has

multiple unknowns xc,t and xd,t, yet it is still a special case of learning with the restrictions.

Most importantly, the agent has no access to signals other than realized growth rates, that

is, st = gt; therefore, aggregate signal correlation ρs always equals the correlation ρg between
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short-run consumption and dividend growth shocks. With this strong, and arguably unreal-

istic, restriction on the information environment, the effect of learning on the risk premium is

negligible, although it exists. Rows #2 to #4 show that the equity premium is directly linked

to φxd, which is the intrinsic exposure of dividends to the consumption long-run component.

The case of no exposure φxd = 0 in row #4 results in absence of intertemporal co-uncertainty

and risk premium.18 Also, from the rows #1 and #2, we confirm that idiosyncratic dividend

long-run risk has an insignificant effect in this conventional learning environment.

Signal Correlation Table 2 Panel B shows cases where the agent learns from aggregate

signals, as in Equation (29). Given the other parameter values, decreasing signal correlation

ρs increases intertemporal co-uncertainty and risk premium, as shown in rows #5 to #7 and

in Figure 2 Panel (a). When ρs = +0.8 in row #5, intertemporal co-uncertainty is negative

and the equity premium is −3.40% per year even though the agent knows that dividends

are intrinsically exposed to long-run consumption risk (note that φxd = 1). In essence, posi-

tively correlated signals simply dominate the effects of the intrinsic exposure to consumption

and distort the risk premium. In contrast, when ρs = −0.9 in row #7, intertemporal co-

uncertainty is positive, and the equity premium is +6.58% per year. Furthermore, given

ρgs in Panel B, the equity premium follows the magnitude of intertemporal co-uncertainty

(in the last column in Table 2) rather than follows static uncertainty in the consumption

long-run component. These results confirm the analysis in Section 3.2.

Systematic and Idiosyncratic Long-Run Dividend Risks Proposition 1 implies that

not only the signal correlation but also prior static co-uncertainty can affect intertemporal co-

uncertainty and hence the risk premium. Considering Figure 1 Panel (b) along with Figure 2

Panel (a) confirms this implication. In particular, the three lines (1)–(3) in Figure 2 Panel (a)

show that risk premium decreases with signal correlation but increases with φxd, namely, the

parameter that governs prior static co-uncertainty of xt in Kalman filter recursions. Figure 1

Panel (b) shows the same patterns with intertemporal co-uncertainty instead. Rows #8 and

#9 in Table 2 also show consistent results.19 On the other hand, comparing rows #7 and

18The risk premium is even negative due to the difference between net and log returns.
19See the online Appendix A.5.6 for more extensive comparisons.
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#8 in Table 2 indicates that the idiosyncratic long-run component in dividends significantly

contributes to the equity premium. That is, equity premium increases with χxd while φxd is

fixed. The intuition here is straightforward: Higher idiosyncratic volatility in the long-run

component xd,t of dividends implies higher total volatility and, hence, greater intertemporal

co-uncertainty (in terms of covariance) and a higher risk premium, other things held fixed.

Growth-to-Signal Correlation Unlike the i.i.d. model in Section 2.3, our long-run risk

model allows a positive correlation ρgs between short-run growth shocks and noisy compo-

nents of aggregate signals. Since the aggregate signals are the source of endogenous long-run

risk, a financial asset requires a high risk premium for correlations to the aggregate signals.

Rows #9 and #10 in Table 2 show the substantial effects of ρgs on the risk premium com-

ponents in (17) and (18). However, the role of ρgs is only to multiplicatively scale up the

equity premium rather than add to it. Roughly speaking, signal correlation ρs sets the sign

of the equity premium whereas the growth-to-signal correlation ρgs amplifies the equity pre-

mium (either positive or negative). To see this, compare rows #5 and #12 in Table 2 or the

two lines (4) and (5) in Figure 2 Panel (a). Nevertheless, ρgs does not affect intertemporal

co-uncertainty since the agent still learns only from the aggregate signals (as seen by com-

paring rows #9 and #10). The effects of ρgs, therefore, differ from the main joint learning

channel in Equation (16). Finally, even without a risk premium boost (from ρgs = 0) or

a fundamental link (φxd = 0), we find that negatively correlated signals can create a risk

premium as large as 4% per year (row #11).

Preference Parameters In our joint learning model, the equity premium increases with

the risk aversion γ and EIS ψ, as in Bansal and Yaron (2004), when the last terms in

Equations (16)–(18) are positive. In Table 3, we investigate if our joint learning model can

generate the observed equity premium even with lower risk aversion and EIS than those

commonly used in the literature. We calibrate other parameters realistically (see Table 3

for details). With low risk aversion γ = 5, our model generates annual equity premium of

5.33% and the risk-free rate of 1.12% at ψ = 1.5. Also, unlike other models in the literature,

EIS larger than unity is not a necessary condition to generate a high equity premium in
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our model. Note that the last term in Equation (35) can be still positive and large even

with low EIS only if intertemporal co-uncertainty is large enough to compensate low EIS.

With low EIS ψ = 0.9, the model can generate the annual equity premium of 6.43% and the

risk-free rate of 1.68% at γ = 7.5. These results are useful because there is no consensus

in the literature on whether the EIS is less or more than 1. For comparison, we report

three benchmark cases: 1) zero signal correlation, 2) learning only from growth rates, and 3)

known xt through signals without noises. In all three cases, the equity premium is around

3.50% even with high risk aversion γ = 10 and high EIS ψ = 1.5, while our joint learning

model produces 9.09% for the same parameter values.20

4.3 Information Quality and Risk Premium

The relationship between information quality and equity premium depends on the definition

of signals in the model. First, we can define signals, following our joint learning model,

as aggregate signals that include information from growth rates. In this case, an agent

learns only from aggregate signals. Alternatively, following the conventional definition in

the literature, we can introduce additional signals on top of growth rates. In this case, the

agent learns from both the additional signals and growth rates although the agent acquires

the same information as in the first case. To simplify comparison of model solutions with

different definitions of signals, we fix the preference parameters at γ = 10 and ψ = 1.5

following Bansal and Yaron (2004).

Benchmark Cases The first column of Table 4 Panel A shows a benchmark case with

aggregate signals when the consumption and dividend long-run components are tightly linked

and covary together (xd,t/xc,t = φxd = χxd). The equity premium increases with information

quality of aggregate signals because the agent’s beliefs fluctuate more if signals are more

accurate. This is consistent with the conditional equity premium results in Figure 3 of Brevik

and d’Addona (2010). By contrast, the first three columns of Table 4 Panel B show that the

equity premium decreases with information quality of additional signals because accurate

20When risk aversion is high, the average price-dividend ratio is low, and so is κ1d. Therefore, higher risk
aversion generates lower equity volatility in contrast to Bansal and Yaron (2004). We note that this is not
an artifact of the Taylor approximation.
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additional signals suppress the effects of learning from growth rates ; this is consistent with

the unconditional equity premium results in Brevik and d’Addona (2010).

Quality of Aggregate Signals The next four columns of Table 4 Panel A and Figure 2

Panel (b) show that the equity premium is non-monotonically associated with information

quality of aggregate signals when the consumption and dividend long-run components are

loosely linked (φxd < χxd).
21 In this situation, the joint learning channel (Equation 16) gen-

erates a sizable risk premium, which shrinks, however, if aggregate signals are too noisy or

too accurate. It is because extremely noisy signals do not generate significant intertemporal

co-uncertainty whereas there is essentially no learning in the presence of highly accurate sig-

nals. Given (φxd, ρgs, ρs), the last five columns of Table 4 Panel A confirm that intertemporal

co-uncertainty, and not necessarily information quality, determines the equity premium.

Quality of additional Signals The three columns in the middle of Table 4 Panel B show

that the equity premium can also be non-monotonically associated with information quality

of negatively correlated additional signals if φxd < χxd. This non-monotonicity arises due

to a confounding effect: changes in precision of correlated additional signals also change the

correlation of implied aggregate signals—which by definition combine the additional signals

and growth rates—as shown in the last three columns of Table 4 Panel B. This confounding

effect, thus, distorts the risk premium generated from the joint learning channel (Equation

16), which is governed by the correlation of aggregate signals. As a result, the total equity

premium has a non-monotonic relationship with information quality of additional signals.22

5 Empirical Aspects of Joint Learning

The foregoing analysis has highlighted the novel implications of joint learning in asset pricing

contexts. The theoretical aspects of joint learning can be intriguing, but are they empirically

21In other words, when idiosyncratic long-run dividend risk exists.
22Power utility (Veronesi 2000) in our setup implies RPss = RPgs = 0. Also, the term RPsg, with an

additional assumption of Ct = Dt, further reduces to RPsg = βsJ
∗
sgλ
>
g = κ∗∗1dγ(1−γ)Cov(x̂c,t+1, egc,t+1|Ft).

This expression explains two implications of Veronesi (2000): 1) the equity premium increases with infor-
mation quality of additional signals if γ > 1 and 2) the equity premium is non-monotonically related to risk
aversion.
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relevant? In this Section, we address two possible concerns regarding joint learning. First, is

joint learning a general characteristic of learning by economic agents? Second, economic and

financial signals are typically presumed to be positively correlated and hence joint learning

appears to exacerbate, rather than explains, the equity premium puzzle in the long-run risk

framework. We, therefore, discuss and provide some empirical support for the prevalence of

negatively correlated signals.

5.1 Joint Signals and Joint Learning: A General Perspective

We argue that learning through correlated signals is not a special case of learning in economic

environments; rather, its absence, which we call independent learning should be a specialized

or rare occurrence. We support this argument by providing a general characterization of joint

signals and joint learning.

Definition 2. (Joint Signals and Joint Learning) Suppose s = [s1, s2, ..., sq]
> is a (q×1)

signal vector on a (m×1) vector of parameters µ = [µ1, µ2, ..., µm]> where q ≥ 1 and m ≥ 2,

p(·) is a subjective probability measure and c = {c1, c2, ..., cm} is an exact cover of s. That

is, the subsets c1, c2, ..., cm are pairwise disjoint and their union equals s. Then the signal

s is a joint signal with respect to µ under the beliefs p(·) if there does not exist any c that

satisfies

p(µ|s) =
m∏
i=1

p(µi|ci). (36)

Joint learning is then defined as any learning associated with joint signals. However, learning

is defined as independent if the condition (36) is satisfied.

Thus, in independent learning, an agent’s learning on each unknown parameter is a

separate process (from independent signals) such that there are no interaction effects between

learning on different parameters. An example of independent learning on multiple parameters

is when signals are mutually independent and so are the parameters in prior beliefs. But

in practice such cases of completely independent learning would appear to occur only in

specialized or rare circumstances. To fix ideas, consider learning on the economic effects

of exogenous events such as the COVID-19 pandemic that affects almost every part of the
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global economy and financial markets. Therefore, received signals are unlikely to be mutually

independent. But even if the signals are independent, the unknown parameters governing

effects on employment, inflation, corporate earnings, etc. would generally be interconnected

in plausible representations of agents’ prior beliefs. Therefore, independent learning, rather

than joint learning, appears contrived and not generally empirically plausible. A useful

econometric heuristic is that having two independent learning processes in a model is similar

to running a separate regression for each of two related dependent variables with disjoint

sets of explanatory variables that are independent of each other.

We also point out that transforming joint signals to independent signals through re-

parametrization does not eliminate joint learning. For example, define s∗t+1 = Σ
− 1

2
s st+1 and

µ∗ = Σ
− 1

2
s µ in Equation (2) and then specify a prior distribution of µ∗ as an uncorrelated

bivariate normal distribution. Now, there is no joint learning with respect to µ∗, but there

is still joint learning with respect to µ in that E[gc,t+1|Ft] and E[gd,t+1|Ft] covary generating

the learning-induced risk premium. Re-parametrization, therefore, has no effect on joint

learning other than the use of different notation in the model solutions.

5.2 Evidence from Survey Data

Empirical evidence on correlated signals can be indirectly measured from survey data. For

example, we collect the time-series of median analyst forecasts for GDP growth gc,t and

corporate profit growth gd,t for 204 quarterly periods from 1968:Q4 to 2019:Q3 in the Survey

of Professional Forecasters (SPF) from Federal Reserve Bank of Philadelphia.23 We focus

on consensus forecasts, because the asset pricing models considered in this paper are all

23GDP growth is computed from a SPF variable NGDP, which changes from quarterly levels of nominal
GNP to nominal GDP (seasonally adjusted, annualized, billions of dollars) during 1992. Thus, we drop
observations in 1992, which are potentially contaminated by forecasters transition between the two data
regimes. Corporate profit growth is computed from CPROF, which consists of forecasts for quarterly nominal
corporate profits after tax, excluding IVA and CCAdj (seasonally adjusted, annualized, in billions of dollars).
Beginning with the survey of 2006:Q1, this variable includes IVA and CCAdj. Thus, we drop observations
in 2006.
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representative-agent models. For estimation, we use the following identity:

Σ
(g)
t|t−h

∆
= Cov(gc,t, gd,t|Ft−h) = Cov(gc,t − E[gc,t|Ft−h], gd,t − E[gd,t|Ft−h])

= Cov(FE
(gc)
t|t−h, FE

(gd)
t|t−h), (37)

where E[gc,t|Ft−h] and E[gd,t|Ft−h] are the h-period ahead SPF median forecasts for gc,t

and gd,t, respectively. Therefore, FE
(gc)
t|t−h and FE

(gd)
t|t−h are the resulting forecast errors for

GDP and corporate profits in SPF. We then use the ex-post sample covariance matrix of

the forecast errors as an estimate for Cov(FE
(gc)
t|t−h, FE

(gd)
t|t−h) and the static co-uncertainty

matrix Σ
(g)
t|t−h from h = 1 to h = 4 quarters. Next, we infer the implied signal precision

matrix {Σ(s)
(t−h):(t−h′)}−1 by inserting estimates for Σ

(g)
t|t−h′ and Σ

(g)
t|t−h in the Bayesian updating

equation for bivariate normal distributions:

{Σ(g)
t|t−h′}

−1 = {Σ(g)
t|t−h}

−1 + {Σ(s)
(t−h):(t−h′)}

−1 for h > h′. (38)

Our indirect estimation approach requires bivariate normality assumptions on signals

and prior/posterior beliefs. Therefore, the resulting signal covariance matrix estimate is

not guaranteed to be positive semidefinite when this assumption is violated. The following

generalizes the definition of signal correlation to handle such cases.

Definition 3. (Generalized Signal Correlation Coefficient) Suppose {Σ(s)
(t−h):(t−h′)}−1

denotes the precision matrix for the signal between time t−h and t−h′ where h > h′. Then

generalized signal correlation coefficient ρ∗s is defined as follows.

ρ∗s =
πcd√
πccπdd

where {Σ(s)
(t−h):(t−h′)}

−1 =

 πcc −πcd
−πcd πdd

 . (39)

Note that this generalized signal correlation definition ρ∗s coincides with ρs in Equation (2),

(31), or (40) if the signal covariance matrix is positive semi-definite. If not, the general-

ized signal correlation can be lower than −1 or higher than +1. The intuition behind this

generalization is as follows. Signal correlation changes static co-uncertainty (off-diagonal el-

ements) in the posterior static co-uncertainty matrix; and the lower is the signal correlation,
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the lower is the posterior static co-uncertainty as seen in Figure 1 Panel (a). Therefore,

generalized signal correlation is interpreted to be lower than −1 if the decrease in posterior

static co-uncertainty is greater than the maximum decrease under the bivariate normality

assumption.24

We find two patterns in the survey data. First, uncertainty regarding GDP and corporate

profit growth gradually decrease as the forecasting horizons diminish, as seen in the third

and forth columns of Table 5 Panel A. This can be evidence that forecasters learn from in-

formative signals. Second, static co-uncertainty, in terms of both covariance and correlation,

falls over time, as shown in the first and second columns of Panel A. This reduction is sta-

tistically significant (see the first and second columns in Panel B). These results imply that

signal correlation is possibly negative according to Proposition 1. Indeed, our estimation

shows that generalized signal correlation is highly negative, as shown in the third column in

Panel B. The point estimates on generalized signal correlation are all less than −1 although

the bootstrap-based confidence intervals are rather wide.25

5.3 Implications of Negatively Correlated Signals

Although the notion of negatively correlated signals may appear somewhat counter-intuitive,

we argue that such signals are ubiquitous and have a natural interpretation. Consider the

following examples of joint signals. An agent learns about an unknown parameter vector

µ = [µA µB]> through a multivariate normal signal st ∼ N (Hµ,Σs). If a left inverse H−1 =

(H>H)−1H> exists, the signal can be transformed by re-parametrization to a bivariate signal

s∗t ∼ N (µ,Σ∗s) where s∗t = H−1st and Σ∗s = H−1Σs(H
−1)> as follows.

Correlated signal: s∗t ∼ N (µ,Σ∗s) where Σ∗s = σ2
s

 ν ρs

ρs ν−1

 . (40)

24Likewise, the generalized signal correlation is higher than +1 if the increase in posterior static co-
uncertainty is greater than the maximum increase under the bivariate normality assumption.

25We follow Efron (1987) to compute bias-corrected and accelerated (BCa) bootstrap confidence intervals.
It corrects a bias and skewness in bootstrap distribution.
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The only case when H−1 does not exist is when H has a unit rank. Similarly, this case can

be reduced by re-parameterization to a univariate signal as follows.

Combined signal: st ∼ N
(
Hµ, σ2

s

)
where H =

[
hA hB

]
, (41)

which we call a combined signal in that st has information on the sum hAµA + hBµB.

Combined Signals We generally expect signals received by multiple agents to be pos-

itively correlated across the agents because of common information sources such as mass

media, government agencies, and social networks. However, is it reasonable to expect that

an individual agent who learns on multiple unknowns will generally receive positively cor-

related signals across the unknowns? Take, for example, news about high future earnings

growth for a cloud computing firm ‘A’. Investors often interpret it as good news for other

similar firms since their earnings are positively correlated (historically) or the news can also

reveal the common mean-growth-rate in the cloud computing industry. But note that this

type of earnings news is a combined signal. Revealing the common industry mean growth

rate implies a signal structure such as st = wµA+(1−w)µB +et; where 0 < w < 1, µA is the

mean earnings growth rate for the firm ‘A,’ µB is the mean growth rate for other firms in the

cloud computing industry, and et follows a univariate normal distribution with mean zero.

Thus, st is a combined signal with H = [w (1− w)] in (41). This kind of combined signal

structure is widely prevalent: from signals on local market growth for specific products to

signals on the change in average temperatures across the globe. The prevalence of combined

signals is in fact not surprising since they can be more cost-effective compared with collecting

signals on individual components and aggregating them (Simon 1955).

Negative Signal Correlation and Combined Signals The earnings news in the ex-

ample above is, indeed, a joint signal that produces positive intertemporal co-uncertainty.

First, historical positive correlation in earnings generates positive prior static co-uncertainty.

Second, the combined signal corresponds to negatively correlated signals. Therefore, in-

tertemporal co-uncertainty is positive by Proposition 2. A simple calculation shows why

the combined signal corresponds to negatively correlated signals. Imagine an agent who
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wants to learn about two parameters µA and µB. She conducts some research and receives

a combined signal s1,t = µA + µB + e1,t. Then, she repeats a similar, but independent,

research exercise to receive a second signal s2,t = µA + .99µB + e2,t where e1,t and e2,t are

independently drawn from a normal distribution with mean zero. These two signals together

correspond to a bivariate joint signal st ∼ N (Hµ,Σs) and transform into s∗t in (40) where

the signal correlation is highly negative ρs = −.999987. On the other hand, a negatively

correlated bivariate signal can be transformed into two independent combined signals. For

example, consider the following example where s∗t is a negatively correlated bivariate signal

(ρs = −.994475) in (40).

s∗t = µ +

 1 −.9

−.9 1

 es,t,⇐⇒ st =

 1 .9

.9 1

 s∗t =

 1 .9

.9 1

µ + 0.19 es,t, (42)

where es,t is a 2×1 vector of a random variables from a standard bivariate normal distribution

with zero correlation. Again, the signals in the right hand side of (42) are two independent

combined signals on (µA + .9µB) and (.9µA + µB), respectively.26 Note signal noisiness σs is

seven times larger in s∗t than in st.
27 Roughly speaking, two combined signals of this kind

are equivalent to two highly negatively correlated signals of low precision, consistent with

our calibration for noisiness and correlation in aggregate signals.

Combined Signals on Consumption and Dividend Growth We can provide addi-

tional arguments for the prevalence of negatively correlated signals. Take, for example,

two independent combined signals on (µA + 0.0001µB) and (µA + 0.000099µB). They look

like two independent signals on µA with a minute ‘contamination’ by µB, yet they imply

two highly negatively correlated signals on µA and µB with exactly the same correlation

26We can transform negatively correlated signals in many different ways. For example, Cholesky de-
composition produces one highly accurate combined signal and one that is a noisy individual signal on one
unknown. Alternatively, by spectral decomposition, we have two independent combined signals: one highly
accurate signal on (µc + µd) and the other—quite noisy—signal on (µc − µd). The latter signal becomes
completely uninformative as the original signal correlation goes to −1. Therefore, our conclusion remains
unchanged, regardless of how we transform signals.

27
√

1 + (−0.9)2/0.19 ≈ 7.08
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coefficient −0.999987 as in the previous example.28 Similarly, consider the mean consump-

tion growth rate that can be decomposed to mean labor and dividend growth rates in an

endowment economy: xc,t = 0.9xl,t + 0.1xd,t. An investor can look for a signal on con-

sumption growth but, instead, directs attention towards dividends because she can directly

trade financial assets but not human capital, say, st = 0.9xl,t + 1.1xd,t + et. Then, this

signal can be seen as a combined signal on consumption and dividend growth rates since

st = 0.9xl,t + 0.1xd,t + et = xl,t + xd,t + et, which implies negative signal correlations in (40).

6 Conclusion

Economic agents generally confront uncertainty on multiple and possibly time-varying struc-

tural parameters that determine consumption and financial payoffs. Furthermore, in prac-

tice, agents develop information or generate signals to infer or learn these parameters. We

theoretically and empirically find that dynamic learning of multivariate time-varying struc-

tural parameters with noisy signals generates endogenous long-run risks resulting in large

and never-decaying equity risk premium. Moreover, the correlation structure of signals plays

a crucial role in the economic effects of learning. Apart from understanding risk premium

dynamics, the interplay of multivariate unknowns and aggregate signals, such as macroe-

conomic news, can also potentially explain apparent mispricing and high risk premium of

new assets without intrinsic links to aggregate consumption (such as crypto-currencies like

Bitcoin).

In the context at hand, we study only the first moment of the unknowns, but these

definitions can be generalized to higher moments. For example, the posterior variance,

skewness, or kurtosis of an individual unknown can covary with those of other unknowns

over time resulting in higher equity premium due to joint learning. We note that the joint

learning in Definition 2 pertains to the whole posterior distribution and not just posterior

mean.

While we focus on the log-linear approximation for tractability and comparisons with

28This is not a coincidence. The signal correlation ρs in (40) does not change as long as each column
vector in H remains as its scalar multiple.
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the literature, we may also consider higher posterior moments of Bayes’ estimates µ̂t. In-

tertemporal co-uncertainty, however, will still play a major role with joint learning since the

risk premium, by definition, comes from covariance. Considering higher moments of µ̂t can

potentially explain higher moments and other properties of asset returns.
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Figure 1: Signal Correlations vs. Static and Intertemporal Co-Uncertainties

This figure shows how signal correlation ρs affects static and intertemporal co-uncertainties at a

given time in a bivariate normal setting in Equation (2) and (5). The other parameters for priors

are fixed at σsc = σsd = 2 and σc,t = σd,t = 1. Panel (a) plots posterior static co-uncertainty

against signal correlations at three different levels of prior static co-uncertainty, in terms of

correlation (-0.7, 0, +0.7). Panel (b) repeats Panel (a) but plots intertemporal co-uncertainty

instead. The gray points and lines refer to the cases where signal correlation and prior static

co-uncertainty—in terms of correlation—are identical by construction.
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Figure 2: Signal Correlations, Information Quality, and Equity Premium

This figure shows the determinants of the equity premium in our long-run risk models in which the

baseline parameters are calibrated following Table 2. Panel (a) shows the equity premium versus

signal correlation at different levels of (ρgs, χxd, φxd) where the correlation between consumption

and dividend growth shocks is set as ρg = 0.3. Panel (b) shows the equity premium versus signal

noisiness φ
(g)
s , which is a scaled version of the overall signal noisiness σs (from Equation 40) of the

aggregate signals st. At φ
(g)
s = 1, static co-uncertainty V ar(xc,t|Ft) equals that of the benchmark

case in which the growth rates are the aggregate signal st = gt. Other parameters in Panel (b)

are set as follows: the long-run exposure φxd = 1, dividend long-run component volatility ratio

χxd = 4.5, and growth-to-signal correlation ρgs = 0 if not stated otherwise in the plot.
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Table 1: Equity Premium and (Co)-Uncertainty in I.I.D. Growth Models

The table shows the results for three cases (i)–(iii) in Section 2.3. The parameters are calibrated

at the quarterly frequency following Collin-Dufresne et al. (2016): β = 0.994, γ = 10, ψ = 1.5,

µc = µd = 0.0045, and σc = 0.0135. We adopt parameters for dividend growth process from

Bansal and Yaron (2004): σd = 4.5σc and ρg = 0.55. The numbers in the first row correspond

to the results after t = 100 quarters since the agent’s learning starts. The first three columns

report the annualized cumulative equity premium from the beginning of learning. The next three

columns show static uncertainty regarding the annualized mean consumption growth rate. The

last three columns show intertemporal co-uncertainty in the annualized mean consumption and

dividend growth rates.

Annualized Static uncertainty Intertemporal
equity premium in mean consumption co-uncertainty in

(cumulative, %) growth (×104) mean growth (×106)
Correlation in E(Rm −Rf ) V ar(µc|Ft) Cov(µ̂c,t+1, µ̂d,t+1|Ft)

growth rates: ρg 0.550 0.000 0.000 0.550 0.000 0.000 0.550 0.000 0.000
aggreg. signals: ρs 0.550 0.550 0.800 0.550 0.550 0.800 0.550 0.550 0.800
beliefs: ρµ,t 0.550 0.550 0.800 0.550 0.550 0.800 0.550 0.550 0.800

t (quarters) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

100 13.24 15.48 27.05 0.139 0.139 0.139 0.244 0.244 0.356
200 8.90 8.92 15.45 0.081 0.081 0.081 0.083 0.083 0.121
400 5.88 4.83 8.33 0.044 0.044 0.044 0.025 0.025 0.036
800 3.95 2.52 4.34 0.023 0.023 0.023 0.007 0.007 0.010
∞ 1.21 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000
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Table 2: Asset Moments and (Co)-Uncertainty in Long-Run Risk Models

The table shows the effects of parameters (φxd, χxd, ρgs, ρs) on equilibrium asset pricing, static

uncertainty, and intertemporal co-uncertainty in long-run risk models calibrated at the monthly

frequency. The baseline parameter values are from Bansal and Yaron (2004): γ = 10, ψ = 1.5,

µc = µd = 0.0015, σc = 0.0078, σd = 4.5σc, σxc = 0.044σc, Fx = 0.979, and ρg = 0 except

for β = 0.999 to set the risk-free rate at 1%/year in the row #9. The benchmark parameter

calibration of Bansal and Yaron (2004) corresponds to φxd = χxd = 3, but we explore larger values

of χxd as well, motivated by the detection error probability results in the online Appendix A.4. The

noisiness of aggregate signals is set as (σsc, σsd) = (σc, σd). As implied by the patterns in static

uncertainty, aggregate signals become more accurate as their signal correlations get further apart

from zero even if (σsc, σsd) are fixed. This is because Shannon’s entropy of a multivariate normal

distribution depends on the determinant of its covariance matrix. Therefore, correlated aggregate

signals in this table are more informative than the realized growth rates (as signals) even if we set

(σsc, σsd) = (σc, σd).

Systematic Growth- Aggregate Annualized Annualized Static Intertemporal
exposure to to-signal signal equity risk-free uncertainty co-uncertainty
xc,t and corre- corre- premium rates in xc,t
σxd/σxc lation lation (%) (%) (×106) (×107)
{φxd, χxd} ρgs ρs E(Rm −Rf ) E(Rf ) V ar(xc,t|Ft) Cov(x̂t+1|Ft)

Panel A: Learning xt from consumption and dividend growth rates st = gt

#1 {3, 6.0} 1.0 0.0 5.83 0.79 1.64 2.12
#2 {3, 4.5} 1.0 0.0 5.81 0.80 1.61 1.91
#3 {1, 4.5} 1.0 0.0 1.32 0.77 1.72 0.65
#4 {0, 4.5} 1.0 0.0 -1.09 0.76 1.73 0.00

Panel B: Learning xt from aggregate signals st including gt information

#5 {1, 4.5} 0.3 0.8 -3.40 1.18 1.60 -0.20
#6 {1, 4.5} 0.3 -0.5 2.85 1.27 1.59 1.16
#7 {1, 4.5} 0.3 -0.9 6.58 0.88 1.27 1.91
#8 {1, 6.0} 0.3 -0.9 7.98 0.95 1.39 2.26

#9 {0, 6.0} 0.3 -0.9 6.24 1.00 1.49 1.46
#10 {0, 6.0} 0.0 -0.9 2.58 1.57 1.49 1.46
#11 {0, 6.0} 0.0 -1.0 4.00 1.53 1.28 2.18

#12 {1, 4.5} 0.0 0.8 -1.32 1.59 1.60 -0.20
#13 {3, 6.0} 0.3 -0.9 11.03 0.83 1.12 3.78
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Table 3: Preference Parameters and Asset Moments in Long-Run Risk Models

The table shows asset moments with different preference parameter values. We set the baseline

parameter values following Table 2 except for σsc = 0.9σgc, σsd = 0.9σgd, ρg = 0.3, ρgs = 0.35,

χxd = 4.5, ρs = −0.9, and β = 0.9994 consistent with Li and Zhang (2017). Then we explore

different values of risk aversion γ and EIS ψ. We also present three benchmark cases with γ = 10.

Equity premium (%) Equity volatility (%) Mean risk-free rate (%)
E(Rm–Rf ), annualized SD(rm,t+1), annualized E(Rf ), annualized

ψ 0.5 0.9 1.1 1.5 0.5 0.9 1.1 1.5 0.5 0.9 1.1 1.5

γ

4.0 2.09 3.48 3.86 4.34 23.78 26.50 27.20 28.07 4.02 2.25 1.82 1.30
5.0 2.85 4.41 4.81 5.33 23.20 25.59 26.20 26.95 3.91 2.09 1.65 1.12
7.5 4.60 6.43 6.88 7.43 21.60 23.41 23.85 24.41 3.63 1.68 1.22 0.66
10.0 6.18 8.09 8.54 9.09 20.02 21.47 21.83 22.26 3.36 1.28 0.80 0.22

Benchmark #1: signal correlations ρs = 0

10.0 1.15 2.69 3.05 3.50 22.83 23.09 23.19 23.33 3.27 1.34 0.89 0.35

Benchmark #2: growth = signals (st = gt)

10.0 1.47 2.91 3.25 3.66 22.79 23.04 23.12 23.25 3.03 1.20 0.77 0.26

Benchmark #3: known xt by signals

10.0 -0.05 2.10 2.65 3.35 25.12 25.24 25.38 25.61 4.49 2.10 1.52 0.83
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Table 4: Information Quality and Equity Premium in Long-Run Risk Models

The table shows how the equity premium changes with different levels of signal noisiness (or an

inverse of information quality). In Panel A, signal noisiness is a scaled version of the overall signal

noisiness σs from (40) of the aggregate signals which also include information in growth rates. At

‘Noisiness = 1’, V ar(xc,t|Ft) equals that of the benchmark case in which the growth rates are

the aggregate signal st = gt. In panel A, we set the baseline parameter values following Table 2,

except for χxd = 4.5. Each column explores different values of ρs, ρgs, and φxd. In Panel B, signal

noisiness is defined as a scaled version of the overall signal noisiness of the additional signals on

top of the growth rates so that an agent learns from both the additional signal and the growth

rates. We set (σsc, σsd) as a multiple of (σc, σd) so that σsc = σc and σsd = σd at ‘Noisiness =

1’. The first six columns in Panel B show the equity premium with different levels of (ρs, φxd,

χxd). The last three columns in Panel B show the signal correlations of the implied aggregate

signals (i.e., additional signals plus growth rates as a whole) for both cases φxd = χxd = 3 and

(φxd, χxd) = (3, 4.5). In Panel B, we set the baseline parameter values following Table 2, except

for ρgs = 0.

Panel A: Noisiness of aggregate signals

Equity premium (%) Intertemporal co-uncertainty (×107)

φxd 4.5 1.0 1.0 1.0 4.5 4.5 1.0 1.0 1.0 4.5
ρgs 0 0 0 0.2 0.2 0 0 0 0.2 0.2
ρs 0 0 -1.0 -0.95 -0.9 0 0 -1.0 -0.95 -0.9

Noisiness

0 8.50 0.98 0.98 0.98 5.60 5.08 1.13 1.13 1.13 3.39
0.25 7.50 1.03 3.37 5.53 8.44 4.38 1.01 2.12 1.79 3.55
1 4.90 0.85 3.82 6.61 6.68 2.67 0.65 2.09 1.84 2.25

2 2.88 0.53 1.88 4.42 4.34 1.47 0.36 0.97 0.93 1.16
10 0.37 0.07 0.15 0.89 0.88 0.11 0.02 0.06 0.06 0.08

Panel B: Noisiness of additional signals

additional φxd = χxd = 3 φxd = 3, χxd = 4.5 Aggregate signal’s ρs

signal’s ρs 0.5 -0.5 -0.9 0.5 -0.5 -0.9 0.5 -0.5 -0.9

Noisiness

0 5.42 5.42 5.42 5.60 5.60 5.60 0.50 -0.50 -0.90
0.3 5.56 5.50 5.43 5.65 5.45 5.34 0.46 -0.46 -0.88
1 5.79 5.69 5.45 5.77 5.56 5.34 0.28 -0.28 -0.75
∞ 5.91 5.91 5.91 5.81 5.81 5.81 0.00 -0.00 -0.00
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Table 5: Signal Correlation and Co-Uncertainty in Survey Data (SPF)

The table shows estimates on static (co)-uncertainty and implied signal correlations for a median

forecaster in the Survey of Professional Forecasters (SPF). The estimates are from the forecast

errors associated with GDP and corporate profits growth rates, up to the four-quarter horizon.

The numbers in parenthesis are 95% bias-corrected and accelerated (BCa) bootstrap confidence

intervals from Efron (1987). Changes in covariance, ∆Cov(gc,t, gd,t|Ft−h)∗ in Panel B is scaled by a

product of prior standard deviations in the last two columns of Panel A. The last column in Panel

B show the generalized signal correlation coefficients in Definition 3, implied by Equation (38).

Panel A: Static co-uncertainty / Static uncertainty

Horizon Corr(gc,t, gd,t|Ft−h) Cov(gc,t, gd,t|Ft−h) SD(gc,t|Ft−h) SD(gd,t|Ft−h)

(h: quarter) ×104 ×102 ×102

1 .40 1.90 .78 6.10
(.25, .54) (1.02, 2.87) (.65, .91) (5.00,7.15)

2 .51 3.08 .92 6.54
(.38, .63) (1.94, 4.33) (.78, 1.06) (5.46,7.57)

3 .59 4.09 .99 6.98
(.47, .69) (2.62, 5.74) (.85, 1.13) (5.80, 8.08)

4 0.58 4.06 1.00 6.96
(.46, .69) (2.63, 5.62) (.86, 1.14) (5.77, 8.10)

Panel B: Changes in static uncertainty / Signal correlations

h→ h′ ∆Corr(gc,t, gd,t|Ft−h) ∆Cov(gc,t, gd,t|Ft−h)∗ Generalized
scaled by prior signal correlation

standard deviations Corr(sc,t, sd,t)

2→ 1 −.11 −.20 −1.63
(−.17,−.06) (−.27,−.13) (−53.48− 0.71)

3→ 1 −.19 −.32 −2.08
(−.27,−.12) (−.40,−.23) (−41.69− 0.86)

3→ 2 −.08 −.15 −3.96
(−.12,−.03) (−.20,−.09) (−134.38− 0.60)
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A.1 Solutions for the I.I.D. Model

Before presenting solutions for the i.i.d. model from Section 2, we fist discuss two important

points: 1) a representative agent’s information set and 2) truncation of a prior distribution.

First, remember we introduce an aggregate bivariate signal st = [sc,t sd,t]
> observed at t,

which represents the whole available information to the agent including growth realizations

gt. Therefore, the agent’s information set Ft at t equals the history of aggregate signals

up to t, that is, st = {s1, ..., st}, and we have p(µ|Ft) = p(µ|st) = p(µ|st,gt). By Bayes’

theorem, the agent’s belief at t follows µ|Ft ∼ N (µ̂t,Σµ,t) where the posterior mean and

covariance matrix (µ̂t,Σµ,t) can be recursively computed as

µ̂t = µ̂t−1 + Ks,t(st − µ̂t−1), (A.1)

Σ−1µ,t = Σ−1µ,t−1 + Σ−1s .

OA 1



Here, Ks,t = Σµ,tΣ
−1
s = 1

n+t
I is the (2 × 2) Kalman gain matrix associated with aggregate

signals and I is an identity matrix. Note the expression for Kalman gain is still simple even

with non-zero cross-covariance matrix, Jgs = Cov(eg,t, es,t) 6= 0, because the agent learns

only from the aggregate signals. Alternatively, the expression (A.1) can be written as

µ̂t =
n

n+ t
µ0 +

t

n+ t
st and Σµ,t =

1

n+ t
Σs, (A.2)

where st is the sample average of the signals sτ for τ = 1, 2, ..., t. However, we choose to

use the recursive form in (A.1) to make it easy to compare the i.i.d. case with time-varying

parameter cases.

Second, as shown in Collin-Dufresne et al. (2016), truncation of a prior distribution has

minimal effects on final results.29 The intuition is simple. In their benchmark i.i.d model,

the high risk premium arises with learning because the agent’s parameter estimate µ̂c,t (or

posterior mean) varies over time by learning, not because the consumption mean growth

rate µc can have arbitrarily high or low values. In other words, the risk premium arises

because learning creates intertemporal uncertainty of the consumption mean-growth-rate

parameter µc rather than its static uncertainty. Likewise, in our i.i.d. model, the risk

premium arises because learning makes the agent’s parameter estimates (µ̂c,t, µ̂d,t) on the

mean growth rates (µc, µd) of consumption and dividends covary over time (intertemporal co-

uncertainty). Extreme values of (µc, µd) hardly affect the covariance of (µ̂c,t, µ̂d,t); therefore,

truncation of (µc, µd) has no major effects on final results.

A.1.1 Wealth-Consumption Ratio

Throughout the section A.1, we use boldface symbols for non-scalar vectors and matrices.

Suppose Rc,t+1 = Wt+1+Ct+1

Wt
denotes the gross return on the total wealth portfolio that is

valued at Wt and pays out the aggregate consumption stream {Ct}. Following Campbell and

Shiller (1988), the log wealth-consumption ratio zc,t is a linear function of the state variable

29Conceptually, truncation of a prior distribution for µ makes sense in that unconditional mean growth
rates are unlikely to be extreme values. From a technical perspective, truncation of the prior distribution is
considered so that a transversality condition is met even with EIS (ψ) larger than unity.
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µ̂t given in Equation (5).

zc,t = log
Wt

Ct
= A0c,t + A1c,tµ̂t. (A.3)

Note the intercept term A0c,t is time-dependent because parameter uncertainty gradually

decreases by learning. Therefore, A0c,t contains the term Σµ,t that represents such (bivariate)

parameter uncertainty. However, we do not express Σµ,t as an explicit state variable because

it has no randomness as shown in (A.2). Next, we approximate the log return of the total

wealth, rc,t+1 = logRc,t+1, as

rc,t+1 = log (exp(zc,t+1) + 1)− zc,t + gc,t+1,

≈ κ0c,t + κ1c,tzc,t+1 − zc,t + gc,t+1, (A.4)

where we define Taylor approximation coefficients as

κ1c,t =
exp(z̄c,t+1)

exp(z̄c,t+1) + 1
,

κ0c,t = log
1

1− κ1c,t
− κ1c,tz̄c,t+1,

z̄c,t+1 = A0c,t+1 + A1c,t+1µ,

where κ1c,t is a constant between zero and one. Note the average log wealth-consumption

ratio z̄c,t+1 depends on time due to the time-dependence of A0c,t. We then re-calculate

Taylor approximation coefficients (κ0c,t, κ1c,t) with respect to z̄c,t+1 at each time t for better

approximation accuracy. As a result, a 1× 2 row vector A1c,t becomes also time-dependent.

However, we omit the time subscript of A1c,t in the main text for simple notation.

Following Epstein and Zin (1989), the stochastic discount factor (SDF) for recursive

preferences has the form:

Mt+1 = δθG
− θ
ψ

c,t+1R
θ−1
c,t+1, (A.5)

where Gc,t+1 = Ct+1

Ct
is the aggregate gross growth rate of per-capita consumption. Among

the preference parameters, 0 < δ < 1 is a time discount factor, γ ≥ 0 is the risk aversion

parameter, ψ ≥ 0 is the elasticity of intertemporal substitution (EIS), and θ = (1−γ)/(1− 1
ψ

).

The stochastic discount factor in (A.5) implies the following Euler equation conditional on
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the agent’s information set Ft:

E[δθG
− θ
ψ

c,t+1R
θ−1
c,t+1Ri,t+1|Ft] = 1, (A.6)

where Ri,t+1 is the gross return of any asset i in the economy. Using this Euler equation

with Ri,t+1 = Rc,t+1, we solve for the wealth-consumption ratio, using a backward recursion

from the limiting case of known-parameters at sufficiently large t. For concise notation, we

first define the following terms

λg = γIc = γ[1 0] and λs,t = (1− θ)κ1c,tA1c,tKs,t+1, (A.7)

and their scaled versions

λ∗g =
1− γ
γ

λg and λ∗s,t =
θ

1− θ
λs,t. (A.8)

Then, we have the following identity from (A.3) and (A.4).

log

(
G
− 1
ψ

c,t+1Rc,t+1

)
=
(
1− ψ−1

)
gc,t+1 + κ0c,t + κ1c,t(A0c,t+1 + A1c,t+1µ̂t+1)− (A0c,t + A1c,tµ̂t),

=(κ0c,t + κ1c,tA0c,t+1 − A0c,t)

+
(
κ1c,tA1c,t+1 −A1c,t + (1− ψ−1)Ic

)
µ̂t

+ (1− ψ−1)Ic(gt+1 − µ̂t) + κ1c,tA1c,t+1(µ̂t+1 − µ̂t), (A.9)

where the last two terms multiplied by θ are expressed as

θ(1− ψ−1)Ic(gt+1 − µ̂t) =
1− γ
γ

λg(gt+1 − µ̂t) = λ∗g(gt+1 − µ̂t), (A.10)

θκ1c,tA1c,t+1(µ̂t+1 − µ̂t) = θκ1c,tA1c,t+1Ks,t+1(st+1 − µ̂t)

=
θ

1− θ
λs,t(st+1 − µ̂t) = λ∗s,t(st+1 − µ̂t). (A.11)

Note a vector of random variables (gt+1 − µ̂t) and (st+1 − µ̂t) follows a multivariate normal
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distribution under the agent’s posterior belief: gt+1 − µ̂t

st+1 − µ̂t

 |Ft ∼ N (0,Σ∗gs) where Σ∗gs =

 Σ∗g J∗gs

J∗sg Σ∗s

 , (A.12)

where Σ∗g = Σg + Σµ,t, Σ∗s = Σs + Σµ,t, J∗sg = Jsg + Σµ,t, and J∗gs = (J∗sg)
>, all of which

include static (co)-uncertainty matrix Σµ,t because of the following decompositions:

gt+1 − µ̂t = (gt+1 − µ) + (µ− µ̂t) and st+1 − µ̂t = (st+1 − µ) + (µ− µ̂t), (A.13)

where (µ − µ̂t) = uµ,t+1 ∼ N (0,Σµ,t) is a random variable that represents static (co)-

uncertainty of µ under the agent’s posterior belief.

Finally, we plug (A.10)–(A.12) to the Euler equation (A.6) and solve the expectation

using a log-normal distribution. The resulting equation should be satisfied regardless of µ̂t,

and so the coefficient on µ̂t should be zero while the remaining term should be also zero;

therefore we have the following recursive equations at each t.

A1c,t = (1− ψ−1)Ic + κ1c,tA1c,t+1, (A.14)

A0c,t = log δ + κ0c,t + κ1c,tA0c,t+1 +
1

2θ
λ∗tΣ

∗
gs (λ∗t )

> , (A.15)

where λ∗t = [λ∗g λ∗s,t].

On the other hand, as t→∞, µ is revealed and there is no further learning. Therefore,

Euler equation, as t→∞, approaches

zc = log δ + (1− ψ−1)Icµ + log (exp(zc) + 1) +
1

2θ
λ∗Σ∗gs (λ∗)> , (A.16)

where λ∗ = [λ∗g 0 0]. If µ is revealed, the wealth-consumption ratio is constant and

so Taylor-approximation is exact. By plugging zc = A0c + A1cµ and log (exp(zc) + 1) =

κ0c + κ1czc into (A.16), we have a boundary condition:

A0c = log δ + κ0c + κ1cA0c +
1

2θ
λ∗Σ∗gs (λ∗)> +

(
(κ1c − 1)A1c + (1− ψ−1)Ic

)
µ, (A.17)
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which implies the following.

A1c =
1− ψ−1

1− κ1c
Ic, (A.18)

A0c =
1

1− κ1c

(
log δ + κ0c +

1

2θ
λ∗Σ∗gs (λ∗)>

)
. (A.19)

Note these equations are the limiting cases (i.e., t→∞) of (A.14) and (A.15).

The role of the EIS regarding the wealth and substitution effects follows Bansal and Yaron

(2004). The sign of the coefficient on µ̂c,t in the log wealth-consumption ratio depends on EIS

ψ. When ψ > 1, as calibrated in Bansal and Yaron (2004) for example, the first element of

A1c is positive, and the intertemporal substitution effect dominates the wealth effect. Thus,

the agent is ceteris paribus willing to pay more for the asset that generates the aggregate

consumption stream {Ct} when they are more optimistic about future expected growth, say,

in good times.30

A.1.2 Price-Dividend Ratio

We compute the price-dividend ratio following the wealth-consumption ratio. Let Rm,t+1 =

Pt+1+Dt+1

Pt
denote the gross return on a risky asset that is priced at Pt and pays out the

aggregate dividend stream {Dt}. Then, the log price-dividend ratio is written as

zd,t = log
Pt
Dt

= A0d,t + A1d,tµ̂t. (A.20)

Like the case of wealth-consumption ratio, the intercept term A0d,t is time-dependent because

parameter uncertainty gradually decreases by learning. Therefore, A0d,t contains the term

Σµ,t that represents such (bivariate) parameter uncertainty. Next, the log return of the risky

asset, rm,t+1 = logRm,t+1, is approximated as

rm,t+1 ≈ κ0d,t + κ1d,tzd,t+1 − zd,t + gd,t+1, (A.21)

30We can apply a similar interpretation to the equity that generates the dividend stream {Dt} when
considering the special case where the agent believes µc = µd, and hence µ̂c,t = µ̂d,t.
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where we recalculate Taylor approximation coefficients κ0d,t, κ1d,t, and z̄d,t+1 following the

method used for the wealth-consumption ratio. Therefore, we omit the time subscript of

A1d,t in the main text for simple notation. We first define the following terms for concise

notations.

βg = Id = [0 1] and βs,t = κ1dA1dKs,t+1. (A.22)

Then, by plugging Ri,t+1 = Rm,t+1 into the Euler equation (A.6), we first compute the

following:

log

(
G
− θ
ψ

c,t+1R
θ−1
c,t+1Rm,t+1

)
=

(
− θ
ψ

Ic + (θ − 1)Ic + Id

)
gt+1

+ (θ − 1)
(
κ0c,t + κ1c,t(A0c,t+1 + A1c,t+1µ̂t+1)− A0c,t −A1c,tµ̂t

)
+
(
κ0d,t + κ1d,t(A0d,t+1 + A1d,t+1µ̂t+1)− A0d,t −A1d,tµ̂t

)
=(θ − 1)(κ0c,t + κ1c,tA0c,t+1 − A0c,t) + (κ0d,t + κ1d,tA0d,t+1 − A0d,t)

+ (Id − λg + (θ − 1)(κ1c,tA1c,t+1 −A1c,t) + κ1d,tA1d,t+1 −A1d,t) µ̂t

+ (Id − λg)(gt+1 − µ̂t)

+ [(θ − 1)κ1c,tA1c,t+1 + κ1d,tA1d,t+1] (µ̂t+1 − µ̂t). (A.23)

Note the last term can be simplified, by (A.1), to

[(θ − 1)κ1c,tA1c,t+1 + κ1d,tA1d,t+1] (µ̂t+1 − µ̂t) = (βs,t − λs,t)(st+1 − µ̂t). (A.24)

Finally, plug (A.23) and (A.24) to the Euler equation (A.6) and apply κ1c,tA1c,t+1 −A1c,t =

(ψ−1−1)Ic from (A.14). Then we have the following condition since (A.23) should be satisfied

regardless of µ̂t.

0 = Id − λg + (θ − 1)(κ1c,tA1c,t+1 −A1c,t) + κ1d,tA1d,t+1 −A1d,t

= Id − ψ−1Ic + κ1d,tA1d,t+1 −A1d,t.
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That is, we can recursively calculate A1d,t from

A1d,t = − 1

ψ
Ic + Id + κ1d,tA1d,t+1. (A.25)

The remaining terms in the Euler equation should be zero as well, and so we have

A0d,t = θ log δ + (θ − 1)(κ0c,t + κ1c,tA0c,t+1 − A0c,t) + κ0d,t + κ1d,tA0d,t+1 +
1

2
β∗tΣ

∗
gs (β∗t )

>

= log δ + κ0d,t + κ1d,tA0d,t+1 +
1− θ

2θ
λ∗tΣ

∗
gs (λ∗t )

> +
1

2
β∗tΣ

∗
gs (β∗t )

> , (A.26)

where the last equation comes from (A.15) and β∗t =
[
(βg − λg) (βs,t − λs,t)

]
. On the

other hand, as t→∞, µ is revealed, and we have the following boundary conditions:

A1d =
−ψ−1

1− κ1d
Ic +

1

1− κ1d
Id, (A.27)

A0d =
1

1− κ1d

(
log δ + κ0d +

1− θ
2θ

λ∗Σ∗gs (λ∗)> +
1

2
β∗Σ∗gs (β∗)>

)
, (A.28)

where β∗ =
[
(βg − λg) 0 0

]
.

A.1.3 Stochastic Discount Factor and Equity Returns

Using the results from Section (A.1.1), we express the log of the stochastic discount factor

as follows.

mt+1 =θ log δ − θ

ψ
gc,t+1 + (θ − 1)rc,t+1

≈θ log δ − θ

ψ
gc,t+1 + (θ − 1)

(
κ0c,t + κ1c,t(A0c,t+1 + A1c,t+1µ̂t+1)− A0c,t −A1c,tµ̂t + gc,t+1

)
=θ log δ + (θ − 1) (κ0c,t + κ1c,tA0c,t+1 − A0c,t) + (θ − 1)(κ1c,tA1c,t+1 −A1c,t)µ̂t

−
(
θ

ψ
+ 1− θ

)
gc,t+1 + (θ − 1)κ1c,tA1c,t+1(µ̂t+1 − µ̂t)

=θ log δ + (θ − 1) (κ0c,t + κ1c,tA0c,t+1 − A0c,t) +
(
−γ + (θ − 1)(ψ−1 − 1)

)
Icµ̂t

− γIc(gt+1 − µ̂t)− (1− θ)κ1c,tA1c,t+1Ks,t+1(st+1 − µ̂t). (A.29)
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Therefore, the innovation in mt+1 conditional on the agent’s information set is

mt+1 − E[mt+1|Ft] ≈ −γIc(gt+1 − µ̂t)− (1− θ)κ1c,tA1c,t+1Ks,t+1(st+1 − µ̂t)

= −λg(gt+1 − µ̂t)− λs,t(st+1 − µ̂t) (A.30)

= −λgeg,t+1 − λs,tes,t+1 − (λg + λs,t)(µ− µ̂t), (A.31)

where Ic = [1 0] and the last expression comes from (A.13). On the other hand, the log

return, rm,t+1, of the risky asset can be written as

rm,t+1 ≈ κ0d,t + κ1d,tzd,t+1 − zd,t + gd,t+1

= κ0d,t + κ1d,tA0d,t+1 − A0d,t + κ1d,tA1d,t+1µ̂t+1 −A1d,tµ̂t + gd,t+1

= κ0d,t + κ1d,tA0d,t+1 − A0d,t + κ1d,tA1d,t+1(µ̂t+1 − µ̂t) + (κ1d,tA1d,t+1 −A1d,t)µ̂t + gd,t+1

= (κ0d,t + κ1d,tA0d,t+1 − A0d,t) + (ψ−1Ic)µ̂t + Id(gt+1 − µ̂t) + κ1d,tA1d,t+1(µ̂t+1 − µ̂t).

Therefore, we have the innovation in rm,t+1 as follows.

rm,t+1 − E[rm,t+1|Ft] ≈ Id(gt+1 − µ̂t) + κ1d,tA1d,t+1Ks,t+1(st+1 − µ̂t)

= βg(gt+1 − µ̂t) + βs,t(st+1 − µ̂t) (A.32)

= βgeg,t+1 + βs,tes,t+1 + (βg + βs,t)(µ− µ̂t). (A.33)

A.1.4 Decomposition of the Equity Premium

The innovation in the log of the SDF mt+1 conditional on the agent’s information set is

mt+1 − E[mt+1|Ft] = −λg(gt+1 − µ̂t)− λs,t(st+1 − µ̂t)

= −γIc(gt+1 − µ̂t)− κ∗1c,t
(
γ − 1

ψ

)
Ic(µ̂t+1 − µ̂t), (A.34)

where Ic = [1 0], κ∗1c,t = κ1c,t/(1 − κ1c,t) > 0, and the last expression comes from (A.1).

Note the sign of the coefficient on the belief shock (µ̂t+1 − µ̂t) depends on whether γ > 1
ψ
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or not. On the other hand, the innovation in the log of risky portfolio return (rm,t+1) is

rm,t+1 − E[rm,t+1|Ft] = βg(gt+1 − µ̂t) + βs,t(st+1 − µ̂t)

= Id(gt+1 − µ̂t) + κ∗1d,t

[
− 1

ψ
1

]
(µ̂t+1 − µ̂t), (A.35)

where βg = Id = [0 1] and κ∗1d,t = κ1d,t/(1 − κ1d,t) > 0.31 Since (mt+1, rm,t+1) follows

a bivariate normal distribution, Euler equation for the risky asset 1 = E[Mt+1Rm,t+1|Ft]

becomes

0 = E[mt+1|Ft] + E[rm,t+1|Ft] +
1

2
V ar(mt+1|Ft) +

1

2
V ar(rm,t+1|Ft) + Cov(mt+1, rm,t+1|Ft),

where the log risk-free rate is rf,t = −E[mt+1|Ft] − 1
2
V ar(mt+1|Ft). Therefore, we can ex-

press the log-return counterpart of the equity risk premium RPt = −Cov(rm,t+1,mt+1|Ft) =

βtΣ
∗
gsλt where βt = [βg βs,t] and λt = [λg λs,t], which is

E[rm,t+1|Ft]− rf,t +
1

2
V ar[rm,t+1|Ft] =γCov(gc,t+1, gd,t+1|Ft)︸ ︷︷ ︸

from growth

+ κ∗1c,tκ
∗
1d,t

(
γ − 1

ψ

)[
− 1

ψ
1

]
Cov(µ̂t+1|Ft)I>c︸ ︷︷ ︸

from signal

+ κ∗1d,tγ

[
− 1

ψ
1

]
Cov(µ̂t+1,gt+1|Ft)I>c︸ ︷︷ ︸

from signal×growth

+ κ∗1c,t

(
γ − 1

ψ

)
IdCov(gt+1, µ̂t+1|Ft)I>c .︸ ︷︷ ︸

from growth×signal

(A.36)

Note each of four terms here include static (co)-uncertainties from the last term of (15) in

the main text. Also, all covariance expressions here refer to a 2×2 covariance matrix except

for the first scalar term. The covariances in the third and fourth terms are, in particular,

cross-covariance matrices; therefore, Cov(gt+1, µ̂t+1|Ft) = Cov(µ̂t+1,gt+1|Ft)>. Finally, we

31κ∗1c,t and κ∗1d,t are positive because κ1c,t and κ1d,t are the constants from log-linearization and lie between
zero and one.
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can rewrite the last three terms from (A.36) in scalar terms as follows.

RPss
∆
= βs,tΣ

∗
sλ
>
s,t = κ∗1c,tκ

∗
1d,t

[
γ − 1

ψ

]
V ar(µ̂c,t+1|Ft)

[
Cov(µ̂c,t+1, µ̂d,t+1|Ft)

V ar(µ̂c,t+1|Ft)
− 1

ψ

]
,

RPsg
∆
= βs,tJ

∗
sgλ
>
g = κ∗1d,tγ

[
Cov(µ̂d,t+1, gc,t+1|Ft)−

1

ψ
Cov(µ̂c,t+1, gc,t+1|Ft)

]
,

RPgs
∆
= βgJ

∗
gsλ
>
s,t = κ∗1c,t

[
γ − 1

ψ

]
Cov(µ̂c,t+1, gd,t+1|Ft).

A.1.5 Equity Volatility and Risk-free Rate

From (A.12) and (A.35), we can decompose the conditional variance of the risky asset’s

returns, V ar[rm,t+1|Ft] = βtΣ
∗
gsβ

>
t , as follows.

V ar[rm,t+1|Ft] =V ar(gd,t+1|Ft)︸ ︷︷ ︸
from growth

+ (κ∗1d,t)
2V ar

(
µ̂d,t+1 −

1

ψ
µ̂c,t+1|Ft

)
︸ ︷︷ ︸

from signal

+ κ∗1d,t

(
Cov(µ̂d,t+1, gd,t+1|Ft)−

1

ψ
Cov(µ̂d,t+1, gc,t+1|Ft)

)
︸ ︷︷ ︸

from signal×growth

+ κ∗1d,t

(
Cov(µ̂d,t+1, gd,t+1|Ft)−

1

ψ
Cov(µ̂c,t+1, gd,t+1|Ft)

)
.︸ ︷︷ ︸

from growth×signal

(A.37)

On the other hand, the log risk-free rate is

rf,t = −E[mt+1|Ft]−
1

2
V ar(mt+1|Ft)

= −θ log δ − (θ − 1) (κ0c,t + κ1c,tA0c,t+1 − A0c,t) +
1

ψ
Icµ̂t −

1

2
λtΣ

∗
gsλ
>
t

= − log δ +
1

ψ
µ̂c,t −

1− θ
2θ

λ∗tΣ
∗
gs (λ∗t )

> − 1

2
λtΣ

∗
gsλ
>
t . (A.38)
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Extending Table 1, we report the annualized conditional cumulative market return volatil-

ity, the risk-free rate, and the market Sharpe ratio in Table A.1. Similar to the conditional

equity premium in Table 1, the annualized market return volatility and Sharpe ratios remain

high, and the risk-free rate remains relatively low, even after 50 years of learning. The risk-

free rate is the same in cases (ii) and (iii) since static uncertainty V ar(µc|Ft) are identical

for (ii) and (iii).

Table A.1: Asset Moments and (Co)-Uncertainty in I.I.D. Growth Models

Annualized Annualized Annualized
volatility risk-free rate Sharpe ratio

(cumulative, %) (cumulative, %) (cumulative, %)
Correlation in SD(Rm) E(Rf ) E(Rm −Rf )/SD(Rm)

growth rates: ρg 0.550 0.000 0.000 0.550 0.000 0.000 0.550 0.000 0.000
aggregate signals: ρs 0.550 0.550 0.800 0.550 0.550 0.800 0.550 0.550 0.800
beliefs (implied): ρµ,t 0.550 0.550 0.800 0.550 0.550 0.800 0.550 0.550 0.800

t (quarters)

100 32.51 54.01 51.72 1.40 2.62 2.62 0.41 0.29 0.52
200 26.71 41.74 40.02 2.01 2.89 2.89 0.33 0.21 0.39
400 21.71 31.55 30.30 2.47 3.06 3.06 0.27 0.15 0.28
800 17.78 23.83 22.97 2.78 3.16 3.16 0.22 0.11 0.19
∞ 9.90 9.90 9.90 3.27 3.27 3.27 0.12 0.00 0.00
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A.2 Proof of Proposition 2

We first define σscd = ρsσscσsd and σcd,t = ρµ,tσc,tσd,t, and then show the following inequality.

(σscd + σcd,t)
2 = (ρsσscσsd + ρµ,tσc,tσd,t)

2

< (σscσsd + σc,tσd,t)
2 = σ2

c,tσ
2
d,t + σ2

scσ
2
sd + 2σscσd,tσsdσc,t

< σ2
c,tσ

2
d,t + σ2

scσ
2
sd + 2σscσd,tσsdσc,t + (σscσd,t − σsdσc,t)2

= σ2
c,tσ

2
d,t + σ2

scσ
2
sd + (σ2

scσ
2
d,t + σ2

sdσ
2
c,t). (A.39)

Next, we prove Proposition 2 as follows.

0 < cov(µ̂c,t+1, µ̂d,t+1|Ft)

= cov(µc, µd|Ft)− cov(µc, µd|Ft+1) (∵ Proposition 1)

= σcd,t −
σ2
cd,tσscd + σcd,tσ

2
scd − σ2

scσ
2
sdσcd,t − σ2

c,tσ
2
d,tσscd

−σ2
scd − σ2

cd,t − 2σscdσcd,t + σ2
c,tσ

2
d,t + σ2

scσ
2
d,t + σ2

sdσ
2
c,t + σ2

scσ
2
sd

.

(The last step is done by brute force.)

⇐⇒ 0 <
−(σ2

c,tσ
2
d,t + σ2

cd,t)σscd + (σ2
c,tσ

2
d,t − σ2

cd,t + σ2
scσ

2
d,t + σ2

sdσ
2
c,t)σcd,t

−(σscd + σcd,t)2 + σ2
c,tσ

2
d,t + σ2

scσ
2
d,t + σ2

sdσ
2
c,t + σ2

scσ
2
sd

⇐⇒ 0 < −(σ2
c,tσ

2
d,t + σ2

cd,t)σscd + (σ2
c,tσ

2
d,t − σ2

cd,t + σ2
scσ

2
d,t + σ2

sdσ
2
c,t)σcd,t, (∵ Equation A.39)

⇐⇒ σscd <
σ2
c,tσ

2
d,t − σ2

cd,t + σ2
scσ

2
d,t + σ2

sdσ
2
c,t

σ2
c,tσ

2
d,t + σ2

cd,t

σcd,t,

=
σ2
c,tσ

2
d,t(1− ρ2µ,t) + σ2

scσ
2
d,t + σ2

sdσ
2
c,t

σ2
c,tσ

2
d,t(1 + ρ2µ,t)

σcd,t,

=

(
(1− ρ2µ,t) +

σ2
sc

σ2
c,t

+
σ2
sd

σ2
d,t

)
σcd,t

1 + ρ2µ,t
,

⇐⇒ ρs < ρµ,t

(
(1− ρ2µ,t) +

σ2
sc

σ2
c,t

+
σ2
sd

σ2
d,t

)
σc,tσd,t
σscσsd

1

1 + ρ2µ,t
.
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A.3 Signal noisiness and intertemporal co-uncertainty

In addition to signal correlations, the noisiness of signals also affects intertemporal co-

uncertainty. Consider a bivariate normal signal st+1 ∼ N (µ,Σs) on an unknown bivariate

vector µ, where Σs is given by Equation (40). Then the signal is characterized by

1. (Signal correlation) = ρs

2. (Overall signal noisiness) = σs

3. (Relative signal noisiness) = ν

Figure A.1 shows how intertemporal co-uncertainty is related to overall noisiness in Panel

(a) and relative noisiness in Panel (b). The non-monotonic pattern in Panel (a) is consistent

with Figure 2 Panel (b).

Figure A.1: Intertemporal Co-Uncertainty vs. Signal Noisiness

Prior static uncertainty, var(µc) and var(µd), are unity, and prior static co-uncertainty ρµ,t, in

terms of correlation, is zero if not stated otherwise. Noisiness is expressed as log-scales.

(a) Overall Noisiness (b) Relative Noisiness
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A.4 Detection Error Probability

Table A.2 reports detection error probabilities (DEP) in the calibration of parameters in a

long-run risk model where DEP = 1
2

[Pr(choose A | O is true) + Pr(choose O | A is true)] .

In short, the DEP in this table measures intrinsic estimation uncertainty in parameters in

terms of average Type-I errors from the original (O) and alternative (A) model calibrations.

First, we set all parameters consistent with Bansal and Yaron (2004). Panel A shows the

DEP associated with φxd =
Cov(xc,t,xd,t|xt−1)

V ar(xc,t|xt−1)
while we fix χxd = σxd

σxc
=

SD(xd,t|xt−1)

SD(xc,t|xt−1)
at 3. The

numbers in Panel A are the DEP of the long-run risk model with φxd = 3 against other

values of φxd ranging from −1 to 2.5. Panel B shows the DEP associated with χxd while φxd

is fixed at 3. The numbers in Panel B are the DEP of the long-run risk model with χxd = 3

against other values of χxd ranging from 3.5 to 7.

Table A.2: Detection Error Probabilities in Long-run Risk Models

Panel A: Detection error probabilities associated with φxd

Parameter to compare Baseline Parameter values in alternative calibrations

φxd 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

Sample size (months) Detection error probability (%)

600 50 40.2 32.8 26.9 22.0 17.9 14.4 11.7 9.2
840 50 38.3 29.7 23.0 17.7 13.4 10.2 7.7 5.6

1200 50 35.9 26.0 18.6 13.1 9.1 6.3 4.2 2.8

Panel B: Detection error probabilities associated with χxd

Parameter to compare Baseline Parameter values in alternative calibrations

χxd 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Sample size (months) Detection error probability (%)

600 50 43.2 36.0 29.7 24.2 19.4 15.4 12.0 9.3
840 50 41.7 33.6 26.4 20.3 15.3 11.3 8.2 5.9

1200 50 40.1 30.6 22.4 15.9 11.1 7.4 4.7 3.0
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A.5 Solutions for Long-Run Risk Models

In this section, we solve a more general specification for the long-run risk model than the

one we analyze in Section 4. The resulting solutions, thus, can be applied to the case of a

combined signal in (41). We do not report here, yet the asset pricing implications of combined

signals are very similar to those of negatively correlated signals, as expected from Section

5.3. The solution approach here is identical to Section A.1; therefore, we recycle notations

and often omit repetitive steps. Throughout the section, we use boldface symbols for non-

scalar vectors and matrices. The dynamics of hidden long-run components xt = [xc,t xd,t]
>,

aggregate signals st = [sc,t sd,t]
>, and realized growth shocks gt = [gc,t gd,t]

> are as follows.

xt+1 = Fxt + ex,t+1,

st+1 = Hxt + es,t+1, (A.40)

gt+1 = µ + xt + eg,t+1,

where


ex,t+1

eg,t+1

es,t+1

 iid∼ N (0,Σxgs) , Σxgs =


Σx Jxg Jxs

J>xg Σg Jgs

J>xs J>gs Σs

 , and Σgs =

 Σg Jgs

J>gs Σs

 .
(A.41)

Note our solutions here are valid even with general specifications of F and H. At each decision

point, the representative agent knows all the parameters except xt and makes Bayesian

inference on it conditional on the history of signals. By solving a Kalman filter, the agent’s

posterior belief on xt at t converge to the stationary process:

xt|Ft ∼ N (x̂t,Π) and x̂t = Fx̂t−1 + Ks(st −Hx̂t−1), (A.42)

where Ks = (FΠH> + Jxs)(HΠH> + Σs)
−1 is the Kalman gain matrix and Π is the

conditional covariance matrix of xt under the agent’s posterior beliefs after the Kalman filter

converges to the steady state. Note this distribution equals a Bayesian posterior distribution

p(xt|st) since Ft = st. To find the conditional covariance matrix Π at the steady state,

we first define Πt = Cov(xt|st) and Ks,t = (FΠtH
> + Jxs)(HΠtH

> + Σs)
−1. Then apply

OA 16



Proposition 1 to the unknown xt+1 as follows.

Cov(x̂t+1|st) = Cov(xt+1|st)− E[Cov(xt+1|st+1)|st],

where the left-hand side equals Ks,t(HΠtH
>+Σs)K

>
s,t due to (A.42) and the right-hand side

equals (FΠtF
> + Σx) −Πt+1. Therefore, we find Π by computing the following equation

recursively until Πt converges to Π.

Πt+1 = FΠtF
> + Σx −Ks,t(HΠtH

> + Σs)K
>
s,t. (A.43)

Note this equation coincides with a standard Kalman filter recursion equation, and we con-

sider the state variable x̂t as predictive in that E[gt+1|Ft] = µ + x̂t and E[st+1|Ft] = Hx̂t.

A.5.1 Wealth-Consumption Ratio

To solve our long-run risk model, we apply the same approach used for the i.i.d. model in

Section A.1. The log wealth-consumption ratio zc,t is a linear function of the state variable

x̂t as follows.

zc,t = log
Wt

Ct
= A0c + A1cx̂t. (A.44)

Next, we approximate the log return of the total wealth, rc,t+1 = logRc,t+1, as

rc,t+1 = log (exp(zc,t+1) + 1)− zc,t + gc,t+1,

≈ κ0c + κ1czc,t+1 − zc,t + gc,t+1, (A.45)

where κ0c and κ1c are Taylor approximation coefficients at z̄c = A0c. For concise notation,

we first define the following terms

λg = γIc = γ[1 0] and λs = (1− θ)κ1cA1cKs, (A.46)
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and their scaled versions

λ∗g =
1− γ
γ

λg and λ∗s =
θ

1− θ
λs. (A.47)

Then, the time-varying-parameter version of (A.9) is

log

(
G
− 1
ψ

c,t+1Rc,t+1

)
= (κ0c + κ1cA0c − A0c) + (1− ψ−1)Icµ

+
(
κ1cA1cF−A1c + (1− ψ−1)Ic

)
x̂t

+ (1− ψ−1)Ic(gt+1 − µ− x̂t) + κ1cA1c(x̂t+1 − Fx̂t), (A.48)

where the last two terms multiplied by θ are expressed as

θ(1− ψ−1)Ic(gt+1 − µ− x̂t) = λ∗g(gt+1 − E[gt+1|Ft]), (A.49)

θκ1cA1c(x̂t+1 − Fx̂t) = λ∗s(st+1 −Hx̂t) = λ∗s(st+1 − E[st+1|Ft]). (A.50)

Note a vector of random variables (gt+1 − E[gt+1|Ft]) and (st+1 − E[st+1|Ft]) follows a

multivariate normal distribution under the agent’s posterior belief: gt+1 − E[gt+1|Ft]

st+1 − E[st+1|Ft]

 |Ft ∼ N (0,Σ∗gs) where Σ∗gs =

 Σ∗g J∗gs

J∗sg Σ∗s

 . (A.51)

Here, we define new matrices such as Σ∗g = Σg+Π, Σ∗s = Σs+HΠH>, J∗gs = Jgs+ΠH>, and

J∗sg = (J∗gs)
>, all of which include static (co)-uncertainty matrix Π because of the following

decompositions:

gt+1 − E[gt+1|Ft] = (gt+1 − µ− xt) + (xt − x̂t), (A.52)

st+1 − E[st+1|Ft] = (st+1 −Hxt) + H(xt − x̂t), (A.53)

where (xt−x̂t) = ux,t ∼ N (0,Π) is a random variable that represents static (co)-uncertainties

of xt under the agent’s posterior belief. Finally, we plug (A.49)–(A.51) to the Euler equation

(A.6) and solve the expectation using a log-normal distribution. With λ∗ = [λ∗g λ∗s] and an
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identity matrix I, we obtain the following equations:

A1c =

(
1− 1

ψ

)
Ic(I− κ1cF)−1, (A.54)

A0c =
1

1− κ1c

(
log δ + κ0c + (1− ψ−1)µc +

1

2θ
λ∗Σ∗gs (λ∗)>

)
. (A.55)

A.5.2 Price-Dividend Ratio

Let Rm,t+1 = Pt+1+Dt+1

Pt
denote the gross return on the risky asset that is priced at Pt and

pays out the aggregate dividend stream {Dt}. Then, the log price-dividend ratio is

zd,t = log
Pt
Dt

= A0d + A1dx̂t, (A.56)

where A0d contains the static (co)-uncertainty term Π. Next, the log return of the risky

asset, rm,t+1 = logRm,t+1, is approximated as

rm,t+1 ≈ κ0d + κ1dzd,t+1 − zd,t + gd,t+1, (A.57)

where κ0d and κ1d are Taylor approximation coefficients at z̄d = A0d. For concise notation,

we first define the following terms

βg = Id = [0 1] and βs = κ1dA1dKs. (A.58)

Then, by plugging Ri,t+1 = Rm,t+1 into the Euler equation (A.6), we first compute the

time-varying-parameter version of (A.23) as follows.

log

(
G
− θ
ψ

c,t+1R
θ−1
c,t+1Rm,t+1

)
= (θ − 1)(κ0c + κ1cA0c − A0c) + (κ0d + κ1dA0d − A0d)

+ (Id − λg)µ

+ (Id − λg + (θ − 1)(κ1cA1cF−A1c) + κ1dA1dF−A1d) x̂t

+ (Id − λg)(gt+1 − µ− x̂t)

+ [(θ − 1)κ1cA1c + κ1dA1d] (x̂t+1 − Fx̂t). (A.59)
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Note the last term can be simplified, by (A.42), to

[(θ − 1)κ1cA1c + κ1dA1d] (x̂t+1 − Fx̂t) = (βs − λs)(st+1 −Hx̂t). (A.60)

Finally, plug (A.59) and (A.60) to the Euler equation (A.6) and apply κ1cA1cF−A1c =

(ψ−1−1)Ic from (A.54). Then we have the following condition since (A.59) should be satisfied

regardless of x̂t.

0 = Id − λg + (θ − 1)(κ1cA1cF−A1c) + κ1dA1dF−A1d (A.61)

= Id − ψ−1Ic + κ1dA1dF−A1d. (A.62)

The remaining terms in the Euler equation should be zero as well, and so we have

A0d = θ log δ + (θ − 1)(κ0c + κ1cA0c − A0c) + κ0d + κ1dA0d + (Id − λg)µ +
1

2
β∗Σ∗gs (β∗)>

= log δ + κ0d + κ1dA0d + (Id − ψ−1Ic)µ +
1− θ

2θ
λ∗Σ∗gs (λ∗)> +

1

2
β∗Σ∗gs (β∗)> , (A.63)

where the last equation comes from (A.55) and β∗ =
[
(βg − λg) (βs − λs)

]
. Therefore,

we have

A1d = (Id − ψ−1Ic)(I− κ1dF)−1 (A.64)

A0d =
1

1− κ1d

(
log δ + κ0d + (Id − ψ−1Ic)µ +

1− θ
2θ

λ∗Σ∗gs (λ∗)> +
1

2
β∗Σ∗gs (β∗)>

)
.

(A.65)
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A.5.3 Stochastic Discount Factor and Equity Returns

Using the results from Section (A.5.1), we express the log of the stochastic discount factor

as follows, similarly to (A.29).

mt+1 ≈θ log δ − θ

ψ
gc,t+1 + (θ − 1) (κ0c + κ1c(A0c + A1cx̂t+1)− A0c −A1cx̂t + gc,t+1)

=θ log δ + (θ − 1) (κ0c + κ1cA0c − A0c) + (θ − 1)(κ1cA1cF−A1c)x̂t

−
(
θ

ψ
+ 1− θ

)
gc,t+1 + (θ − 1)κ1cA1c(x̂t+1 − Fx̂t)

=θ log δ + (θ − 1) (κ0c + κ1cA0c − A0c)− γIcµ

+
(
−γ + (θ − 1)(ψ−1 − 1)

)
Icx̂t

− γIc(gt+1 − µ− x̂t)− (1− θ)κ1cA1cKs(st+1 −Hx̂t).

Therefore, the innovation in mt+1 conditional on the agent’s information set is

mt+1 − E[mt+1|Ft] ≈ −λg(gt+1 − E[gt+1|Ft])− λs(st+1 − E[st+1|Ft]))

= −λgeg,t+1 − λses,t+1 − (λg + λsH)(xt − x̂t), (A.66)

where Ic = [1 0] and the last expression comes from (A.53). On the other hand, the log

return, rm,t+1, of the risky asset can be written as

rm,t+1 ≈ κ0d + κ1dzd,t+1 − zd,t + gd,t+1

= κ0d + κ1dA0d − A0d + κ1dA1dµ̂t+1 −A1dµ̂t + gd,t+1

= κ0d + κ1dA0d − A0d + κ1dA1d(x̂t+1 − Fx̂t) + (κ1dA1dF−A1d)x̂t + gd,t+1

= (κ0d + κ1dA0d − A0d) + Idµ + (ψ−1Ic)x̂t + Id(gt+1 − µ− x̂t) + κ1dA1d(x̂t+1 − Fx̂t).

Therefore, we have the innovation in rm,t+1 as follows.

rm,t+1 − E[rm,t+1|Ft] ≈ βg(gt+1 − E[gt+1|Ft]) + βs(st+1 − E[st+1|Ft]) (A.67)

= βgeg,t+1 + βses,t+1 + (βg + βsH)(xt − x̂t). (A.68)
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A.5.4 Decomposition of the Equity Premium

To compare with the i.i.d. model, we decompose the equity premium for the specification in

Section 4. That is, we have

F =

 Fx 0

0 Fx

 and H =

 1 0

0 1

 , (A.69)

Then we can simply A1c and A1d as follows.

A1c =
1

1− κ1cFx
[ (

1− ψ−1
)

0
]

and A1d =
1

1− κ1dFx
[
−ψ−1 1

]
. (A.70)

The innovation in the log of the SDF mt+1 conditional on the agent’s information set is

mt+1 − E[mt+1|Ft] ≈ −λg(gt+1 − E[gt+1|Ft])− λs(st+1 − E[st+1|Ft]))

= −γIc(gt+1 − E[gt+1|Ft])− κ∗∗1c
(
γ − 1

ψ

)
Ic(x̂t+1 − E[x̂t+1|Ft]),

where Ic = [1 0], κ∗∗1c = κ1c/(1− κ1cFx), and the last expression comes from (A.42). On the

other hand, the innovation in the log of market portfolio return (rm,t+1) is

rm,t+1 − E[rm,t+1|Ft] ≈ βg(gt+1 − E[gt+1|Ft]) + βs(st+1 − E[st+1|Ft])

= Id(gt+1 − E[gt+1|Ft]) + κ∗∗1d

[
− 1

ψ
1

]
(x̂t+1 − E[x̂t+1|Ft]), (A.71)

where βg = Id = [0 1] and κ∗∗1d = κ1d/(1 − κ1dFx).
32 Therefore, we can express the log-

return counterpart of the equity risk premium RPt = −Cov(rm,t+1,mt+1|Ft) = βΣ∗gsλ where

32κ∗∗1c and κ∗∗1d are positive because κ1c, κ1d, and Fx lie between zero and one.
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β = [βg βs] and λ = [λg λs], which is

E[rm,t+1|Ft]− rf,t +
1

2
V ar[rm,t+1|Ft] =γCov(gc,t+1, gd,t+1|Ft)︸ ︷︷ ︸

from growth

+ κ∗∗1cκ
∗∗
1d

(
γ − 1

ψ

)[
− 1

ψ
1

]
Cov(x̂t+1|Ft)I>c︸ ︷︷ ︸

from signal

+ κ∗∗1dγ

[
− 1

ψ
1

]
Cov(x̂t+1,gt+1|Ft)I>c︸ ︷︷ ︸

from signal×growth

+ κ∗∗1c

(
γ − 1

ψ

)
IdCov(gt+1, x̂t+1|Ft)I>c .︸ ︷︷ ︸

from growth×signal

(A.72)

Note each of four terms here include static (co)-uncertainties like the i.i.d. model case.

Also, all covariance expressions here refer to a 2 × 2 covariance matrix except for the first

scalar term. The covariance matrices in the third and fourth terms are, in particular, cross-

covariance matrices; therefore, Cov(gt+1, x̂t+1|Ft) = Cov(x̂t+1,gt+1|Ft)>. Finally, we can

rewrite the last three terms from (A.72) in scalar terms as follows.

RPss
∆
= βsΣ

∗
sλ
>
s = κ∗∗1cκ

∗∗
1d

[
γ − 1

ψ

]
V ar(x̂c,t+1|Ft)

[
Cov(x̂c,t+1, x̂d,t+1|Ft)

V ar(µ̂c,t+1|Ft)
− 1

ψ

]
, (A.73)

RPsg
∆
= βsJ

∗
sgλ
>
g = κ∗∗1dγ

[
Cov(x̂d,t+1, gc,t+1|Ft)−

1

ψ
Cov(x̂c,t+1, gc,t+1|Ft)

]
, (A.74)

RPgs
∆
= βgJ

∗
gsλ
>
s = κ∗∗1c

[
γ − 1

ψ

]
Cov(x̂c,t+1, gd,t+1|Ft). (A.75)

Therefore, the risk premium expressions for the long-run risk model are identical to those of

the i.i.d. model except for the constant terms κ∗∗1c and κ∗∗1d.
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A.5.5 Equity Volatility and Risk-free Rate

From (A.51) and (A.71), we can decompose the conditional variance of the risky asset’s

returns, V ar[rm,t+1|Ft] = βΣ∗gsβ
>, as follows.

V ar[rm,t+1|Ft] =V ar(gd,t+1|Ft)︸ ︷︷ ︸
from growth

+ (κ∗∗1d)
2V ar

(
x̂d,t+1 −

1

ψ
x̂c,t+1|Ft

)
︸ ︷︷ ︸

from signal

+ κ∗∗1d

(
Cov(x̂d,t+1, gd,t+1|Ft)−

1

ψ
Cov(x̂d,t+1, gc,t+1|Ft)

)
︸ ︷︷ ︸

from signal×growth

+ κ∗∗1d

(
Cov(x̂d,t+1, gd,t+1|Ft)−

1

ψ
Cov(x̂c,t+1, gd,t+1|Ft)

)
.︸ ︷︷ ︸

from growth×signal

(A.76)

On the other hand, the log risk-free rate is

rf,t = −E[mt+1|Ft]−
1

2
V ar(mt+1|Ft)

= −θ log δ − (θ − 1) (κ0c + κ1cA0c − A0c) + γIcµ +
1

ψ
Icx̂t −

1

2
λΣ∗gsλ

>

= − log δ +
1

ψ
(µc + x̂c,t)−

1− θ
2θ

λ∗Σ∗gs (λ∗)> − 1

2
λΣ∗gsλ

>

= − log δ +
1

ψ
E[gc,t+1|Ft]−

1− θ
2θ

λ∗Σ∗gs (λ∗)> − 1

2
λΣ∗gsλ

>.

A.5.6 Systematic and Idiosyncratic Long-Run Risks

Table A.3 shows the effects of parameter φxd and χxd extending Table 2. As shown in

the table, both systematic and idiosyncratic long-run risks in the dividend growth process

increase the intertemporal co-uncertainty and the risk premium.
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Table A.3: Systematic and Idiosyncratic Long-Run Risks and Asset Moments

Exposure Dividend Annualized Annualized Annualized Intertemporal
to long-run long-run equity equity risk-free co-uncertainty
growth xc,t growth premium volatility rates

volatility (%) (%) (%) (×107)
φxd χxd E(Rm −Rf ) SD(rm,t) E(Rf ) Cov(x̂t+1|Ft)

Panel A: ρgs = 0.3 and ρs = −0.9

0 3.0 3.50 16.48 0.87 0.76
0 4.5 4.81 22.04 0.94 1.16
0 6.0 6.24 28.79 1.00 1.46

1 3.0 5.29 16.86 0.80 1.45
1 4.5 6.58 21.76 0.88 1.91
1 6.0 7.98 27.78 0.95 2.26

3 3.0 8.26 17.67 0.68 2.67
3 4.5 9.62 21.54 0.75 3.29
3 6.0 11.03 26.49 0.83 3.78

Panel B: ρgs = 0.2 and ρs = −0.95
0 3.0 3.76 16.26 0.89 0.89
0 4.5 5.20 21.85 0.98 1.35
0 6.0 6.71 28.70 1.05 1.67

1 3.0 5.49 16.72 0.82 1.61
1 4.5 6.90 21.62 0.91 2.11
1 6.0 8.37 27.69 0.99 2.49

3 3.0 8.31 17.69 0.69 2.88
3 4.5 9.80 21.48 0.78 3.54
3 6.0 11.29 26.43 0.87 4.05

Panel C: ρgs = 0 and ρs = −1.0

0 3.0 1.47 14.88 1.44 1.22
0 4.5 2.93 20.27 1.49 1.80
0 6.0 4.00 27.59 1.53 2.18

1 3.0 3.02 15.00 1.40 2.01
1 4.5 4.44 19.88 1.46 2.61
1 6.0 5.59 26.38 1.50 3.03

3 3.0 5.42 15.93 1.32 3.38
3 4.5 7.01 19.65 1.39 4.11
3 6.0 8.33 24.93 1.44 4.66
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