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Abstract

We find equilibrium limit and market order placement strategies for optimizing liquidity traders,
off-exchange liquidity providers called value traders and (possibly) a strategic informed trader.
Nash (or Bayesian Nash) equilibria are found in two cases. The first has the exogenous arrival
of information, but no informed trader. The second includes an informed trader which leads to
endogenous information revelation and a “winner’s curse” problem in limit order execution. Our
main results are (a) the limit order book is random and is generated (along with market orders) by
a linear factor model, (b) limit orders from value traders account for little of the depth in the limit
hook given even moderate brokerage costs, and (c) the limit order book is thinner in volatile than
in “dat” markets. We also can construct a sufficient statistic for Bayesian updating with multiple

order types when there is an informed trader.



1 Introduction

Investors trading on the New York Stock Exchange and other major exchanges have access to a
vich set of order placement choices. In addition to the familiar market order, price-contingent limit
orders specify a quantity to be bought (sold) if the price falls below (rises above) some prespecifed
level. Stop orders allow investors to sell (buy) if the price falls below (rises above) a prespecified
level. In practice price-contingent orders — particulatly limit orders — play a prominent role in
the transaction process. For example, over half of the submitted orders on the NYSE SuperDot
electronic order submission system were limit orders in late 1993.1

Modeling the variety of order forms and how they are used by different types of investors
represents one of the most important outstanding issues for microstructure theory. It is important
for both practical and conceptual reasons. Investors naturally want to use these trading choices to
their best advantage. Precisely how market and limit orders fit into an investor’s optimal trading
strategy depends, however, on both her particular motive for trade {e.g., private information,
liquidity shocks, competitive liquidity provision) and on the interaction between her orders and
the equilibrium tladmg demsmns of other investors with potentially different trading motives. This
suggest that investor hetezogenelty is a pwlequ}sate for a satzsfactozy theory of limit orders. A
second reason limit orders are of interest is that the accumulated limit order book plays an important
role both as a source of market liquidity for arriving orders and in the price formation process
through which private information is aggregated and reflected in security prices. Furthermore, the
availability of detailed order data makes it possible to begin empirically testing hypotheses about the
composition of the limit (and stop) book.? Hence there is a need for models with price-contingent
orders to generate these predictions.

Including limit orders in an equilibrium microstructure model of poses a number of conceptual
and methodological challenges. This paper focuses on two key elements. The first is that all
investors have symmetric access to both limit and market orders and their orders — including
those of uninformed liquidity traders — are determined endogenously in an optimizing framework.

In particular, we have

1. A continuum of liquidity traders who trade in response to liquidity shocks while wanting not

1Gee Chakravarty and Holden (1994). Harris and Hasbrouck (1992) report that 45 percent of the submitted orders

for the 144 TORQ stocks in 1990/91 were limit orders.
2Qee Harris and Hasbrouck (1992) and Biais, Hillion and Spatt (1992).



to overpay (if buying) or to be underpaid (if selling).

2. Competitive uninformed off——exchange value traders who exploit opportunities in the limit

order book to earn positive expected profits from liquidity provision.

3. A strategic informed investor who, if present, trades to exploit private prior knowledge about

the future payoff of the asset.

This allows us to investigate behavioral interactions between different types of investors’ strategies.
For example, in contrast to the concentration of uninformed (market order) trading in Admati and
Pfeiderer (1988), we find that uninformed trading by velue traders {passive liquidity suppliers)
“crowds oﬁt” orders form liquidity traders in parts of the limit order book. The second element in
our model is that price discreteness, brokei‘age costs and other market imperfections are included

and are shown to play an important role in the transaction process. Specifically,

1. A specialist sets prices to reflect the available information and also a non-informational

bid/ask spread and then executes orders.
2. Traders incur up front brokerage costs to submit orders. -

Both features represent extensions of existing models. The two cornerstones of the microstruc-
ture literature are the Kyle (1984, 1985) and Glosten and Milgrom (1985) models which restrict
order submissions to market orders. Recently, however, Rock (1995), Glosten (1994) and Easley and
O'Hara (1991) have presented models with price-contingent orders.? In Rock (1995) and Glosten
(1994), limit and market orders are allowed while Easley and O'Hara (1991) allow stop and market
orders. All three papers, however, restrict informed trading to market orders. The optimal strategy
for strategic informed traders with limit and/or stop orders therefore remains unexplored. Rock
and Glosten also restrict random liquidity trading to market orders as well. The result is a limit
order book which is non-random and thus constant over time. Finally, none of these models include
market imperfections.

In modeling the behavior of uninformed investors we consider two.types of traders. Asin Rock
(1995), value traders do not need to trade per se, but they do submit orders if the expected profit is

a non-negative. In constrast, our liquidity traders do actively need to trade. However, rather than

3n addition to these equilibrium models, Cohen, Maier, Schwartz and Whitcomb (1981), Angel (1992) and Harris
(1994) derive optimal strategies for limit order placement given exogenous probabilities of execution.



treating them as “noise” traders with exogenous orders in Kyle (1985) we study optimizing lquidity
traders who try to minimize the execution costs incured in responding to a rebalancing shock. Our
work on this second group extends previous work by Spiegel and Subrahmanyam (1992), Seppi
(1992) and Kumar and Seppi (1994) on optimal liquidity trading with market orders to a richer
milien with price-contingent orders. '

Endogenizing the trading decisions of liquidity traders is important for two reasons. First, when
investors can choose among combinations of market and limit orders, the “own” and the “cross”
moments of the various market and limit order flows — which determine the execution probability of
+he Himit orders — cannot be set arbitrarily. Rather, they should reflect a structure consistent with
the optimization problems of other investors who submit orders. Thus, one does not want simply
to assume a pattern of liquidity trading across the various types of orders. Second, the behaviour of
the liquidity traders takes on additional significance in the presence of a strategic informed trader.
Since an informed investor needs o hide in"trading “noise” to exploit her information, the liquidity
traders’ trading strategy restricts the form of the informed’s strategy in equilibrium. In particular,
since the liquidity tr adels orders are jointly determined by their optimization problem, any “noise”
in the malket order ﬂows (due to hquadlty t;adlng) will be correlated with the ‘noise” in the limit
order book. Thus, with N + 1 possible market and limit orders, there will in genelal be fewer than
N + 1 sources of independent trading noise to “hide in.” In fact, in our model — where aggregate
liquidity order flows have an exact linear factor structure — there are only two sources of noise, an
aggregate buying shock and an aggregate selling shock. Since our informed trader’s orders must
have the same factor structure (i.e., to avoid detection), she can be seen as simply picking her own
personal shock realizations so as to maximize expected profits given her information.

The second element of our modeling approach is the inclusion of market imperfections — specif-
jcally, brokerage costs, price discreteness and a non~informational bid/ask spread. Empirically, the
magnitudes of such imperfections (e.g., 3 to 10 cents a share brokerage fees or a 1/8th spread) are
comparable to the estimated informational effects of trading. Hence, market imperfections might
well be expected to have first-order effects on investors’ trading strategies, market liquidity, and
information revelation, Moreover, market imperfections are particularly important in models of
limit orders. For example, it is precisely the non—informétional bid/ask spread which opens the
possibility of price improvement over market orders as a motive for limit orders (i.e., buying at the

bid instead of the ask). In addition, transaction costs can have 2 significant impact on the depth



and composition of the limit order book — specifically, the split between orders from liquidity
traders (who are primarily interested in the relative cost of different orders) and the value traders
(who only care about absolute costs).

We use our model to study two specific market environments. The first is a competitive market
with value uncertainty due to an exogenous public announcement. The second adds an informed
trader which leads to endogenous information revelation. In each markelt ‘we calculate the equilib-
yium limit order book and market order flows, calculate summary statistics (e.g., expected costs
and execution probabilities for limit orders) and investigate the effect of brokerage costs, exogenous
price volatility, the probability of being informed and other factors.

Our main insights/contributions are:

1. Limit and market order flows have a linear factor structure in which one factor drives aggregate
buying and another drives selling. This aggregate factor structure is inherited directly from

the individual liqudity traders’ optimization problem.

2. Ow model features non-normal liquidity shocks. Without informed trading the shocks can
have any distribution with the appropriate sign. With an informed trader exponentially

distributed liquidity shocks lead to a tractable Bayesian updating pi'oblefn.

3. Very low brokerage costs lead to a book dominated by non-random limit orders from the value
traders as in Rock (1995). Higher costs produce a more random book driven by investors

with other motives for trade (i.e., liquidity shocks or private information)}.

4. Informed trading leads to a “winner’s curse” problem in limit order execution which curtails
the use of limit orders by uninformed traders irrespective of any adverse selection effects in
pricing. In particular, limit buys are more likely to be executed when the informed frader

has bad news than good news.

The specialist’s conditional expectation of the asset’s value and its relation to the informed
traders’ strategy is a key methodological issue in models with private information. With multiple
orders available for investors to use, this expectation depends in genéral on the entire limit order
book as well as on the aggregate market orders. Rock (1995) and Glosten (1994) avoid this problem
because their limit book is non-random and thus uninformative (i.e., since there is no “noise” for

the informed trader to hide in). In our market the book is infomative. However, in our model the



factor structure of orders leads to a sufficient “statistic” so that conditional expectations ave still
parsimonious.

In the interest of “truth in advertising,” we disclose at the outset that this generality comes at
a cost. First, the present analysis is limited to a static setting. We try, however, in a stylized way,
to capture behavior which we view as important in dynamic markets. Third, our aﬁaiysis of the
informed trader market is restricted for tractability reasons to some simphfying parametric cases.

The paper proceeds as follows. Section 2 sets up the basic model in the absence of an informed
trader, establishes that an equilibrium exists and presents a few numerical examples. Section 3
introduces an informed trader and then studies a special case of an endogenous valuation/winner’s
curse problem. Section 4 concludes with a discussion of robustness issues and possible extensions.

All proofs are in the Appendix.

2 A Competitive Market with Exogenous Value Resolution

We begin by considering a one-period market in which three types of investors trade a risky stock.

The first are uninformed price-taking traders who either buy or sell for liquidity reasons. Specif- -
ically, fhere is a co‘ﬁtinuumr of Eiquidiiy traders on [0, 00) who 'i'eéeive random 1'eba1ancing shocks
(or targets) for that period. A buyer i receives a target to buy w(i) > 0 shares while a seller 4,
wants to sell w{4,) < 0. However, the orders they eventually submit are chosen to reflect a trade-off
between expected trading costs and a quadratic penalty for deviations from their trading target.

The second type of traders are competitive risk-neutral value fraders who exploit opportunities
in the limit order book to earn positive expected profits. Being price takers, they collectivély drive
any expected profits there to zero. Unlike in Rock (1995), value trading does not preclude profit
opportunities in the realized book since (a) our book is “closed” rather than “open” (i.e., investors
cannot observe how many limit orders are already in the book) and (b) our book typically includes
random orders from the liquidity traders. |

The third trader is a competitive specialist who sets prices and then executes orders.

In this first model the stock’s value changes due to a public announcement which arrives after
orders are submitted, but before the specialist executes any trades. The probability distribution for
the new value v is h(v). This timing assumption is intended to capture the idea that in practice
valuations can change between the submission and execution of limit orders. The resulting “value

uncertainty” affects not only the prices at which investors trade (when they use market orders),



but also which orders are actually executed (if limit orders are used). Section 3 adds an informed
trader which leads to endogenous information revelation via the observed order flows.

Although value uncertainty and order flows are related emprically, the link is less than ironclad.
Hasbrouck (1991) estimates that roughly 30 percent of the variance of permanent (informational)
stock price changes are explained by order flow innovations. This leaves 70 percent of the variance
to be explained by other factors such as informational spill-overs from other assets (e.g., related
stocks, futures and other deriviative securities) and public announcements. Thus, our assumption
of exogenous value realizations, while admittedly a simplification, is not an unreasonable polar
case.t

The timing of events is in Figure 1. First, liquidity traders learn their individual targets w(z).
Then, given their beliefs about aggregate order submissions, they and the value traders each submit
a profile of orders to the specialist for execution. The specialist observes v, sets his quotes given
this information and executes orders.

Prices and values are related as follows. There is a finite grid p of prices at which trade occurs
and on wh1ch hn'nt orders can be posted For concreteness we take p = {p1,p2,p3, P4} Intelspelsed

in the price gud is a gnd v of possible value 1eahzat10ns (01 speczahst expectatlons) v. Agam for

concreteness let v == {v;,vs,v3} where
1< v <py<vp<p3<u3<Ps (1)

Taking vo = E{(v), our grid allows traders to place ex ante “at the money” limit orders at py and p3
as well as “away from the money” orders at p; and py. This grid illustrates most of our economic
insights and is readily generalized.

Transaction prices differ from the realized value v because of a non-informational bid/ask
_ spread. The specialist’s ask Q* is the lowest price p above the realized value v and his bid QP is
the highest price below v. This spread reflects either compensation for '(unmodeied) variable costs
incurred by competitive specialists or a form of specialist market power constrained by imperfect
competition from floor brokers.

Investors may submit any combination of market and limit orders. M, arket orders are uncontin-

gent orders to buy or sell a specified number of shares. Buy and sell orders are handled separately

“Rock (1995), Glosten (1994) and our model in Section 3 study the other polar case where all information is order
related.



(rather than “batched” as in Kyle (1985)) because of the explicit bid/ask spread. Buy market
orders trade at the ask and sell market orders at the bid. The specialist ensures that all market
orders are executed.’? |

A non-informational bid/ask spread opens the possibility of price improvement on limit orders
vis-a~vis market orders. A buy. limit order indicates a willingness to buy shares at a specified price
p; on the grid p. Intuitively, investors place limit buys because they h0per“t0 buy at the bid (given
sufficient sellers on the sell side of the market) rather than at the ask (as with a market buy). The
danger of using a limit buy order is either that (a) it might not be executed if not enough market
sell orders arrive or (b) the value v may “run away” from the limit price p; so that it is unexecuted
(if prices rise) or is adversely “picked off” (if prices fall).

More formally, whether a limit buy order is filled or not depends on whether the specialist is
willing (a) to better the limit price with a bid @® > p; (in which case it remains unexecuted), or
(b) to match it with a bid Q" = p; (in Whi;:h case the specialist yields to public limit orders which
are filled to the extent that there are sufficient sell orders at p;) or (c) to take the other side of
 the limit buy himself by setting an ask @° < p; (in which case it is fully executed). In the event
of partiél execution.d,v@e'to insufficient ‘sell orders the sell shares ‘a,re allocated to limit buyers on
the basis of “time priority” — which we model here in terms of réndom order arrival times. In
particular, orders are submitted and assigned a positien in the queue without investors knowing
their priority (i.e., since the book is closed).

Similarly, a sell limit order indicates that the investor is willing to sell shares at a price p;.
Execution again depends on whether the specialist sets his ask (* < p; to better the limit price
(no execution), sets his ask Q% = p; to match it (partial execution depending on the number of
buys) or sets his bid at or above Qb > p; (full execution of “exposed” limit sells since the specialist
is willing to take the other side). 4

Thus, the execution status of a limit order is a random variable depending on both (a) the
realization v (which determines the location of the specialist’s quotes Q° and Q*) and (b) the
relative total supply and demand for shares at p; — neither of which traders know when they
submit their orders. The following notation represents these ideas. Let By, denote the total shares

submitted by all investors as market buy orders and B; the total shares from limit buys at prices

5That is, in contrast to Rock (1990), the specialist is willing to absorb all executable orders which cannot be
crossed with limit orders at his set quotes. Note also that Ginsi trading (i.e., trading different quantities at different
prices to acheive an average price not on the price grid) is not optimal here. For example, selling some shares at a
loss at the bid, and then the rest at the ask (after first filling all limit sells) simply reduces the specialist's profit.

7



pj, 7 =1,...,4. Similarly, let S, denote total market sell orders and §; the total shares submitted

as limit sells at prices p;. How much of a limit buy is filled is given by the “fll ratio”

1 with probability m, ; = min [1, %’*ﬁt] for j=1,...,4

Fy= (2)

0 otherwise.

if ex post the specialist’s bid matches the limit price p; and is 0 or 1 otherwise as described above.

The “min” reflects the fact that at most only 100 percent of the order can be filled. Similarly, the

“f1] ratio” for a limit sell is

Py = 1 with probability 7, ; = min [1, Eﬁé%ﬁi] forj=1,...,4
(0 otherwise.

if the limit price p; equals the specialist’s ask and otherwise is 0 or 1 again.

The conditional “at the quote” fill ratios Fy; and F; (i.e,, when the limit price equals the
competing specialist quote) play an important role in our analysis. In particular, they describe
- limit order execution in states when execution is bloth profitable and possible (i.e., in that the
 specialist does not undercut Joutbid them). ' |

A brief review of the relevant rules on the NYSE may help to motivate our assumptions.
Typically limit orders on the NYSE trade at the posted limit price. This is true even if the limit
order is selling “cheap” (i.e., if p; is below the bid) or buying “dear” (i.e., if p; is above the ask). One
exception is the “clean up price” rule 127 for block trades. Under this rule limit prices determine
the priority of limit orders opposite a large block trade. If executed, however, they cross with the
block at the block price, not the limit price. In this paper limit orders always trade at the posted
limit price.8

We also assufne that the specialist — rather than market orders on the other side of the market
— is the counterparty for any exposed (i.e., cheap or dear) limit orders. That is, specialists,’
by virtue of their advantaged position on the exchange floor, can interpose themselves between
“exposed” limit orders and arriving market orders. Although awkward in a single period setting,
in a dynamic market new information can easily arrive after limit orders ave posted and before

a market order happens to arrive. This assumption simplifies the model because market orders

$This is different from Kyle (777) where intramarginal limit orders are crossed at the marginal price.
¥ &
"Strictly speaking, our specialist is a composite floor broker/specialist since NYSE specialists {as opposed to floor
brokers) cannot trade against limit orders.



then trade at the realized bid and ask quotes rather than along a limit order schedule with random
depth. In addition, intramarginal limit orders (i.e., above or below the realized quotes) do not first
need to be subtracted off from the arriving market orders to find out how many “at the quote”
limit orders can be crossed. Thus, while this assumption could be relaxed, it does simplify the

analysis substantially.®

2.1 The individual liquidity trader’s problem.

A generic liquidity trader ¢’s objective reflects two considerations. He wants to minimize deviations
of end-of-period shares traded from his target w(i) while holding down expected trading costs from
overpaying (on buy orders) and/or being underpaid (on sell orders). In particular, let by, (i) be the
number of shares liquidity trader i submits as a market buy order and let b;(¢) be the number of
shares 1 posts as limit buy orders at prices p;, j = 1,...,4. Similarly, let sm(i) and s;(1) denote
the (unsigned) number of shares ¢ submits as a market sell order and as limit sell orders at prices
p; respectively. The sign convention is that all order quantities are non-negative. For example, one
cannot “buy” a negative number of shares (1 e., sell) at the ask via a market buy order. To sell,
' one must use seli orders. Vectors of these buv and sell 01dexs are denoted by b and s.

The expected trading costs per share on each of the possﬂ)le maxket and limit buy orders are

ep; = hlw)(pr— o) E(F) +T (4)
epe = h{vi)(p2—v1) + h{vo)(pa — UQ)E(ﬁ'b,g) +T

eps = h(v1){ps — v1) + h(v2)(ps — v2) + h(va)(ps — v3)E(Fy3) + T

epa = h(v)(pa —v1) +h(v2)(pe — vo) + h(vs)(ps — 03) + T

eom = h(v)(p2— 1)+ h(v2)(ps — v2) + h(vs)(ps — v3) + T

T

These costs include both the implicit costs of over/underpaying relative to v as well as an up-front
brokerage commission T per share. In particular, we assume 7 is paid on limit orders whether or

not they are successfully executed. Similarly, the expected costs per share on sell orders are

es1 = h{w)(w1 —p1) + h{v2)(vz — p1) + A(vg)(vs —p1} + T (5)

8Market orders are less attractive if they trade at marginal {rather than fractionally at intramarginal) prices so
under this assumption the limit order book should be deeper than otherwise.



es2 = h(v){v — p2) E(F, 2) + h(va)(ve — p2) + h(vs)(vs — po) + T
es3 = h(v)(ve —pa)E(Fis3) + hivs)(vs —p3) + T
esa = h{vs)(vs —pa)E (Foa) + T

om = h(ui){vr ~p1) + h(v2){v2 — p2) + R(vs)(vs — p3) + T

Mo foreshadow a bit, each order will be at best a “break even” préposition in equilibrium.
The brokerage fee T and any over/underpaying relative to the true value v make trading costly.
However, if 7' is not too big, limit orders can may still be profitable ex post for certain value
realizations. For example, a limit buy at py is profitable if executed given a value v1. Thus, a limit
buy at p; {or in general at any price p; where the associated probability h(v;) is sufficiently high)
breaks even ex ante only if the expected “at the quote” fill ratio B(Fy,) (or E(F,;)) is sufficiently
low given T. This is precisely what the value traders ensure. A similar argument applies to sell
limit orders. ‘

With this notation liquidity trader ¢’s problem is

2

min Z eb,jbj(i) - eb!mbm(i) + Z es,jsj(i) -I—'es,msm(i) . - . o (6)
s =1 =1
' 2

3 4 k
+¢ Z h(vg)F bkﬁb,k + Z b(4) + b (2) — Z s(i) ~ Sk+1(i)ﬁ’s‘k+1 — & (1) — w(i) |
el l=k+1 I=1

subject to

bm(?')7 bl(?')a o ,54(2) >0
sm(1),81(3), - -+, 84(3) 2 0.

The quadratic specification has the virtue of tractability while capturing the intuition that limit
orders involve a trade off between execution cost and probability.? In particular, the idea is that

in a multiperiod market delayed execution is costly. In this single-period setting, however, the

8One aspect of the objective which deserves comment is the role of squared expected costs. If instead the objective
was linear in the expected cost, the non-negativity constraint would force orders to be 0 for some w's and then affine
in w everywhere else. The resulting piecewise solution would create a truncation problems for the aggregation of
individual orders. Of course, this specification seems to suggest that liquidity traders also dislike negative costs {ie.,
positive expected profits). However, the combination of up front brokerage costs and trading by the value traders
ensure that costs are always non—positive in equlibrium Thus, far from manifesting a “kitchen sink” approach to
realism, many of features of the model actually dovetail to improve tractability.

10



rebalancing penalty acts as & reduced form for any cost of delayed execution. The parameter ¢
allows us to vary the weighting of these two considerations with higher values of ¢ corresponding
to greater dynamic impatience.

It is computationally helpful to jdentify and eliminate orders which a priori are never used (i.e,

given any distribution h{v) and beliefs about aggregate order flows).10

Proposition 1 A liguidity buyer never uses market or limit sell orders or the (highest) limit buy

order ot py. A liquidity seller never uses market or limit buy orders or the (lowest) limit sell order

at p;.
Given their quadratic objective liquidity traders’ orders are linear in their individual shocks.

Proposition 2 Optimal orders for a liguidity buyer iy are linear in his realized shock w(iy)

bm(is) = Pmlis)w(i) (7)
bg(zb) = ﬁ_’)(zb)w(%) J== 1... )3

where .the coeﬁiéiénts Bm(is) and ﬁg(zb) are non-negative. Similarly, the optimal orders for a lig- -

uidity seller i also are linear in w(is)

sm(is) = om(is)w(is)] (8)
sj(i-”') = G.J(?’S)lw(ls)l 3 = 2:' e 14

where the coefficients om(is) and oj(is) are again non-negative.

If liquidity traders are symmetrically informed about v and the Sj’é and B;'s, then ¢ is the only
individual-specific parameter on which the order coefficients $;(i) and o (i) depend. In particular,
they do not not depend on the shock w(3) (modulo its sign). We will assume that ¢ is identical for

all liquidity traders.

01 he symmetry of this result is a consequence of specifying the liquidity targets in terms of “shares bought or
sold” rather than “cash expended or raised.” If a cash target is used instead, then “cash raisers” still avoid buy
orders, but “cagh expenders” may simultanously use limit buy, market buy and also limit sell orders. To see why,
consider a cash expender who submits a buy market order. High prices imply large cash outflows — potentially more
than the cash target — while Jow prices may Jead to underinvestment. This can be offset by using limit sell orders
1o reduce the net cash outflow at high prices and limit buy orders to augment it at low prices.

11



2.2 Value traders.

Value traders are simply risk neutral investors who trade if positive expected profits can be earned.
Otherwise they have no particular need to trade. In Rock (1995) and Glosten (1994) the limit order
book is composed entirely of orders from such traders.

Three differences betweén thése models and ours deserve mention. First, value trading here
" is based on expectations of both random market and limit order flows whereas in Rock (1990)
and Glosten (1992) limit orders are perfectly predictable and only market orders are random.
“Second, value assessments here change because of announcements and other exogenous reasons,
whereas there (and in Section 3 here) values change only because of information revealed by order
flows. Third, the off-exchange value traders in Rock (1990) and Glosten (1992) have a risk~bearing
advantage over risk—averse specialists éo that value trading is possible there despite the market
makers’ informational advantage. Here both value traders and specialists are risk neutral, but
time priority together with price discretenéss protects value traders against undercutting by the
specialist.

The value traders are price takers. This eliminates strategic considerations as in Rock (1995).
Being uriin'fofmed and free from liquidity s}iocks, value traders follow pure strategies so that their
total orders, denoted here by a7 and o ; (or « in vector form), are perfectly predictable. Conse-
quently, they are collectively modeled as submitting orders such that in equilibiium the expected
costs (4) and (5) are non-negative for each order type. Since market orders always trade at-a loss
against the spread, value trading is confined to limit orders.

How does value trading affect expected costs? In (4) and (5) the only negative terms (ie,
ex post positive profits) are multiplied by the expected conditional fill ratios E(Fy ;) or BE(Fyj).
Thus if the expected cost of any limit order were negative, value traders would submit such orders,
_ thereby lowering the expected conditional fill ratios!! and thus reducing the gain (in the profitable
state) until any ex ante expected profits are eliminated.

The first step then is to show whether it is always possible to find non-negative orders o ; and
s 5 such that all of the expected costs in (4) and (5) are simultaneously non-negative. The next

proposition gurantees that this is indeed possible.

Proposition 3 There always exist non-negative value limit orders o such that the ezpected cost

per share is simultaneously non-negative for all limit orders.

Hgubstitute (9) and (10) below into (2) and (3).

12



The presence of value traders, in addition to its inherent naturalness, also justifies the squared
cost minimization (rather than profit maximization) specification of the liquidity trader’s objective.

In equilibrium their trading ensures that expected costs are always non-negative.

2.3 Construction of aggregate order flows.

Although individually traders take the aggregate order flows as given, colléétively their orders make
up the total order flows. In aggregating their orders, the linearity of liquidity orders in the individual
shocks w(i) and the fact that the coefficients B (i), 85(ib), om(is), and o;(is) are identical across
buyers and sellers if beliefs and the impatience parameter ¢ are the same are very useful.

The aggregate orders in this market are

[a e
B; :-[ bii)dip + on;  G=myl,... 4 (9)

- 'bm

o - .
= ﬁj / w(zb)dib + o 4
dp e

. o0 ' ‘
SJ = / OSj(E's)di:s + 0,4 j =m,1,... 4. o ‘ (10)

m N
o; / lwis)\dis + s g

fg=

Hence, for the aggregate order flows from liquidity buyers to be random we need to specify a process

{w(dy) : 1 € [0,00)} such that the integral giving the total liquidity buy shock
o0
Wy = ] w(iy)diy (11)
ip==0

is random. A similar argument applies to aggregate liquidity sell orders.

Given the economics of this problem, the individual shocks w(iy) must have three properties.
First, individual liquidity buyers must be “quantity small” (i.e., each trader 4 is a price~taker).
Second, they must also be “informationally small” (i.e., each w(ép} is uninformative about W} so
that the conditional order flow moments used by 4, are simply the unconditional moments). Third,
the strong law of large numbers is avoided when the individual shocks are aggregated. The first two

conditions lead to a symmetric competitive market. The third ensures that the aggregate shock
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W; in (11) is random.*?

One familiar process with this property is Brownian motion. Unfortunately, the resulting
stochastic integral is normally distributed which is inappropriate since the aggregate shock W, (e,
total target shares to be purchased) must be non-negative. Another (also unsatisfactory) approach
is to replicate the construction of Brownian motion by taking the kmit of a process with indepen-
dent, stationary, non-negative and infinitely divisible (but non-normal)’ increments.!3. Breiman
(1968) Proposition 14.19 gurantees the existence of such a process where the cummulative shock
W{(i) through trader i is associated with the integral [i_ow(j)dj. However, by Breiman (1968)
Proposition 14.20, the cummulative process {W(i) : 4 € [0,1]} has countably many jump disconti-
nuities. Thus any trader i at a jump discontinuity has a shock w(i) which is neither quantitity nor
informationally small.

These difficulties arise because this approach tries to make each individual’s shock w(4) uninfor-
mative about the aggregate shock W by making it uninformative about the shock for any arbitrary
subset of Hquidity buyers.

An approach which does work is to partition a set of potential buyers [0, 00) into {(a) a subset I
of actual buyezs with ex post identical shocks w(zb) = 'wb and (b) a vesidual set of non- -buyers for -
whom 'w(n,) = (). The common shock w} can be any strictly positive constant or random variable.

The aggregate shock is given then by the Lebesgue integral
o . -
[ wlidi = wi(h) (12)

where (I;) is the Lebesgue measure of the set I. Although any individual buyer’s shock (i € Ip)
is perfectly informative about other buyer’s shocks, the desired independence is achieved by letting |
the measure u(lp) itself be a random vasiable given by p(Iy) = =. The numerator W may have
any non-negative distribution with finite first and second moments (i.e., so that the individual’s
optimization probem (6) makes sense). Intuitively, aggregate uncertainty is driven not by how
much individual traders buy, but rather by how many buy.

From (12) the buyers’ shock [774 w(ip)diy is thus a well defined random variable equal to Wp.

12 pporegate randomness is particularly important in Section 3 since it means there is trading “noise” for the
informed trader.

13An random variable is infinitely divisible if it has a distribution which for any integer n > 0 can be expressed as
the distribution of the sum of n i.i.d. random variables. See Chung (1974, p. 239).
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The sellers’ aggregate shock,
o0
W= [ juwio)dis, (13)

can be constructed analogously where the numerator Ws' of the sellers’ measure is taken to be
1ndependent of Wy, |

This construction affords us great flexibility in specifying the liquidity shocks This flexibility
is useful in Section 3 where it allows us to choose a distribution which results in tractable Bayesian
updating. Moreover, it is easily generalized to include multiple independent cohorts of buyers and
sellers so that different investors can submit a variety of non-zero orders (rather than all the same
order).

An immediate emprical implication of our aggregation results is that the total liquidity market
and limit buy orders are generated by an exact one-factor model with a factor W and factor
loadings equal to the individual liquidity order coefficients By . , B4 froni Proposition 2. Total
liquidity sell orders are generated by another one-factor model with an independent factor W,
and factor loadings om, ...,64.%% The possible factor representation of order flows is of interest
~for two reasons. First, as an empmcal issue it Would be possible to estimate how much of the
accumuiated limit order Book (or alternately the Imut order flows over an hom or some other
horizon) is systematic/factor driven vs. idiosyncratic. Second, this factor structure has important

implications for the informed trader’s order placement strategy in Section 3.

2.4 Existence of equilibrium and examples.

This section first shows that a Nash equilibrium exists for the marke’s‘ we have described. We then
compute and discuss some numerical examples.

The existence of a Nash equilibrium in this market hinges on finding a fixed point to the liquidity
trader’s optimization problem. Specifically, a Nash equilibrium is a se$ of liquidity order coeflicients
(B,0) = (Bmy.- -84, Tm, - - ,04) such that, given the aggregate liquidity order flows BnWs, ...,
BaWo, 0mW, ..., o4W, and the value order flows ; and as,; they induce, the coefficients (8,0)
are optimal responses for a generic liguidity buyer 4, and seller 4. Such a fixed point does exists

so that we have

Proposition 4 A Nash equilibrium (8, o) always exists in this market.

“More generally, if investors are divided into M groups with different weightings ¢ then order flows will have an
M-factor structure,
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The proof involves first finding a fixed point in the first and second non-central moments of the
six fill ratios B} 4 and 13:'3,3- and then substituting these back into the lﬁquidity trader’s problem (6)
to get the coefficient fixed point. The advantage of this trick is that the realized fill ratios ~ and
hence their moments — lie in the interval [0,1] whereas the liquic-lity order coefficients (3,0) are
hard to bound a priori because of the fré,ctional execution of “at the quote” limit orders.

.Closed-form solutions are, unfortunately, not available, but equilibria are easy o calculate
numerically. Table 1 provides some examples for a market with pricing on an “eights” grid p =
{20,20 £,20 1,20 £} and an offset value grid v = {20 $,20 ,20 £} The liquidity buy shock
W, (and likewise W;) is exponentially distributed with?!®

g~V W >0
Prob(Wy = W) = (14)
0 otherwise.
The probability density of an exponential aggregate shock is strictly decreasing in shock size which
is not unreasonable. The parameter 8 in these examples is picked so that the mean and standard
deviation of the rebalancing shocks are 1/8 = 500 shares.

Malket equilibria are calculated for (a) a vanety of brokerage costs T 1ang1ng from a hlgh of
$.05 (1.e., five cents a share) to a low of $.001, (b) two impatience parameter values ¢ = 0.1 and
1.0 and (¢} three mean—preserving value distributions h(v). For each equilibrium we report the ex
ante expected costs ep1 and ep2 for limit buys at the two relevant prices p; and p, the expected
“at the quote” fill ratios E(ﬁ’b’l) and E(ﬁb,g), the optimal liquidity buyer’s coefficients 3;, B2 and
Bm and the value traders’ limit buys o1 and oy 2. Since these parameterizations are symmetric,
the corresponding limit sells at ps and p3 and market sells are symmetric with o4 = 1,03 = B2
and o, = Om.

The limit order books look reasonable. Not surprisingly, value investors place more limit orders
close to the unconditional expected value at py (for buys) and at ps (for sells) in “fat” markets

(i.e., when the probability h(vs) is high) than in volatile markets. In Panel B, for example, value

158ince the exponential is a special case of the gamma distribution, we can, if desired, use the additivity of gamma
variables to construct the aggregate shock (which is Gamma (#,1)) as the sum of N independent Gamma (6,1/N)
cohort shocks.

¥egince the market here is symmetric, a imit buy (sell) at ps {pz) is weakly domma.ted by a market order both for
rebalancing purposes (since it may not be fully filled} and in terms of cost (i.e., from (4) and (5) it is only the ex
post profitable orders which are not fully filled). Hence, f; = o3 = 0 so that limit buys are always posted at lower
prices than limit sells, Note also that the expected cost for a market buy e is simply half a “tick” or $.0625 plus
the brokerage cost T".
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traders have no limit buys at pp given just a 40 percent chance of vy, but when this probability is
90 percent their orders total 1842 shares. Liquidity traders’ limit orders at p2, however, are non-—
monotone (see Panels C and D). Increasing the liquidity traders’ impatience parameter ¢ leads to
greater use of market orders for liquidity trading and thus more aggresive limit order placement by

value traders (see Panels B and D).

~ One interesting feature of these examples s the sensitivity of investois’ trading strategies to
brokerage costs. Even modest brokerage costs have a dramatic impact on the composition of orders
in the limit book. In Panel A, for example, a cost of just b cents drives away all value trading,
leaving only liquidity trading. In Panel C, however, dropping the cost to just 0.1 cents leads to
a dramatically deeper book in which orders from the value traders swamp those of the liquidity
traders (i.e., whose expected orders at po total only about .10 x E(W;) or 50 shares). Costs of 1
and 5 cent per share also lead to books concentrated at the ex ante “at the money” prices pp and
ps rather than further “away from the money” at p; and py — consistent with the evidence on
order frequency in Harris and Hasbrouck (1992).

These examples suggest that limit order books on the NYSE and elsewhere may — due to bro-
.kerage and other trading costs — be dete;'mined' primarily by investors who actively want to trade
for liquidity or (in the next section) informational reasons rather than by disinterested liquidity
providers as in Rock (1990). As an empirical matter, these books are qualitatively different since
liquidity trading leads to a random limit order book whereas value trading leads to a deterministic
book.!” Thus in principle it should be possible to assess the relative importance of these two types
of traders in practice.

The difference in their propensity to use limit orders arises because value traders — who do
not need to trade per se — care only about the absolute dollar costs (or profits) of trading. In
contrast, liquidity traders care about the relative cost of different ways of actively rebalancing. This
insight not only explains comparative statics across parameterizations, but also explains why, for
any particular parameterization, value and liquidity traders use different combinations of orders.
A nice example of this is the first market in Panel B where value traders post limit buys only at
p1 (where expected trading profits just offset brokerage costs) while liquidity buyers mainly post
limit orders at py (where the expected cost of 0.5 cents precludes value orders but is still a bargain

compared to 7.25 cents for market orders and where the likelihood of execution is still high).

170f course, if the market parameterization itself is stochastic, then unconditionally the book is also random.
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3 Equilibrium with a Strategic Informed Trader

Informed trading affects markets (and uninformed traders in particular) in three ways. First, order
flows reveal information which complicates the specialist’s pricing prbblem. Second, if sufficiently
intense this information revelation affects not only the prices at which trade occurs, but also —
unlike in models with just market orders — which orders are executed (i.e., which limit orders).
Third, uninformed traders lose to informed traders not only via the usual price effects, but also
through a “winner’s curse” problem in limit order execution. Specifically, fewer limit buys are
executed when the informed trader has good news than when she has bad news and conversely for
limit sells.

The second effect, the impact of order flows on which limit orders are executed, is the focus
of Rock (1995) and Glosten (1994), but is not yet tractable in our model. However, given price
discreteness, there is a wide range of parameterizations for which this particular issue does not
arise. For such parameterizations, we can still study the winner’s curse problem.

The model again has a single round of trading. The timing of events is in Figure 2. At the
beginning a strategic, nsk-neutlal informed trader observes an informative signal . After seemg .
%, she trades to maximize her expected profits. qumdlty traders again learn their targets w(4) and
then, together with the value traders, submit orders for execution.

The risky security has an exogenous terminal payoff v* with a binomial distribution
with probability A

v = _ (15)
with probability h =1 — h.

<t

=

The realized payoff is announced publicly only after trades are executed, but the informed investor
may learn v* beforehand with positive probability (see Figure 3). Conditional on good news 7,
her signal i either reveals this (denoted ) with probability = or not (denof;ed ¥r). Similarly,
conditional on bad news v, a signal v’ either reveals this (denoted ;) with probability 7 or not
{denoted ¥n,). A signal ¢, is thus entirely uninformative.

We must distinguish between the exogenous terminal payoff v* and the specialist’s interim
conditional expectation of v* denoted by v. The interim expectation is an endogenous variable
based on the now informative order flow. It is v which determines at what prices trade occurs and
which orders are executed. In particular, transaction prices are again restricted to a discrete grid

p with the specialist’s bid Q* assumed to be the next price below v and his ask @* the next price

18



above v on the grid.!® .
Notation for liquidity and value orders is the same as in Section 2. For the informed trader, let
Tpm and T, denote buy and sell market orders and z,; and x5 ; buy and sell limit orders at p;.
The total order flows By, B, S and S5 are redefined here to include the informed trader’s orders
and B and S again denote vectors of the total buy and sell orders respectively. |
- A Bayesian Nash equilibrium is a quintuple (b, s, @, x, v) such that investors follow optimal

strategies where
1. Liquidity orders b and s are optimal given each trader i’s target w(z).
2. Total value orders « insure that the expected cost is non-negative for each type of order.
3. The informed’s orders x maximize her expected profit.

and such that the specialist’s interim valuation v is the conditional expectation of v* given these
strategies and the observed order flows (i.e., v = E(v* : B,8)).

The analysis becomes tractable with four additional assumptions.
1.-\-There is an uppér bound § on an appropriateiy sceﬁed version of the infqiméd’s orders.
2. The specialist calls “trading halts” in response to non—factor orders.
3. Aggregate liquidity shocks are exponentially distributed.
4. The probability of being informed = is sufficiently small.

These assumptions are discussed in more detail below. Briefly, however, they restrict the support
of the specialist’s interim valuation v to at most four possible values. Thus, the (endogenous)
interim value grid is v = {v1, vy, v3,v4}. Assumption 1 prevents the iﬁformed trader from submit-
ting unbounded orders (i.e., given the nature of Bayesian ﬁpdating with exponential shocks under
Assumption 3). It can be viewed as a reduced—form for risk aversion or other portfolio restrictions
on the informed. Assumption 4 says that by picking 7 sufficiently low, the value grid v can be
compressed within a single interval in the price grid p. Although trading still reveals information

(i.e., the specialist’s posterior differs from his prior), the price impact is now less than a “tick.” In

870 highlight the endogenous order flow effects, we assume that there are no post-submission/pre-execution
announcements. Public announcements are easily added by treating the terminal payoff v* as the sum of a payoff
which is revealed by 1 plus a second independent payoff which is announced (as in Section 2) before orders are
executed and which simply displaces the valuation induced by the first term either up or down.
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this special case, the bid and ask quotes and thus the transaction prices themselves are unaffected
by it. Hence, in the absence of public announcements, the price grid reduces to p = {p;, p2}.

The independence of prices from order flows simplifies the analysis by reducing the informed’s
trading to a “plunging” strategy - that is, buying the maximal amount (under Assumption 1)
given good news 0, and selling tﬁe maximal amount given bad news ¢¥4. It does not, however,
. reduce informed trading to a matter of indifference for other traders. Theé winner’s curse problem
in Jimit order execution means liquidity and value traders are still hurt by informed trading. Thus
their optimal trading strategies respond to it.

The analysis is divided into three steps. First, the optimal trading strategy for individual
liquidity traders is found and then aggregate to give the total liguidity order flows. Second, the
order placements by value traders and the informed investor are characterized given the liguidity
traders’ strategy. And third, we show that a fixed point e:x.:ists in the liquidity trader strategy.

As in Section 2, a liquidity trader i’s problem is to minimize squared expected trading costs
plus the expectation of a quadratic rebalancing penalty. The choice variables are market buys and
sells, limit buys at p; and limit sells at py. Note that a limit buy (sell) at py (p;) is indistinguishable
from a market buy (sell} in this setting and thus can be ignored. Thus given a target w(i), trader -

i’s problem is

ngisn (Gb'1b1 (i) + eb,mbm(i) + €525 (Z) + (3455,'1%37?7.(7":))2 (16)
+¢ Y RE)E[(0iF + bn(i) — s2() Fo 2 — sm(5) — w(i))?]
v e{v,7}

subject to

bm(i)s by (3) =0
sm(),82(1) 20
where the expected costs (per share) on limit and market orders are
1 = Elp—8)F+T | (17)
€hm = D2— E(ﬁ*) +T

esg = El* —pp)Fon]+T
esm = B#)-pr1+T
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and where ,F"’b,l and ﬁ‘s,g are again the “at the quote” fill ratios. Because of the winner’s curse (see
equations (25) and (26) below), the fill ratios and the terminal payoff v* will be correlated.
Using the same logic as in Propositions 1 and 2, the optimal orders are again unique and linear

in a buyer i’s target w(ip)

bin(ip) = Bm(is)w(is) (18)
bi(ip) = Bulip)wlis)

and in a liquidity seller is’s target w(zs)

smlis) = G'm(iS)lw(iS)l ‘ (19)

s2(is) = oalis)|w(is)]

where the coefficients G (%), F1(%), om(is) and o2(is) are non-negative. If liquidity traders ave
again uninformed price takers with identical beliefs and preference weights ¢, these coefficients are
identical across traders. o _

~ Individual orders are aggregated into total liquidity orders as before. Speciaiiziﬁg the inodel to’
the case of i.i.d. exponentially distributed liquidity shocks Wj and W, (as in the market examples
in Section 2) leads to a particulaily tractable form for the specialist’s conditional expecation v.1°

Value traders again fully exploit any opportunities to place orders which earn expected trading
profits. The aggregate limit orders a1 and ;2 simply insure that the expected costs e,y and e, o
in (17) are non-negative.

This brings us to the main task of this section - the derivation of the informed investor’s
trading strategy and a (hopefully)} parsimonious updating rule for the specialist. What makes this
tractable is the insight that the order flows from liquidity traders are generated by an exact factor
model. Consequently, the four order types here (i.e., market buy and sell and the two limit orders)
do not constitute four independent sources of trading noise for the informed trader to “hide in,”
but implicitly only two — namely, the aggregate liquidity buying and selling shocks W, and W,.
Hence, to pool with liguidity trading, the informed investor’s orders must have the same factor

structure

(ﬁb,lamb,m,ms,%xs,m) = (ﬁlgb:ﬁmgb,a2gm C"mga)- (20) .

**Normality is not a possibility since buy and sell orders are submitted and aggregated separately.
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The only difference is that she picks her personal factor realizations (g3, gs) to maximize expected
profits given her signal .

Our task, then, is to verify that under Assumptions 1 through 4 the informed investor in fact
chooses to submit “factor orders” as in (20) and then to solve for (g;, gs) as a function of the signal
" S

To say whether pooling with the liguidity traders is optimal for the informed trader we must
first say what happens if she does not pool. Towards this end, first note that with factor liquidity
orders and predictable value orders, non-factor deviations are perfectly detectible. To see this,

consider the following normalization of the observed orders

Ay = BB 4 % (21)
Apim = %ﬁf =W+ Eg—’f
Ago = 32;:.9.2 =W, + %f;%
Agm= 5= —w, 4T
m

‘ The difference A1 - Apm = %;‘— S thus permits the specié}ist to measure exactly any &ifféi'ehce .
between normalized informed buy orders. With factor orders this difference is zero. Analogous
statements are true for A; 9 — A, », and informed sell orders. | |

Non—factor orders lead to the following inference problem. Given, for example, non-factor buy
orders %";i % %ﬂ’f‘—, should good news or bad news be infered? There are two ways to deal with this
problem.

The first is to construct an equilibrium in which we (a) restrict attention to n’s such that, given .
factor informed orders, the interim valuation v is always between p; and pp and likewise (b) specify
beliefs such that “off equilibiium” prices (i.e., given non-factor informed orders) are also between
p1 and pp. If this is possible, prices are independent of the informed’s orders so that her optimal
strategy is to take the maximum position (long or short) permitted under Assumption 1. The trick
then is to specify the bound the informed’s trading so that her maximal position itself satisfies the
factor condition. Thus, in choosing to use maximal orders, the informed trader also (indirectly)
chooses to use factdr orders (20). Under this approach then the bound 7 in Assumption 1 is on the

informed trader’s normalized orders.

Bound on Informed Trading. If 8; # 0, then %’f» < g for j =m,1 and likewise, if o; # 0, then
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Ly 4 - .
i < g forj=m,2.

Showing that “in equilibrium” the interim valuation v stays between p; and po is an issue we
take up below. However, an “off equilibrium” valuation v between p; and p is easily supported
by beliefs that any non-factor order is equally likely to come from an informed trader with good
news ), as from one with bad news ;. In this case, the interim valua;sio?_ is unchanged from the
¥ unconditional expectation. More generally, any (nonwconétant) “off equilibrium” schedule taking
values in the interval [py, pa] will work (i.e., good and bad news need not be equally likely for every
non—factor order realization). Non-degenerate posteriors are not unreasonable since, for example,
non-factor sell orders could be submitted in conjunction with factor buying (given good news) or
not {given bad news).

A second approach is simply to allow our specialist, much like specjalists on the NYSE, to call a
“trading halt” when abnormal (non-factor) order flows are observed (i.e., order flows inconsistent
with liquidity trading and hence which una;nbiguousiy reveal the presence of an informed trader).
Clearly this also forces the informed trader to use factor orders.?’ As in the first approach, we again
assume that, given factor orders, the (discrete) bid and ask prices do not depend on the realized
order flows. "This agafn ieads to the use of the maximal feasible?! factor orders. | ‘

This second approach squarely facing the main problem here. Markets with adverse selection
problems require uninformed “noise” to function. Thus, precisely as in Kyle (1985) where the
market is open for market orders only given noise in the market order flow, our market is open
(i.e., ignoring the perfectly predictable value orders) only for factor orders given that there is only
factor noise.

No matter how non-factor orders are excluded, the informed trader’s strategy has two important
properties. First, it has a factor structure (either because of off equilibrium beliefs or a trading
halt rule}. Second, it involves “plunging” or taking maximal positions given good or bad news (i.e.,

provided the interim valuation v is indeed always in the interval [p;, p2}) and otherwise sitting out.

20 Although somewhat heavy handed, the specialist is unlikely to use this power to force other “unreasonable”
equilbria on the market (e.g., ones in which no trading is ever allowed) since he in fact earns expected profits by
keeping the exchange open,

HThere may be some slack for some orders relative to their bounds if, under Assumption 1, these bounds are
imposed on unnormalized rather than normalized orders. However, at least one bound will be binding,
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Thus we have
(615, Bm5,0,0) if ¢y,
(Zb,1) Toms Ts,2, Tsym) = S (0,0,0,0) if P (22)
(0,0,028,0m3) if 4.
The particular form of the informed trader’s strategy has two}inportant consequences for
N Bayesian inference on the equilibrium path. First, because she only uses factor orders the (common)

normalized aggregate order flows

Api = Apm = 4s (23)
-As,2 = As,m = A;.

constitute a sufficient statistic for oll order flows. The availability of a lower dimensional sufficient
statistic greatly simplifies the specialist’s conditional expectation v which otherwise depends on each
of the different order flows. We should be clear that this observation about a sufficient statistic is
a general property of markets in which both the informed and liquidity traders uses factor orders.
In particular, it is not restricted to markets satisfying the simplifying assumptions made on 7 here.

Second the “plungmg aspect of the informed t1adel s strategy, together with exponentiall
liquidity shocks (Assumption 2), leads t0 a par txcuially snnpie form for the spec:ahst’s conditional

expectations v. In terms of the four regions in (A, A,) space defined by the bound § (see Figure

4} we have
TR J(‘g‘f}&;)’{?w) T (5 ~2v)+u if (Ay, Ag) is in region I
Ve ) TR R R (7~ 2 + i (4 A) s inregion T
- 9h(o 7)(1~ - : - .
ef’ﬁh(ﬁ)w+h(a}f1i?rgl?;h}f(g)((il_%_l_eag(1_;!(;,),( (B—v)+v if (A, As) is in region I1I
T n{vm LT . : - .
\ eﬂﬁh(ﬁ)wwiggqg—i;b-(k()l(ih(ﬁ))(l—1:)+6(U —v)tu if (Ap, As) is in region IV.

We denote these interim values by vy,vs,v3 and vy respectively.?? The discrete grid v is a con-
sequence of Bayesian updating with exponential variables. Given exponential liquidity shocks W
and W,, aggregate order flows are only informative about the possibility of informed orders with
good or bad news. For example, in region I'V the valuation vy reflects only the fact that, given the
informed’s plunging strategy in (22), it is impossible to see A; < § given bad news /4, but that

Ap > § is possible given either good news ¢, or no news i,.

Z21n a gymmetric market we actually have a three-point grid with vs = vs.
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Comparative statics for the updating rule (24) are intuitive. In particular, v is increasing in the
probability of being informed =, in the informed trader’s maximum scale § and in the exponential
parameter # which puts more weight on low liquidity shocks (thereby making extreme realizations
like those in region IV more informative). The reverse is true for v;.

The last stép of the equilibrium construction is to note that, given the dependence of the end-
.. points v; and v4 on the probability of being informed, we can always choose 7 small enough to
compress the now endogenous value grid v to lie within the price interval [p1, pa]. Thus, under As-
sumption 3, our provisional assumption of order-independent prices (used to derive the informed’s
plunging strategy) is internally consistent.

With this characterization of the informed’s optimal strategy, the existencé of a Bayesian Nash
equilibrium under Assumptions 1 through 3 hinges on showing that a fixed point in the liquidity
trader’s coefficients  and ¢ can be found. This is readily done using thg same logic as in Proposition
4. The only conceptual difference is that-informed trading exposes limit order execution to a
“winner’s curse” problem. Thus, even in the absence of any price effects, informed trading affects
both the welfare and the trading strategies of uninformed liquidity and value traders.

The Winnel s curse problem is 1eﬂected in the conditional fill ratios which now depend on both
the agglegate shocks W, and Ws and on the informed trader’s mfmmatmn In par tlculal p1 ivate
good (bad) news tends to lower (raise) fill ratios for limit buys

min{l, E—Pﬁtﬁ%{m} i (’l_), T/Ju)

Fit == min{1, ﬁbﬁ%ﬁ if (9,%n) or (v, 9n) {25)

min{l, ‘g;*——%———;j:g;”;‘?} if (v,%q)

and conversely raise (lower) them for limit sells

min{l, W} if (T, )

Fop = { min{l, o} if (8,9) or (2,9n) (26)
min{l, 22 1 if (v, ).

! eoWs+as 2+02g

Substituting these expressions into (17) and from there into the liquidity trader’s problem (16)

a fixed point can be shown to exist exists in (5, 0). Thus we have

Proposition 5 A Bayesian Nash equilibrium exists in this market under Assumptions 1 through

4
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With existence guranteed, we again present a few numerical examples. These examples serve
two purposes. First, they are useful in gauging the reasonableness of our parametric Assumption 3
on 7. And second, they provide some sense of the magnitude of the winner’s curse problem on the
limit order book.

Al of the market parameterizations in Table 2 have terminal payoffs ¥ = 22 and v == 19 with
.. probability A(#) = 1/2, a “one quarter” price grid {p1,p2} = {20 3/8,20 5/8}, a brokerage fee
T = 8.01, preference weight ¢ = 1 and an expected aggregate liquidity shock 1/8 == 500 shares.
We vary the intensity of the adverse selection problem by changing both the probability of being
informed # and the size of the maximal informed position §. The particular values of = and 7 were
chosen to ensure that the resulting interim valuations v are all between p; and py (i.e., they all
satisfly Assumption 3). In essence, they involve giving the informed investor a 1 or 2 percent chance
of learning information worth around $1.50 and letting her trade close to 500 or 1, 000 shares using
a mix of limit and market orders. Hence, tlie parameter restrictions implied by Assumption 3, at
least in this example, do not seem unreasonable out-of-hand.

For each equilibrium: we report the expected cost of a limit buy 65,1,23 the liquidity buyer
coefficients B and B and the total limif buys from value traders aﬁ’j. In contrast to Section 2,
" the expécteﬂ Jimit fill ratio E(ﬁ‘b,l : 7} is now conditioned .01'1 whether the informed trader has gbod
news 1, no news i, or bad news 3. We report all three values as a measure of the magnitude of
the winner’s curse. Again, the corresponding values for sell orders are symmetric.

The first market in Table 2 is the benchline case with no winner's curse problem (i.e., the
probability of being informed is m = 0). Not surprisingly, increasing § and/or # exacerbates the
winner’s curse problem in limit order execution leading to greater reliance on market orders by
liquidity traders and to less aggressive positions for value traders. Moreover, these changes arve
not small — suggesting that the impact of the winner’s curse problem on the limit order book is
significant. For example, in the worst case scenario (row 5 with # = .02 énd g = 1000 shares)
the expected limit fill ratio given bad newé is three times the fill ratio given good or no news.?*

Consequently, the number of liquidity and value limit orders is approximately 20 to 25 percent

23%ince market buys are always filled at pa and since the expected payoff is, by construction, at the midpoint of
the bid—ask spread or 20 1/2, we again have that the expected cost for a market order is half a “tick” (now $.125)

plus the brokerage fee T

The asymmetry in expected fill ratios given good and bad news vis-a-vis the no news case is because bad news
leads to 946.8 more market sells (from the informed trader) in the numerator of F,y whereas bad news only leads to
167.1 more limit buys in the denominator.
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4 Conclusion

This paper presents a single-period microstructure model with both market and limit orders. In
particular, traders may choose to use any combination of these orders. A continuum of optimizing
: liquidity traders, value traders and possibly a strategic informed trader have symmetric access to
these orders. A quadratic liquidity objective allows us to characterize equilibria in markets with
either exogenous or endogenous information revelation and to solve numerically for examples. This
setting also includes non-informational bid/ask spreads and brokerage costs.

Qualitative features of our analysis include {(a) a random limit order book which, together with
market orders, is generated by an exact linear factor model, (b) a relatively modest role for value
traders (in constrast to Rock (1990)) once even moderate brokerage costs are introduced, (c) a
winner’s curse problem in limit order execution with informed trading and (d) a sufficient statistic
for different order types for use in Bayesian updating in the presence of an informed trader.

This model offers & rich fiamewcnk in which to explore the 1nf01mat10na1 and transactional
. properties of financml markets. It can also be extended in many directions. Fust we have not
exhausted the ability of this framework to accomodate institutional detail. For example, it would
be possible to allow market orders (rather than the specialist) to pick off exposed limit orders and
to explore the impact of coarser and finer price grids on limit order placement. Second, there are
also important conceptual issues still to be addressed — most notably, relaxing the restriction on
the intensity of the adverse selection problem so that order flows {or more precisely the information

they reveal) can also affect which limit orders are executed.
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Appendix

Proof of Proposition 1: (sketch) Clearly a limit buy at the maximum possible ask {p4 here)
is dominated (in terms of execution probabilities and cost} by a market order for the same number
of shares since market orders are executed at the (potentially lower) realized ask. Hence liquidity
buyers will not use such buy orders.

To see why a liquidity buyer 4, avoids market and/or limit sell orders, suppose that such orders
were optimal. Given that all orders are at best “break even” in terms of cost, these sell orders must
be useful only in that they help a buyer to better meet his target w. Thus it must be that in some
states his buy orders lead to the purchase of more than w(i;) shares. However, sell orders reduce
shares bought (weakly) more in “high price” states than in “low price” states, but it is precisely in
the “high price” states in which his buy orders bring in relatively fewer shares. Hence it is always
possible to take a “buy” profile which includes sell orders and construct a profile without selling
and with reduced buying that has both lower cost and comes closer to w. Hence, sell orders are
not optimal for a liguidity buyer.

The arguments for liquidity sellers are symmetric. B _

~ Proof of Propbsiti(')n 2: This follows from the fact that, given a fixed w(s), trader #’s objec-’
tive (6) is quadratic and so has first-order conditions of the form J-¢ > ¢- w(:') (together with the
non-negativity constraints) where J is a matrix of coefficients, ¢ is the vector of order quantities
(bm(2),. .., s4(2)) and c is a vector of constants. The inverse J ! exists given a continuous distribu-
tion for aggregate orders. Thus the constrained critical point exists and is linear in w(i), is unique
and is a minimum (since the unconstrained objective is quadratic). |

Note that (given common beliefs about aggregate orders and the value v), ¢ is the only investor-
specific parameter on which JJ and ¢ depend. Thus if all investors have identical weightings ¢, then
buyers’ orders (and similarly for sellers) will be identical up to their linear dependence on individual
w(i)’s. g - . |

Proof of Proposition 3: By inspection from (2} through (5), (9) and (10), each pair of total
value orders ap,; and a,; appears in at most only one pair of expected costs €5 ; and e, ;. Thus the
question is whether at each limit price p; a pair of non-negative value orders can be found which
makes the corresponding pair of expected costs non-negative. In particular, there are no “spill
over” effects on limit order costs at other prices.

Given a fee T' > 0 there clearly is no problem to insure that the expected costs for limit buys
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at p; and limit sells at pg are non-negative since there is no correspon&ing fill ratio for limit orders
on the other side of the market at these prices. Thus, if in the absence of value trading expected
costs would be negative, simply increase value trading in these orders to drive these costs to zero.

Consider next limit buys and sells at py. Note first that both expected costs ep2 and e;9 can -

not simulténeously be negative. This follows since for ep,2 10 be negative, we must have
h(v1)(p2 — v1) + h(v2)(p2 — v2) B(Fy 2) <0,

but then we cannot also have
h{vi)(v1 — p2) B(Fy2) + h(vz)(va — p2) < 0

as is necessary for e, 2 < 0. Thus, if one of the expected costs is negative, again increase value limit
orders of that type until the order’s expected cost is driven to 0. The fact that expected costs are
continuous in value orders together with the fact that both expect costs cannot simultaneously be
negative insures then that the expected cost for the other hmlt 01de1 remains non- negatlve

The same logm also apphes to limit orders at p3. n

Proof of Pmposmon 4: The strategy we use is to find a fixed point in the first two non-central
moments (both own and cross) of the six fill ratios ﬁ’b,j and ﬁ’s,j

The first step is to note that the Theorem of the Maximum together with our quadratic Houidity
objective (which gurantees uniqueness of the solution and its dependence on only the first two
moments of the fill ratios) implies that the optimal order coefficients (3, 0) are continuous in the
first and second (and no other) fill ratio moments,

The second step is to note that the value order flows are continuous in the coefficients (8,0).
This follows from the expected costs (4) and (5), the definitions of  ; and Fs,j in (2} and (3)
together with (9) and (10).

The third step is to note that the realizations .F‘b'j and F, ; and hence their moments all are in
the interval [0,1] and are continuous in the coefficients (3, o).

The fourth step is to combine steps 1 through 3 to obtain a continuous composite mapping from
a vector of conjectured fill ratio moments via the liquidity and value order flows they induce back
into a new vector of moments. Since the mapping is onto with a compact domain [0,1], the Brower

Fixed Point Theorem gurantees that a fixed point exists.
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The final step is to use Proposition 2 to then calculate the corresponding liquidity order coeffi-
cients at the fixed point moments. B

Proof of Proposition 5: This result follows from repeating the same steps as the in proof of
Proposition 4 after. recognizing that the (again bounded) non-central cross moments between the

payoff v* and the fill ratios Fy ; and Fy 3 must also be include in the moment fixed point. B
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Table 1

Equilibrium with Exogenous Resolution
of Uncertainty*

Expected Fraction

Liquwdity Buyer’s

Value Traders’

Probabilities Expected Cost Executed Order Coefficients Buy Orders
@) | ) | hes) | ea| ez |E(FRa)| BR[| Bl B| Bml| wma| e
Panel A: ¢ = 0.1, Transaction Costs = $.05 per share
0.36 1 0.40; 0.30 06.031 0.046 1.00 0.92 | 0.0000 | 0.1351 | 0.8012 0 0
0.15 O.;{O 0.15 | 0.041 0.023 1.00 0.83 | 0.0000 | 0.3043 ! 0.6836 0 0
0.05| 090 0.05]0.047| 0.010 1.00 0.77 | 0.0000 | 0.4050 | 0.6171 0 0
Panel B: ¢ = 0.1, Transaction Costs = $.01 per share
0.30{ 04071 ©0.30| 0.000 0.005 6.53 | -0.93 | 0.0066 | 0.1285 | 0.8664 | 602 0
0.15} 6.70§ 0.150.001 | 0.000 :-1.00 ‘/).7/6.44 1 Q,OOGO 0.1380 | 0.8898 01 785
0‘.(.)5 0.90 0.05 0.007 | 0.000 1.00 0723 0.0000 | 0.1622 | 0.9100 0 1842
Panel C: ¢ = 0.1, Transaction Costs = $.001 per share
0.30 | 040/ 0.30} 0.000 0.000 0.05 0.79 | 0.0000 | 0.1060 | 0.8985 | 8374 167
0.15¢ 0.70] 0.15| 6.000 (.000 .11 0.24 | 0.0000 | 0.0946 | 0.9325 | 4345 1885
0.656} 090} 0.05] 0.060 0.000 0.32 0.07 | 0.0000 | 0.0962 | 0.9505 | 1405 6398
Panel D: ¢ = 1.0, Transaction Costs = $.01 per share
0.30 | 0.40 0.30] 0.000{ 0.004 0.53 0.99 | 0.0007 | 0.0156 | 0.9839 | 687 0
0.15{ 070! 0.15; 0.001 0.000 1.00 0.44 1 0.0000 | 0.0153 | 0.9878 0 936
0.05| 0.90} 0.05)0.007 | 0.000 1.00 0.23 | 0.0000 | 0.0177 | 0.9902 0 2076

* All market parameterizations have exponential liquidity shocks with § =

© [20.0625 20.187520.3123], a price grid p = [20.00020.12520.25020.375] and a convergence tolerance of

0.0001. Liquidity and value sell orders are symmetric with o4 = £, o5 = F1, etc.

..
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