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Team Decision Theory and Integral Equations

1. Hess,! 7. Iper,” H. KaGIwAaDA,? AND R. KAaLABA®

Abstract. The coordination of decisions under uncertainty in a team
leads to optimality conditions that are integral equations. A specific
cxample of a two-division firm is developed to illustrate these condi-
tions. Numerical imbedding techniques are used to solve the firm’s
decision problem. Extensions toward more general techniques and
applications are indicated,

¥ey Words. Team decision theory, command and control, organiza-
tion theory, integral equations, numerical methods,

1. Introduction

Organizations face decision problems that are more complex than the
problems of a single agent. As Radner (Ref. 1) points out, there may be
differences among members of the organization with respect to possibilities
of action, information, and preferences. In addition, there may be uncertain-
ties about the actions of other members, making coordination difficult. The
theory of team decisions ignores the possibility of internal differences in
preferences in order to concentrate on the study of how communication
helps coordinate the decisions of individual members,
Tx il paper, we look at the specific problem of computing optimal
o cules for a team with a given communication or information system.

iihinuliiple variables of integration). Previous works in team theory have
arcumvented these difficulties by selecting problems with known solutions.
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Algorithms for the solution of the general problem have not yet been
developed, but we have taken a first step in that direction by applying a
parametric imbedding technique to a specific numerical problem which does
not have a closed-form solution.

Section 2 summarizes the decision problem of a multimember team.
Section 3 looks at an economic application of the theory with simplifying
assumptions that allow a closed-form solution. In Section 4, this example is
modified to present the more typical computationally complex team prob-
lem. Section 5 presents numerical results for this team decision problem and
conclusions and discussions are found in Section 6.

2. Tesm Decision Theory

A team is an organization whose members share a single, well-defined
objective function. Such a harmonious group has but one problem: how are
individual activities coordinated in an optimal fashion? Team decision
theory explores such problems when the organization is uncertain about its
environment and when information about environment differs among team
members. The decision problem reduces to the selection of rules of action
that coordinate the interdependent activities of the tearnmates to maximize
the expected payoff of the team.

Organizations are seldom harmonious and a game-theoretic model may
seem more appropriate than a team-theoretic model. Since team theoryisan
element of a more general normative approach to the problem of organiza-
rion, Marschak and Radner (Ref. 2} emphasized harmony in order to study
the use of communication in the task of coordinating actions.” Team
decision theory is an extension of Bayesian statistical decision theory to
multimember organization. The basic difference between these two decisior
theories is that the information provided each team member may be
different. In statistical decision theory, the action may consist of severa
componenis, but each component decision is based on the same informa
{101,

=~

The team consists of n decision makers or teammates, indexed
by i=1,2,...,n The basic clements of the team decision probiem

5 The normative theory might be divided into three stages: (i} an organization must creals
group objective function by constitutionally gggregating individual objectives (sce Arrow
Ref. 3 DeGroot, Ref. 4, and Datkey, Ref. 5); (i) individuals must be motivated to act with tht

group objective in mind (see Groves, Rel, 6Y; and {iii) optimal strategies must be specified for

tadividuals (this is the basic probletn invesiigated in team decision theory).
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are as follows:

6 e ®C R’ the unknown state of nature;
A={as,...,a,)€5 CR", the actions of the teammates;
{7{A, 8), the team’s utility function;
Y =(y1, ¥2, ..., Yn)€ ¥ CR", the information of the teammates”;
(8}, the team’s prior probability density of 8;

19), the team’s conditional prior probability density of Y, given 8,
ciy=(ayih ..., a.(¥a)) €4, the team’s decision function.”

The crucial points to notice are these: (a) there is only one utility function,
agreed upon by all members; (b) the utility function is not necessarily
separable; that is, in general, Uz g, # 0; (c)there is only one pair of probabil-
ity densities, f{#)and /(Y [6), agreed upon by all members; (d) the informa-
uon of the ith teammate y; is different from the jth teammate’s information
y;; and (e) since the ith teammate knows only y;, his action depends only on
viile.,

a; == C\H v.
Each teammate wants to select decision rules that are coordinated to
maximize the team’s expected ufifity

E&Lm | v, oxvioy@) ay e (1)

¥
How can we characterize the optimal decision rules for the teammates? Let
«*{¥) denote the optimal decision rule: that is,
Wlat]= Wla]
for all dacision rules a € A, Any arbitrary decision rule can be written as

(v )+ Srvi{y)), where 8; is an arbitrary scalar and y; (y:)is a function of the
nate’s information. Thus, any team decision rule can be expressed

a(Y)=a®(¥)+Dy(Y),

mation that the ith teammate uses may come from two sources, a personal
stion of the environment or a message from another teammate that summarizes his
edge about the environment. Heace, it may seem more natural to make each compo-
v, a vector itself; but this will significantly complicate the resulis that follow {see Section 6
arther discussion). One might imsagine that the vector of information has been reduced fo
¢ siaiistic.

¢ function space A is presumed to be some complete normed linear vector space. The only
srtant distinction that we want to make is that the /th component function o, { ) depends
Uik Y.
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predict his actions and thus coordinate their decisions. The person-by-

person optimality no:%mosmEcwﬁvmw@?@mmwaﬁﬁmamo:mqvmwozwmmmomam-
iion is gathered.

The person-by-person optimality conditions (3) are, in the most general
case, a nonlinear interdependent system of integral equations. In some
important special cases, the solution is relatively easy. Most analytic con-
wibutions {0 team theory have concentrated on these specific solutions.
However, for slightly different problems, the computation {on the back of an
cavelope or empirically) of a*(Y) is nontrivial. The application of team
sheory to more realistic problems requires the development of algorithms
or the solution of person-by-person optimality conditions. The next section
ntroduces an example that has a closed-form solution, and the following

wctions look at a more complicated case.

where D is a diagonal matrix with elements 81, 8,, . . . , 8, along the diagona
and

\%A%v == A\vav.ww. Q\Mﬁu\Nv‘ A £ Av\wﬁvvm ..\.V.
The optimality of a*(Y') can be expressed by the marginal conditions

{oW[a™ + Dyl/a8i}s, = 28,~0= 0, i=1,2,...,n, (2

for all v € A. Radner {Ref. 7) has shown that these conditions (2} can be
expressed as follows,

,ﬁwﬁ.z...mm_ 2.1, Person-by-Person Optimality. If «*(Y) is the optimal
team decision rule, then it must satisfy the following equations:

0=1

for all y; e @, Here

Lt

_..S.; %@ Un(a*(Y), 6)/(Y (), 0]y)d0dY () (3)

1 #

3. Multidivisional Firm: Quadratic-Gaussian Example

Suppose that a firm consists of two autonomous divisions that produce
diffierent commodities in the amounts a; and a-, respectively. The com-
modities are sold in a competitive market at prices Iy and P,. Because of
random variations in supply and demand, the prices are not known precisely

i1stant the commodities are sold. Each division separately gathers
nformation about the market it sells in and uses this information to help
select its quantity of output. Let y; be the price forecast, which the ith division
uses in its decision making.® Suppose that the divisions believe that prices
wre distributed jointly Gaussian-normal with zero means'" and a covariance

MArtx
\_. ] *
F H

Assume that the price forecast y; is distributed Gaussian-normal with mean
of Py and variance equal to 1.
The firm’s total revenue is

FY (), 8ly)=FY10)F(8)/ (1)

is the posterior probability of 8 and
Y=o Viets Yists oo Yuds
given 7.” The equations (3) can be written succinctly as
E{U,(®(Y). 8)]y:i}=0 forally, e %, {41

The optimality conditions are called person-by -person, because they have
the interpretation that the /th teammate, assuming that his colleagues are
using their best decision rules, picks a decision rule such that his posterior
expected marginal utility equals zero no matter what information he might
receive,

The optimality conditions for the single-agent, statistical decision prob-
lem are similar to {3), but not nearly so complicated. In statistical decisio
.Hrnoau the single decision maker has the privilege of waiting until the
information is obtained, modifying his probability judgements using Bayes
rule, and then selecting a single action to maximize posterior expected
ﬁ:wa\. The ith teammate cannot delay computation of his entire decisio
function, because other teammates musi know his decision rule in order to

Pia;+Paas.

Suppose that the total cost to the firm of producing quantities a, and a2 is

I 2 1 2
clar, a2)=s5c11a71+HC12814, + 302242,

g o 5 . - .
Radner (Ref. 7)has also shown that differentiability and concavity of I/(A4, 8)in A for every
makes (3} sufficient a5 well as necessary. We implicitly assume throughout that U is conca:?

and differentiable. The fact that expected prices are zero is unimportant and is made to simplify calculations.
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Notice that, since ¢, is nonzero, there is an interdependence between the

. m . s .(.». . it . . .< - -

3 ] w
E{P o (yy) FPras(ya)— th _EG\DN\ENQF@,Qmﬁ@wvlWQNMQMQM%W.
w.rum ﬁmwmo:-uﬁ.ﬁmwmo: optimality conditions which the output decision
rules a7{y .} and a 5(y,) must satisfy are:

[+ =]

QH._A\B .wu:ﬁﬁuﬂ_w_v&upln:a;fvinﬁ_. QM@&%@LEL&GQ

—o

for —co <y, <o, ']

0= [ | BafPr 1P csastr)co [ etoroidyar,

for—8 <y, <o, {8)

MMM posterior probability densities can be calculated easily, with the result

.mQuN :&22@.5“ 1),
T2y~ N@/ 2y V[1 = /27,

F(Poly2)~NGya; 1),
Fily)~NG/2ys Vi1 - (r/2))).
V .ﬁﬁzmacmm (5} and {6} constitute a system of linear Fredholm integral
M@mﬂww,o.mm of the w@,.ucmm type. While their solution may not be self-eviden:.
ecause the regression of £, on yiis linear, as is the regression of V; 0Ny, one

can w.mm:z verify that the optimal output decision rules will be lines
functions of the price forecasts'?:
ai(v)= By, a3 (y2)=Bays.

The ovnﬁm.m@‘ conditions (5) and (6) imply that the slope coefficients £ and
£: must satisfy the linear equations

=B~ (r/2) 28, {7}
= (r/2)B1 = c228,. (8

11 4 i
The coeflicients are assumed to satisfy the following restrictions:
¢y >4, €y ),

so that costs are convex in output
12 '
See Radner (Ref. 7).

2
11022 €71,
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The optimal team output rules relating forecasts of market prices to quan-
jties praduced are

Q%QLHAwmwuiR.wmvwm\ﬁh:nwmiwmnmwv, (9}
a¥(y2)= (21— rera)y2/(Ae e —rich). (10)

?mcowomnuSo%omﬁwmﬁamniom%mo%:mmmmmaﬁumncmmwmm?
Gaussian assumptions of this example, primarily because the optimal deci-
Jon rules are known to be linear in the information variables. The quadratic
atility function might be justified as a second-order approximation of amore
seneral utility function, but it has some theoretical shortcomings (see
Arrow, Ref. 3). The use of Gaussian-normal probability densities also has
defects. Prices should always be nonnegative, yet with Gaussian densities

there is always a finite probability that the price is negative.

4, Multidivisional Firm: Quadratic-Uniform Example

The discussion of the previous paragraph suggests that a probability
density for prices to be picked that is not Gaussian-normal. In this section,
we will develop an example where prices and price forecasts are (jointly)
aniformly distyibuted over a compact set. We will continue to assume that
the cost function ks quadratic in order to prevent the appearance of nonlinear
integral equations.

Assume that the firm believes that the relative prices of its two
winmodities are fixed, but is uncertain about the price level. That is, the
price vector that will oceur is (P16, P,8), where 8 is a random variable and P,
and P, are fixed numbers. The expected profit of the firm is

m#mmmwaﬂﬁ;wlzmwbm@mdlWn:nﬁ@Qw\nMMQmQHvaO&vi anwnﬁ@wvmw.

Suppose that the price level # and the price forecasts of the individual
divisions y, and y, are uniformly distributed with the joint probability
density

\A%L:LJVH% (11)

L0, elsewhere.

One can calculate the needed posterior probability densities without much
difficuity. These are given here in closed form:

20/(1-y7), i=0=1,
Folyg={ T (12)

0, elsewhere;




258 JOTA: VOL. 22, NO. 2, JUNE 1877

2(1 —max[y,, y21)/(1 ~y7),

0, elsewhere.,

D=vy,=1,
fiy)= N

. Using these posterior probability densities, the optimal decision rules
at{y) and a¥(y,) must satisfy the following system of linear Fredholm
equations:

QwQLHW h mmw,m da lmm ﬁ quwuwﬁtmﬂmtxm: y2l) dy
R ey 2Tl

QW_AQMVNWW h Qmwlw de 5% _‘oﬁ Q%@LNG EWMWMMWF y2}) dy,
ﬁwm W.Mwwgwimbw Qw@bwﬁi%wﬁvmmrfc dy. (15)

5. Mumerical Solution

The integral equations {14) and (15) of the quadratic-uniform team
example are of the following form:

1

Ki(y, oy)dy, 0=i=sl,

W)=+ |

1

Ky, Ouly)dy, O=r=1.

o(1)= galt) + %

The forcing functions are identical, except for multiplication by a scalar
g:(t)= kgalt).
Similarly, the kernels differ only by multiplication by a constant,™>
Ky(y, t)=hKa(y, ).
The kernels can be written in the following form:
Bi(t),
¥ ()8y),

O=y=t
»W‘_,A%.NVH 1
r=y=].

e
Here, k= (P /c)cs/Fayand h =caa/cyy.
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That is, the Kkernels are semidegenerate. In the following, we want to apply
nimbedding sechnique for semidegenerate kernels to compute the solution

of (14) and {(15)- . .
At this point in time, our numerical algorithm can handle only a single
itegral equation. As a result, the numerical problem was simplified by
wssumming that the multiplicative constants k and A were equal to one, or
Ci11 7 €22 NEQ%HHWM.
in this sypunetric case, both integral equations are identical, so it must be
srue that

uiy=o(t) for0=r=1

Hence the problem reduces to the solution of the following single integral
gguation:

1
W=+ | Kl e dy, (16)
0
By selecting
e 1 and Py =1,
wc can make this, more specificaily,
21-y1 ﬁ 2(1 - max[ys, y2])
T - It dya. 17
u(ys 37y b 1—y2 u(yz)dyz (7

The numerical algorithm is based on the solution of a class of problems
indexed by an upper limit of integration x:
0=¢{=<x, (18)

wte) =g+ | Ky, x)dy,

0
where the kernel K and the inhomogeneous term £ are given, and the
funcion 4 is to be determined for 0 = ¢ =x. The upper lmit has been written
s x, for we intend to study the solufion u primarily as a function of x fora
fixed value of ¢, x =¢. This also accounts for the fact that u is written as
a(t, x), rather than u(¢), in Eq. (18).

We assume that the kernel has the semidegenerate form

M

L an)Bi), 0=y=t
Kity)={ (19)

T v(0%6)

i=1

Py =x.




: . .2, NE 1977
260 JOTA: VOL. 22, NO. 2, JUNE 1977 JOTA: VOL. 22, NO. 2, JU 19 261

In the event that the kernel K is not given in the form displayed in Eq. (19) , and (3, 1) and T, %) ave expressed in torms of ¢ and 1 as follows:

may be possible to approximate it by an appropriate series, e.g., a sum ¢ &

powers, or Legendre polynomials, or a trigonometric series. u, x)=glx)+ %WM a;(x)ei(x), (7
Our aim is to transform the given integral equation into an initial-valy M

problem, i.e., a system of ordinary differential equations with known init T, x) =y, 0+ ¥ aixrnx) (28)

conditions. Modern digital, analog, and hybrid computers can solve sever, i=1
thousand such simultaneous differential equations with speed and accuracy
A derivation of an initial vahue for determining the function u{r, x) .

given by Kagiwada and Kalaba (Ref. 9). Let us now summarize the deriv

The initial conditions on the function u and J, are given in Egs. (27yand {28)

Cauchy system. The functions {e,.} and {Fmn determined by the differen i
o mnmmwoum nctions {e., } and {r... } are determined by the differer [, )], e =1 (1, DHwSﬁW» a; (e (1) (29)
. d N ¥
emlx)= _”wo&;f.vw 8@??@ . Twsoﬂf. ) ?:.AHWQQL, {2 [Fa(t 2)eo1 = Tu(t, 1) = 8o () + X el (2), (30)
i i=1 i=1

with

-

)= [ 1000+ T o] [Bnte)= T mtdi], 0

n=12...,N, >0,

where A FORTRAN program for such a numerical solution is given in

Kagiwada and Kalaba (Ref. 9). The numerical results of this program for the
ategral equation (17) are given in Table 1. As a check on the results, it was
shown that the solution points satisfy the trapezoidal approximation of the
neeral equation (17) with an accuracy of up to the fourth significant figure.
The numerical solution indicates that the optimal team decision rule for
wutput is a monotonically increasing function of the price forecast. That is,

m=12...,M, n=1,2,..., N, x =0,

together with the initial conditions at x = 0 given by
e (0y=0, m=1,2, ..., M,
Frnl0)=0, m=1,2,..., M, =1,2,...,N. ﬁ

These equations are integrated fromx =0 tox =4 At x =1, the differen
equations for ¢ and J, are adjoined; these are Eqs. (24) and (25) below
the original integral equation had an upper limit of integration 7, then
solution u{s, T) is computed by integrating Eqs. (20), (21), (24), and (2%
from x =t to x = T for each 0 =r =T. Specifically,

Table 1. Numerical solution for optimal
decision function (intepration
stepsize = 0.01).

w8, x )= D, x Jux, x), (b ¥ ¥ (y.)

I, xy=®(t, x) o x, x), = 0.0 0.3026

with 0.1 0.3081
0.2 0.3224

n=1,2,...,N, O=sr=x. 0.3 0.3434

0.4 0.3695

The function @ is expressed in terms of Jy, J, ..., J, as follows: 0.5 0.3996
N 0.6 0.4328

-~ 4 0.7 0.4685

D(z, x) _.W Ji(t, £)8;(x), : 0.8 0.5062

where 0.9 0.5455
1.0 0.5863

J=al,/ax,
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when a division feels that the price level is going to be low, then it shouig
produce a relatively small quantity of its good; when the price level ;4
forecast to be high, the division will produce large amounts of its good. .ﬁ%,
the numerical solution has a distinctly convex shape, so that output is Be?.
mmnm:?@ to price forecasts when y, is large than when it is small. When winm
forecasts are large, a bigger gamble can be taken.

6. Conclusions

The deveiopment of techniques for specifying optimal decisions when
.ﬁwﬂ.m mw.c:nmnmwﬁm and information about the environment has had & major
tmpact i many areas, from the management of corporations to the actions
of military command. The application of this statistical decision theory wag
mammnu facilitated by the development of conjugate probability functions.
nonlinear optimization procedures, etc. Team decision theory promises o
open new frontiers by investigating the multiperson decision problems
mvolving communication and coordination. Team theory has existed as an
analytic tool since the work of Marschak in the early 1950’ (Refs. 10-11}
Yet, the number of applications of team theory is small (see Beckmann, Ref.
12; McGuire, Ref. 13; and Kriebel, Ref. 14). This is undoubtedly due to the
difficulties of formulating and solving the basic team decision problems.
Numerical techniques have not been applied to the team problem; hence.
most studies have been restricted to the examples which have well-knows
closed-form solutions.

M.n this paper, we have attempted to show how one step can be taken i
the direction of generality; the optimality conditions of team decision thec: i
were shown to be amenable to solution by techniques of parametric imbed-
ding. Many more such steps will have to be added before numerical solutions
of more difficult team problems can be found routinely. We only need 10
pomt out that the solution procedure of Section 5 was dependent upon the
mcmaam:o assumption on utility functions, the compactness of the interval of
Eﬁmwm.mmos“ the symmetry assumptions that reduced a system of integral
equations to a single integral equation, and the assumption of a scalar
information variable.

One justification of numerieal studies is that numerical solutions may
lead to insights which can be translated into heuristic rules of thumb. We
agree that the namerical approach to team decision theory will reinforce
analytic conclusions with respect to optimal organizing and may evens
suggest regularities that should be investi gated with analytic techniques. But
more subtly, the authors feel that the numerical techniques may provide new
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analytic approaches to the study of team theory. In particular, the paramet-
dc imbedding solution technique may help us analyze the theoretical
ips between adjustment of parameters and changes in decision

ules.

“ Finally, procedures for selecting several decision rules to optimize a
single objective function are the topics of investigation in the theory of
decentralized optimization. The theory of decentralized optimization
picneered by Hurwicz, Arrow, Malinvaud, Dantzig, and Wolfe should
provide further tools for investigating the solution of team problems.** The
suthors have begun some preliminary studies along this line, and hope to tie

i

them into the numerical algorithm discussed in this paper.
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Confidence Structures in Decision Making'

P.L. YU’ AND G. LEITMANN?

Abstract. Decision making is defined in terms of four elements: the set
of decisions, the set of outcomes for each decision, a set-valued criterion
function, and the decision maker’s value judgment for each outcome.
Various confidence structures are defined, which give the decision
maker’s confidence of a given decision leading to a particular outcome.
The relation of certain confidence structures to Bayesian decision
making and to membership functions in fuzzy set theory is established.
A number of schemes are discussed for arriving at best decisions, and
some new types of domination structures are introduced,

Key Words. Confidence structures, domination structures, chance

constraint formulation, multicriteria decision making, hierarchy of deci-
SI0T ProCesses.

sduction

Ve consider the process of decision making to be composed of four
SN

i; the set of all feasible alternatives Emam%.ozmu X with elements
denvied by x;
(i) the set of all possible outcomes Y(x)CR™ for each feasible

{iv) the decision maker’s value judgment or preference for each out-
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