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We examine information aggregation regarding industry capital productivity from

privately informed managers in a dynamic model with optimal incentive contracts.

Information cascades always occur if managers enjoy limited liability: when beliefs

regarding productivity become endogenously extreme (optimistic or pessimistic),

learning stops. There is no learning if initial beliefs are extreme, or if agency conflicts

are severe. In contrast to the literature, cascades occur even when signals have un-

bounded precision or when there are rich action spaces. Relaxing limited liability

constraints is not sufficient to avoid cascades; we provide sufficient conditions for

efficient information aggregation through incentive contracts. (JEL G32, D23)

Investment uncertainty in firms typically has both project-specific and
common (or aggregate) components. Consider, for example, investment
in new business opportunities that are created by technological innov-
ations, changes in underlying buyer preferences, or the development of
new markets. In each of these cases, undoubtedly of substantial empirical
significance, there will be initial uncertainty regarding the long-run eco-
nomic viability of the technological or market innovation that is common
to all firms in the industry. Indeed, a long line of literature documents the
investment distortions (at the level of the industry) generated by this type
of uncertainty because of extreme—optimistic or pessimistic—initial
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beliefs. Whereas optimistic beliefs often lead to overinvestment and over-
capacity in the incipient stages (Kindleberger 1978; MacKay 1980;
Garber 2001; Sidak 2003), pessimistic beliefs can lead to underinvestment
(Juma 2014).1

There is typically asymmetric information regarding this aggregate (or
industry-wide) uncertainty. Some agents, such as the managers of the first
movers in the new opportunities, have private signals that are correlated
with the true industry productivity.2 Because the observed decisions of
these agents, such as their investment and financing choices, generally will
be correlated with their private signals, there is the possibility of efficient
aggregation of dispersed and private information based on observational
learning (see, e.g., Smith and Sørensen 2001).

However, the recent literature on observational learning highlights
the possibility of information cascades, wherein agents completely
ignore their useful private information and herd on wrong decisions
(Scharfstein and Stein 1990; Bannerjee 1992; Bikhchandani, Hirshleifer,
and Welch [BHW] 1992). But the herding literature generally does not
consider dynamic information aggregation when informed agents can be
offered optimal incentive contracts for inducing information on the,ir
private signals. As pointed out by Ottaviani and Sorensen (2000), infor-
mation cascades occur in the statistical herding models of Bannerjee
(1992) and BHW (1992), where agents take optimal actions based on
private signals of bounded precision and decisions of other agents, and
in the reputational herding model considered by Scharfstein and Stein
(1990), where allocations are efficient ex post.

On the other hand, in the context of firms, it is realistic to expect that
uninformed investors will interface with privately informed managers
through incentive contracts, as is considered in the large agency litera-
ture.3 In particular, there is an intuition that information cascades may be
avoided through the design of appropriate contracts by uninformed out-
siders who can precommit to investment responses that give insiders

1 Historical examples of over-investment due to optimistic priors include the South Sea Trading Company
in the 18th century; the development of the railroad industries in Britain and the U.S. in the 1830s and the
1860s, respectively; the growth of power Utilities in the U.S. in the 1920s; and, the internet and tele-
communication industries world-wide in the 1990s. Meanwhile, Juma (2014) argues that pessimistic
beliefs among development experts (in the 1950s) regarding the innovation and entrepreneurial capacity
of newly independent developing economies led to underinvestment in new technologies in these societies,
which had long term negative effects on their economic growth.

2 Recent examples of such asymmetric information include the private information of firms such as
WorldCom regarding the growth of internet traffic in the 1990s (Sidak 2003) and that of mortgage
lenders and investment banks in the securitization of mortgages during 2002-2006 (Coffee 2010).

3 The theory of incentives and mechanism design is a mature field and, as such, there are a number of
excellent surveys available. A non-exhaustive list includes Hart and Holmstrom (1987), Mookherjee
(2006), Myerson (2008), and Martimort (2006).
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incentives for information transmission.4 But there are also well known
institutional constraints on the design of optimal incentive contracts,
such as limited liability or nonnegativity constraints on managerial com-
pensation, which may restrict the ability of incentive contracts to induce
private information. However, the literature has not examined whether
optimal incentive contracts, designed under plausible institutional con-
straints, can achieve dynamic information aggregation and avoid infor-
mation cascades. In particular, the literature on the effects of asymmetric
information on investment policies of firms typically considers situations
in which there is private information on project-specific, and not on in-
dustry (or aggregate), productivity.5

In this paper, we examine the dynamic aggregation of private informa-
tion on industry capital productivity when firms enter over time and equity
owners of each firm design compensation- and investment-based incentive
contracts to induce information from their managers who are privy to
signals correlated with the industry productivity. Consistent with our
focus on the firm, we impose limited liability (or nonnegativity) constraints
on managerial compensation. We characterize the interim efficient invest-
ment and managerial compensation contracts (Holmstrom and Myerson
1983) in this dynamic game when owners design contracts based on the
observed history of previous contracting outcomes. Strikingly, we find that
learning on the unknown industry productivity stops endogenously along
the equilibrium path for all initial conditions; hence, with positive prob-
ability there is herding on the wrong investment level (compared with the
complete information outcome) along the equilibrium path.

Intuitively, as learning proceeds and beliefs become more precise, the
net benefit of inducing additional information through costly incentive-
provision falls. To fix ideas, suppose that the true industry productivity
can be high or low. If, at some stage, the markets’ posterior beliefs re-
garding the unknown productivity are very optimistic or pessimistic—
that is, the probability of high productivity is close to one or zero—then
the expected learning from an additional signal is small. However, incen-
tive provision through investment and compensation distortions is costly;
hence, pooling contracts become endogenously optimal over time.
We reiterate that this result occurs even though we impose no restrictions
on the principal’s ability to credibly precommit to investment and only

4 The literature presents suffcient conditions to rule out information cascadaes — such as, unboundedly
informative signals (Smith and Sorensen 2001) or rich action spaces (Lee 1993). Scharfstein and
Stein (1990) and Kumar and Langbeg (2013) consider contract design with observational learning but
do not allow precommitment with respect to the investment response of the uninformed outside
investors.

5 Papers in this tradition include Stiglitz and Weiss (1983), Myers and Majluf (1984), Greenwald, Stiglitz,
and Weiss (1984), DeMeza and Webb (1987), Stein (1989), Harris and Raviv (1996), Martin (2009), and
Kumar and Langberg (2009).
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impose the economically reasonable constraint that there is no unlimited
liability on managers.

In sum, the herding outcomes presented in the literature (e.g.,
Scharfstein and Stein 1990; Bannerjee 1992; BHW 1992) appear to be
robust to incentive contracting with precommitment in an economically
reasonable model of incentive contracting in firms. An important aspect
of our analysis is that initial beliefs and past industry productivity-related
disclosures not only determine the financial markets’ expectations but
also affect the information content of future disclosures through their
influence on the design of optimal incentive contracts. In particular, if
the initial beliefs regarding industry productivity are extreme—optimistic
or pessimistic—then no learning occurs through contracting and there is
a greater likelihood of herding on the wrong investment level. Namely,
when the true productivity is low (high), there will be over- (under-)
investment at the aggregate or industry-level because the initial beliefs
will not be corrected based on managerial signals, even with an infinite
sequence of incentive contracts. In a similar vein, because the signals are
stochastically related to the true productivity state, managers may receive
good (bad) signals even if the true productivity is low (high). A sequence
of good (bad) signals can therefore endogenously induce market opti-
mism (pessimism) along the equilibrium path that does not get corrected,
even if negative (positive) signals eventually appear, because contracts
endogenously enter the “pooling region” with extreme beliefs. These pos-
sibilities appear empirically consistent with the historically observed
confluence of extreme beliefs and aggregate industry investment distor-
tions that we have already noted. However, in our framework, the
herding outcomes arise along perfect Bayesian equilibrium paths
with incentive-efficient contracting, and not because of “irrational
exuberance” (Greenspan 1996), “overreactions to innovations” (Shiller
2005), or misplaced pessimism (Juma 2014).

When the initial beliefs and the agency conflicts are moderate, there is
learning along the equilibrium path even though learning eventually stops
as beliefs endogenously enter the pooling region. Our model allows us to
relate the “learning region” of beliefs to salient model parameters. We
find that the learning region is positively related to the cost of capital.
Thus, expected learning is lower and the aggregate investment distortions
are likely to be higher when the cost of capital is low because of stock
market booms or greater influx of funds in the capital market, consistent
with what we actually tend to observe (Kindleberger 1978; Garber 2001).
Meanwhile, the learning region is positively related to the productivity
gap between the high and low states, because the gains from inducing
information increase as the expected costs of investment distortions rise.
Finally, the learning region is also positively related to the precision of
managers’ signals with respect to the unknown productivity.
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As noted already, in herding models without contracting there exist
sufficient conditions to ensure efficient information aggregation through
observational learning: information cascades can be avoided if signals are
of unbounded precision (Smith and Sørensen 2001) or the action space is
continuous (Lee 1993).6 Thus, there is an intuition that incentive con-
tracting will avoid information cascades under weaker sufficiency
conditions. Somewhat surprisingly, we find that the crucial determinant
of dynamic information aggregation is not the information content of the
signals per se but whether it is efficient to induce signals from informed
agents. In particular, if the agency conflict between the informed and
uninformed parties is sufficiently severe, or if the initial beliefs are ex-
treme, then there may be no information transmission, even when signals
have unbounded precision or are continuously distributed.

The herding outcomes with optimal incentive contracting raise a gen-
eral issue: which conditions on agents’ preferences and the information
structure are sufficient to ensure that incentive contracting will result in
complete learning, that is, will avoid information cascades? There may be
a conjecture that relaxing limited liability constraints on the optimal con-
tract design will eliminate herding. But this is not true, because additional
restrictions on preferences and information structure need to be imposed.
The sufficient conditions for asymptotically complete learning are related
(but are not equivalent) to conditions used in the optimal contracting
literatures for adverse selection and moral hazard, even though there are
no unobservable actions in our model. To guarantee complete learning
asymptotically, one requires not only the Spence-Riley single-crossing
property (SCP) but also the monotone hazard rate property of the pos-
terior beliefs with the monotone and concave likelihood ratio properties
of signals (conditional on the state). The former condition on posterior
beliefs is more restrictive than the monotone hazard rate property of the
prior distribution of types (Myerson 1981; Maskin and Riley 1984).7

Meanwhile, the monotone and concave likelihood ratio properties
of noisy signals are used by, for example, Jewitt (1988).8 Essentially,
these conditions are sufficient to ensure that the history-dependent in-
terim-efficient decision rules are completely separating with respect to the
informed agents’ private signals.

6 Private beliefs are bounded if the likelihood ratio implied by individual signals is finite and strictly
bounded away from zero. That is, with bounded beliefs the information content of signals (at the
margin) is bounded above. In contrast, with unbounded private beliefs agents can receive signals with
unbounded information content.

7 The monotone hazard rate property of the prior distribution of types plays an important role in guar-
anteeing the monotonicity of the optimal decision rule in models with adverse selection.

8 In Jewitt (1988) these conditions are used in validating the first order approach for the derivation of
optimal contracts in moral hazard settings.
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To our knowledge, this is the first analysis of the interim (or incentive)
efficiency of information cascades. Our study bridges the gap between the
herding and incentive contracting literatures. Our analysis helps explain
why information cascades can occur with optimal contracting in agency
models that are widely considered in the finance and economics litera-
tures and clarifies the conditions needed in these models to ensure com-
plete learning through incentive contracts. In particular, we find that
incentive contracts are likely to avoid information cascades and herding
on wrong decisions when agents’ preferences satisfy properties that are
also conducive to the existence of signaling equilibria: investment deci-
sions in new industries or markets undergoing structural changes will be
efficient in the long run precisely under conditions in which there may
exist signaling equilibria through dividends (Bhattacharya 1979; John
and Williams 1985), insiders’ equity (Leland and Pyle 1977), or higher
debt (Ross 1977; Heinkel 1982). Our results also provide a novel perspec-
tive on learning unknown industry productivity, an issue that has been of
long-standing interest in the literature (Zeira 1987, 1994; Rob 1991).
Finally, although there is a literature on the implications of limited
liability for optimal contracting (e.g., Demougin and Garvie 1991), our
analysis is among the first to relate limited liability to long-term infor-
mation aggregation and herding.

1. Learning Unknown Industry Productivity

1.1 Environment

Suppose that a new technology is introduced and deployed by sequence
of firms that enter the industry, but its productivity—that is, its expected
rate of return on investment—is unknown. Firms enter the industry se-
quentially and make investments. Each firm is controlled by a manager
who receives a private noisy signal on the industry productivity. If these
signals were aggregated over time, then by the law of large numbers the
true industry productivity would become known asymptotically.
However, managers may not truthfully reveal these signals to outside
investors (the equity owners) because of an intrinsic conflict of interest:
managers obtain private benefits from investment that are (axiomatically)
not valued by the investors. However, the equity owners of each firm can
write an incentive contract with their manager to induce information. But
whereas the owners can precommit to their investment response to their
manager’s signals, they realistically cannot precommit to investment in
firms that may enter subsequently.9 There is perfect recall (Kuhn 1953) in
that all players know the prior contracting outcomes or decisions of firms

9 Such long term commitment may be available to a social planner in a productive economy, but is not
credible when that economy is organized through ownership of individual firms through equity markets.
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that have previously entered. Thus, there is observational learning
(Bannerjee 1992; BHW 1992) in contract design because owners can op-
timally design their incentive contracts, which then determine the invest-
ment and managerial compensation decision of their firm, based on their
observations of prior investment and compensation decisions in the in-
dustry. The central question we examine is: whether the sequence of op-
timally designed contracts will lead to asymptotically complete learning
on the industry productivity.

We model the situation just described in the following fashion. There
are a countably infinite number of stages—each stage representing entry
by a firm—indexed by n 2 N . To each stage is associated a manager-
owner pair ðxn; ynÞ, who together decide on an investment level an chosen
from a prespecified feasible set A � Rþ. Let xn manage or control a
production technology owned by yn; this technology stochastically relates
capital investment an to output zn ¼ �ð�h � �‘Þ þ �‘½ � fðanÞ; where f is twice
continuously differentiable, strictly increasing and strictly concave,
whereas � 2 f0; 1g is the unknown productivity parameter, and
�h > �‘ � 0.

For convenience, we label the sequence of managers fxng
1
n¼1 and firms

fyng
1
n¼1 as type-X and type-Y agents, respectively (we will also refer to the

type-X agent as the agent and to the type- Y agent as the principal). Each
individual’s payoff depends on its type (X or Y), the investment an, an
underlying state � 2 Y ¼ f0; 1g, and the monetary transfers between them
wn 2 W � R: In the situation at hand, wn is naturally interpreted as
wages or compensation paid by the principal to the agent. We assume
that the payoffs for type-X and type-Y agents are given, respectively, by10

UXðan;wn; �Þ ¼ uXðan; �Þ þ wn ¼ wn þ ’an; ð1Þ

UYðan;wn; �Þ ¼ uYðan; �Þ � wn ¼ �ð�h � �‘Þ þ �‘½ � fðanÞ � Ran � wn: ð2Þ

Here, the parameter 0 < ’ < 1 models the private benefits of control or
utility from “empire building” (Stulz 1990; Hart 1995) and R> 1 is the
cost of capital. The preference specification of the agent in (1) is standard
in this literature and is adapted from Harris and Raviv (1996). Note that
from the perspective of the principal the complete-information optimal
level of investment afbð�Þ maximizes expected output net of financing
costs, that is, satisfies �ð�h � �‘Þ þ �‘½ � f 0ðafbð�ÞÞ ¼ R.

The true state � is unknown, and all agents and principals have the
common prior belief �0 ¼ Prð� ¼ 1Þ. A central question is whether and
what the agents learn about the true state over time. At each stage n,

10 We allow for the possibility that the agents cannot agree or decide on an action, in which case they each
receive zero utility.
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private signals sn 2 S are received by the type-X agent or manager.
That is, there is asymmetric information between the informed agent
and uninformed principal. The signals fsng

1
n¼1 are generated independ-

ently conditional on � according to the nondegenerate probability meas-
ures G�; � 2 Y, on the common support S, and such that G0, G1 are
nonidentical (GiðsÞ ¼ Prðsn ¼ s j � ¼ iÞ; for i¼ 1, 2). These assumptions
imply that signals are at least somewhat informative but are not perfectly
revealing of �. We will denote the probability mass functions with
g0ðsÞ; g1ðsÞ.

11

We now describe the contracting environment, define the equilibrium,
and relate the information revelation along the equilibrium path to
asymptotic learning.

1.2 Contracting

We focus on bilaterally interim efficient decision rules at each stage
n 2 N .12 The information set at n is �n ¼ ðsn; hnÞ 2 �n ; where hn is
the observed profile of decisions di ¼ ðai;wiÞ for i ¼ 1; . . . ; n� 1 (or
hn ¼ ðd1; . . . ; dn�1Þ ¼ ðða1;w1Þ; . . . ; ðan�1;wn�1ÞÞ). A decision rule is the
mapping �n : �n ! �½A �W� (the space of probability measures on
A�WÞ. Now let �n ¼ Prð� ¼ 1 j hnÞ: Then, by Bayes’ rule, the private
beliefs of type-X agent xn; given the signal sn; are

pnðsn;�nÞ � Prð� ¼ 1 j sn; hnÞ ¼
g1ðsnÞ�n

g1ðsnÞ�n þ g0ðsnÞð1� �nÞ
: ð3Þ

The expected utility of xn when sn ¼ s, but when state s 0 is reported and
the decision rule �nðsn ¼ s0; hnÞ is used, is

VX
n ðs; s

0; hn; �nÞ

�

Z
A�W

pnðs;�nÞU
Xða;w; 1Þ þ ð1� pnðs;�nÞÞU

Xða;w; 0ÞÞ
� �

dQð�nðs
0; hnÞÞ:

ð4Þ

Here, the conditional distribution of allocations dn ¼ ðan;wnÞ following
report s0 as governed by �nð�nÞ is denoted by Qð�nð�nÞÞ (that is, the pro-
jection of �nð�nÞ on �½A �Wn�). A decision rule �n is (Bayesian) incentive
compatible if for every s; s0 2 S

VX
n ðs; s; hn; �nÞ � VX

n ðs; s
0; hn; �nÞ; s 6¼ s0: ðICnÞ

11 We conduct the analysis by considering a binary distribution of signals but subsequently in the appendix
we extend the analysis to show that our results also hold for the case of continuous signals. When S is
continuous, the notation used above stands for the probability density functions.

12 The concept of interim efficiency is introduced and discussed generally in Holmstrom and Myerson
(1983).
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(For notational ease, let VX
n ðs; hn; �nÞ � VX

n ðs; s; hn; �nÞÞ: In addition, �n is
acceptable (or individually rational) for xn if

VX
n ðsn; hn; �nÞ � 0; 8s 2 S: ðIRnÞ

�n is admissible if it is incentive compatible and acceptable.
Note, however, that admissibility of contracts imposes no restrictions

on the monetary transfers among the two parties. In particular, it is
possible theoretically that an admissible contract involves negative trans-
fer to the agent. To see this, note that the individual rationality constraint
for the agent (cf. (IRn)) will be satisfied as long as wn þ ’an � 0; in par-
ticular, if an > 0; then �’an � wn < 0 will satisfy this constraint. This
possibility is clearly unappealing in many institutional settings, especially
in the context of the firm in which managerial or worker compensation is
generally nonnegative. To accommodate these institutional constraints,
we will impose an additional limited liability constraint, which requires
that the monetary transfers to the agent be nonnegative (Demougin and
Garvie, 1991). Specifically, �n is feasible if it admissible and, in addition,
�n : �n ! �½A �Wþ�; where Wþ is the set of nonnegative monetary
transfers.

Next, to define the notion of interim efficient contracts concisely, we
first compute the expected utility of yn conditional on hn and signal sn
(reported truthfully) as

VY
n ðs; hn; �nÞ ¼

Z
A�W

pnðs;�nÞU
Yða;w; 1Þ þ ð1� pnðs;�nÞÞU

Yða;w; 0Þ
� �

dQð�nðs; hnÞÞ:

ð5Þ

Meanwhile, the expected utility of yn conditional on hn, (that is, before
signal sn is reported), namely, VY

n ðhn; �nÞ, is computed as follows. Let
�nðs; hnÞ denote the probability density function of s 2 S conditional on
hn; that is,

�nðs; hnÞ � �nðsÞ ¼ g1ðsÞ�n þ g0ðsÞð1� �nÞ: ð6Þ

Then the expected utility of yn under the decision rule �n is

VY
n ðhn; �nÞ ¼

Z
S

VY
n ðs; hn; �nÞ�nðsÞds: ð7Þ

�	n is interim efficient if it is feasible and maximizes VY
n ðhn; �nÞ.

13

13 In general, interim efficient rules maximize a welfare function that is a weighted average of the expected
utilities of the two agents ðxn; ynÞ, where the weights may depend on �n (Holmstrom and Myerson 1983).
Our formulation conforms to the standard principal-agent contracting framework.
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By the revelation principle any feasible decision rule can be imple-
mented through a direct mechanism or contract with the message
space Mn ¼ S (with truth-telling on signals) for xn and the (possibly
randomized) message-contingent decision rule �nðmn; hnÞ 2 �½A �Wþ�;
mn 2 Mn (see, e.g., Jackson 2003). With a straightforward adaptation
of notation, the incentive compatibility conditions (4)-(ICn) can be ex-
pressed as VX

n ðs; hn; �nÞ � VX
n ðs; s

0; hn; �nÞ; s 6¼ s0 2 S; that is, �n is incen-
tive compatible if it induces truth-telling with mn¼ sn. Similarly,
acceptability (for xn) requires V

X
n ðs; hn; �nÞ � 0 for each s 2 S. The interim

efficient contract C	nð�nÞ ¼ �
	
nð�nÞ is then a feasible contract that maxi-

mizes VY
n ðhn; �nÞ: Hence, Qð�	nð�nÞÞ is the distribution of decisions in the

efficient contract, and we will denote its support by �	nð�nÞ:

1.3 Contracts and learning

By construction, the various generations of players ðxn; ynÞ observe the
prior profile of contract outcomes or decisions, that is, ðat;wtÞ

� �
t�n�1

:
This is consistent with the literature on information cascades because,
from the viewpoint of observational learning, it is the information con-
tent of prior decisions (rather than any inter-agent messages) that is rele-
vant (Bannerjee 1992; BHW 1992). But the information gleaned from the
optimal decisions can range from complete revelation, where the optimal
decision rule �	n is invertible in the signal sn; to no revelation, when the
decision rule is identical for all signal types.

A sequence of bilateral contracts �nf g
1
n¼1 generates a stochastic process

of investment and compensation decisions ðan;wnÞ
� �1

n¼1
; where the ran-

domization occurs through the realization of signals fsng
1
n¼1 (and the

possibly randomized decision rule). A perfect Bayesian equilibrium (or
just “equilibrium”) in the game described already is then specified by a

sequence of optimal bilateral contracts �	 ¼ �	n
� �1

n¼1
and the sequence of

communication strategies (for xn) m
	 ¼ m	n

� �1
n¼1

where m	n ¼ sn; n 2 N .

It is straightforward to show that a �	n ¼ �	n;m
	
n

� �
is an equilibrium be-

cause, by construction �	nðmn; hnÞ and m	n ¼ sn are sequentially rational

strategies.14

An equilibrium is then the profile �	 ¼ �	n
� �1

n¼1
. (We label the continu-

ation equilibrium at the root hn by �	 j hn :Þ We let P�	 denote the prob-
ability measure generated by �	; whereas the Bayes-consistent beliefs
Prð� ¼ 1 j hnÞ recursively generated by this measure are denoted by ��

	

n :
Then, learning is asymptotically complete along �	 if

lim
n!1

Prð��
	

n ¼ � j �Þ ¼ 1: ð8Þ

14 To complete the specification of the PBE, we assume that upon observing any market outcome
cn =2Cn	ð�nÞ, for any n, �nþ1 ¼ �n:
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That is, with probability one the posterior measure is degenerate and the
expectations of � are consistent (with the true � 2 f0; 1g). And learning is
asymptotically incomplete if limn!1 Prð��

	

n ¼ � j �Þ < 1:
It is apparent that the learning over time on � will depend on the

amount of information revealed by the contracting outcomes along the
equilibrium path. The following categorization of the informational con-
tent of contracting outcomes, which follows the norms in the literature, is
useful. The optimal contract is separating, denoted by CS	

n ð�nÞ; if the
contracting outcome dn ¼ ðan;wnÞ is completely revealing of the true
signal realization, that is,

Prðsn ¼ s0 j dn 2 �	nðmn ¼ s0; hnÞ; hnÞ ¼ 1; 8s0 2 S: ð9Þ

However, in a pooling contract (denoted by CP	
n ð�nÞ), the contracting

outcomes have no information content regarding the informed player’s
signals; that is, for all s; s0 2 S,

Prðsn ¼ s j dn 2 �	nðmn ¼ s0; hnÞ; hnÞ ¼ �nðs; hnÞ: ð10Þ

In sum, in our model, the observed history of prior contracting out-
comes will have information content with respect to the true productivity
parameter � only if at least some of the previous contracts were separating
or bunching contracts. On the other hand, the posterior and prior beliefs
are unchanged if the contracts are pooling. That is, if at any information
set hn, the optimal contract is pooling, then ��

	

nþ1 ¼ �
�	

n ; and hence every
C	nð
; hnþiÞ; i ¼ 1; 2::; along �	 j hn also will be pooling.

Proposition 1. Along any �	, for any hn, n 2 N ; if C
	
nð
; hnÞ ¼ CP	

n ð
; hnÞ,
then ��

	

nþi ¼ �
�	

n ; i 2 N , with probability one.

Thus, pooling optimal contracts will rule out complete learning, that is,
allow herding. Conversely, if with strictly positive probability the optimal
contracts reveal some new information, which will certainly be the case if
they are separating, then learning will be complete.15

Proposition 2. Along any �	, for any hn, n 2 N ; if C
	
nð
; hnÞ ¼ CP	

n ð
; hnÞ
and 0 < ��

	

n < 1; then learning is asymptotically incomplete along �	 j hn :
However, if C	nð
; hnÞ ¼ CS	

n ð
; hnÞ for every hn; n 2 N , then learning is
asymptotically complete along �	.

15 In general actions can generate noisy information. Namely, a contract is bunching, if dn is not invertible
(or not completely revealing) but is informative of the true signal because the uninformed player’s
posterior beliefs are different from its prior beliefs. We note that the implications of a sequence of
bunching contracts for complete learning requires careful analysis. If, for example, bunching involves
a partitioning of the type space where the partition size is uniformly bounded, then bunching will lead to
complete learning. However, there can be more complex trajectories, where the pooling interval expands
to cover the type space asymptotically, where complete learning may not result. For tractability, we will
therefore focus on complete pooling and separating contracts. This will not materially limit our analysis
because the optimal contracts are either pooling or separating.
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Of course, there is a large literature that examines sufficient conditions
for the optimal contract to be strictly monotone in hidden types, that is,
be separating, or involve bunching in types (see, e.g., Fudenberg and
Tirole 1991). It is worthwhile to reiterate the important differences be-
tween our set up, which builds on the canonical herding model, and the
standard nonlinear pricing problem with hidden information. First, the
private information, that is, the signal sn, itself does not affect the payoffs
of either the informed or the uninformed agent; rather, signals influence
expected payoffs only through their effect on the Bayes estimate (or pos-
teriors) on the unknown state parameter �. Second, there is a distinction
between the posterior beliefs on �, which are endogenous because they
depend on the outcome of the contracting game, and the likelihood that
the (type-X) agent will receive a given signal, which is fixed exogenously
by the signal structure fG1ðsÞ;G0ðsÞg. Finally, the standard (or textbook)
mechanism design formulation with hidden information does not impose
limited liability constraints in the form of monetary transfers between the
informed and uninformed parties. As we noted already, although these
constraints may not be relevant or be usually nonbinding in some settings
(see Section 2.2), they are natural in the context of the firm. As we will
see, whether or not the limited liability constraints are binding plays an
important role in the possibility of herding with optimal contracting.

We now return to the agency model of the firm specified in Section 1.1
and analyze the long-run learning outcomes.

1.4 Evolution of beliefs

To facilitate intuition, we consider the case of a binary signal space
S ¼ fH;Lg: This case allows us to exposit our main points. (However,
in the Appendix we extend the analysis to allow for continuous signals.)
It is also convenient to use the following symmetric signal distribution:
prior to the investment, xn receives a private signal sn 2 S ¼ fH;Lg with
	 � g1ðHÞ ¼ g0ðLÞ >

1
2. Hence, conditional on �n ¼ Prð� ¼ 1 j hnÞ; �

H
n is

given by

�Hn � Prðsn ¼ H j hnÞ ¼ 	�n þ ð1� 	Þð1� �nÞ: ð11Þ

And the posterior-type distribution fpHn ; p
L
n g conditional on sn is given by

pHn ¼ Prð� ¼ 1 j sn ¼ H; �nÞ ¼
Prð� ¼ 1; sn ¼ H j�nÞ

Prð� ¼ 1; sn ¼ H j�nÞ þ Prð� ¼ 0; sn ¼ H j�nÞ

¼
�n	

�n	þ ð1� �nÞð1� 	Þ
:

ð12Þ

pLn ¼ Prð� ¼ 1 j sn ¼ L; �nÞ ¼
�nð1� 	Þ

�nð1� 	Þ þ ð1� �nÞ	
: ð13Þ
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Furthermore, the posterior expected productivity conditional on the
signal sn ¼ s is

 nðsÞ � Eð� j sn ¼ s; �nÞð�h � �‘Þ þ �‘ ¼ �h � �‘ð Þpsn þ �‘;s 2 fH;Lg: ð14Þ

Along the equilibrium path the posterior beliefs �n on the unknown
productivity state � are informationally sufficient to represent history hn.
Hence, for notational convenience, we will subsequently denote the
optimal contracts by C	nð�nÞ (where we suppress the dependence of the
decision on the agent’s message).

1.5 Asymptotic learning

The contract between xn and yn specifies a menu of investment levels and
wage payments hajn;w

j
ni

H
j¼L 2 R

2
þ: Here, in the optimal separating con-

tract only the incentive constraint for the low-type agent is binding.
Hence,

CS	
n ð�nÞ 2 arg max

hajn;w
j
ni

H
j¼L2A�Wn

�
�Hn ½ nðHÞfða

H
n Þ � RaHn � wH

n �þ

ð1��Hn Þ  nðLÞfða
L
n Þ � RaLn � wL

n

� �	
;

ð15Þ

subject to

wL
n � wH

n ¼ ’ aHn � aLn
� �

; ð16Þ

wL
n þ ’a

L
n � 0; ð17Þ

wL
n � 0;wH

n � 0: ð18Þ

Here, (16) is the binding incentive (IC) constraint for the low-type agent;
(17) is the acceptability or individual rationality (IR) constraint for the
low-type agent; and (18) are limited liability (LL) constraints. Note that if
the IR constraint is satisfied for the low-type agent, then it follows that
(16) is also satisfied for the high-type agent.

Importantly, because of the LL constraints, the IR constraint need not
be binding for the low-type agent, unlike the standard optimal contract
for incomplete information, where the IR constraint is binding for a
boundary type (see, e.g., Fundenberg and Tirole 1991). In particular,
suppose that there were no LL constraints here. Then if the IR constraint
were nonbinding for the low-type agent, the principal could lower wL

n and
wH
n by the same amount, which would leave the IC constraint (16) un-

affected, and strictly improve on the candidate contract. However, this
argument is no longer valid with LL constraints because lowering wages
may violate the LL constraints. Indeed, if the IR constraint (17) were
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binding, then wj
n ¼ �’a

j
n; j ¼ H;L (using (16)) so that the LL con-

straints would be only satisfied when there is no investment in the
firm for any communication from the manager, which is generally
inefficient.

The possibility of binding LL constraints and nonbinding IR
constraints substantially affects information transmission in the optimal
contract; in particular, pooling becomes optimal for an open set of
parameters. We analyze the optimal contract by first characterizing a
candidate separating contract and then examining its optimality. It
follows from (15)-(18) that the optimal separating contract CS	

n ð�nÞ is
given by

f 0ðaHn Þ ¼
1

 nðsÞðHÞ

1� �Hn
� �

’

�Hn
þ R


 �
;

f 0ðaLn Þ ¼
R� ’

 nðsÞðLÞ
;wL

n ¼ ’ aHn � aLn
� �

; wH
n ¼0:

ð19Þ

Intuitively, the optimal separating contract relaxes the low-type agent’s
incentive constraints by setting the high-type agent’s wages to be zero—
the minimum feasible under the LL constraints. Note that the IR
constraint for the high-type agent is still nonbinding because it re-
ceives positive utility ’aHn : Meanwhile, the low-type agent’s wages are
determined by the IC constraint (16); substituting these wages in the
objective function (15), then yields the optimal investment levels specified
in (19).

Now, the candidate separating contract in (19) is feasible iff aHn > aLn ,
that is,

1

 nðsÞðHÞ

1� �Hn
� �

’

�Hn
þ R


 �
<

R� ’

 nðsÞðLÞ
: ð20Þ

With some manipulation (see the Appendix), (20) can be restated as
(where 
 � �‘

�h��‘
> 0)

Zð�nÞ �
�n þ 


ð1�	Þ�n

ð1�	Þ�nþ	ð1��nÞ

h i
þ 


>
R

R� ’
: ð21Þ

Otherwise, the optimal pooling contract CP	
n ð�nÞ is given by zero wages

and action apooln such that

f 0ðaHn Þ ¼ f 0ðaLn Þ ¼ f 0ðapooln Þ �
R

Eð� j�nÞð�h � �‘Þ þ �‘½ �
;wL

n ¼ wH
n ¼ 0: ð22Þ

Therefore, pooling is optimal when beliefs �n are sufficiently high or
sufficiently low or when the private benefit of control parameter ’ (cost
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of capital R) is sufficiently high (low). Let ’ > 0 be the critical level of
private benefit of control such that pooling is optimal for all � when
’ > ’. And for levels of private benefit of control below the critical
level, let �� < �þ be the solutions to the equation Zð�nÞ ¼

R
R�’.

16

Proposition 3. For any 0 < �n < 1 and for any �n; n 2 N :

1. If ’ < ’ and �n 2 ��; �þð Þ; then the equilibrium is a separating
equilibrium, that is, C	nð�nÞ ¼ CS	

n ð�nÞ as given by (19).

2. If (i) ’ < ’ and �n =2 �
�; �þð Þ or if (ii) ’ > ’, then the equilibrium

is a pooling equilibrium, that is, C	nð�nÞ ¼ CP	
n ð�nÞ as given by (22).

It is instructive to consider the implications of Proposition 3 for the
endogenous or path-dependent information content of contracting out-
comes and consequently for the possibility of information cascades or
herding. If the agency conflict between the owners and the managers,
represented in our model by the managers’ private benefit of control
parameter ’; is high (that is, ’ > ’Þ; then no information is gleaned
from managers in the optimal contracts and herding occurs irrespective
of the initial beliefs on the industry productivity (�0). However, when the
agency conflicts are not very high (’ < ’), then the information generated
by the optimal contracts depends on the initial beliefs. If the initial beliefs
are either optimistic (�0 > �þ) or pessimistic (�0 < ��), then again there
is no information revelation through optimal contracts because pooling is
optimal.17 Hence, information cascades arise axiomatically. Finally, if
the agency conflicts are not too high and the initial beliefs are in the
intermediate range (�� < �0 < �þ), then optimal contracting induces
information from managers until the endogenously generated posterior
beliefs become extreme; for example, when �n approaches the optimis-
tic belief boundary �þ. At this point, pooling becomes optimal and fur-
ther learning stops, resulting in incomplete asymptotic learning or
cascades.

Although it follows from Proposition 3 that the optimal contract can
be either pooling or separating for any given stage n—depending on the
severity of the agency conflict and the endogenous current level of ex-
pected productivity—over time we expect learning to stop as beliefs enter
the pooling regions. But because Bayesian posterior beliefs are martin-
gales it follows from the martingale convergence theorem (see, e.g.,
Billingsley 1979) that beliefs must eventually enter these regions.

16 The critical level of private benefit of control is defined by ’ ¼ Zmax�1
Zmax

� �
R, where

Zmax ¼ max � 2 ð0; 1Þ : Zð�Þð Þ. Pooling occurs at the extreme levels of �n because Zð�nÞ approaches
the value 1 as �n becomes extreme. Formally, lim�!0 Zð�Þ ¼ lim�!1 Zð�Þ ¼ 1 < R

R�’.

17 Note, in the special case 
¼ 0 (i.e., when �‘ ¼ 0) we obtain �� ¼ 0 and pooling is optimal for sufficiently
high priors on �, but there is separation for low priors on � (provided that ’ < ’).
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Hence, learning can not be asymptotically complete in this model with
probability 1 and cascades must eventually arise.18

Theorem 1. With probability one, there exists a finite stage n	 such that
the contract is pooling (that is, C	nð�nÞ ¼ CP	

n ð�nÞ) for all n � n	. That is,
learning is asymptotically incomplete along the �	 specified in
Proposition 3.

In sum, contracts become endogenously pooling once learning pro-
ceeds and beliefs become more optimistic (�n > �þÞ or pessimistic
(�n < ��). The intuition here is that as beliefs become more extreme in
the sense of approaching the boundary points (0 or 1), the net benefit of
inducing additional information through costly incentive-provision falls.
To fix ideas, suppose that �n is close to one, so the financial markets are
almost sure that the true productivity state is good. Because this opti-
mism about the true state is the prior belief guiding the design of the
optimal contract, the expected learning (or change in beliefs) from indu-
cing information is small, and hence pooling is optimal. We note that the
limited liability constraints are important in this argument because they
constrain the design of the incentive contract; in particular, because of the
nonnegativity constraints on wages, the burden of truth-telling incentives
falls on investment distortions (relative to the complete information effi-
cient investment levels).

It is useful to examine the determinants of the separating region of
posterior beliefs ��; �þð Þ: In general, while learning is asymptotically
incomplete with probability one in this model, the extent of information
induced by optimal incentive contracting depends on the size of the
separating region.

Corollary 1. If ’ < ’, then the boundary �þ (��) is increasing
(decreasing) in R, 	 and vh, and decreasing (increasing) in ’ and v‘.
Moreover, the critical value ’ is increasing in R, 	 and vh, and decreasing
in v‘.

The boundary points �� and �þ are depicted in the three graphs in
Figure 1 as a function of the private benefit of control parameter ’.
Consistent with the intuition above, as the private benefit of control in-
creases, the upper bound �þ decreases, the lower bound �� increases,
and the optimal contract becomes a pooling contract if the agency con-
flict between the owners and the manager is sufficiently high. Intuitively,
the separating contract becomes more costly to implement as the agency

18 The optimality of pooling extends to cases that include more general contracts. In particular, if payoffs
could be contingent on the firm’s output or even future firms’ outputs, then pooling will still be an
optimal equilibrium outcome. Intuitively, since wages following a high productivity report are already set
to zero under the optimal contract and since there is limited liability pooling remains a robust equilibrium
outcome.
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conflict rises, because for any given aHn � aLn
� �

, the low-type manager has
to be provided higher wages for truthful communication, which is appar-
ent from (19). Thus, one would expect pooling to be optimal for suffi-
ciently high ’, which is verified by Proposition 3.

In Figure 1, we graphically present the boundaries �� and �þ as func-
tions of the cost of capital (R), the the precision of the signals 	, and the
productivity levels hv‘; vhi. Part A of the figure shows that, keeping fixed
the level of agency conflict (’), the separating region ��; �þð Þ expands as
	 rises, that is, the signals sn become more precise with respect to the
unknown productivity state �. This is consistent with intuition because
more precise signals, ceteris paribus, increase the benefit from the separ-
ating equilibrium. Meanwhile, part B of the figure shows that the separ-
ating region is positively related to the cost of capital R. As the cost of
capital rises, the owners’ investment response to high signals is muted
(because capital has become more costly by assumption); hence, the cost
of inducing truthful revelation from the low-type managers falls and the
optimal separating region expands. Conversely, the pooling region
expands and the expected information generation through optimal con-
tracts falls when the cost of capital is low; that is, there are stock market
booms and greater influx of funds in capital markets, other things held

Figure 1

Optimal contract – boundaries on beliefs.
In all three graphs critical values of ��and �þ are depicted as a function of the private benefit of control
parameter ’. In Graph A, two levels of precision of signals (	 ¼ 0:6; and 0:65Þ are depicted, where the
remaining parameters are ðv‘ ¼ 0:1; vh ¼ 0:8;R ¼ 1Þ. In Graph B, two levels of the cost of capital
(R ¼ 1:3; and 1:7Þ are depicted, where the remaining parameters are ðv‘ ¼ 0:1; vh ¼ 0:8; 	 ¼ 0:6Þ. In
Graph C, different productivity gaps are depicted, where the remaining parameters are ð	 ¼ 0:6;R ¼ 1Þ.
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fixed. Finally, part C of the figure shows that the separating region ex-
pands when the productivity gap expands (that is, following an increase
in vh or/and an increase in v‘). Intuitively, this follows because a separat-
ing contract is more beneficial when the investment distortion from pool-
ing is higher.

Figure 2 presents two simulated equilibrium paths for beliefs �n when
the true state is high (�¼ 1), and Figure 3 does so when the true state is
low (�¼ 0). Both figures depict the path of beliefs, the marginal returns
on investment or path of marginal-Q’s as perceived by the market, and
the path of true marginal-Q, while taking into account the true state of
productivity. In particular,

Perceived marginal-Q in stage n is nðsÞf
0ðasnÞ for s 2 fL;Hg;

while to calculate the true marginal-Q one replaces  nðsÞ with the true
productivity �ð�h � �‘Þ þ �‘½ �. As one can see from the figures, the beliefs
on productivity are distorted and the perceived marginal-Q’s deviate
from the marginal cost of capital R (which is normalized to one in the
figures) along the equilibrium path and in the limit. Figure 2 shows that
learning is asymptotically incomplete because posterior beliefs hit the
bounds �þ (in Figure 2A) and �� (Figure 2B). However, in Figure 2A,
beliefs follow trajectories toward the true state, and the limiting expected
value of � is relatively close to the true state. However, in Figure 2B, the
trajectories of beliefs are in the “wrong” direction and converge to values
that are substantially different from the true state. Because the underlying
parameters are the same, Figures 2A and 2B graphically demonstrate the

Figure 2

Learning unknown industry productivity and marginal Q (when true productivity is high).
Two random paths are simulated for the high productivity state, that is, � ¼ 1. For each path, the left-
hand-side graph depicts the evolution of beliefs, and the right-hand-side graph depicts the evolution
of the perceived marginal Q by investors and the true marginal Q. The parameters are ð	 ¼ 0:6;R ¼ 1; ’
¼ 0:1; v‘ ¼ 0:1; vh ¼ 0:7Þ , where �� ¼ 0:077; and �þ¼ 0:719.
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history- or path-dependence of the asymptotic learning outcomes. The
two paths in Figure 3 present situations similar to Figure 2, except when
the true productivity state is low.

1.6 The role of limited liability

The optimal contract in Proposition 3 trades off the benefits from efficient
investment with the cost of rent extraction by the informed agent: pooling
is optimal when the cost of eliciting information exceeds the benefit from
efficient investment. Thus, the optimality of the pooling contract is directly
related to the limited liability of the agent. In particular, suppose that the
agent could make transfers to the principal, that is, wj

n 2 R for j ¼ L;H.
Individual rationality requires that such transfers satisfy wj

n þ ’a
j
n � 0 for

j ¼ L;H. The optimal contract without the limited liability constraint is a
separating contract for all beliefs �n and is given by19

f 0ðaHn Þ ¼
R� ’

 nðHÞ
; f 0ðaLn Þ ¼

R� ’

 nðLÞ
;wL

n ¼ �’a
L
n ; w

H
n ¼ �’a

H
n : ð23Þ

Under the optimal contract in (23) the agent “pays” for her private
benefits from control and earns zero rents. Although the limited liability
restriction on wages is realistic, it suggests that in economic settings that
allow for substantial transfers from the agent to the principal complete

Figure 3

Learning unknown industry productivity and marginal Q (when true productivity is low).
Two random paths are simulated for the high productivity state, that is, � ¼ 0. For each path, the
left-hand-side graph depicts the evolution of beliefs, and the right-hand-side graph depicts the
evolution of the perceived marginal Q by investors and the true marginal Q. The parameters are ð	 ¼ 0:6;
R ¼ 1; ’ ¼ 0:1; v‘ ¼ 0:1; vh ¼ 0:7Þ , where ��¼ 0:077; and �þ¼ 0:719.

19 As noted above, in the absence of the LL constraints, the IC and IR constraints are binding for the low-
type manager in the optimal contract. Thus, it follows from (16) and (17) above that wL

n ¼ �’a
L
n and

wH
n ¼ �’a

H
n : Substituting these conditions in the principal’s objective function (15) above then

yields (23).
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learning is more likely. A natural, and more general, question that arises
here is which conditions on preferences and information structure would
be sufficient for incentive contracts to efficiently aggregate information
over time? Addressing this issue will not only help in interpreting
the pooling results with respect to capital investment seen above but also
help in relating our analysis to the contracting and signaling literatures.

Based on (23), when monetary transfers between the two parties are
unrestricted, complete learning will occur along the equilibrium path in
the model at hand (see Proposition 2). However, as we show in the sub-
sequent section, this need not be the case in general, when considering a
more general adverse selection model. That is, relaxing the limited liabil-
ity constraint by itself is not generally a sufficient condition to guarantee
complete learning asymptotically; additional conditions are needed. For
example, we can quickly see from a trivial modification of one of our
assumptions for the model at hand that signals must be informative for
separation to be optimal.20 More generally, without limited liability one
must impose restrictions on preferences and the distribution of signals to
guarantee complete learning. In the next section, we present such suffi-
cient conditions that, along with the relaxation of the limited liability
constraints, eliminate information cascades in the presence of optimal
incentive contracting.

2. Conditions for Complete Learning

We consider the following general version of the agency model specified
in Section 1. There are a countably infinite number of stages—each stage
representing entry by a firm—indexed by n 2 N . To each stage is asso-
ciated a pair ðxn; ynÞ of players, who together decide on an action an
chosen from a pre-specified feasible set A � Rþ. The players’ welfare
depends on the action, monetary transfers between them wn, and an un-
known parameter � 2 f0; 1g: Consistent with the mechanism design and
nonlinear pricing literatures, we will focus attention on quasilinear pref-
erences (cf. (1) and (2)):

UXðan;wn; �Þ ¼ uXðan; �Þ þ wn;U
Yðan;wn; �Þ ¼ uYðan; �Þ � wn: ð25Þ

20 Suppose that there is no information content in the signal regarding the unknown productivity �, spe-
cifically 	 ¼ 1

2. It follows then (see (12)-(13)) that pHn ¼ pLn ¼ �n; that is, receiving a high (low) signal does
not change beliefs on whether �¼ 1 or 0. Consequently, the posterior expectation of productivity is
independent of the signal, since (cf. (14)):

 nðsn ¼ HÞ ¼  nðsn ¼ LÞ ¼ �n�h þ ð1� �nÞ�‘ ð24Þ

However, it follows from (23)-(24) that a separating contract is not sustainable since in any such can-
didate contract the optimal action is identical across the signals, i.e., f 0ðaHn Þ ¼ f 0ðaLn Þ ¼ f 0ðapooln Þ:
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Here, for each �; ujðan; 
Þ; j ¼ X;Y; are concave and twice continuously
differentiable functions on the interior of A. We will adopt the conven-
tion that uiða; 1Þ � uiða; 0Þ, for every a 2 A, and where the monotonicity
is strict for at least one of the agents. This is essentially a labeling con-
vention because it interprets the high state to be “good.” Next, at each
stage n, private signals sn 2 S are received by the type-X player; the re-
lation of these signals to � is exactly as specified in Section 1.1.
Furthermore, the contracting environment is the same as specified in
Section 1.2.

Our objective is to identify conditions that are sufficient for the optimal
contract to be separating when there are no limited liability constraints,
that is, when only the incentive and acceptability (or individual rational-
ity) constraints apply. Thus, these conditions will ensure asymptotically
complete learning and rule out information cascades (in the absence of
limited liability constraints). In the terminology of Section 1.2, �	n is the
optimal (or interim efficient) contract if it is admissible—that is, satisfies
the incentive compatibility and acceptability conditions—and maximizes
VY

n ðhn; �nÞ (cf. (7)).

2.1 Conditions on preferences and signal structure

We will utilize the following conditions to ensure the optimality of separ-
ating contracts.

The preferences uiða; �Þ; i ¼ X;Y satisfy the weak (strict) single-
crossing property (SCP) if uX1 ða; 1Þ � ð>Þ u

X
1 ða; 0Þ for every a 2 A:

The SCP is the well-known Spence-Mirrleees condition (with binary
types) and plays a basic role in theory of sorting and models of incom-
plete information (Maskin and Riley 1984; Milgrom and Shannon 1994).
Next, fix any information set hn, n 2 N ; such that the posterior beliefs are
�n. (Because the posterior beliefs �n are informationally sufficient for
the history data hn, we suppress h for notational ease.) Recall that, the
cumulative distribution of signals at stage n is �nðsn ¼ s;�nÞ ¼ G1ðsÞ�n þ

G0ðsÞð1� �nÞ with the associated hazard rate

1� �nðs;�nÞ

�nðs;�nÞ
¼

1� ðG1ðsÞ�n þ G0ðsÞð1� �nÞÞ

g1ðsÞ�n þ g0ðsÞð1� �nÞ
: ð26Þ

The signal structure fG1ðsÞ;G0ðsÞg satisfies the posterior monotone hazard

rate property (PMHRP) if, for any given �n 2 ½0; 1�;
@ 1��n ðs;�n Þ

�n ðs;�n Þ

� �
@s � 0, for

each s 2 S.
In the literature, the (closely related) monotone hazard property

(MHRP) on the distribution of types is widely used (Myerson 1981).
However, the PMHRP is different than requiring the MHRP on G�ðsÞ
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for each �.21 Finally, we also require the monotonicity and concavity
restrictions on the likelihood ratio of signals (conditional on the un-
known parameter �).

The signal structure fG1ðsÞ;G0ðsÞg satisfies the

1. monotone likelihood ratio property (MLRP) if g1ðsÞ
g0ðsÞ

is strictly
increasing in s,22 and

2. concave likelihood ratio property (CLRP) if g1ðsÞ
g0ðsÞ

is concave in s.

The MLRP is used in the literature on hidden actions or moral hazard
(along with other conditions) to justify the first-order approach to the
analysis of the principal-agent problem (Rogerson 1985). Jewitt (1988)
uses both the MLRP and the CLRP in developing another set of condi-
tions to justify the first-order approach. This connection with moral
hazard models is noteworthy because, although there are no hidden ac-
tions in our setup, agents do receive noisy signals on unobserved param-
eters (that is, �). However, in moral hazard models the noisy signal
(output) is publicly observable and endogenously generated by the
agent’s unobservable action; here, the noisy signal (s) is private informa-
tion and generated exogenously by the unobservable state.

We now examine the application of these conditions for two polar
assumptions on the signal space S: when signals are binary, and when
continuous; that is, S is an interval on the real line.

Section 2.1.1. Binary signals. Suppose first that S ¼ fH;Lg: For
notational ease, let for j 2 fH;Lg; � jn ¼ �nðsn ¼ j;�nÞ (cf. Equation (6)),
pjn ¼ pnðsn ¼ j;�nÞ (cf. Equation (3)), and �nðmn ¼ j; hnÞ ¼ ða

j
n;w

j
nÞ: Then

the optimal contract solves the optimization problem

C	nð�nÞ 2 arg max
hajn;w

j
ni

H
j¼L2A�Wn

XH
j¼L

� jn pjnU
Yðajn;w

j
n; 1Þ þ ð1� pjnÞU

Yðajn;w
j
n; 0Þ

� �
;

ð27Þ

21 The following is an example where the PMHRP is more restrictive than the MHRP for G1ðsÞ and G0ðsÞ:
Let, for � > 2 and s � 0; g1ðsÞ ¼ ð�� 1Þexpð�ð�� 1ÞsÞ; g0ðsÞ ¼ �expð��sÞ, and g1ðsÞ ¼ g0ðsÞ ¼ 0 when
s < 0: In this case, the hazard rates are constant, i.e., 1�G1 ðsÞ

g1ðsÞ
¼ ð�� 1Þ�1 and 1�Go ðsÞ

g0 ðsÞ
¼ �; thus, the mono-

tone hazard rate property is trivially satisfied for G1ðsÞ and G0ðsÞ: However, the ratio

1� �nðs;�nÞ

�nðs;�nÞ
¼

�nðs;�nÞ

��nðs;�nÞ � expð��sÞ�n

is not a constant. Nevertheless, straightforward computations show that the PMHRP is satisfied strictly
in this case.

22 Note that when the signal space is binary, i.e., sn 2 fH;Lg, then the MLRP applies if
g1ðs ¼ HÞ > g0ðs ¼ HÞ:
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subject to

pjnU
Xðajn;w

j
n; 1Þ þ ð1� pjnÞU

Xðajn;w
j
n; 0Þ �

pjnU
Xðakn;w

k
n; 1Þ þ ð1� pjnÞU

Xðakn;w
k
n; 0Þ; j; k 2 fH;Lg;

ð28Þ

pjnU
Xðajn;w

j
n; 1Þ þ ð1� pjnÞU

Xðajn;w
j
n; 0Þ � 0; j 2 fH;Lg: ð29Þ

In the standard adverse selection model with finite types, the SCP ensures
that the incentive compatibility constraints are binding only in one
direction and the individual rationality constraint is also only binding for
the boundary type. However, because of the noisy signal structure in our
setting, one also has to require the MLRP for these properties of the
optimal contract to apply. But, note that the conditions CLRP, and
PMHRP are trivially satisfied in the binary case, whereas the MLRP is
satisfied if signals are strictly informative, that is, g1ðHÞ > g0ðLÞ and
g0ðLÞ > g0ðHÞ.

We now characterize the sufficient conditions for the optimal contract
to be separating, that is, aH	n 6¼ aL	n for all possible histories of observed
contracting outcomes hn and, hence, for all posterior beliefs �n 2 ½0; 1�: In
the standard fashion, we do so first by verifying that the incentive (IC)
and individual rationality (IR) constraints bind only for one type of
agent-X.

Proposition 4. If the SCP holds for X at least weakly and the MLRP
applies, then in any optimal separating contract CS	

n ð�nÞ the incentive and
individual rationality constraints (28) and (29) are binding for the low
type agent, that is, sn ¼ L:

Using Proposition 4, we can substitute the binding IR and IC con-
straints for the low type in the objective function (27) to eliminate wL

n

and wH
n : It is then straightforward to show that in any optimal contract

aH	n > aL	n if the SCP holds for both agents, with the condition being
strict for at least one of the players, and the MLRP applies as well.

Theorem 2. Suppose that the SCP holds for both players, with the
condition applying strictly for at least one player,and the MLRP applies. If
there are no limited liability constraints, then in any �	; C	nð�nÞ ¼ CS	

n ð�nÞ

for every �n: Hence, learning is asymptotically complete along �	:

We note that in the model considered in Section 1, the preferences of
both players satisfy concavity and twice differentiability in a (see (1), (2)).
However, the preferences of the managers do not depend on the un-
known state �; and hence the SCP applies only weakly, but the SCP
applies strictly for the owners. Moreover, the MLRP is satisfied whenever
	 > 1

2 : As pointed out in Section 1.6, complete learning occurs if the
managers can be forced to “pay” the utility value of their private benefits
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of control (while still satisfying the individual rationality constraints).23

Thus, the sufficient conditions of Theorem 2 apply in the version of the
agency model considered in Section 1.6.

Section 2.1.2. Continuous signals. Suppose now that S ¼ ½sL; sH� � R:24

Thus, at each n 2 N the decision rule is �nðsÞ ¼ ðanðsÞ;wnðsÞÞ, and given
any �n, the expected utility of xn when it receives the signal s and reports
s 0 2 S is:

VX
n ðs; s

0;�n; �nÞ

� pnðs;�nÞu
Xðanðs

0Þ; 1Þ þ ð1� pnðs;�nÞÞu
Xðanðs

0Þ; 0Þ þ wðs0Þ: ð30Þ

Under our assumptions on ui, the optimal decision rule will be piecewise
continuously differentiable (e.g., Hadley and Kemp 1971). Maximizing
(30) over s 0 at a point of differentiability yields the necessary and
sufficient conditions for local incentive compatibility

@VX
n ðs; s;�n; �nÞ

@s0
¼ 0;

@2VX
n ðs; s;�n; �nÞ

ð@s0Þ2
� 0: ð31Þ

We show explicitly in the Appendix that if the SCP applies for player X,
then a decision rule �nðsÞ is incentive compatible if and only if anð
Þ is a
monotone-increasing function. The MLRP is also useful in ensuring mono-
tonicity of the optimal action in our model. But while the role of the MLRP
in the moral hazard literature is to ensure that the optimal sharing rule for
risk-averse agents is nonincreasing in output, here its role is to ensure that
the private posterior beliefs of the informed agent for the high state (that is,
�¼ 1) are nondecreasing in the signal (s), which in turn yields a convenient
monotonicity (in s) of the informed agents’ indirect expected utility.
However, to ensure that the optimal action rule a	nðsÞ is monotone strictly
increasing we require also that the SCP apply for both players and at least
strictly for one player; in addition, we also need the CLRP and the
PMHRP. We note that in justifying the first-order approach to the optimal
contract in the moral hazard problem, Jewitt (1988) uses the MLRP and
CLRP to ensure that the inverse of the agent’s marginal utility with the
optimal sharing rule is nondecreasing and concave. Here, the MLRP,
CLRP, PMHRP, and SCP of both players are jointly used to ensure the
desired comparative static property of the optimal decision rule.25

23 The implication of SCP applying only weakly for the informed managers in the agency model considered
above is that the IC constraint is binding for both types (see (16)) and if the IR constraint is binding for
the low type, then it is also binding for the high type (see (23)).

24 For expositional convenience, we first restrict attention to non-randomized contracts; we then show that
under the identified sufficient conditions for non-pooling decision rules, this restriction is not binding.

25 We reiterate that the CLRP and PMHRP are trivially satisfied in the case of a binary signal space, so that
Theorem 3 below indeed specializes to Theorem 2 for the binary case.
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Theorem 3. Suppose that S ¼ ½sL; sH� � R; the SCP holds for both
players, with the condition applying strictly for at least one player, the
MLRP, CLRP, and the PMHRP hold. If there are no limited liability
constraints, then in any �	; C	nð�nÞ ¼ CS	

n ð�nÞ for every �n: Hence,
learning is asymptotically complete along �	.

2.2 Example: Complete learning of product value

In this section we demonstrate that the sufficient conditions for complete
learning previously identified are satisfied for the well-known model of
price discrimination (Mussa and Rosen 1978; Kumar 2002, 2006). We
nest this model into our framework to consider unknown product value
and show that the optimal contract implies complete learning. Suppose
that an innovation generates a new product whose true value to con-
sumers is unknown and is represented by an unknown value parameter
� 2 f0; 1g: There are infinite stages in which each stage buyers and
sellers ðxn; ynÞ transact in the product market. In each stage the seller is
a monopolist who provides a menu of high and low price-quality pairs
hajn;w

j
ni

H
j¼L, where ða

H
n ; a

L
n Þ 2 R2

þ ¼ A, and ðw
H
n ;w

L
n Þ 2 R2 ¼ Wn: The unit

cost of production is �ðanÞ
2=2: The buyer can choose one of the price-

quality pairs or reject the menu. Thus, at each stage the buyer purchases
only one unit of the product. In the buyer agrees to purchase, then the
payoffs to the players are

UXðan;wn; �Þ ¼ �an � wn; ð32Þ

UYðan;wn; �Þ ¼ wn �
�ðanÞ

2

2
: ð33Þ

Notice that the buyers’ utility from the good depends on two parameters:
the quality of the product, which is specific to the stage or generation n,
and the underlying value parameter �; which is invariant across the various
offers of product qualities. As before, we assume that in every generation n,
xn receives a private signal sn 2 fH;Lg regarding � with the probability
	 � gH1 ¼ gL0 >

1
2 : The optimal contracting problem is therefore

C	nð�nÞ 2 arg max
hajn;w

j
ni

H
j¼L2A�Wn

XH
j¼L

� jn½w
j
n �

�ðajnÞ
2

2
�; ð34Þ

subject to the buyer’s IC and IR constraints:

pjna
j
n � wj

n � pjna
k
n � wk

n; j; k 2 fH;Lg; ð35Þ

pjna
j
n � wj

n � 0; j 2 fH;Lg: ð36Þ
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It is well known that inducing separation thus requires distorting the
price-quality offer for the low-type consumer relative to the complete infor-
mation optimal offer; in the extreme, it may be optimal to “price out” such
consumer types by setting haL	n ;w

L	
n i ¼ h0; 0i (Mussa and Rosen 1978). The

following Proposition characterizes the optimal contract C	nð�nÞ:

Proposition 5. For any 0 < � < 1 and for any �n; n 2 N (where
�ð	Þ � maxð0; 	

2þ	�1
2	�1 Þ)

26

1. if �n 2 �ð	Þ; 1ð Þ, then C	nð�nÞ is separating with

*
aHn ¼

pHn
�
;wH

n ¼ pHn a
H
n � aLn pHn � pLn

� �+
; ð37Þ

*
aLn ¼

pLn
�
�
�Hn pHn � pLn
� �
� 1� �Hn
� � ;wL

n ¼ pLn a
L
n

+
; and ð38Þ

2. if �n 2 0; �ð	Þð Þ; then C	nð�nÞ is separating with the pricing out of
the low-type consumer:

*
aHn ¼

pHn
�
;wH

n ¼ pHn a
H
n

+
;
�
aLn ¼ 0;wL

n ¼ 0

: ð39Þ

Proposition 5 indicates that separation is optimal for all posterior
beliefs on the underlying state.

Corollary 2. Learning is asymptotically complete along the �	 specified in
Proposition 5.

Figure 4 presents two random paths simulated when the true product-
ivity state is low, that is, �¼ 0. For each path, the left-hand-side graph
depicts the evolution of beliefs, and the right-hand-side graph depicts the
menu of product qualities ðaLn ; a

H
n Þ offered by the optimal contract. One

can see that although the quality levels offered converge to each other
over time as uncertainty on the true product value is removed, pooling is
never attained. Consequently, learning is asymptotically complete and
the efficient product quality is offered in the limit.

From (32), we see that the preferences for both the buyers and
the sellers satisfy concavity and twice differentiability in a. Moreover,
uX1 ðan; �Þ ¼ �; so that uX1 ðan; 1Þ > uX1 ðan; 0Þ; and hence the SCP applies
strictly for the buyers, whereas the SCP applies weakly for the sellers.
And the MLRP holds because 	 > 1

2 : Hence, consistent with Proposition 4,

26 We remark that �ð	Þ ¼ 0 if 	 2 ð0:5;
ffiffi
5
p
�1
2 Þ and �ð	Þ 2 ð0; 1Þ if 	 2 ð

ffiffi
5
p
�1
2 ; 1Þ.
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the IR constraint is binding for buyers with the low signal, so that
wL
n ¼ pLn a

L
n . As in the literature on price discrimination (see, e.g., Varian

1989), there are no meaningful constraints on the monetary transfers,
namely, product prices, other than those given by the IR constraints. In
sum, this example also satisfies the sufficient conditions for complete learn-
ing in Theorem 2.

2.3 Robustness of incentive efficient information cascades

In this section we examine the role of unbounded beliefs in inducing
informational cascades with efficient incentive contracts. It has been
pointed out in the herding literature that there can be asymptotically
complete learning when beliefs are unbounded, even if there is herding
when beliefs are bounded (Smith and Sorensen 2001; Acemoglu et al.
2010).27 Intuitively, a sufficiently precise signal at some point along the
equilibrium path will lead to an action that is sensitive to agent’s private
information, thereby disturbing the informational cascade. But, in our

Figure 4

Learning unknown product innovation value (when true value is low).
Two random paths are simulated for the low productivity state, that is, � ¼ 0. For each path, the left-
hand-side graph depicts the evolution of beliefs, and the right-hand-side graph depicts the menu of
product qualities offered by the optimal contract ðaLn ; a

H
n Þ . The parameters areð 	 ¼ 0:6; � ¼ 1Þ.

27 When the support of the private beliefs is ½p; p� � ½0; 1�, we will say that private beliefs are bounded if
p > 0 and p < 1; but they are unbounded if ½p; p� ¼ ½0; 1�. In particular, we will say that private beliefs
are bounded and unbounded if, respectively,

inf
s2S

g1ðsÞ

g0ðsÞ
¼ � & sup

s2S

g1ðsÞ

g0ðsÞ
¼þ;

inf
s2S

g1ðsÞ

g0ðsÞ
¼ 0 & sup

s2S

g1ðsÞ

g0ðsÞ
¼1:

ð40Þ
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setting the sensitivity of actions to private information depends on the
optimal stage contract. Thus, the question of interest is whether the op-
timality of a pooling contract with bounded beliefs will unravel if there
are unbounded beliefs?

Notice that the sufficient conditions for asymptotically complete learn-
ing apply independent of the range of the posterior beliefs; that is, they
hold for both bounded and unbounded beliefs (cf. (40)). Namely, in the
case that signals are binary it is critical that signals are strictly inform-
ative, but not whether or not beliefs are bounded. Basically, the issue is
not whether the type-X agent has arbitrarily high or low private (poster-
ior) beliefs on �; rather, the question is whether this agent has the incen-
tives to reveal such information to the type-Y agent?

According to the equilibrium detailed in Proposition 3 there is incom-
plete learning of industry productivity even when the precision of signals
become perfectly precise in the limit. In particular, the precision of
the signal is infinite when

gH
1

gH
0

¼ 	
1�	 becomes unbounded, that is,

	 " 1. However, we have (for 
 > 0)

lim
	"1

lim
�!0

Zð�Þ


 �
¼ lim

	"1
lim
�!1

Zð�Þ


 �
¼ 1: ð41Þ

That is, pooling in the extreme region of posterior beliefs is robust to un-
bounded private beliefs when a high or low signal becomes almost perfectly
revealing of the true state �. Moreover, even at the point 	 ¼ 1 (that is,
perfectly informative signals) incomplete learning is possible, namely, the
optimal contract becomes one of pooling once expectations on the state of
productivity are sufficiently low.28 This illustrates the situation in which
unbounded private beliefs do not lead to asymptotically complete learning
because of the conflict of interest between the two parties. On the other
hand, bounded beliefs do not imply incomplete learning in the limit as evi-
dent by the example for complete learning considered in Section 2.2. Thus,
although more informative signals might increase the likelihood of an opti-
mal separating stage contract (cf. Corollary 1) it does not imply complete
learning, and low signal precision also does not imply incomplete learning.

3. Summary and Conclusions

We analyze the conditions for efficient dynamic aggregation of informa-
tion when there is observational learning with endogenous design of incen-
tive contracts, a problem that has received limited attention in the
literature. Although the aggregation of dispersed information has been a
central concern in the design of economic and political institutions, the

28 Namely, when �n <
’

R�’

� �

.
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efficiency of information aggregation largely has been examined in an in-
dividualistic setting in which individual agents choose their decisions in
some optimal fashion based on their private information. This is the set-
ting, for example, in the Arrow-Debreu framework and in the recent lit-
erature on observational learning, which directs attention to the possibility
that agents completely ignore their useful private information and herd on
wrong decisions if they make decisions sequentially after observing deci-
sions by other agents. However, decisions by informed agents often are not
taken in isolation but involve interactions with other uninformed agents;
these interactions are governed by contractual relationships that provide
incentives for information dissemination. Moreover, there is a dynamic
informational externality because the information dissemination at any
stage influences the incentive contract design in the future and thereby
affects the dynamic aggregation of dispersed information.

Although, intuitively, one expects that the ability to design incentives for
truthful communication of private information should make (asymptotic-
ally) complete learning more likely, somewhat surprisingly we find that in
plausible economic environments conflicts of interest among group mem-
bers can rule out any information aggregation along the equilibrium path
and there may be information cascades even with unbounded beliefs and
rich action spaces. Alternatively, information can be asymptotically com-
plete even with bounded (private) beliefs. The crucial determinant of in-
formation aggregation when decisions are made sequentially by collections
of agents through incentive contracting is not the information content of
the signals per se but whether it is incentive efficient to induce signals from
informed agents along the equilibrium path.

We derive sufficient conditions on preferences and signal structures
that ensure complete learning in the long run. These conditions are
related (but are not equivalent) to conditions used in the optimal con-
tracting literatures for adverse selection and moral hazard, even though
there are no unobservable actions in our model. In particular, to
guarantee complete learning asymptotically, one requires not only the
Spence-Riley single crossing property but also the monotone hazard
rate property of the posterior beliefs with the monotone and concave
likelihood ratio properties of signals (conditional on the state). We illus-
trate the application of these conditions to a model of learning unknown
product quality through intertemporal price-quality discrimination.

Our study highlights the bidirectional interaction between institutional
or contract design and observational learning. That is, institutional design
is influenced by observations of previous decisions or outcomes from simi-
lar existing institutions but the efficiency of information aggregation—or
the asymptotic learning outcomes—depend on efficiency of the institutions
to address the conflicts of interests amongst agents. In particular, we show
that information aggregation and efficient resource allocation can be
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challenged when institutions do not incorporate the dynamic informational
externality that arises from their influence on future information transmis-
sion and learning. Analyzing the design of institutions that function opti-
mally (in the sense of incentive efficiency), while also incorporating this
externality is an important topic for future research.

Appendix A

Proof of Proposition 1. By definition each �	 specifies for each n 2 N the decision

rule �	nðmn; hnÞ and the corresponding support �	nðs; hnÞ of the conditional distribution

Qð�	nðmn; hnÞÞ of decision dn. Now, for any decision at stage n 2 N ; dn � ðan;wnÞ 2 A �Wn,

define �	nðdn; hnÞ ¼ fs 2 S j dn 2 �	nðs; hnÞg. Then by Bayes’ rule,

�nþ1 ¼ Prð� ¼ 1 j dn; hnÞ ¼

�n

Z
�	n ðdn;hnÞ

g1ðsÞds

0
B@

1
CA

�n

Z
�	n ðdn;hnÞ

g1ðsÞds

0
B@

1
CAþ ð1� �nÞ

Z
�	n ðdn;hnÞ

g0ðsÞds

0
B@

1
CA
: ðA:1Þ

But if C	nðhnÞ ¼ CP	
n ðhnÞ, then by definition �	nðdn; hnÞ ¼ S. Hence, from (A.1), it follows that

�nþ1 ¼ Prð� ¼ 1 j dn; hnÞ ¼

�n

Z
S

g1ðsÞds

0
@

1
A

�n

Z
S

g1ðsÞds

0
@

1
Aþ ð1� �nÞ

Z
S

g0ðsÞds

0
@

1
A

¼
�n

�n þ ð1� �nÞ
¼ �n:

ðA:2Þ

Because this applies for any deterministic �	nðmn; hnÞ; it follows that the statement is true for

any randomized decision rule as well. #

Proof of Proposition 2. Note that if C	n ¼ CS	
n ðhnÞ, then by definition, �	nðdn; hnÞ � S

for every dn 2 A �Wn. And because the probability measures G1ðsÞ and G0ðsÞ are

nonidentical (conditional on �) by assumption, it follows from (A.1) and (A.2) that for any

hn; n 2 N ;

Prð��
	

nþ1 ¼ �
�	

n Þ ¼
1 if C	nðhnÞ ¼ CP	

n ðhnÞ

0 if C	nðhnÞ ¼ CS	
n ðhnÞ:

(
ðA:3Þ

Thus, if hn; n 2 N ; is such that ��
	

n < 1, for C	nðhnÞ ¼ CP	
n ðhnÞ, then �

�	

nþi ¼ �
�	

n ; i ¼ 1; 2; . . . ;

with probability 1. Hence, the first part of the Proposition then follows from the definition

of asymptotic complete learning (cf. (8)), because

lim
n!1

Prð��
	

n ¼ � j �Þ < 1: ðA:4Þ

Next, suppose that C	nðhnÞ ¼ CS	
n ðhnÞ for each n 2 N . Then conditional on �, the sequence of

posterior beliefs f��
	

n g is independent under the probability measures G1ðsÞ and G0ðsÞ:
Furthermore, by the definition of conditional expectations, f��

	

n g are Martingales. It follows

from the Martingale convergence theorem that f��
	

n g must converge to some integrable ��
	

;
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and because G1ðsÞ and G0ðsÞ are mutually singular (see, e.g., Billingsley 1979, 409�410), it

must be the case that ��
	

¼ 1 if �¼ 1 (or ��
	

¼ 0 if �¼ 0). #

Proof of Proposition 3. The objective function is

OBJ ¼ �Hn  nðHÞfða
H
n Þ � RaHn

� �
þ 1� �Hn
� �

 nðLÞfða
L
n Þ � RaLn � ’ aHn � aLn

� �� �
:

The first-order conditions are

@OBJ

@aHn
¼ �Hn  nðHÞf

0ðaHn Þ � R
� �

� 1� �Hn
� �

’ ¼ 0

@OBJ

@aLn
¼  nðLÞf

0ðaLn Þ � Rþ ’ ¼ 0:

Separating is feasible for intermediate �n. To see this, note that the interior levels of

investment in the low and high states (as provided by the first-order conditions above)

coincide when

R� ’

 nðLÞ
¼

1

 nðHÞ
Rþ

1� �Hn
�Hn


 �
’

� �
¼

R

�n �h � �‘ð Þ þ �‘
:

Thus, separating is feasible when

Zð�nÞ �
�n þ 


ð1�	Þ�n

ð1�	Þ�nþ	ð1��nÞ

h i
þ 


>
R

R� ’
: ðA:5Þ

The conclusions of the proposition then follow from the foregoing, where ’ ¼ Zmax�1
Zmax

� �
R and

Zmax ¼ max � 2 ð0; 1Þ : Zð�Þð Þ. Pooling occurs at the extreme levels of �n because Zð�nÞ

approaches the value one as �n becomes extreme. Formally,

lim
�!0

Zð�Þ ¼ lim
�!1

Zð�Þ ¼ 1 <
R

R� ’
: ðA:6Þ

#

Proof of Theorem 1. Suppose first that �0 =2 �
�; �þð Þ: Then, from Proposition 3, n	 ¼ 1:

Meanwhile, suppose that �0 2 ��; �þð Þ and the true productivity state is � ¼ 0: If there

were separating contracts for all n (that is, n	 is undefined), then it follows from Proposition

2 that limn!1 �
�	

n ¼ 0. Then define n	 ¼ infnfn j�
�	

n < ��g; which is well defined because

(for a specified set of model parameters) �� is a given positive real number. But by

Proposition 3, ��
	

nþi ¼ �
�	

n ; i ¼ 1; 2; ::; for all n � n	, which contradicts the hypothesis that

limn!1 �
�	

n ¼ 0. Similarly, if �0 2 ��; �þð Þ and the true productivity state is � ¼ 1; then
define n	 ¼ infnfn j�

�	

n > �þg:#

Proof of Corollary 1. This follows from Proposition 3 and the implicit function theorem. #

Proof of Proposition 4. We first show that if the incentive compatible constraint for the low

type is binding, then the corresponding incentive constraint for the high type is satisfied.

Now define for j; k 2 fH;Lg

�j;k
n � pjnu

Xðajn; 1Þ þ ð1� pjnÞu
Xðajn; 0Þ þ wj

n

� pjnu
Xðakn; 1Þ þ ð1� pjnÞu

Xðakn; 0Þ þ wk
n

� �
:

Note that if the IC constraint is binding for the low type then �L;H
n ¼ 0. Hence, �H;L

n � 0 if

�H;L
n þ�L;H

n � 0. However,

�H;L
n þ�L;H

n ¼ ðpHn � pLn Þ ðu
XðaHn ; 1Þ � uXðaHn ; 0ÞÞ � uXðaLn ; 1Þ � uXðaLn ; 0Þ

� �� �
: ðA:7Þ
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But ðpHn � pLn Þ > 0 from the MLRP and the expression inside the brackets in (A.7) can be

rewritten as

ðuXðaHn ; 1Þ � uXðaLn ; 1ÞÞ � ðu
XðaHn ; 0Þ � uXðaLn ; 0ÞÞ � 0

using the SCP. Thus, if the IC constraint binds for the low type, it is satisfied for the high

type in the presence of SCP and MLRP, and therefore we can reduce the problem and

disregard the IC constraint for the high type, while solving for the optimal contract. That is,

the candidate contract is optimal in the reduced problem (that is, without the IC constraint

for the high type) as well.
Now, in the reduced problem, suppose that the IR constraint is nonbinding for the low

type, that is,

pLn u
XðaLn ; 1Þ þ ð1� pLn Þu

XðaLn ; 0Þ þ wL
n > 0:

Note that this implies also that the IR constraint for type-H is nonbinding because �H;L
n � 0.

Thus, the principal can reduce wj
n; j ¼ H;L by the same small amount � > 0. Consequently,

in the reduced problem, this leaves the IR constraints and the IC constraint of the low type

unaffected, which contradicts the assumption that the candidate contract is optimal. #

Proof of Theorem 2. Using Proposition 4, we find

�wL
n ¼ pLn u

XðaLn ; 1Þ þ ð1� pLn Þu
XðaLn ; 0Þ

�wH
n ¼ pLn u

XðaHn ; 1Þ þ ð1� pLn Þu
XðaHn ; 0Þ:

Substituting these in the objective function can eliminate the transfers wj
n; j ¼ H;L; and we

write the optimal contracting problem as

max
hajni

H
j¼L2A

f�Hn pHn u
YðaHn ; 1Þ þ ð1� pHn Þu

YðaHn ; 0Þ þ pLn u
XðaHn ; 1Þ þ ð1� pLn Þu

XðaHn ; 0Þ
� �

þ ð1� �Hn Þ½
XY
i¼X

pLn u
iðaLn ; 1Þ þ ð1� pLn Þu

iðaLn ; 0Þ�g: ðA:8Þ

Under the assumed conditions on uiðajn; 
Þ; j ¼ H;L; the objective function (A.8) is concave,

and the first-order conditions for interior optima are

XY
i¼X

pHn u
i
1ða

H
n ; 1Þ þ ð1� pHn Þu

i
1ða

H
n ; 0Þ

� �
¼ 0; ðA:9Þ

XY
i¼X

pLn u
i
1ða

L
n ; 1Þ þ ð1� pLn Þu

i
1ða

L
n ; 0Þ

� �
¼ 0: ðA:10Þ

Suppose that aH	n ¼ aL	n ¼ a: Then subtracting (A.10) (evaluated at aLn ¼ a) from (A.9) (also

evaluated at aHn ¼ aÞ, we obtain

@OBJ

@aHn
j aHn ¼a ¼ ðp

H
n � pLn Þ½

XY
i¼X

ðui1ða; 1Þ � ui1ða; 0ÞÞ� > 0 ðA:11Þ

using the SCP (that holds for both players, but applies strictly for at least one player) and

the MLRP. Thus, aH	n > aL	n in the optimal contract. #

Proof of Theorem 3. As usual (Mirrlees [1971] and onward), we use the indirect utility

function (with truth-telling) to eliminate transfers in the optimal decision rule. Put

JXn ðs;�n; �nÞ � max
s02S

VX
n ðs; s

0;�n; �nÞ ¼ VX
n ðs; s;�n; �nÞ: ðA:12Þ

If the SCP applies, then a decision rule �nðsÞ is incentive compatible if and only if anð
Þ is a

monotone increasing function, that is, _anðsÞ � 0 (a.e.). Using (A.12) and applying the
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envelope theorem yields

dJXn ðs;�n; �nÞ

ds
� _J

X

n ðaðsÞ; s;�nÞ ¼ _pnðs;�nÞ½u
XðanðsÞ; 1Þ � uXðanðsÞ; 0Þ�: ðA:13Þ

But the MLRP implies that _pnðs;�n; �nÞ > 0. This, along with the fact that uX is increasing in

�, implies that _J
X

n ðaðsÞ; s;�nÞ > 0. It follows from (A.13) that the participation constraint for

the type-X agent binds only for sn ¼ sL, and from the fundamental theorem of calculus,

JXn ðs;�n; �nÞ ¼

Z s

sL

_J
X

n ðaðrÞ; r;�nÞdr: ðA:14Þ

Meanwhile, the expected utility of yn with the decision rule �nðsÞ is

VY
n ðs;�n; �nÞ ¼ pnðs;�nÞU

YðanðsÞ;wnðsÞ; 1Þ þ ð1� pnðs;�nÞÞU
YðanðsÞ;wnðsÞ; 0Þ

� �
: ðA:15Þ

To derive the sufficient conditions for anð
Þ to be monotone, we examine the relaxed problem:

max
�nð
Þ2A�W

Z
S

VY
n ðs;�n; �nÞ�nðs;�nÞds; s:t: ðA:14Þ: ðA:16Þ

Now put

Ki
nðanðsÞ; s;�nÞ � pnðs;�nÞu

iðanðsÞ; 1Þ þ ð1� pnðs;�nÞÞu
iðanðsÞ; 0Þ; i ¼ X;Y: ðA:17Þ

This formulation allows us to eliminate transfers (that is, wnðsÞ), and we write (from (A.12),

(A.15), and (A.17))

VY
n ðs;�n; �nÞ ¼ KY

n ðanðsÞ; s;�nÞ þ KX
n ðanðsÞ; s;�nÞ � JXn ðs;�n; �nÞ: ðA:18Þ

Next, by substituting the incentive compatibility constraint (A.14) into (A.18), we can rewrite

the relaxed problem as

max
anð
Þ2A

Z
S

KY
n ðanðsÞ; s;�nÞ þ KX

n ðanðsÞ; s;�nÞ �

Z s

sL

_J
X

n ðaðrÞ; r;�nÞdr

� �
�nðs;�nÞds

¼ max
anð
Þ2A

Z
S

KY
n ðanðsÞ; s;�nÞ þ KX

n ðanðsÞ; s;�nÞ�

1� �nðs;�nÞ

�nðs;�nÞ
_J
X

n ðanðsÞ; s;�nÞ

2
664

3
775�nðs;�nÞds

ðA19Þ

(applying integration by parts). The optimality condition for the optimal action is therefore

XY
i¼X

@Ki
nðanðsÞ; s;�nÞ

@an
¼

1� �nðs;�nÞ

�nðs;�nÞ

@ _J
X

n ðanðsÞ; s;�nÞ

@an
; ðA:20Þ

where, from (A.17),

XY
i¼X

@Ki
nðanðsÞ; s;�nÞ

@an
¼
XY
i¼X

pnðs;�nÞu
i
1ðanðsÞ; 1Þ þ ð1� pnðs;�nÞÞu

i
1ðanðsÞ; 0Þ

� �
:

A straightforward application of the implicit function theorem on (A.20) yields

_a	nðsÞ /
XY
i¼X

@2Ki
nðanðsÞ; s;�nÞ

@an@s
�

@
1� �nðs;�nÞ

�nðs;�nÞ

@s

@ _J
X

n ðanðsÞ; s;�nÞ

@an

�
1� �nðs;�nÞ

�nðs;�nÞ

@2 _J
X

n ðanðsÞ; s;�nÞ

@an@s
:

ðA:21Þ
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But if the MLRP applies and the SCP applies for both players (and strictly for at least one

player), then

XY
i¼X

@2Ki
nðanðsÞ; s;�nÞ

@an@s
¼
XY
i¼X

_pnðs;�nÞ½u
i
1ðanðsÞ; 1Þ � ui1ðanðsÞ; 0Þ� > 0: ðA:22Þ

Next, if the MLRP and SCP apply for i¼X, then

@ _J
X

n ðanðsÞ; s;�nÞ

@an
¼ _pnðs;�nÞ½u

X
1 ðanðsÞ; 1Þ � uX1 ðanðsÞ; 0Þ� � 0: ðA:23Þ

Hence, in addition to MLRP and the SCP condition, if the PMHRP also applies, then

@ 1��nðs;�nÞ

�nðs;�nÞ

@s

@ _J
X

n ðanðsÞ; s;�nÞ

@an
� 0:

Finally, if the CLRP holds, then €pnðs;�nÞ � 0; and hence,

@2 _J
X

n ðanðsÞ; s;�nÞ

@an@s
¼ €pnðs;�nÞ½u

XðanðsÞ; 1Þ � uXðanðsÞ; 0Þ� � 0: ðA:24Þ

It then follows from (A.21)-(A.24) that _a	nðsÞ > 0 for each s in the interior of S. Hence,

�	nðs; hnÞ is separating. #

Proof of Proposition 5. Because the individual rationality constraint is binding for the low

type consumer, we have, pLn a
L
n ¼ wL

n ; and becase the incentive compatibility constraints are

only binding downwards, aHn ðp
H
n � pLn Þ þ wL

n ¼ wH
n . Substituting these conditions in the

objective function and ignoring, for the moment, the nonnegativity restrictions on an; the

optimal contract maximizes:

OBJ ¼ �Hn pHn a
H
n � pHn a

L
n þ pLn a

L
n �

�ðaHn Þ
2

2


 �
þ 1� �Hn
� �

pLn a
L
n �

�ðaLn Þ
2

2


 �
: ðA:25Þ

The first-order conditions are

@OBJ

@aHn
¼ �Hn pHn � �a

H
n

� �
¼ 0

@OBJ

@aLn
¼ ��Hn pHn � pLn

� �
þ 1� �Hn
� �

pLn � �a
L
n

� �
¼ 0:

ðA:26Þ

Solving these and acknowledging the nonnegativity constraints on an, we obtain the

following characterization of the optimal contract:

aHn ¼
pHn
�

aLn ¼

pLn
�
�
�Hn pHn � pLn
� �
� 1� �Hn
� � if pLn > �Hn p

H
n

0 if pLn < �Hn p
H
n

8>>><
>>>:

pLn a
L
n � wL

n ¼ 0

pHn a
H
n � wH

n ¼ pHn a
L
n � wL

n :

ðA27Þ

Then substituting (12) and (13) in (A.27) and simplifying yields the conclusions of the

proposition. #
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Appendix B: Learning Unkown Investment Productivity with Continuous

Signals

Here, we consider the agency moel of Section 1.1 when the distribution of signals G1ðsÞ and

G0ðsÞ is continuous with the support S ¼ ½sL; sH�. Here, the private beliefs that �¼ 1 of xn
given �n and the signal sn are given by (3) and �nðsn ¼ s; hnÞ ¼ g1ðsÞ�n þ g0ðsÞð1� �nÞ: The

bilateral contract between xn and yn specifies a menu of investment levels and wage pay-

ments hanð
Þ;wnð
Þi : S ! R2
þ: In the optimal separating contract the upward incentive con-

straint is binding. Hence, the optimal contract solves

C	nð�nÞ 2 arg max
anðsÞ;wnðsÞ

Z
�nðs; hnÞ  nðsÞfðanðsÞÞ � RanðsÞ � wnðsÞ

� �
ds;

subject to

wnðsÞ þ ’anðsÞ ¼ wnðs
0Þ þ ’anðs

0Þ for all s; s0 2 S: ðB:1Þ

(where  nðsÞ is defined in (14)). Because wages in (B.1) are determined by highest action an,

one can show that under the optimal contract there exists a maximum level of investment an
such that:

hanðsÞ;wnðsÞi ¼
han; 0i for s 2 ½sðanÞ; s

H�

ha	nðsÞ; ’ an � a	nðsÞÞi for s 2 ½s
L; sðanÞ�;

�
(

ðB:2Þ

where a	nðsÞ is given by

f 0ða	nðsÞÞ ¼
R� ’

 nðsÞ
; s 2 ½sL; sðanÞ� ðB:3Þ

and sðanÞ satisfies

 nðsðanÞÞ ¼
R� ’

f
0
ðanÞ:

ðB:4Þ

One can now analyze the optimal a	n, where sðanÞ and a	nðsÞ are given by (B.3) and (B.4).

Pooling occurs when the solution is an ¼ aPn defined by

f 0ðaPn Þ Eð� j�nÞð�h � �‘Þ þ �‘½ � � R ¼ 0: ðB:5Þ

We conclude

Proposition 6. There exist 0 � �
^�

< �
^þ
� 1 such that for any �n; n 2 N :

1. if ’ � ’̌ and �n 2 �
^�
; �
^þ

� �
, then C	nð�nÞ ¼ CS	

n ð�nÞ and is characterized by (B.2)-

(B.4) for a	n > aPn , and

2. if (1) ’ � ’̌ and �n =2 �
^�
; �
^þ

� �
or (2) ’ > ’̌, then C	nð�nÞ ¼ CP	

n ð�nÞ and is charac-

terized by (B.5), where wnðsÞ ¼ 0 for s 2 S.

Proof of Proposition 6. The optimization problem is

OBJ ¼ max
anðsÞ;wnðsÞ

Z
�nðs; hnÞ  nðsÞfðanðsÞÞ � RanðsÞ � wnðsÞ

� �
ds;

subject to

wnðsÞ þ ’anðsÞ ¼ wnðs
0Þ þ ’anðs

0Þ for all s; s0 2 ½sL; sH�: ðB:6Þ

Because wages in (B.6) are determined by highest action an, let an � maxs2SðanðsÞÞ, and let

the set of signals that correspond to the highest action be given by S � fs 2 S : anðsÞ ¼ ang.

Then it is optimal to set wnðsÞ ¼ ’ðan � anðsÞÞ for all s 2 S (that is, wnðsÞ ¼ 0 for all s 2 S ).
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Thus, we can write OBJ as

OBJ ¼ max
anðsÞ;wnðsÞ

Z
S�S

�nðs; hnÞ½ nðsÞfðanðsÞÞ � RanðsÞ � ’ðan � anðsÞÞ�ds

þ

Z
S

�nðs; hnÞ  nðsÞfðanÞ � Ran�ds:
�

Moreover, for any given an, optimality requires that

f 0ða	nðsÞÞ ¼
R� ’

 nðsÞ
for s 2 S�S :

Because  nðsÞ is monotone in the signal s, it is optimal to set S ¼ ðsðanÞ; shÞ, where sðanÞ

satisfies

 nðsðanÞÞ ¼
R� ’

f 0ðanÞ:

Next, the level of an is given by the solution to the problem (where sðanÞ and a	nðsÞ are given

by above)

an 2 argmax
a

Z sðanÞ

sL
�nðs; hnÞ½ ðsÞfða

	
nðsÞÞ � Ra	nðsÞ � ’ an � a	nðsÞÞ

� �
ds

þ

Z sH

sðanÞ

�nðs; hnÞ  ðsÞfðanÞ � Ran�ds:½

The first-order conditions for optimality are

0 ¼ �’

Z sðanÞ

sL
�nðs; hnÞdsþ

Z sH

sðanÞ

�nðs; hnÞ  ðsÞf
0ðanÞ � R½ �ds:

The second-order conditions for optimality are

0 ¼ �’s 0 ðanÞ�nðsðanÞ; hnÞ þ

Z sH

sðanÞ

�nðs; hnÞ½ ðsÞf
00ðanÞ�ds

� s 0ðanÞ�nðsðanÞ; hnÞ½ ðsðanÞÞf
0ðanÞ � R�

¼

Z sH

sðanÞ

�nðs; hnÞ½ ðsÞf
00ðanÞ�ds < 0:

The first-order condition simplifies to

0 ¼ �’
Prðsn < sðanÞ j hnÞ

Prðsn > sðanÞ j hnÞ
þ f 0ðanÞEðsn j hn; sn > sðanÞÞ � R:

By definition f 0ðanÞ ¼
R�’

 nðsðanÞÞ
, and we can write the first-order condition for an interior

solution as

Rþ ’
Prðsn < sðanÞ j hnÞ

Prðsn > sðanÞ j hnÞ
¼ R� ’½ �

Eðsn j hn; sn > sðanÞÞ

 nðsðanÞÞ
:

Pooling occurs at the corner solution an ¼ apooln defined by

Eð� j�nÞð�h � �‘Þ þ �‘½ �f 0ðapooln Þ � R ¼ 0

and is optimal when

R

R� ’
>
½Eð� j�nÞð�h � �‘Þ þ �‘�f

0ðapooln Þ

 nðs
LÞ
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or

R

R� ’
>

�h � �‘ð Þ�n þ �‘
�h � �‘ð ÞpnðsL;�nÞ þ �‘

¼
�h � �‘ð Þ�n þ �‘½ � g1ðs

LÞ � g0ðs
LÞ

� �
�n þ g0ðs

LÞ
� �

�hg1ðsLÞ � �‘g0ðsLÞð Þ�n þ �‘g0ðs
LÞ

� Ž ð�nÞ:

Thus, lim�n!0þ Ž ð�nÞ ¼ lim�n!1� Ž ð�nÞ ¼ 1 < R
R�’, and pooling is optimal at extreme

levels of expected productivity or when the agency conflict is sufficienlty severe, ’ > ’̌. Let,

’̌�
RðŽmax�1Þ

Ž max

and Žmax � max � 2 ð0; 1Þ : Ž ð�Þ
� �

. #

Hence, it follows from Proposition 6 that also with continuous signals learning cannot be

asymptotically complete in this model because information aggregation ceases once poster-

ior beliefs enter the pooling region.

Corollary 3. Learning is asymptotically incomplete along the �	 specified in Proposition 6.

Proof of Corollary 3. Follows directly from the above analysis. #
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