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ABSTRACT.  This paper considers the problem faced by a financial intermediary with n 
assets to sell in the presence of asymmetric information.  I show that when the 
intermediary has superior information about the value of each asset, the intermediary is 
better off selling shares in the assets individually rather than as a pool. In particular, 
pooling has an information destruction effect that operates to the disadvantage of the 
intermediary by preventing the intermediary from fully exploiting its information 
regarding each individual asset.  If, however, the intermediary can create a derivative 
security that is collateralized by the assets, pooling and “tranching” may be optimal. 
Tranching allows the intermediary to take advantage of the risk diversification effect of 
pooling to create a low risk and highly liquid security.  I show that if the residual risk of 
each asset is not too highly correlated, then for large enough n, the risk diversification 
effect dominates and pooling and tranching is optimal for the informed intermediary.  I 
then contrast this with the case of an uninformed originator, selling to both informed 
intermediaries and uninformed investors.  I show that for an uninformed seller, pooling is 
is preferred to separate asset sales.  Finally, I combine these results in a dynamic model 
of financial intermediation: uninformed originators sell pools of assets, some of which 
are purchased by informed intermediaries.  These intermediaries then further pool the 
assets and sell senior tranches to investors in order to raise cash to buy new securities in 
the origination market.  By doing so, the intermediaries leverage their capital more 
efficiently, enhancing the returns to their private information.   
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1. Introduction 

The repackaging of assets is ubiquitous in financial markets.  Probably the most often 
discussed example of this phenomenon are mortgage-backed securities.  These securities 
are created by first taking the cash flows from a large number of individual home 
mortgages and pooling them into a single financial trust.  This trust is then sold to 
investors by selling separate classes, or tranches, of securities whose claims in aggregate 
represent a 100% interest in the trust, but which are individually highly heterogeneous.  

Since the development of this process of securitization for residential mortgages, it has 
been generalized to include many other types of assets, including car loans, credit card 
receivables, Western Union deposits, commercial mortgages, etc.  A recent example is 
the case of collateralized bond obligations (CBO’s) which are created by pooling together 
dozens of different junk-bond issues.  The pool is then tranched into an investment grade 
“debt” security that ranks first in interest and principal repayments, and a residual 
“equity” sliver in which the default risk is concentrated.  Another innovation applies the 
concept recursively: the so-called “kitchen-sink bond” is formed by tranching a low risk 
debt security from a pool of residual pieces from other asset-backed securities.1   

These examples share the common feature of a financial intermediary purchasing and 
pooling a number of distinct assets and reselling the pool as a collection of new 
securities.  Note, however, that in a world of perfect capital markets, such repackaging 
would be irrelevant.  This is at odds with the reality of the accelerated growth of the 
asset-backed securities market, and the substantial profits of the intermediaries involved.  
The goal of this paper is to develop a rational equilibrium model of this process that is 
consistent with these and other stylized facts. 

In order to explain the gains from the repackaging of asset-backed securities, three 
important market imperfections seem relevant: transactions costs, market incompleteness, 
and asymmetric information.  While all of these imperfections are likely to be important 
in reality, this paper will focus on the impact of asymmetric information.  This focus is 
not intended to deny the presence and importance of transactions costs or market 
incompleteness.  On the other hand, there are features of the market that seem best 
explained by an asymmetric information model.  For example, market incompleteness 
does not explain the construction of simple “pass-through” pools, which do not augment 
the span of tradeable claims.  It is also unlikely to explain the CBO market, since good 
substitutes already exist for the “debt” and “equity” tranches that are created.  
Transactions costs could be an advantage to pooling, but that explanation offers little help 
in rationalizing the pieces the pools are carved into.  As we shall see, the asymmetric 
information model offers useful and consistent insights into many of these examples. 

                                                           
1 At a more abstract level, even corporate securities can be viewed as a repackaging of the underlying 
human and physical assets of the firm into debt, equity, and other securities.  Thus, while the model 
developed in this paper will focus on the application to asset-backed securities, many of the results may 
also be relevant for corporate finance. 
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Of course, one might question the importance of asymmetric information in these 
markets.  For instance, for many asset-backed securities, such as mortgage-backed 
securities, the attributes of the underlying assets might be reasonably regarded as public 
information.  However, information asymmetries may still exist because the models used 
to price these securities are largely proprietary.  If these models produce heterogeneous 
results, then the value estimates produced by one’s own model is an important piece of 
private information.  Empirical evidence in favor of this is provided in a recent paper by 
Bernardo and Cornell (1997), who analyzed data from an auction of mortgage-backed 
securities (MBS’s).  Though all the bidders were sophisticated investors or investment 
banks, they found extreme variability in the bids, with the winning bid exceeding the 
median bid by over 17% on average.  Further analysis of the data leads them to conclude 
that the most probable explanation for this variability is asymmetric information 
regarding valuation.  Additional evidence on this is provided by Wallace (2001), who 
documents the degree of heterogeneity across similar MBS’s. 

The basic story of the paper is as follows.  Consider a market with a sophisticated 
financial intermediary that has a superior ability in valuing some type of asset.  Based on 
this ability, the financial intermediary can earn a profit by buying under-priced assets and 
holding them to maturity.  On the other hand, in order to fully leverage its available 
capital, the intermediary would prefer to resell the securities at a fair price and reinvest 
the proceeds in newly identified under-priced assets. 

The difficulty for the financial intermediary is that when it attempts to resell the assets, it 
has superior information about their value and so faces a “lemons” problem, as described 
by Akerlof (1970).  This lemons problem results in illiquidity: the price the intermediary 
receives for the assets is decreasing in the quantity sold.  The first part of this paper 
examines the possibility of pooling and tranching the assets prior to resale in order to 
mitigate this lemons problem. 

To do this, the paper builds on an earlier asymmetric model of security design introduced 
by DeMarzo and Duffie (1999) and the signaling model of Leland and Pyle (1977).  
These papers develop signaling models of the sale of a security, in which the issuer 
signals a high value security by the issuer’s willingness to retaining a portion of the issue.  
In the context of such a model, this paper shows that in fact, pooling of the individual 
assets prior to sale is not advantageous to the informed intermediary.  The reason for this 
is that pooling the assets destroys the asset-specific information held by the intermediary, 
eliminating the intermediary’s “option” regarding how aggressively to sell each asset.  
This information destruction effect reduces the payoff to the intermediary. 

Next, I consider the effect of both pooling and tranching by the informed intermediary.  
Here again I rely on earlier results by DeMarzo and Duffie (1999) and DeMarzo (1997) 
that demonstrate that in such an environment, the optimal security to issue is a debt 
security that is backed by the asset pool.  Here I show that there is a beneficial risk 
diversification effect of pooling, which allows the intermediary to construct a low-risk 
debt security from a large pool.  This low-risk debt is less sensitive to the intermediary’s 
private information, and hence is more liquid.  Finally, I show that as the size of the pool 
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grows large, the risk diversification effect dominates the information destruction effect, 
so that pooling and tranching is optimal for the intermediary. 

Having analyzed the intermediary’s problem once it chooses to sell the assets, the paper 
then considers the asset acquisition process for the intermediary.  The assets are generally 
created by “originators” specializing in marketing and other customer services, who then 
sell the assets to the market.  Here I look at the special case in which the originator is less 
sophisticated and therefore less informed about the value of the asset than the financial 
intermediary.  The originator puts the assets up for sale to similarly uninformed investors, 
but cannot prevent the financial intermediary from participating.  Thus, the intermediary 
will buy those assets it knows to be of high quality.  This skews the allocation to the 
uninformed investors so that they are more likely to purchase a low quality asset.  The 
net result is that to attract the uninformed investors, the originator must under-price the 
asset initially, for the same reason that IPO’s are under-priced in the model of Rock 
(1986). 

In the context of this model of origination, I then consider whether the originator has an 
incentive to pool the assets prior to issue.  Here I find that in contrast to the financial 
intermediary, the originator has an incentive to pool the assets even if they are not 
tranched prior to sale.  Pooling prevents the intermediary from selectively purchasing just 
the highest quality components of the pool, reducing the adverse selection problem of the 
uninformed investors.  Finally, I show that this model of origination allows for the 
endogenous determination of many of the parameters of the asset-sale model. 

Combining these results leads to a model of informed intermediation.  Uninformed 
originators pool assets so as to reduce under-pricing when issued.  Informed 
intermediaries use their information to selectively purchase the highest quality pools in 
the origination market.  In order to raise capital for future purchases, the intermediaries 
further pool the asset pools and issue low-information-sensitive security tranches backed 
by these large pools.  The model demonstrates how the ability to repackage securities 
enhances the returns to information. 

This stylized model fits well the market for asset-backed securities.  For example, in the 
case of mortgages, mortgage originators generally pool the mortgages they originate into 
pass-through mortgage backed securities (MBS’s) consisting of 20-30 mortgages.  
Indeed, data since 1995 reveal that over 50% of all mortgages originated in the U.S. are 
ultimately pooled into MBS’s.  These pools are then sold to intermediaries who generally 
pool the mortgages further, typically combining 100-300 of these MBS pools into a real 
estate mortgage investment conduit, or REMIC.  The intermediaries then issue securities 
backed by the REMIC known as collateralized mortgage obligations (CMO’s).  The most 
liquid of these CMO’s are generally designed to be relatively insensitive to the rate of 
mortgage prepayment, consistent with the notion that the intermediaries themselves are 
likely to be best able to evaluate and price prepayment risk.2  The figure below illustrates 

                                                           
2 Prepayment risk (the risk that the borrower repays the mortgage prior to maturity) is the most important 
risk for MBS’s.  Credit risk is not an issue due to guarantees typically provided by the various agencies 
(Fannie Mae, Freddie Mac, Ginnie Mae).  In contrast, for other types of asset backed securities (ABS’s), 
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the fraction of MBS’s resecuritized as CMO tranches over the last decade.3  Also 
consistent with the model of this paper is that while intermediaries generally sell off 
many of these CMO’s, they also retain significant fractions of them in their own 
portfolios.  See Wallace (2001) for a detailed analysis of this market and its participants.   
 

1.1. Related Literature  

There are a number of papers related to the topics addressed here.  Leland and Pyle 
(1977) develop the idea of a signaling-based model of liquidity in which a risk averse 
owner-entrepreneur wishes to diversify and sell his or her equity stake in the firm to 
investors.  They demonstrate that the entrepreneur can signal his or her private valuation 
for the security by retaining some fraction of it, and bearing the costs of being under-
diversified.  Owners of good firms are more willing to retain shares at a given price, so 
the fraction sold becomes a signal of quality.  In equilibrium, the greater the fraction of 
the equity the entrepreneur sells, the lower the market price of the equity; hence demand 
is not perfectly elastic.  Leland and Pyle also conjecture that signaling costs might be 
reduced by combining many projects, leading to specialization in information production. 

This paper considers both the Leland and Pyle signaling model and a variation in which 
the asset holder is risk neutral but has an above market discount rate (due to the 
availability of other positive NPV investments).  By a similar reasoning, an equilibrium 
results in which owners signal an asset’s high quality by their willingness to retain some 
of the cash flows.  I show, however, that in both settings the conjecture of Leland and 
Pyle is false in the sense that a simple pooling of assets will not reduce asymmetric 
information costs and enhance liquidity. 

Diamond (1984) develops a model of financial intermediation based on monitoring costs.  
In his model, there is an ex-post asymmetry of information because the cash flows of 
firms are not observed by investors.  To ensure repayment, investors must either pay a 
                                                                                                                                                                             
credit risk is generally quite important.  Consistent with the model, for these ABS’s, pools are generally 
tranched into prioritized securities, with the most senior securities being relatively insensitive to 
information regarding credit quality. 
3 Data from The Bond Market Association, www.bondmarkets.com. 
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cost to monitor the firm’s payoff, or impose a non-pecuniary penalty to make disclosure 
of the payoff incentive compatible for the firm’s manager.  If a firm has more than one 
investor, monitoring requires investors to duplicate their efforts.  If monitoring is 
delegated to a financial intermediary, however, this duplication of effort can be avoided, 
and monitoring borrowers is more efficient than using penalties.  Moreover, as the size of 
the financial intermediary grows large (through the pooling of independent securities), 
the intermediary can offer a debt contract to investors with a probability of default 
approaching zero.  Since the intermediary rarely defaults, the expected penalties 
necessary to maintain the intermediary’s incentives become negligible. 

Diamond (1993) and Winton (1995) also motivate different classes of investors through 
seniority of claims.  These models suggest that multiple tranches are important when 
investors need to take actions to prevent borrower misbehavior.  For example, Winton 
(1995) shows how by issuing prioritized claims, the borrower can reduce investors’ 
monitoring costs.   

This paper has some similarities to these models.  In particular, debt is also derived as an 
optimal contract for a large intermediary to issue.  On the other hand, I focus on an ex-
ante information asymmetry in which sophisticated investors become intermediaries 
because they have superior information about the asset values.  This type of information 
is probably much more relevant for many asset-backed securities. For example, 
monitoring the cash flows of the underlying mortgages of CMO’s is not typically 
discussed as a problem with these securities, whereas there is general agreement that the 
major investment banks have a superior ability to value them.4   

Gorton and Pennachi (1990) develop a model of financial intermediation in which there 
are two “clienteles” of investors, informed and uninformed.  Informed investors exploit 
the uninformed investors when the uninformed are in need of liquidity.  In their model, 
an optimal response of the uninformed is to form an intermediary that splits cash flows 
into a riskless debt and equity claim.  The uninformed can then use debt claims to satisfy 
their liquidity needs and avoid losses from trading with the informed.  Note that, in 
contrast with our model, the intermediary in the Gorton and Pennachi model is 
uninformed.   

Winton (2001) considers a model in which the intermediary (a bank) has an incentive to 
monitor and acquire information about the underlying assets (a firm) in order to reduce 
agency costs.  The intermediary may suffer a liquidity shock, however, and be forced to 
sell its holdings.  In a model similar to DeMarzo and Duffie (1999), he shows that as an 
informed seller, the intermediary’s liquidity costs are reduced if it holds debt rather than 
equity securities.  He does not consider the possibility of pooling and tranching the 
securities of multiple firms, however.5   

                                                           
4 On the other hand, the ex-post monitoring may be a more important issue for other types of asset-backed 
securities, such as collateralized loan obligations (CLO’s). 
5 In fact, the pooling and tranching of bank loans into collateralized loan obligations (CLO’s) is an 
important and rapidly growing class of asset-backed securities.   
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Glaeser and Kallal (1997) have a model of asset-backed securities in which they look at 
the incentives for the issuer to gather information.  They note that pooling many 
underlying assets together has ambiguous effects on the incentives for the issuer to 
become informed and therefore on the liquidity of the pool.  Our model extends their 
analysis by allowing the issuer to issue derivative tranches rather than simple pass-
through securities, which I demonstrate to be critical.  Riddiough (1997) also has a model 
of security design for asset-backed securities.  He notes that splitting off a completely 
riskless security is beneficial since the issuer will suffer no asymmetric information 
losses on that security.  The model of this paper is more general and does not require that 
the security tranche be riskless.  His paper focuses on the agency and governance issues 
that arise in this setting, which I do not address here.   

A number of papers have explored the benefits of pooling in reducing adverse selection 
when uninformed traders compete with informed traders.  Subrahmanyam (1991) shows 
that security index baskets, such as stock index futures, can be more liquid than the 
underlying stocks in a Kyle (1985)-type model in which the uninformed liquidity demand 
is exogenously distributed across assets.  Also in a Kyle-type model, Gorton and 
Pennachi (1993) look at the endogenous portfolio choice of the uninformed, and consider 
the construction of an optimal composite security.    Axelson (1999) explores this issue in 
an auction context in which buyers have differential information.  He shows that as the 
number of assets grows large, auction revenues can be improved by pooling assets prior 
to sale.  His analysis corresponds most closely to that of Section 5, where I also 
demonstrate that pooling helps reduce the adverse selection problem when there is one 
informed buyer and many uninformed buyers.   

2. The Underlying Assets 

Consider the problem faced by an intermediary who holds n assets, but who would prefer 
to hold cash.  This intermediary must choose whether to sell the assets separately, as a 
pool, or as an asset-backed security based on the pool.  To evaluate the acquisition and 
sale decisions of this intermediary, I introduce the following assumptions regarding the 
underlying assets. 

Each asset i has a final non-negative payoff of Yi = Xi + Zi.  The component Xi represents 
the private information of the intermediary, and Zi is the remaining risk the intermediary 
faces.  Let Y ≡ (Y1,…,Yn) denote the vector of payoffs, and 

1

n

i

n
iY Y

=
≡ ∑  denote the 

cumulative payoff of the assets, and similarly for X, Xn and Z, Zn.  Finally, introduce the 
notation X−i ≡ (X1,…, Xi−1, Xi+1,…, Xn).  

The first assumption is without loss of generality:  

1. E[Zi | X] = 0; or equivalently, Xi = E[Yi | X]. 



 7

This assumption simply states that Xi embodies all of the information known to the 
intermediary regarding the expectation of the cash flow Yi.  Note that this assumption 
could have been derived from the primitive assumption that I represents the 
intermediary’s information, and the definition Xi ≡ E[Yi | I]. 

Next, introduce the technical assumption: 

2. Given any X−i, the conditional support of Xi is a closed interval. 

This assumption is useful since it implies that whatever information the intermediary has 
revealed about the assets other than i, there still remains a continuum of possible 
information states regarding asset i. 

The last assumption is substantive, but only mildly restrictive: 

3. Given any X−i, the conditional support of Xi has greatest lower bound xi0 > 0. 

That is, the “worst case” outcome of Xi is independent of X−i. Given this assumption, note 
that the support of Xn is an interval with greatest lower bound 0 0

n
ii

x x=∑ . 

Note that while this last assumption implies that any two assets Xi and Xj are not perfectly 
correlated, it does not rule out any other correlation.  For example, if the assets represent 
loans, knowing the quality of loan i might affect the probability that loan j is “bad.”  The 
assumption simply states that this probability does not go to zero − whatever the quality 
of other loans, it remains possible that loan j is bad.6 

Assume that ownership of each asset is perfectly divisible.  In particular, owning a 
fraction [ ]0,1iq ∈  of asset i entitles the owner to the cash flows qi Yi.  In the various 
applications of the rest of the paper, I investigate the relationship between the market 
price for the assets and the fraction sold by the intermediary when there is illiquidity 
resulting from asymmetric information.   

Finally, the remaining market assumption is that there exists a large number of risk 
neutral investors.  For convenience, assume also that the market interest rate is zero.  
Hence, in the absence of asymmetric information (i.e., if X were public), each asset could 
be sold by the intermediary for a market price of Xi. 

3. Pooling and Information Destruction 

In this section I consider the case in which the intermediary has private information X 
and attempts to sell the assets either individually or as a pool.  For a given demand 
function, an intermediary with a low valuation optimally sells a greater quantity of the 
asset than an intermediary with a high valuation does.  Hence, the greater the quantity 

                                                           
6 Note also that the positivity of xi0 does not imply strictly positive cash flows Yi.  It merely requires that 
the security retains some positive “option” value even given the worst case information.  
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sold the lower the implied valuation for the asset.  Since uninformed investors interpret 
the sales decision of the informed intermediary as a signal of the asset’s value, the 
equilibrium demand schedule for the assets is downward sloping.   

I show that the intermediary’s payoff exhibits a natural convexity resulting from the 
intermediary’s option to choose the quantity of each asset to sell based on the information 
regarding that asset.  Pooling destroys the option to use the asset specific information to 
determine the quantity of each asset to sell.7  This information destruction effect implies 
that it is not optimal for the intermediary to sell the assets as a single pool.  Rather, the 
intermediary’s payoff is highest if each asset is sold individually to the market. 

The central model of the paper developed in this section involves a risk-neutral 
intermediary who discounts future cash flows at higher rate than other investors.8  Thus, 
the intermediary would prefer to sell the assets for cash.  This corresponds to the model 
of DeMarzo and Duffie (1999) – henceforth D&D – and can be motivated by supposing 
the intermediary has access to other investment opportunities with an above market 
return.9  In particular, if the intermediary earns a profit buying and selling assets, the 
intermediary may wish to raise cash to fund new asset purchases.  Later in the paper, I 
model this process and discuss the possibility of endogenously determining this 
preference for cash. 

Thus suppose the intermediary is risk neutral and has a discount factor δ < 1.  Suppose 
the intermediary sells a fraction q of the entire pool of assets to investors, at a market 
price for the pool of p.  Then the payoff to the intermediary is given by 

( )(1 ) n n nE q Y qp X X q p X δ − + = δ + − δ  . 

If the intermediary anticipates a market demand schedule given by P(q) for the pool, then 
the intermediary with conditional value Xn = x will choose a quantity QP(x) to issue that 
solves 

 ( )( ) ( )( )max maxq qx q P q x x q P q xδ + − δ = δ + − δ . (1) 

Equation (1) reveals that the total payoff to the intermediary is the intermediary’s 
discounted value of the asset plus any “profit” from the sale of the security.  Thus, the 
intermediary’s asset sale decision is to choose a quantity to sell to maximize this profit.  
Let ΠP(x) denote the associated profits: 

                                                           
7 Of course, in a strategic setting options are not always valuable.  In this case, the asset-by-asset quantity 
option makes it easier for good types to separate from bad types. 
8 Note that some motive for trade is necessary to avoid the No Trade Theorem (see Milgrom and Stokey 
(1982)).  While a higher discount rate is one possible motive for trade, an alternative is risk-sharing, as in 
Leland and Pyle (1977).  The intuitions of this model are robust to that setting as well, as I show in the 
appendix. 
9 Alternatively, the intermediary may be a bank facing minimum regulatory capital requirements. 



 9

 ( ) [ ] ( )( )0,1maxP
qx q P q x∈Π = − δ . (2) 

The following important properties follow immediately from the definition of ΠP: 

LEMMA 1. For any demand function P, the intermediary’s profit ΠP is decreasing 
and convex in x.  Also, the fraction QP(x) that the intermediary sells is decreasing 
in x. 

PROOF:  For fixed q, the intermediary’s objective is decreasing and linear in x with slope 
−qδ.  Hence ΠP is the upper-envelope of linear functions and is therefore convex.  The 
fact that q is decreasing follows from the convexity of ΠP and the fact that it has −qδ as a 
subgradient. �  

The properties described in LEMMA 1 are clearly robust, and will drive much of the 
subsequent analysis.  However, it is useful to describe an equilibrium in this setting.  
Specifically, the demand schedule of the investors is not arbitrary, but is based on their 
perceived value of the pool given the intermediary’s decision.  In a standard rational 
expectations or Bayes-Nash equilibrium, the demand function should satisfy 

 ( )( ) ( )P n n P nP Q X E X Q X =   . (3) 

Note that from LEMMA 1, for any such equilibrium the demand schedule P is (weakly) 
downward sloping in the range of Q.  We say that the equilibrium is separating if 
P(Q(Xn)) = Xn.  The following characterization of the equilibrium is from D&D: 

LEMMA 2. Given the worst case asset value x0 > 0, there is a unique separating 

equilibrium, given by ( ) ( )
1

* 1
0Q x x x

−
−δ=  and ( )* 1

0P q x qδ−= .  The equilibrium 

payoff function ( ) ( )*
0 0x x x xΠ = π , where 

 ( ) ( ) ( )1
0 01x x x x

−δ
−δπ = − δ . 

PROOF:  See D&D.  The solution follows from differentiation of (2) and (3), and the 
boundary condition that Q∗(x0) = 1.  �  

As with all signaling models, multiple equilibria are possible in the absence of 
restrictions on out of equilibrium beliefs.  For the simple model considered here, the 
separating equilibrium is the natural one to consider given that the intermediary’s payoff 
satisfies the single-crossing property, and can be shown to be the unique equilibrium 
satisfying standard refinements (see D&D). 
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Note that the intermediary’s quantity choice depends upon the ratio of the asset value to 
its worst case value, x/x0.10  Thus the intermediary’s equilibrium payoff is homogeneous 
of degree 1 in x and x0.  While having an explicit functional form for π is convenient, 
recall that LEMMA 1 implies that π is decreasing and convex without further calculation.  
This describes the equilibrium payoff for the intermediary if the intermediary chooses to 
sell the entire pool as a single asset.   

Next suppose that the intermediary sells the assets separately.  Consider the sale of asset 
i.  Essentially, the intermediary faces the same problem as in (2) above with Xi in place of 
Xn.  The investors are also in an analogous position, with the possible exception that they 
may have learned information about Xj from the prior sale of asset j ≠ i.  This might alter 
their conditional distribution for Xi.  However, note that the equilibrium described above 
only depends on the worst-case outcome of the expected asset payoff, and not on the 
distribution itself.  By our initial assumptions, the worst case is not affected by X−i.  
Hence the equilibrium is unchanged.  This leads to the following:11 

LEMMA 3.   If the intermediary sells each asset i separately, there is a unique 
separating equilibrium in which the intermediary’s total payoff is given by 

 ( )0 0
1

n

i i i
i

X x x
=

π∑  

Thus, the intermediary’s payoff from a separate or a pooled sale of the assets can be 
compared, yielding the main result of this section: 

THEOREM I.   The intermediary prefers a separate sale of the assets to a pooled 
sale; that is, 

0 0
1 0 0

nn
ni

i n
i i

X Xx x
x x=

   
π ≥ π   
   

∑ , 

where the inequality is strict if Xi/xi0 is not equal for all i. 

PROOF:  By the convexity of π, and the fact that 0 0
n

ii
x x=∑ , we have 

 0 0

1 10 0 0 0 0

nn n
i i i i
n n n

i ii i

x X x X X
x x x x x= =

     
π ≥ π = π     
     

∑ ∑  

                                                           
10 As in all separating equilibria, the equilibrium is highly sensitive to the support assumption, x0.  This 
extreme sensitivity to the support and insensitivity to the distribution is a concerning feature of signaling 
equilibria.  In Section 6 of the paper, I embed this static model in a dynamic setting and show how x0 arises 
endogenously based on the full distribution of X. 
11 See appendix for proofs not in the text. 
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The strict inequality follows from that fact that Q∗ is strictly decreasing so that π is 
strictly convex.  �  

Thus, THEOREM I demonstrates that an informed seller will not prefer to a sell a single 
“pass through” pool of securities, but will instead prefer to sell the securities individually.  
The intuition for this result is that because the intermediary holds an option” regarding 
the quantity of the asset to sell, the intermediary’s payoff is convex in the privately-
observed quality of the asset.  Therefore, the intermediary would prefer not to combine 
high and low quality assets to create a medium quality pool.  I refer to this as the 
information destruction effect associated with pooling.   

Note that the proof of this result relies purely on the convexity of π and not its explicit 
functional form.  Thus, the result is more general than the explicit setting considered 
here.  As an example of its robustness, I show in the appendix that this result extends to 
the Leland and Pyle (1977) model, in which the issuer is risk averse.  

Before concluding this section, it is worthwhile to remark that THEOREM I relies upon 
the assumption that 0 0

n
ii

x x=∑ ; that is, the worst possible pool is equal to a pool of the 
worst possible assets.   There may be cases for which this does not hold.  For example, 
investors may have data regarding characteristics of the pool that improves the worst-
case scenario, so that 0 0

n
ii

x x>∑ .  In this case there may be benefits associated with 
pooling even for an informed issuer.12 

4. Tranching and Risk Diversification 

In the previous section, the intermediary could either issue the assets separately or as a 
pool, and pure pooling was shown to be sub-optimal.  In this section, I allow the 
intermediary to issue a derivative security based on the cash flows of the underlying asset 
or pool of assets.  I then show that pooling the assets and selling a derivative tranche is 
superior to both pure pooling and separate asset sales. 

Consider the case of an intermediary with assets with payoff Y = X + Z.  Rather than sell 
shares in asset i directly, the intermediary may create a security or tranche that pays F(Yi) 
for some measurable function F.  Restricting attention to limited-liability securities that 
are backed solely by the underlying assets implies F(y) ∈ [0,y].  Such a security F is 
referred to as an “asset-backed security.”  As a final restriction, I will consider only non-
decreasing functions F.13  The goal of this section is to compare the intermediary’s payoff 
from selling optimal tranches Fi(Yi) of each asset separately, to the payoff from pooling 
the assets and selling an optimal tranche Fn(Yn) backed by the pool. 
                                                           
12 An example may be credit card issuers securitizing their accounts.  Investors may know average default 
rates, whereas the private information of the issuer is the identity of the bad accounts, rather than the 
number of them. 
13 This restriction is not without loss of generality, but is made for the purpose of tractability.  Since the 
goal is to show that pooling and tranching is superior to both individual sales and pure pooling, restricting 
attention to monotone tranches only strengthens the result. 
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Recall that in the previous section, the remaining risk Z played no role whatsoever, since 
both intermediary and the investors are risk neutral.  In this section, however, the creation 
of non-linear securities F implies that Z plays a critical role.  Indeed, the risk inherent in 
Z will determine the degree to which a security can be designed that minimizes the 
degree of asymmetric information between the intermediary and investors.  I show that 
the risk diversification effect of pooling is beneficial in this regard.  In fact, it can 
overcome the information destruction effect, so that pooling and tranching becomes 
optimal for the issuer. 

At the time of issue, X is private information of the intermediary.  There remains, 
however, the question as to whether or not X is known at the time that the security design 
F is chosen.  Because there are usually significant delays between the design of a security 
and its sale, it is possible that significant new information may be acquired by the 
intermediary during this time.  Thus, both cases are reasonable.  I therefore explore both 
cases in the subsections below, and show that they lead to similar conclusions. 

4.1. Ex-Ante Security Design  

Suppose that the security design F is chosen prior to the realization of the information X.  
In this case, the intermediary’s choice of F does not reveal any information.  This timing 
is relevant in several applications.  First, asset-backed security designs may be 
standardized, and thus not reflective of private information relating to a particular issue.  
Second, there are often significant delays between the design of the security and its sale.  
If private information is acquired continuously, significant information may learned 
during this delay.14  Third, the informed intermediary may be an underwriter who did not 
directly control the design.  

To simplify notation, suppose for the moment that there is a single asset (n = 1) with 
payoff Y.  Given a security design F and private information X, let the expected payoff of 
the security be given by f ≡ E[ F(Y) | X]. Because the intermediary discounts future cash 
flows by the discount factor δ < 1, the security has a private value to the intermediary of 
δ f.  Suppose the intermediary sells a fraction q of the security F for price p.  Then the 
intermediary’s portfolio consists of qp in cash, together with assets worth Y − q F(Y).  
The intermediary’s expected payoff is then given by 

( )( ) ( )E Y q F Y q p X X q p f δ − + = δ + − δ  . 

Suppose the intermediary anticipates a market demand schedule given by PF(q) for the 
security F.  Then given the conditional value f of the security, the intermediary’s problem 
is to choose the optimal quantity to solve  

 ( )( )( ) max
FP F

qf q P q fΠ = − δ . 
                                                           
14 For example, if the private information of the intermediary corresponds to the output of a proprietary 
valuation model, it is the output of the model on the day of sale (using information such as the current yield 
curve) that is relevant.  This information is only known well after the initial security design is chosen. 
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The structure of this problem is identical to (2) of Section 3.  This leads immediately the 
following characterization of the equilibrium payoff (see D&D): 

LEMMA 4. Let [f0,f1] be the support of f = E[ F(Y) | X].  There is a unique 
separating equilibrium with equilibrium payoff function Π∗(f) = π(f/f0) f0, where π 
is defined in LEMMA 2. 

This result gives the intermediary’s profit given a security design F and a conditional 
value of  f = E[ F(Y) | X].  Recall, however, that at the time F is chosen, the information X 
is not yet known to the intermediary.  Thus, security design F yields the intermediary an 
ex-ante expected profit of E[π(f/f0) f0].  Hence, the ex-ante security design problem to be 
solved by the intermediary is the following: 

 [ ]
( )

( )0 0max
F

G Y E f f f
⋅

= π   . (4) 

Before proceeding, note the following properties of the ex-ante payoff function G:15 

LEMMA 5.   G is homogeneous of degree 1; that is, G[aY] = aG[Y].  Also, G[Y] ≤ 
(1−δ) x0, and the inequality is strict if X and Z are independent and continuously 
distributed.  

The upper bound in LEMMA 5 states that the issuer can at best recover the “retention 
cost” (1 − δ) on the worst-case value x0.  Intuitively, if a security design provided a 
higher payoff, it would be imitated by the worst type. 

In general, the set of possible security designs is an infinite dimensional space, and 
solving (4) may be intractable.  Under an additional assumption regarding the nature of 
the residual risk, however, D&D show that the security design problem can be reduced to 
a one-dimensional optimization.  Intuitively, (4) suggests that the issuer should make the 
worst case payoff f0 of the security as high as possible, while at the same time minimizing 
the information “sensitivity” f / f0 (since π is decreasing).  For standard distributions, this 
is accomplished by using a standard debt contract, which pays the lowest (and most 
information insensitive) cash flows first.  

LEMMA 6.   Suppose Z is independent of X and has a log-concave16 density 
function.  Then the optimal monotone security design is a standard debt contract.  
That is, F∗(Y) = min(d,Y) for some constant d. 

PROOF: Given the additive separable construction of Y, the assumption on Z implies that 
the conditional distribution of Y given X satisfies the MLRP.  This is stronger than the 

                                                           
15 Note also that G operates on the random variable Y, not its outcome, analogous to an expectation 
operator.  I use square brackets, [⋅], to denote such operations. 
16 The density function g is log-concave if log(g(s)) is concave in s.  This property is satisfied by many 
standard distributions, such as uniform, normal (possibly truncated), and exponential (possibly truncated). 
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“uniform worst case” condition of D&D.  They demonstrate that this condition implies 
standard debt is the optimal monotone security design.   �  

Thus it is sufficient to consider standard debt contracts, allowing (4) to be replaced with 

 [ ] ( )0 0max d d d

d
G Y E f f f = π  , 

where fd = E[min(d,Y) | X].  Let D∗[Y] represent the optimal face value of the debt. 

Having characterized the security design problem, now consider whether an intermediary 
with multiple assets (n > 1) has an incentive to pool them prior to creating and issuing a 
security.  This requires a comparison of the intermediary’s payoff from issuing a single 
debt security backed by the pooled assets, versus the payoff from issuing separate debt 
securities each backed by a single asset.17  In order to take advantage of the prior results, 
I assume the following structure for the residual risk: 

ASSUMPTION A. Zi = εi + η, where the idiosyncratic risk εi is independent of 
(ε−i,η,X) and the common risk η is independent of (ε,X).  Also, εi and η have log-
concave density functions. 

Under this assumption, for a pool of size n, Zn = (∑i εi ) + n η.  Since log-concavity is 
preserved by convolution (Prékopa (1973)), the conditions of LEMMA 6 are satisfied.  
Hence, if the assets are pooled, the intermediary’s ex-ante expected payoff is given by 

 
1

n

i
i

G Y
=

 
  
∑ . (5) 

If instead the intermediary does not pool the assets, they can be sold individually.  Rather 
than selling each asset outright, however, the intermediary can construct a new security 
for each asset i which is backed by that asset.  By an argument identical to that in the 
proof of LEMMA 3, this problem is separable across assets, and the aggregate ex-ante 
profits to the intermediary from separate sales is given by  

 [ ]
1

n

i
i

G Y
=
∑  . (6) 

Therefore, the decision to pool or not amounts to a comparison of (5) and (6).  Using the 
homogeneity of G, the intermediary prefers to pool the assets prior to tranching if it leads 
to a higher per-asset payoff: 

                                                           
17 Of course, we could consider the payoff from pooling and tranching versus the payoff from simply 
selling the assets individually.  Since issuing debt against an individual asset is superior to selling the asset 
outright, the comparison we undertake is a stricter test of the superiority of pooling. 
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  [ ]1 1

1 1

n n

i in n
i i

G Y G Y
= =

  ≥  
∑ ∑ . 

Next I show the key result of this section:  if the residual risk of the assets is 
diversifiable, then for large enough n, it is optimal for the intermediary to pool the assets 
prior to tranching them.  To state this result, we first suppose that the per-asset worst case 
payoff is well-defined in the limit, 1

0 0lim in in
x x

→∞
=∑ , and that the asset payoffs are non-

degenerate in the sense of LEMMA 5 so that there is some loss relative to the theoretical 
maximum payoff of (1−δ)xi0 for each asset: 

 [ ]
0

lim 1
(1 )

i

n
i

G Y
x→∞

<
− δ

. (7) 

Now we show that with pooling, when the residual risk is diversifiable the payoff per 
asset approaches the theoretical maximum of (1−δ) x0. 

THEOREM II.  Suppose η = 0 and that Yi have bounded second moments.  Then as 
n → ∞, 

 ( )1
0

1

1
n

in
i

G Y x
=

  → − δ  
∑   and  * 1

0
1

n

in
i

D Y x
=

  →  
∑ . 

Thus, pooling and tranching is optimal for sufficiently large n. 

It is useful to contrast this result with THEOREM I of Section 3, which showed that due to 
the information destruction effect, pooling the assets reduced the intermediary’s profits.  
In contrast, THEOREM II shows that with securitization, the intermediary can benefit 
from pooling a large number of securities.  The intuition behind this result is a second 
effect associated with pooling, the risk diversification effect.18  When the residual risk is 
idiosyncratic, this effect allows the intermediary to issue debt with a face value of x0 that 
is nearly risk-free. Since the debt is nearly risk-free, its value is insensitive to the 
intermediary’s private information and so has no lemon’s cost associated with it.  Note, 
however, that the consequences of asymmetric information are still present in the limit − 
the intermediary’s payoff is bounded by (1−δ)x0, whereas in the first-best the 
intermediary could recover 1lim (1 ) n

nn
X

→∞
− δ . 

To verify the intuition that the gain from pooling results from risk diversification, 
consider an alternative scenario in which the residual risks of the assets are perfectly 
correlated.  In this case, there is no risk diversification from pooling, and so only the 
information destruction effect should apply.  This is confirmed by the following result: 
                                                           
18 It is interesting to note that diversification is valuable even though all agents are risk neutral.  
Diversification has the indirect benefit of allowing the issuer to construct a low-risk security with less of a 
“lemons” problem and thus greater liquidity. 
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THEOREM III.   Suppose εi = 0 and xi0 = x0 for all i.  Then for any n, pooling is 
not optimal. 

Thus far, I have demonstrated that the benefits from pooling depend on the degree of 
diversification that results.  Since the cost of pooling is the information destruction effect, 
the gain from pooling should naturally also depend on the nature of the information.  In 
particular, if the information Xi is specific to each asset and thus independent across 
assets, this information destruction should be relatively severe.  On the other hand, if the 
information Xi is more general, and hence positively correlated across assets, less 
information destruction should result, enhancing the gains to pooling.  This is supported 
by the following result, which states that the payoff from pooling is increasing in the 
riskiness of Xn: 

THEOREM IV.   Let Yi = Xi + εi + η and îY  = ˆ
iX  + εi + η, and suppose xi0 = 0ˆix .  

If Xn is a mean-preserving-spread of ˆ nX , then 1 1 ˆ
i in ni i

G Y G Y   ≥   ∑ ∑ . 

THEOREM IV implies that the issuer is better off if the private information is general, 
rather than specific to each asset.  For example, the following corollary is immediate: 

COROLLARY.   Let Yi = Xi + εi + η and suppose the private information Xi is 
composed of J independent factors Xi = 

1

J
jij=

ξ∑ .  Suppose each factor j is either 

common, such that ξji ≡ ξj for all i, or unique, such that ξji are independent draws 
with the same distribution as ξj for all i.  Then the issuer’s payoff from pooling 
and tranching is increasing in the number of common factors. 

PROOF:  Note that the distribution of each Xi is the same whether the factors are common 
or unique.  Only the distribution of Xn changes.  The result then follows from the 
observation that ξj is a mean-preserving-spread of  n−1 ∑i ξji.  � 

I conclude this section with a simple numerical example.  In this example, E[Yi] = 100, 
ˆ 95i iε = ε − , where ˆ iε  is exponential with mean 95, and η = 0.  Xi is uniform on [95,105] 

with probability 0.001 and symmetric binomial on {95,105} with probability 0.999. Also, 
the Xi are independent.19 

Given these distributional assumptions, Figure 1 shows the expected payoff per asset if 
the intermediary issues debt with face value d per asset that is backed by a pool of n 
assets.  Note that for n = 1, the optimal face value of the debt for the issuer is d = ∞; that 
is, the issuer chooses F(Y) = min(d,Y) = Y, a pure pass-through security.20  As n increases, 
however, the payoff associated with the pure pass-through decreases, as implied by 
                                                           
19 Effectively, Xi is binomial, with the small chance of a uniform distribution used to make its support an 
interval.  
20 Of course, the graph only illustrates up to d = 300.  Given the parameter choices, the value at d = 300 is 
very close to the asymptote at d = ∞. 
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THEOREM I of Section 3.  For n ≥ 3, it is optimal for the intermediary to issue a debt 
security that is backed by the asset pool.  As n increases, the issuer’s payoff increases due 
to the increased risk diversification.  Ultimately, for n sufficiently large, pooling and 
tranching dominates individual asset sales. 

Figure 1: Per-Asset Payoff for Different Levels of Debt and Pool Size 

Figure 2 illustrates the effect of correlation on the payoff to the intermediary. Shown is 
the payoff per asset as function of the size of the pool, assuming the issuer constructs the 
optimal debt tranche.  Consider the case in which the Zi are perfectly positively 
correlated.  In this case, there is no diversification from pooling.  Hence, by THEOREM 
III, pooling makes the issuer worse off due to the information destruction effect.  On the 
other hand, suppose the Xi are perfectly positively correlated.  Then there is no 
information destruction due to pooling.  Thus pooling benefits the issuer.  Finally, for 
intermediate cases, both effects are operative.  If the Zi are uncorrelated, then pooling is 
optimal for n exceeding some minimum threshold. 

In conclusion, then, these results imply that the intermediary will benefit most from 
pooling and tranching when the issuer’s private information is “general” (the Xi’s are 
positively correlated) and the risks are specific (the Zi’s are uncorrelated).  This may 
explain the desire for geographic diversification in mortgage pools, or industry 
diversification in collateralized bond obligations.  It may also explain the tendency not to 
combine types of underlying assets (e.g., mortgages and corporate bonds), since for these 
different asset classes the private information is likely to be uncorrelated.21 

                                                           
21 Of course, it might also be true that issuers have different information about different industries or 
locales.  The argument here is most relevant when the issuer’s information is related to variables common 
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Figure 2: Per-Asset Payoff Based on Pool Size For Different Correlations Between Information and 
Residual Risk 

4.2. Multiple Tranches and Ex-post Security Design 

Thus far, we have allowed the issuer to sell a single tranche for each asset pool.  The 
tranche is designed prior to learning X, and the quantity to be sold is determined after X is 
known.  However, the issuer may be able to do better by (i) using multiple tranches, 
and/or (ii) postponing the security design until after X is known.  In this section I explore 
this possibility, and show that while the solution to the signaling equilibrium is very 
different, the qualitative results of Section 4.1 continue to hold.  In particular, the risk 
diversification benefit of pooling is still present, and leads to pooling and tranching being 
optimal given sufficient diversification. 

If the issuer creates multiple tranches for an asset pool, then once the information X is 
learned the issuer will choose a quantity of each tranche, or a tranche portfolio, to sell to 
investors.  This portfolio itself can be interpreted as a security design, in that its payoff is 
equivalent to some function F of the payoff of the asset pool. In a companion paper (see 
DeMarzo 2003), I show that issuer’s payoff is increasing in the number of tranches. 
Further, if the number of tranches is unlimited, and are restricted so that each tranche has 
a monotone payoff, the equilibrium is equivalent to a setting in which the security design 

                                                                                                                                                                             
to all assets in a given class (such as risk premia), as opposed to cash flow data on specific to an industry or 
locale. 
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is chosen ex-post.  Thus, we describe here the ex-post security design problem,22 but note 
that it is equivalent to the case of unlimited tranching. 

Consider an intermediary with a single asset with payoff Y = X + Z, and for simplicity 
maintain ASSUMPTION A so that X and Z are independent.  Given the private information 
X, the asset has a private valuation of δX to the intermediary.  If, rather than hold the 
asset, the intermediary designs and sells the asset-backed security F for price p, the 
intermediary’s payoff is given by23 

 ( )( ) ( )( )E Y F Y p X X p E F Y X δ − + = δ + − δ     . 

That is, the intermediary receives the private valuation δX plus the surplus generated by 
the sale of the security F. 

The intermediary chooses the security design F taking as given the market demand 
function for securities, given by some function P such that P[F] is the price that investors 
will pay for security F.  Thus, given the private information X = x, the intermediary will 
choose a security design F to solve the following: 

 ( )
( )

[ ] ( )maxP

F
x P F E F x Z

⋅
Γ = − δ +   . (8) 

Denote by Fx the solution to (8) corresponding to X = x.  Given this solution, the price 
investors will pay should correspond to the expected payoff of the security conditional on 
the information revealed by the issuer’s security choice.  That is, the security design 
chosen by the issuer serves as a signal of the assets value.  In equilibrium, 

 [ ] ( )X X XP F E F X Z F = +  . (9) 

A signaling equilibrium corresponds to a simultaneous solution to (8) and (9).  This is an 
infinite-dimensional signaling problem, generally intractable. In DeMarzo (2003), I show 
that if attention is restricted to securities such that both security payoff, F(y), and the 
residual retained by the issuer, y − F(y), are non-decreasing, there is a unique equilibrium 
satisfying the Intuitive Criterion of Cho and Kreps (1987).  In this equilibrium, the 
security design chosen is a debt contract, with the face value of the debt depending on the 
private information X.  That is, for each x, there is a face value d(x) such that24  

 Fx(Y) = min(d(x),Y). 

                                                           
22 The ex-post design problem is also considered by Nachman and Noe (1994).  However, in their model 
the issuer raises a fixed amount of capital, and so a pooling equilibrium results.  In this model, the amount 
of cash raised is variable, allowing for separation based on the security issued. 
23 Note that in this case, there is no need to separate the quantity decision from the design decision, since 
selling fraction q of security F is equivalent to a selling all of the security qF. 
24 With multiple tranches, this is equivalent to tranches being prioritized, and the issuer selling the most 
senior tranches first up to a “hurdle” class. 
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Given this result, rewrite the intermediary’s problem (8) as 

 ( ) ( ) ( )max min ,P

d
x P d E d x ZΓ = − δ +   , (10) 

where P(d) is the market price of debt with face value d. 

We have the following immediate result: 

LEMMA 7. For any demand function P, the intermediary’s profit ΓP is continuous, 
decreasing and convex in x.  Also, the face value of the debt can be assumed to be 
decreasing in x. 

PROOF:  For any fixed d, the objective in (10) is continuous, decreasing and convex in x, 
with a subgradient of −δ Pr(d−x > Z).  Since ΓP is the upper envelope of such functions, it 
is also continuous, decreasing and convex.  Finally, optimal d can be chosen to be non-
increasing follows from the super-modularity of ( )min ,E d x Z+   .    �  

This result demonstrates that the key property of convexity of the intermediary’s payoff 
holds for this setting as well.  Also, since the intermediary will optimally choose a face 
value of the debt that is decreasing in X, investors will naturally interpret large debt 
issues as a negative signal about the value of the assets.  This leads to a separating 
equilibrium: 

LEMMA 8.   Given the asset pool Y, there is a unique separating equilibrium with 
Γ∗(x) = (1−δ) E[min(d(x),x+Z)], P∗(d(x)) = E[min(d(x),x+Z)], and d∗(x) determined 
by the differential equation: 

 ( ) ( )
( )( )
( )( )

*
*

*

Pr1
1 Pr

Z d x x
d x

x Z d x x
< −∂ = −

∂ − δ > −
, (11) 

together with the boundary condition, d∗(x0) = ∞. 

The equilibrium described by LEMMA 8 depends on two parameters: x0, which affects the 
boundary condition, and the distribution of Z, written ∼Z, which affects the differential 
equation (11).  Thus, to compare equilibria across environments, define Γ∗(x;x0,∼Z) and 
d∗(x;x0,∼Z) to represent the solutions of LEMMA 8 for the corresponding parameter 
values.  The next result establishes properties of Γ∗ analogous to LEMMA 5: 

LEMMA 9.  The intermediary’s payoff is homogeneous of degree 1; that is,  
aΓ∗(x;x0,∼Z) = Γ∗(ax;ax0,∼aZ).  In addition, Γ∗(x;x0,∼Z) = (1−δ)x0 + Γ∗(x−x0;0,∼Z).  
Finally, Γ∗(x;x0,∼Z) ≤ (1−δ) x0, and the inequality is strict if x > x0 and Z is non-
degenerate. 
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Having characterized the optimal security choice for a single asset, we now consider an 
issuer with n assets and compare the issuer’s payoff from tranching a pool of assets 
versus selling and tranching each asset separately.  The following result extends 
THEOREM II through THEOREM IV to the case of ex-post security design (unlimited 
tranching): 

THEOREM V.   (i)  Suppose η = 0 so that the residual risk is idiosyncratic, and 
that Yi have bounded second moments.  Then as n → ∞, the per-asset payoff from 
pooling and tranching approaches the theoretical maximum, 

  ( )* 1 1 1
0 0

1 1 1

; ,~ 1
n n n

i i in n n
i i i

X x Z x
= = =

 Γ → − δ 
 
∑ ∑ ∑ , 

so that pooling is optimal for n sufficiently large. 

(ii) Suppose εi = 0, so that the residual risk is common.  Then pooling is sub-
optimal for any n. 

(iii) In the setting of THEOREM IV (and the corollary), the issuer’s payoff from 
pooling and tranching is increasing in the number of common factors in 
the information Xi. 

Thus, with either ex-ante or ex-post security design, pooling and tranching is optimal if 
the risk diversification effect dominates the information destruction effect. 

5. Pooling By Uninformed Issuers 

Sections 3 and 4 have demonstrated that for an informed intermediary, pure pooling is 
not optimal, though pooling and tranching may be optimal if there is sufficient 
diversification within the pool.  In this section, I show that for an uninformed seller 
selling to both informed and uninformed buyers, pure pooling is optimal.  This leads to 
the strong empirical prediction that only uninformed sellers should be observed selling 
pass-through pools.25 

Suppose that there exist firms, which I call “originators,” that specialize in the marketing 
and other services associated with originating the assets.  These firms do not have a 
comparative advantage in valuing these assets or holding them to maturity and instead 
plan to sell the assets at their market price and redeploy the capital for use in further 
origination projects.   

Consider an originator holding an asset with future cash flow Y = X + Z. Assume that the 
originator does not specialize in valuing the assets, and thus does not know the 

                                                           
25 See also Subrahmanyam (1991), Gorton and Pennachi (1993) and Axelson (1999) for related models in 
which pooling can help reduce adverse selection problems when uninformed and informed buyers 
compete.   
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information X.26  As before, there are many potential risk-neutral uninformed buyers for 
the asset, who also do not know X, and who share the market discount rate of zero.   

There are also potential informed investors who do know the realization of X.  The 
informed investors have a higher cost of capital than uninformed, and so have valuation δ 
X for the assets, for some δ < 1.27  I assume that buyers are anonymous, so that it is 
impossible for the seller to completely exclude these informed buyers from the market.  

When the seller lists an asset for sale, uninformed buyers bid some price p for the asset.  
This price is such that the uninformed break-even on average.  Because the uninformed 
compete with informed buyers who know X, they face an adverse selection problem.  
This leads to under-pricing, p < E[X], as in Rock’s (1986) model of IPO’s.  The seller is 
also hurt by the adverse selection, since the valuation of informed buyers is strictly below 
that of uninformed buyers. 

To determine the equilibrium degree of under-pricing, it is necessary to specify an 
allocation rule.  In general, this will depend on the precise mechanism used to sell the 
asset.  Rather than specify a particular mechanism, I assume a reduced form that is 
general enough to handle a variety of mechanisms.  In particular, let the total allocation 
of the uninformed buyers be given by 

 Qu(X/p, p). 

It is natural to assume that Qu is decreasing in X/p; that is, the informed buyers get a 
larger fraction of the issue the greater the percentage of the under-pricing.  It is also 
natural to assume that Qu is increasing in the second argument, p.  This is so because p 
measures the size of the asset, and the larger the issue the more likely the informed 
buyers are constrained in the amount they purchase.  Effectively, this is an assumption 
that the uninformed have “deeper pockets” than the informed buyers. 

As an example, suppose the allocation mechanism is a first price auction and informed 
buyers have discount factor δ and no cash constraint.  Then the informed buy if δ X ≥ p, 
so that Qu(X/p, p) = 1[δ X/p < 1], where 1[⋅] is the indicator function.28  For a more 
complex example, if there is a single informed buyer with a cash constraint C, and if the 
issuer can screen out informed orders with probability (1−θ) > 0, then29 

                                                           
26 This does not require that the originator have no private information − indeed, the originator might have 
private information about the component Z of the cash flows from its knowledge of the original source of 
the assets.  It could then signal this information through its issuance decision in the ways described in 
Sections 3 and 4.  What is relevant for our purposes is that the intermediary possesses some information 
not known to the originator.  In the interest of simplicity, I therefore assume the originator is uninformed. 
27 In general this δ is endogenous based on their ability to identify under-priced assets elsewhere.  This 
precise relationship is not important here, but will be analyzed in Section 6. 
28 There is some ambiguity when δ X = p, since the informed are indifferent.  Since X is assumed 
continuously distributed, this is inconsequential. 
29 To see this, note that the informed buyer does not buy if δ X < p, and so uninformed receive the entire 
allocation.  If δ X > p, then the informed buyer will buy the fraction C/p, leaving the remaining shares for 
the uninformed. 
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 Qu(X/p, p) = 1[ δ X/p < 1] + (1−θ min(1,C/p)) 1[ δ X/p ≥ 1 ]. 

Given Qu, the equilibrium bid of the uninformed investors is the largest bid such that they 
earn non-negative expected profits: 

LEMMA 10.   Suppose X is continuous with support [x0, x1], and that Qu is 
decreasing with only finitely many discontinuities in its first argument and 
continuous and increasing in its second argument.  Also assume there exists a 
minimal level of underpricing, X/p > β > 1, before the informed will purchase, so 
that Qu(β, x0) = 1.  Then the equilibrium uninformed bid is given by 

[ ] ( ){ }* max ( , ) 0uP X p E Q X p p X p = − ≥  . 

Also, P∗[X]  =  E[X] if and only if Qu(X/E[X], E[X]) = 1 almost surely; otherwise, 
x0 < P∗[X]  <  E[X] . 

Given this specification of equilibrium in the origination market, consider next the 
incentives for pooling by an originator.  Recall from Section 3 that it is never optimal for 
the informed intermediary to sell a pure pass-through pool of assets.  The following result 
shows, however, that pure pass-through securities can be optimal for an uninformed 
originator, and can approach the first-best outcome. 

THEOREM VI.   Suppose Xi are independent, the assumptions of LEMMA 10 hold, 
and [ ]1 0in i

E X x→ >∑  as n → ∞.  Then *1
in i

P X x  → ∑ . 

Thus, as the size of the pool grows large, the per-asset payoff to the originator 
approaches the assets’ expected value.  The intuition for this is straightforward.  The 
adverse selection problem comes from the informed buyers’ ability to purchase the “best” 
assets.  Pooling reduces the precision of the selection the informed can make, as even the 
best pools will likely contain poor assets.  This result provides an important motivation 
for pooling (in addition to transactions costs) in markets where traders other than the 
asset originators are likely to have the greatest expertise in valuing the assets. 

I conclude this section with a numerical illustration.  Suppose Xi are i.i.d. with 
distribution 90 + iξ , where iξ  is exponential with mean 10.  Thus, E[Xi] = 100.  Figure 3 

shows equilibrium uninformed bid, *1
in i

P X  ∑ , when Qu = 1[δ X < p]; that is, the 

informed buy the entire issue whenever their valuation δ X exceeds p. 
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Figure 3: Per-Asset Payoff of Uniformed Issuer Based on Size of Pool 

6. A Dynamic Model of Informed Intermediation 

The results of the previous sections demonstrate the following.  While uninformed sellers 
can benefit by pooling assets prior to sale, informed sellers do not gain from pure 
pooling.  On the other hand, informed sellers can benefit by pooling the assets and selling 
a debt tranche.  Combining these results in the context of a dynamic model leads to a 
theory of informed intermediation. 

A simple motive for intermediation is implied by the returns to scale in the pooling and 
tranching process. Consider an informed “originator” or holder of the asset.  This 
originator could sell these assets (or a tranche backed by them) directly to uninformed 
investors.  Informed investment banks can add value, however, by acquiring the assets 
from informed originators and forming even larger pools prior to tranching.   
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The second channel for intermediation begins with uninformed originators who attempt 
to sell assets to investors.  Given their superior information, informed investment banks 
will purchase the best (i.e., the most underpriced) of these assets.  To minimize this 
adverse selection, uninformed originators will pool the assets if possible prior to sale.  
Once the investment bank acquires the assets, it again has an incentive to pool them 
further and sell a senior tranche to investors in order to raise new capital for additional 
asset purchases. 

In this section I build a simple dynamic model of this second channel for intermediation.  
While highly stylized, it demonstrates that the model is a consistent story of 
intermediation.  Unlike standard models of informed trading which assume a buy and 
hold strategy for the informed, the model developed here illustrates the benefits of asset 
resale through securitization.  In particular, I show how the ability to repackage assets 
allows the intermediary to leverage its capital and increase the returns from its 
information.  The model also reveals how the key parameters of the static model, the 
worst case information x0 and the discount factor δ, arise endogenously from more 
primitive features of the market. 

6.1. The Timing 

Consider a dynamic setting with the following timing.  There is a single intermediary 
with access to a technology yielding private information.  At the start of period t, the 
intermediary holds a portfolio of cash Ct and “old” securities with value Ot.  At the start 
of period t, the origination market opens.  The intermediary can use its available cash and 
superior information to purchase assets in the origination market that are under-priced.   

After purchasing assets in the origination market, the intermediary holds both old 
securities (with value Ot) plus any new securities just acquired.  Denote the full-
information value of the new securities by Nt.  In addition, the intermediary might have 
unused cash, denoted Ut, if the supply of new under-priced securities did not exceed its 
original cash balance Ct. 

Once the origination market closes, the intermediary then has the opportunity to sell 
assets from its portfolio in the secondary market.  By selling assets, the intermediary 
raises cash it can use in period t + 1. 

 I assume that any private information the intermediary had regarding securities 
purchased prior to period t becomes public by the start of period t.  Thus, in the sale 
phase, the intermediary will sell all the old securities Ot that were held at the start of the 
period for their full-information value.  The new assets Nt will either be sold for cash or 
retained until the next period.  Here there is a lemon’s problem since the intermediary 
holds private information about these securities.  However, the intermediary also has a 
motive to trade to raise additional cash to purchase assets next period.  Thus, the 
signaling models of Sections 3 and 4 will determine the fraction of the value of the newly 
acquired assets that are sold and retained.  Recall that in the separating equilibria of the 
previous analysis, the fraction sold will be sold for its full information value, denoted St. 
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Thus, the fraction retained has value Nt − St.30  The intermediary then begins the next 
period with a portfolio of cash  Ct+1 = Ut + St + Ot  and old securities worth  Ot+1 = Nt − St.  
See Figure 4. 
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Figure 4:  The Timing of the Model 

In the following sections, I employ the models of this paper to determine the dynamics of 
this intermediation process. 

6.2. Asset Acquisition With Cash Constraints 

Each period, uninformed originators sell assets in the origination market.  As 
demonstrated in Section 5, uninformed originators have an incentive to pool assets prior 
to sale.  Thus, each asset can be thought of as pool of even smaller assets.  The pool sold 
by issuer i in period t has payoff Yit = Xit + Zit.   

In order to provide for the simplest characterization of the equilibrium in the origination 
market, I suppose that there is a continuum of originators i ∈ [0,Mt] with associated 
measure µ.  I assume that the intermediary’s private information about each asset Xit is 
independent and identically distributed.  In this case, it is natural to assume that 

 µ{i ∈ [0,Mt] : Xit ≤ x} = Mt Pr(Xt ≤ x), 

where Xt has the same distribution as each of the Xit.  I assume that Xt is continuously 
distributed.  To simplify notation in what follows, I drop the time subscripts except where 
necessary. 

                                                           
30 The intermediary might also have an incentive to issue securities backed by its future profit stream, 
rather than just its existing portfolio.  Modeling this alternative is beyond the scope of this paper.  
However, it is natural that such securities would be subject to an even more extreme asymmetric 
information problems than the asset-backed securities considered.  (For example, consider the distinction 
between secured and unsecured debt.)  Serious moral hazard considerations would also be introduced.  
Thus, the intermediary would rely on asset-backed securities as a primary source of capital.  This is 
consistent with actual practice:  investment banks raise almost all of the cash used for acquiring new assets 
by selling or borrowing against existing assets in their portfolio.   
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Since the assets are ex-ante identical, the uninformed bid a common price p for all assets.  
Thus, the intermediary would like to purchase assets with Xi ≥ p.  This may violate the 
intermediary’s budget constraint.  The intermediary optimally purchases the best 
securities (those with the highest Xi / p) first, up to the budget constraint.31   

I assume that originators can screen out informed trades with probability 1−θ > 0, so that 
θ is the probability that the intermediary purchases an asset that it has bid on.32  The 
quantity of assets the intermediary would purchase absent a budget constraint is θ M 
Pr(X > p), which violates the budget constraint if θ M Pr(X > p) p > C.  Thus, the optimal 
purchase for the intermediary is to buy all assets above a critical quality xc (i.e., the 
intermediary purchases {i ∈ [0,M] : Xi > xc}), where 

 xc = min x′  s.t.  x′ ≥ p  and  θ M Pr(X > x′) p ≤ C. (12) 

Anticipating this, uninformed investors realize that they receive assets disproportionately 
more of the lowest quality assets.  Hence, the equilibrium bid p of the uninformed is the 
largest p satisfying the zero profit condition 

 ( )1 1[ ] ( ) 0cE X x X p − θ > − =  . (13) 

Together, equations (12) and (13) determine the equilibrium values of xc and p given θ 
and C/M, the amount of cash held by the intermediary relative to the size of the market.  
This extends the model of Section 5 to the continuum case.33  Note the following 
comparative statics for p and xc as a function of the cash available to the intermediary. 

LEMMA 11.  There exists [ ]C ME X< θ  such that for C C≤ , both xc and p strictly 
decrease with C.  For C C≥ , xc = p = p0. 

As an example, suppose θ = 0.90, E[X] = 100 and X is lognormal with a volatility of σ 
= 2%.  Figure 5 shows the values of xc and p as a function of C/M.  Note that for C/M ≥ 
72, the cash constraint no longer binds and xc = p = 98.2.  However, for C/M < 72, the 
intermediary earns a positive return from additional cash balances since the marginal 
security is under-priced (xc > p).   

                                                           
31 This generalizes to the case in which there is more than one “type” of security that can be distinguished 
ex-ante.  In that case, for each type j there is an associated Xj and uninformed bid pj.   In that case it is 
optimal for the intermediary to purchase those assets with the highest ratio Xj

i / pj first, until the budget 
constraint binds.  The analysis for this case is more cumbersome but qualitatively identical. 
32 Equivalently, informed traders may simply be unaware of some fraction of the assets traded in the 
market.  The assumption θ < 1 is technically useful to prevent p from dropping discontinuously (and 
potentially without bound) as the intermediary’s expenditures approach the size of the market.   
33 If a single infinitesimal originator were to enter this market and place assets X′ up for sale, the informed 
intermediary would purchase these assets if X′/p′ > xc/p.  If we define δ = p/xc, this becomes δ X′ > p′, and 
Qu = 1−θ1[δ X′ > p′].   The originator thus faces the same problem as in Section 5.  
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Figure 5: Equilibrium Price p and Informed Cutoff xc in the Origination Market 

Figure 5 also shows value of the purchased portfolio, θ Pr(X>xc) xc, when valued at the 
minimum quality level xc.  I assume, as is true in this case, that this amount increases as 
the amount of cash spent increases and xc decreases: 

ASSUMPTION B. θ Pr(X > xc) xc is decreasing in xc for xc > p. 

Assumption B is a distributional assumption on the private information X.  It is satisfied 
by standard distributions if the volatility of X is not too large.34  It is important because it 
implies that the minimal resale value of the intermediary’s portfolio is increasing in its 
size. 

6.3. Asset Resale 

At the end of the acquisition stage, the intermediary holds old assets (acquired in 
previous periods), new assets (just acquired), as well as any unused cash in the event xc = 
p.  The amount of unused cash is given by 

 U = C − θ M Pr(X > xc) p. (14) 

The value of the new assets just purchased by the intermediary is given by 

                                                           
34 For example, it is satisfied if X is uniform on [x0, x1] with x1 ≤ 2x0, or for X = x0 + ξ with ξ exponential 
and x0 ≥ E[ξ].  In the case of a lognormal distribution, it holds as long as θ and σ are not too large.  In the 
example here, we could raise θ to 0.999 or σ to 42% before the assumption is violated. 
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 N = θ M E[ X 1[X > xc] ] = C − U + M ( E[X] − p ). (15) 

The first expression is simply the integral of the value of the assets purchased.  The 
second expression follows from (13): since the uninformed earn zero profits, the losses of 
the sellers M ( E[X] − p ) must correspond to the profits of the intermediary. 

After acquiring new assets, the intermediary may resell them immediately or hold them 
until they are old and then resell them.  The advantage of immediate resale is that the 
cash raised can be used to purchase new securities in the next period.  The disadvantage 
is that the intermediary faces a lemons problem due to its private information. 

First, consider the resale problem in the absence of asset securitization / tranching.  The 
results in Section 3 establish that an informed intermediary should sell the assets 
individually.  In that case there is a unique separating equilibrium, given in LEMMA 2, in 
which an asset with value x is priced correctly and issued in quantity 

 ( )
1

1
*

0
0

; , xQ x x
x

−
−δ 

δ =  
 

,  

where x0 is the worst case information of the intermediary, and δ reflects the 
intermediaries preference for cash.  Note that in this case, x0 = xc, the lowest quality asset 
purchased by the intermediary in the acquisition stage. 

Given the parameter δ (we will see how δ is determined in the next section), the 
intermediary will raise cash from the resale of 

 S1 = θ M E[ X Q∗(X; xc, δ) 1[ X > xc] ], (16) 

immediately by reselling the assets.  The remaining fraction 1−Q∗ will be held for sale in 
the following period when the private information X is publicly known. 

Alternatively, suppose tranching is possible.  In this case, the diversifiable risk Zi 
becomes relevant.  I assume that this risk is diversifiable, so that it is eliminated in large 
pools.  Thus, the results of Section 4 demonstrate that the optimal security design for the 
intermediary is to form a pool of the purchased assets, and issue debt with face value x0 = 
xc per asset.  This debt is riskless, and so will sell for its face value of xc.  Since the 
number of assets in the pool is equal to the quantity purchased, θ M Pr(X > xc), the issuer 
will raise total cash of 

 S∗ = θ M Pr(X > xc) xc. (17) 

Again, the remaining junior tranche of the pool is sold in the following period, for the 
amount N − S∗.  Comparing (16) and (17), pooling and tranching benefits the 
intermediary by allowing it to raise more cash through immediate resale.  That is, 
because x Q∗(x;xc,δ) < xc for x > xc, we have S∗ > S1. 
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6.4. Growth Through Securitization 

The analysis above leads to the following specification for the dynamic evolution of the 
intermediary.  From equations (12) and (13), we have 

 xc
t = xc(Ct, Mt),   pt = p(Ct, Mt). 

Combining this with (14) and (15), it is possible to write 

 Ut = U(Ct, Mt),  Nt = N(Ct, Mt). 

Finally, using either (16) (no tranching, S = S1) or (17) (tranching, S = S∗), we have 

 St = S(δt, Ct, Mt), 

where S = S1 or S = S∗ depending on the setting.  This leads to the subsequent portfolio 
for the intermediary, 

 Ct+1 = Ut + St + Ot,   Ot+1 = Nt − St. (18) 

The only endogenous parameter not identified by the above system is δt, the 
intermediary’s preference for cash.  Suppose the intermediary sells an additional fraction 
of one of the assets in period t.  The incremental cash raised can be used to purchase 
additional securities in the acquisition stage of period t + 1.  This will lead the issuer to 
purchase assets with value xc

t+1 for price pt+1, as long as xc
t+1 ≥ pt+1.  Since the incremental 

purchase is of the lowest quality asset, the intermediary can immediately resell the asset 
for price xc

t+1.35  Thus, an incremental infinitesimal dollar of cash generates a return of 
xc

t+1/pt+1 that would be missed if the securities were not sold.  Hence, the intermediary’s 
preference for cash in period t is given by 

 δt = pt+1/xc
t+1 ≤ 1. (19) 

Equation (19) can be combined with the above to yield the following fixed-point problem 
for δt, 

 1 1 1

1 1 1

( , ) ( ( , ) ( , , ) , )
( , ) ( ( , ) ( , , ) , )

t t t t t t t t t
t c c

t t t t t t t t t

p C M p U C M S C M O M
x C M x U C M S C M O M

+ + +

+ + +

+ δ +δ = =
+ δ +

. (20) 

The solution to (20) implies that36 

 δt = δ(Ct, Ot, Mt, Mt+1). 

                                                           
35 This holds with or without tranching, since in a separating equilibrium the worst type bears no signaling 
cost. 
36 With tranching, S = S∗ does not depend on δ, hence the solution to (20) is immediate.  Without tranching, 
S = S1 is decreasing in δt, and the fixed-point problem is non-trivial. 
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Combining all of the above, given some exogenous growth of the origination market, we 
may characterize the growth of the intermediary 

 
1 1 1,, ,

t tt t t tM MC O C O
+ + +→ , 

and derive the dynamics of market prices and pooling and tranching activity.  The 
following result demonstrates the benefit of pooling and tranching for the intermediary: 

THEOREM VII.  Given initial assets, (C0, O0), the size of the intermediary, CT + 
OT, on date T > 2 will be larger when asset securitization (pooling and tranching) 
is possible than when assets are sold individually or there is no resale.  The 
comparison is strict if δt < 1 for some t < T−1. 

I conclude by illustrating the increased growth from pooling and tranching for the 
numerical example of Figure 5.  Figure 6 shows the growth rate of the intermediary with 
pooling and tranching, individual resale, and no resale (buy and hold).  Also shown is the 
marginal return on the worst assets purchased, xc/p, showing the intermediary’s 
preference for cash. 

Figure 6:  Intermediary Growth Rate for Different Resale Assumptions 

For example, Figure 6 implies that if the market growth rate is 3%, with pooling and 
tranching the intermediary will grow faster than the market until its size reaches a steady 
state of about 36% of the total market.  In contrast, with individual resale, the 

0 10 20 30 40 50 60 70 80 90
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Cash (C/M)

Growth (Pooling and Tranching) 

Growth (Individual Resale) 

Growth (No Resale) 

δ-1 = xc/p 



 32

intermediary grows to about 10% of the market, and without resale, the steady state size 
of the intermediary is below 1% of the total market.37 

7. Conclusion 

The results of this paper can be viewed as a theory of financial intermediation based upon 
intermediaries having private information regarding asset values.  Due to its information 
advantage, the intermediary has the ability to identify high quality and therefore under-
priced assets in the origination market.  The intermediary can therefore profit by buying 
and holding these assets.  Of course, this creates an adverse selection problem in the 
origination market, implying that in equilibrium these assets will be priced at a discount.  
In order to mitigate this problem, originators have an incentive to pool the assets prior to 
selling them.  Pooling reduces the intermediary’s ability to purchase the assets that are 
most under-priced. 

Once the intermediary has purchased assets in the origination market, it can hold the 
assets to maturity.  The intermediary, however, would prefer to liquidate the assets at 
their true value to raise cash to use for future asset purchase opportunities.  That is, the 
intermediary wishes to leverage its available capital to exploit its information for as many 
deals as possible.  Unfortunately, because the intermediary has private information 
regarding the assets, it faces a lemons problem if it attempts to sell the assets for cash.  
This lemons problem leads to a natural signaling equilibrium in which the intermediary 
signals the value of the assets by its willingness to retain some portion of the cash flows.  
I show that if only pure pass-through securities can be sold, the intermediary finds it 
optimal to sell the assets individually rather than as a pool.  However, if non-linear asset-
backed securities can be issued, and if the intermediary holds enough assets, it may be 
optimal to pool the assets and issue a debt-like security that is backed by the pool.  Asset 
securitization allows the intermediary to leverage its capital more efficiently and increase 
the returns associated with its private information. 

The incentive for pooling and tranching by the intermediary is shown to depend on 
several factors.  First, pooling has an information destruction effect that is costly for the 
intermediary.  This effect is reduced if the intermediary’s private information is 
positively correlated across the assets.  Second, the gains from issuing a debt tranche are 
enhanced if the pool has lower residual risk.  This risk diversification benefit is reduced 
therefore if the residual risks of the assets are positively correlated.  Thus, pooling and 
tranching is most effective for assets for which the private information is general and the 
residual risks are specific.   

                                                           
37 Note that without resale, even though the marginal return is above 5% when cash is below 1%, this 
return is realized over 2 periods (assets are not sold until information is public).  Thus the annualized grow 
rate is below the marginal return. With either type of resale, since the intermediary can always sell for at 
least the worst case value xc, the growth rate cannot fall below the marginal return δ−1.  Note also that the 
growth rate of with no resale and individual resale coincide for δ = 1 since then the intermediary sells only 
the worst asset (which have measure zero).  With pooling and tranching, however, the intermediary can 
extract xc from each asset (even those with higher value). 
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8. Appendix 

8.1. Pooling By A Risk Averse Intermediary 

Here I generalize the results of Section 3 to an intermediary whose motivation to sell the 
assets is risk aversion.  Applying the signaling model of Leland and Pyle (1977) (L&P) 
again leads to a downward sloping demand for the assets due to asymmetric information.  
Thus, the intermediary must tradeoff the price at which it can sell for the amount of risk it 
must bear.  I demonstrate that this equilibrium shares the basic convexity property of the 
intermediary’s payoff that was crucial in the previous section.  As there, this convexity 
implies that the intermediary is better off selling the assets individually rather than as a 
pool. 

Specifically, suppose the intermediary has CARA utility over final wealth, with risk 
aversion parameter r; that is, 

( ) rWU W e−= − . 

Assume that conditional on X, the residual risks Zi are independent38 and normally 
distributed with variance 2

iσ .  This implies that the intermediary’s wealth is conditionally 
normally distributed.  Recall that for CARA utility, if W is normal then 

( ) [ ] [ ]( )1
2 VarE U W U E W r W= −   . 

This allows us to evaluate payoffs in terms of their “certainty equivalents,” 
[ ] [ ]1

2 VarE W r W− . 

First consider the intermediary’s incentive to sell shares in the entire pool.  Suppose the 
intermediary sells a fraction q of the entire pool of assets to investors at a market price of 
p for the pool.  Then the payoff to the intermediary is given by 

( ) ( ) ( )( )2 21
2(1 ) 1 1n nE U q Y qp X U q X qp r q − + = − + − − σ  , 

where σ2 is the conditional variance of the pool; i.e., 2 2
ii

σ = σ∑ . 

                                                           
38 The assumption of independence is a “neutral” one regarding the decision to pool or not.  One could also 
consider the correlated case, but this raises certain difficulties.  If the intermediary plans to sell each asset 
sequentially, the cost of holding the initial asset depends upon how much of the other assets will be sold.  
This leads to incentives for cross-signaling.  Instead, one could consider an intermediary who intends to 
buy the assets Yi from separate informed holders in order to pool them.  In this case, the incentive to pool 
would be reduced (increased) by positive (negative) correlation. 
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If the intermediary anticipates a market demand schedule given by P(q) for the pool, then 
the intermediary with conditional value Xn = x will choose a quantity ( )P

AQ x  that 
maximizes the certainty equivalent payoff, 

 
( ) ( ) ( )

( )( ) ( )

2 21
2

2 21
2

max 1 1

max 1 .

q

q

q x qP q r q

x q P q x r q

− + − − σ

= + − − − σ
 (21) 

Equation (21) reveals that the total certainty equivalent payoff to the intermediary is the 
intermediary’s value of the asset plus any “profit” from the sale of the security net a risk 
premium for the fraction retained.  Thus, the intermediary’s asset sale decision is to 
choose a quantity to sell that maximizes this “risk-adjusted profit”:   

 ( ) [ ] ( )( ) ( )2 21
20,1max 1P

qR x q P q x r q∈= − − − σ . (22) 

This yields the following immediate consequence: 

LEMMA 12.   For any demand function P, the intermediary’s payoff RP is 
decreasing and convex in x.  Also, the fraction ( )P

AQ x  that the intermediary sells 
is decreasing in x. 

PROOF:  For fixed q, the intermediary’s objective is decreasing and linear in x with slope 
−q.  The rest is identical to the proof of LEMMA 1. �  

Leland and Pyle (1977) characterized the signaling equilibrium for this model: 

LEMMA 13. There is a unique separating equilibrium, given by 

( )* 0
2A A

x xQ x q
r
− =  σ 

 and ( ) ( )* 2
0 log 1AP q x r q q= − σ + −   , where the monotone 

decreasing function qA is defined implicitly by  

( )( ) ( )log 1A As q s q s = − + −  . 

Let ( ) ( )( )21
2 1 Ax q xρ = − − .  The equilibrium payoff function for the intermediary 

is given by 

( )* 20
2

x xR x r
r
− = ρ σ σ 

. 

PROOF:  See L&P.  The solution follows from differentiation of (21) and (3), and the 
boundary condition that ( )*

0 1AQ x = . Note that log(q)+1−q is negative and increasing in 
q; thus qA is well-defined.  � 
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Note that without any further calculation, LEMMA 12 implies that ρ is decreasing and 
convex.  

Next consider the intermediary’s payoff if the assets are sold separately, rather than as a 
single pool.  Suppose the intermediary sells quantity qi of asset i for price pi.  Then the 
intermediary’s certainty equivalent payoff is given by 

( ) ( ) ( ) ( )2 22 21 1
2 2

1 1

1 1 1
n n

n
i i i i i i i i i i i

i i

q x q p r q x q p x r q
= =

− + − − σ = + − − − σ∑ ∑ , 

using the conditional independence of the payoffs Yi. 

Thus, for each asset i, the intermediary faces the same problem as in (21) above with xi in 
place of x and 2

iσ  in place of σ2.  As in the previous section, any information that 
investors may have learned from prior asset sales only affects the distribution of Xi, but 
not xi0. Hence the characterization of the equilibrium is unchanged. 

LEMMA 14.   If the intermediary sells each asset i separately, the intermediary’s 
total certainty equivalent payoff is given by 

 20
2

1

n
i i

i
i i

x x r
r=

 −ρ σ σ 
∑  

PROOF:  Follows by the same argument as LEMMA 3.  �  

This allows the following comparison of the intermediary’s payoff from a separate or a 
pooled sale of the assets, which shows that pooling is again not optimal for the informed 
intermediary.  

THEOREM VIII.   In the Leland and Pyle setting, the intermediary prefers a 
separate sale of the assets to a pooled sale; that is, 

2 20 0
2 2

1

n nn
i i

i
i i

X x X xr r
r r=

   − −ρ σ ≥ ρ σ   σ σ  
∑ , 

where the inequality is strict if ( ) 2
0i i iX x r− σ  is not equal for all i. 

PROOF:  By the convexity of ρ, and the fact that 0 0
n

ii
x x=∑ and 2 2

ii
σ = σ∑ , we have 

2 2
0 0 0

2 2 2 2 2
1 1

n nn n
i i i i i i

i ii i

r X x r X x X x
r r r r r= =

     σ − σ − −ρ ≥ ρ = ρ     σ σ σ σ σ    
∑ ∑  
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The strict inequality follows from that fact that *
AQ  is strictly decreasing so that ρ is 

strictly convex.  �  

8.2. Other Proofs 

PROOF OF LEMMA 3:  Given X−n, consider the sale of asset n.  By the initial assumptions, 
the conditional support of Xn is an interval with greatest lower bound xn0.  Thus, from the 
previous results, there is a unique separating equilibrium for the sale of asset n, with the 
intermediary’s profit given by ( )0 0/n n nX x xπ .  Now consider the sale of asset n−1.  Since 
the intermediary’s profit in the sale of asset n does not depend on the outcome of the sale 
of asset n−1, the intermediary’s problem is unchanged.  The proof thus proceeds by 
induction. � 

PROOF OF LEMMA 5:  For any security design F for Y, define the security F̂  for aY by 
( )F̂ y = a F(y/a).  Then ( )F̂ aY  = a F(Y).  Hence f̂  = af, and homogeneity follows 

immediately from (4). 

Next note that since π is decreasing, π(f/f0)f0 ≤ π(1)f0 = (1−δ)f0.  The inequality then 
follows since f = E[F(Y) | X] ≤ E[Y | X] = X, so that f0 ≤ x0.   

For strictness, suppose f0 = x0.  Then F(x0 + Z) = x0 + Z almost surely.  Thus, F is strictly 
increasing on the support of x0 + Z.  Since F is everywhere non-decreasing, if x > x0 then 
F(x+Z) > F(x0+Z) for Z in the interior of its support, or almost surely.  Hence f/f0 > 1 
almost surely.  Since π is strictly decreasing, the result follows.  �  

PROOF OF THEOREM II: Define ( )1
1

( , ) min , n
n in i

H d x E d x
=

 = + ε
 ∑ . Hn is continuous 

and increasing, and by the Law of Large Numbers, Hn(d,x) → min(d,x) as n → ∞.  

First consider d = x0.  Then ( ) ( )0 0 0 0, / min ,d n
nf H d x n d x x= → = .  Since 

( ) ( )0, / , /d n n
n nd f H d X n H d x n≥ = ≥ , we also have fd → x0 almost surely.  Hence, 

( ) ( ) ( )0 0 0 01 1 .d d dE f f f x x π → π = − δ   Since this is an upper bound for G by LEMMA 

5, we conclude that ( ) [ ]1 1
0

1 1

1
n n

i in n
i i

G Y x G Y
= =

  → − δ >  
∑ ∑ . 

To show that D∗ must converge to x0, consider d < x0.  In that case, 0
df d→ , so that 

( ) ( )0 0lim 1d d d

n
E f f f d

→∞
 π ≤ − δ  , which is sub-optimal.  Next consider d > x0.  In that 

case, 0 0
df x→ , so it remains to show that ( ) ( )0lim 1d d

n
E f f

→∞
 π < − δ  .   

Since 0 0 0 0[ ] [ ( ) ] ( [ ] )i i i i i i iG Y E X x x E X x x≥ π ≥ π , (7) implies that [ ]1
0lim in in

E X x
→∞

>∑ .  

Thus, there exists N and γ ∈ (0,d−x0) such that for all n > N, E[Xn]/n > x0 + γ.  By 
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hypothesis, Xn/n has bounded second moment, so that39 Pr(Xn/n > x0 + γ/2) > λ for some λ 
> 0.  Also, there exists N' > N such that for all n > N', Hn(d, x0 + γ/2) ≥ x0 + γ/4 and 

( )0 0, / 6n
nH d x x≤ + γ .  Thus, for all n > N', ( ) ( )( )0

0

/ 4
0 / 6Pr xd d

xf f +γ
+γπ ≤ π > λ , which proves 

the result.  �  

PROOF OF THEOREM III:   Fix an n and let d = D∗[Yn
 /n], the optimal debt level if the 

assets are pooled.  Next define h(x) = E[min(d, x+η)], and note that h is concave.  Then 
for any realization xi, Jensen’s inequality implies h(∑i xi/n) ≥ ∑i h(xi)/n.  Since π is 
decreasing, this implies  

 
( )

( )
( )
( )

( )
( )

1
1 1

0 0 0

n i i ii
n ni i

h x h x h x
h x h x h x

     
 π ≤ π ≤ π         

∑ ∑ ∑ , 

where the last inequality follows from the convexity of π.  Thus, 

 
( )

( ) ( ) ( )
( ) ( ) [ ]

1
1 1 1

0 0
0 0

n i ii
i i in n ni i i

i

h x h x
G Y E h x E h x G Y

h x h x

     
    = π ≤ π ≤            

∑∑ ∑ ∑ , 

where the last inequality follows since d ≠ D∗[Yi] in general.  � 

PROOF OF THEOREM IV:  Define h(d,x) = E[min(d,x+η+∑εi/n)], and note that h is 
concave and increasing.  Next define Q(d,x,x0) = π(h(d,x)/h(d,x0))h(d,x0).  Since π is 
decreasing and convex, Q is also decreasing and convex in x.  Therefore, 

 ( ) ( )1 1 1 1
0 0

ˆ, , , ,i i i in n n ni i i i
E Q d X x E Q d X x   ≥   ∑ ∑ ∑ ∑ , 

which proves the result.  � 

PROOF OF LEMMA 8:  In any sequential equilibrium, the “worst type” x0 behaves 
according to the first-best, which in the context of this model is to sell all of the assets to 
the investors.  This is equivalent to issuing 100% of the equity interest in the assets, or 
equivalently debt with a face value equal to or greater than the maximum possible payoff. 
It is then straightforward to check that the model satisfies the standard single crossing 
condition and that the above differential equation does indeed determine an equilibrium.  
Uniqueness follows by similar arguments to Mailath (1987).  � 

PROOF OF LEMMA 9:   Define d(x) = a d∗(x/a;x0,∼Z).  Then d(ax0) = ∞ and  

                                                           
39 This follows from the fact that if E[A] ≥ a and E[A2] ≤ b, then for c ∈ [0,a], Pr(A≥c) ≥ (a−c)2/b. 
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( ) ( ) ( )

( )( )
( )( )

( )
( )( )
( )( )

*
0*

0 *
0

Pr / ; ,~ /1 1/ ; ,~
1 Pr / ; ,~ /

Pr1 .
1 Pr

Z d x a x Z x a
d x a d x a x Z

a Z d x a x Z x a

aZ d x x
aZ d x x

< −
′ = = −′

− δ > −

< −
= −

− δ > −

 

Hence, d(x) = d∗(x;ax0,∼aZ).  Then we have, 

 

( ) ( ) ( )( )
( ) ( )( )

( )

*
0

*
0

*
0

; ,~ 1 min ,

1 min ; ,~ ,

; ,~ .

ax ax aZ E d ax ax aZ

E ad x x Z ax aZ

a x x Z

 Γ = − δ + 
 = − δ + 

= Γ

  

Next define d0(x) = d∗(x+x0;x0,∼Z) − x0.  Then d0(0) = ∞ and 

 
( ) ( ) ( )

( ) ( )( )
( ) ( )( )

( )
( )( )
( )( )

*
0 0 0*

0 0 0 *
0 0 0

0

0

Pr ; ,~1; ,~
1 Pr ; ,~

Pr1 .
1 Pr

Z d x x x Z x x
d x d x x x Z

Z d x x x Z x x

Z d x x
Z d x x

< + − +′ = + = −′
− δ > + − +

< −
= −

− δ > −

 

Thus, d0(x) = d∗(x;0,∼Z).  Therefore, 

 

( ) ( ) ( )( )
( ) ( )( )

( ) ( )

*
0 0 0 0

*
0 0 0

*
0 0

;0,~ 1 min ,

1 min ; ,~ ,

; ,~ 1 .

x x Z E d x x x x Z

E d x x Z x x x Z

x x Z x

 Γ − = − δ − − + 
 = − δ − − + 

= Γ − − δ

 

For the bound on Γ∗, note that  

 Γ∗(x0;x0,∼Z) = (1−δ)E[min(d∗(x0;x0,∼Z),x0+Z)] = (1−δ)E[x0+Z] = (1−δ)x0, 

and by LEMMA 7, Γ∗ is decreasing in x.  For strictness, note that if Γ∗ at x0 does not 
strictly decrease, by LEMMA 7 it must be constant. Therefore, E[min(d∗(x;x0,∼Z),x+Z)] = 
x0.  For x > x0, this implies that Pr(x0+Z > d∗(x;x0,∼Z)) > 0.  But this implies type x0 would 
prefer to issue d∗(x;x0,∼Z), violating incentive compatibility. �  

PROOF OF THEOREM V:   For case (i), suppose the intermediary issues debt with a (per 
asset) face value of d = 1

0
n

n x .  In any sequential equilibrium, this debt will sell for a (per 
asset) price of at least pn = E[min( 1

0
n

n x , 1 1
0
n n

n nx + ε )].  Therefore, 
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( )* 1 1 1 1 1 1
0 0

1
0

1 1
0

1 1
0 2

; ,~ [min( , )]

(1 ) [min(0, )]

(1 )

n n n n n n
nn n n n n n

n
n n

n n
n n

n
n n

X x Z p E x X

p x

x E

x

Γ ≥ − δ + ε

≥ − δ

= − δ + ε

≥ − δ − σ

 

where the last inequality follows from an application of Cauchy-Schwarz and 
2var( )iε ≤ σ . For an upper bound, recall from LEMMA 9 that the per asset payoff to the 

intermediary is bounded above by (1−δ)xn
0 / n, which has the same limit. 

For case (ii), if the intermediary pools the assets the resulting payoff is Γ∗(∑i Xi/n; ∑i 
xi0/n, ∼η).  From LEMMA 9, this is equal to Γ∗(∑i(Xi−xi0)/n;0,∼η)+(1−δ)∑ixi0/n.  Next, by 
LEMMA 7, Γ∗ is convex, so that 

 
( ) ( ) ( ) ( )

( )

* *1 1 1
0 0 0 0

1 1 1

*1
0

1

;0,~ 1 ;0,~ 1

; ,~ .

n n n

i i i i i in n n
i i i

n

i in
i

X x x X x x

X x

= = =

=

   Γ − η + − δ ≤ Γ − η + − δ   
   

= Γ η

∑ ∑ ∑

∑
 

Hence, the payoff from the sales of separate tranches exceeds the payoff from tranching a 
single asset pool.  Finally, case (iii) follows immediately from the convexity of Γ∗.  �  

PROOF OF LEMMA 10:  The expected profits of an uninformed bidder with bid p is given 
by E[Qu (X−p)].  Since |Qu (X−p)| ≤ |X−p|, dominated convergence implies E[Qu (X−p)] is 
continuous in p.  Thus P∗ earns zero profits for the uninformed bidders, and is an 
equilibrium since any higher bid earns negative profits.  Finally, E[Qu (X−p)] ≤ 0 implies 

 [ ]
( , ) [ ]
[ ]

u

uE X
Cov Q Xp E X

E Q
≤ + ≤  

where the second inequality follows since Qu is weakly decreasing in X, and the 
inequality is strict if Qu is not constant. � 

PROOF OF THEOREM VI:  First note that * *1 1
i in ni i

P X P X   =   ∑ ∑ .  For any γ ∈ 

(1,β), let 1 1 n
n np E X−  = β γ   .  From the Schwarz inequality,  

 [ ] ( )
1 1

PrAE A B E A
B

≥ − σ −   . 

Since [ ] 2
2

1

1 1/
n

n
i

i

Var X n Var X
n n=

  = ≤ σ  ∑  this implies, 
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 ( )
1 1 1

1

1 1 1
Pr

n n n
nn n n n

n n

E X X p E X
X pn

   ≤ β ≥ − σ −   ≤ β
. (23) 

Since γ > 1, by the Weak Law of Large Numbers, 

( ) ( ) ( )( )1 1 1Pr Pr 1 1n n n n
nn n nX p X E X E X   ≤ β = − ≤ γ − →    . 

Thus, (23) implies 1 1n n
nn nE X X p x ≤ β →  .  Hence, for n sufficiently large, since 

1
np x x−→ β γ < ,  

 
1

1 1
1

( , )
( , )

u n
n nn n

n nn n u n
n n

E Q X p X
p E X X p

E Q X p

   ≤ ≤ β ≤    
, 

where the last inequality follows since Qu(X/p,p) = 1[X ≤ βp] + 1[X > βp]Qu(X/p,p). 

Thus, at price pn, uninformed investors earn a non-negative profit.  This implies that 
*1 1n n

nn nE X P X p   ≥ ≥    , and therefore ( )* 11lim ,n
nn

P X x x−

→∞
 ∈ β γ  .  Since this is true 

for all γ ∈ (1,β), we have * 1 n
nP X x  →  . �  

PROOF OF LEMMA 11:  Differentiating (13) implies p decreases (increases) as xc 
decreases for xc > (<) p.  Continuity of p in xc follows from the continuity of X.  Thus 
there exists p0 such that xc ≥ p for xc ≥ p0.  Since the cash constraint in (12) is relaxed 
with an increase in C, both xc and p strictly decrease with C until xc = p = p0.  This occurs 
for 0 0 0Pr( ) [ ]C C M X p p Mp ME X= = θ > < θ < θ . � 

PROOF OF THEOREM VII:  Given the same initial cash, N0 is equal in both cases.  
However, since S∗ > S1, the intermediary has more cash at date 1 with pooling and 
tranching.  If δ0 < 1,  xc

1 > p1, and so p1 is decreasing in the amount of cash held by the 
intermediary from LEMMA 11.  Thus, N1 will be higher with pooling and tranching, and 
thus so will C2 + O2.  Also, from ASSUMPTION B, the decrease in xc

1 implies that C2 will 
also be higher with pooling and tranching.  Thus, on date 2 the intermediary has both 
higher cash and higher total assets with pooling and tranching. This argument can be 
repeated at each future date. � 
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