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Optimal Tactics for Close Support Operations: Part
IV, Perfect Intelligence and Communications

J. HEess,! H. KAGIWADA,? R. KALABA,” K. SPINGARN," AND C. TsOKOS®

Abstract. A new generation of C?® (command, control, and com-
munication) models for military cybernetics is developed. Recursive
eguations for the solution of the C* problem are derived for an
amphibious campaign with linear, time-varying dynamics. Air and
ground commanders are assumed to have perfect intelligence and
perfect communications. Numerical results are given for the optimal
decision rules.

Key Words. Command, control, and communications; military
cybernetics; optimal decision functions; minimum expected cost.

1. Introduction

Consider a C> (command, control, and communication) problem in
which there are two subordinate commanders, both striving to coordinate
their decisions to attain the tactical objective set down by superordinate
headquarters. In an amphibious campaign, the blue naval force lands ground
troops and provides close support. The objective is to move inland a certain
distance in a specified time. It is desired to obtain optimal decision rules for
force commitments in order to attain the objective at minimum expected
cost. -

-Some general concepts of C? are discussed in Refs. 1-3. Recursive
equations for the solution of the C ? problem are derived for linear dynamics
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with quadratic costs in Refs. 4-6. In Refs. 4 and 5, the blue naval air and
ground commanders are assumed to have perfect intelligence with degraded
commiunications between them. In Ref. 6, it is assumed that the blue
commanders have no intelligence and no communications. In this paper,
perfect intelligence and perfect communications are assumed. The blue air
commander is assumed to have perfect intelligence concerning the red air
strength commitment for the coming day and communicates this informa-
tion to the blue ground commander. Similarly, the blue ground commander
is assumed to have perfect intelligence concerning the red ground strength
commitment for the coming day and communicates this-information to the
blue air commander.

The general equations for optimal tactics with perfect intelligence and
perfect communications are derived for a perturbation model followed by
the recursive equation solution. The equations may be considered to provide
either the optimal decisions for the total campaign with main objective 5o or
the optimal decision increments for a perturbed objective so. Numerical
results are given for campaigns with :Bm invariant and time-varying
dynamics.

2. C* Model

The C* model to be derived is a perturbation model with linear
time-varying dynamics and quadratic costs. It is assumed that the scenario
for the main forces has already been planned. Thus, only perturbations
about the planned scenario are considered. For example, assume that the
main objective is to move inland a distance of 200 miles in 21 days. The
perturbed objective might be to move inland an additional 21 miles. The red
air and ground strengths p and q are the perturbation strength 50850:3
(or decrements) about the main strengths in the 21-day campaign.

Let N be the duration of the campaign, and let the distance to the
perturbed objective be so. Consider K days remaining with the front line at
the perturbed position s. The new perturbed position of the front line is

$=S8(s,p, q aB), 1

where S is the new perturbed position increment of the front line about the
planned position with K ~1 days remaining; s is the current perturbed
position increment of the front line about the planned position with K days
remaining; p, q are red air and ground perturbed strength increments (or
decrements) about the main strengths, respectively, with K days remaining;
a, B are blue naval air and ground perturbed strength increments (or
decrements) about the main strengths, respectively, with K days remaining.
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The daily cost increment (or decrement) is given by
C=CGp g B K). (2)

An additional cost is assessed if the front line at the end of the campaign
is at some perturbed position increment s other than so. This terminal
cost is

b =d(s). (3)

The red air and ground commanders make the decision to employ
strength increments p and g, respectively, each day. The decision-making of
the enemy is simplified by assuming that p and ¢ are random variables with
joint probability density function

w=w(p, q). (4)

Furthermore, assuming that p and q are independent random variables, the
joint probability function can be expressed as the product

wip, q) = P(p)Q(q). (5)
The minimum expected cost is defined by
fx = fx(s), K=0,1,2,...,N, all s, (6)

where fx (s) is the expected cost increment (or decrement) of a campaign
beginning with the front line at s, of duration K, and employing an optimal
sequence of decisions. Using Bellman’s principle of optimality (Ref. 7), the
functions fx +1(s) and fx (s) are related by the recurrence equation

fear(s)=min [ [ (C(s,p, @, 8, K)+ /[ S(5,p, 0, @, IDP(p)Ola) dp da

K=0,12,...,N-1 (7

All integrals on p and q are from —© to +00. When no time remains,

fo(s) = (s). (8)

The conditions for obtaining the minimum are
0=(8/9a)Bk+1(s, p, q, @, B), 9)
0=(3/3B)Bx +1(s, p, 4, &, B), (10)

where
wR*HArA. ﬁw Qv o, mv = QA%. P q, &, Qq Nf\v L.\,Wﬁ.m‘ﬁhy ﬁw Q‘ «a, \wvu AHHV

For linear, time-varying dynamics with quadratic costs, the new
perturbed position of the front line is assumed to be a function of the old



312 JOTA: VOL. 30, NO. 2, FEBRUARY 1980

‘perturbed position plus a linear combination of the strengths
S=5+Cira+C—Csp—Cuq, (12)
where
Ci=CiK), GC=CiK), GC3=GCsK), Cs=CusK). .

The perturbed daily cost is assumed to be proportional to the losses, which in
turn are proportional to the strengths utilized. The ground losses are
reduced by the air strength for close support missions. Thus, the daily cost is
mmmcanaﬁovo ,

C = Csa +(Cs— Cra)B +3Caa’ +3Cof87, (13)
where
Cs = Cs(K), Ce = QQQWY Cr, = C5(K),
Cg = Cs(K), Co= Co(K).

The terms in «” and 87 in the above cost expression serve to limit the force
commitments made each day. To assue convexity, we assume that

Cs>0 and C3<CsCo.
The terminal cost is assumed to be
#(s)=A(s —s0)°. (14)

From general control theoretical considerations, the minimum expected
cost has the form

fr(s) = {xc + s + Oxs’, (15)
where the coefficients, {x, nx, 0k, are computed for K stages remaining.
Substituting Eqgs. (12), (13), (15) into Eq. (7), the minimum expected cost is

\NZA,: MBW% %b‘ AQMQ;,AQQIQQQVQ+wﬂmg~+wﬁomw+m~a

+nk (s + Cra + Cof — Csp — Cuq)
+0x (s + Cra + C2f — C3p — C4q)}P(p)Q(q) dp dq.

(16)
Differentiating the integrand with respect to o and 8 yields
0=0Cs— qu + Cga + nxCy +20xCi(s + Cia + A\Jmm - h.uumw - Q\R:,
, ‘ (17)
0= Cs— Cra + Cof + nxCs+260xCs(s + Cra + C28 — Csp — Caq),
(18)
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which are a set of linear algebraic equations for @ and 8. Clearly, @ and 8 are
linear in s.

3. Recursive Equations
The recursive equations for the solution of Egs. (6) and (7) are derived
as follows. Rearranging Eqs. (17)-(18),

—[Cs+nxC1+26xCi{s — Csp — Caq)]
=(26xCi* + Cgla +(20xC1 G — C7)B,  (19)

~[Co+nkCs+20kCals — C3p — Caq)]
’ i HAN%WAHMQN;IQ.\VQ +ANQ~AQMM+ Q@vm ANOV

Solving simultaneous Egs. (19)-(20) for « and B, it can be shown that
QANA+H-M.Q» &v”@:AuTCNA.wlTS\N@‘TDA&V i ANHV

BK+1,8,p,q)=xx+yxsS+zxp +txq, (22)
where

ug =[—(20xCy* + Co)Cs + (20xC1Cy — C7) Cs — mx (C1 Co + C,C5))/ D,

(23)
vx = ~By, (24)
wg = B1C3, (25)
rie = B1Cy, (26)
xx =[=(20xkCi* + Cs) Cs +(20xC1 Co — C7) Cs — ik (C2Cs + €1 C1)}/ D, (27)
vk =—Ba, (28)
ik = B2Cs, (29)
tx =B1Cs, : - (30
By =20k (C,C7+ C1Co)/D, €}y
B, =26x(CCs+ C1C7)/ D, (32)
D =40xC1C,Cr— G +20x(C2 Cs + C1* Co) + Cs Co. (33)

Substituting the optimal « and 8 into Eq. (12), the new position of the front
line becomes

S =5+ Ci(ux + ves + wgp +req) + Co(xg + yxs + 2xp + tkq) — Csp — Caq

= Ciug + Caxg + G. + ﬁuucR + ﬁuwvcmvu_ + Aﬁum wg +Cozg — quﬁ
+{Cyri + Cotg — Q&v&w
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that is,
S=Ai+ Ay +Asp+ Aug, 34)
where
Ay = Chug + Caxg, - (35)
Az =1+ Cok + Cayx, (36)
As=Cywg + Cozg — Cs, 37
As=Cir +Catic = Ca. | (38)

The minimum expected cost fx.1(s) is obtained by substituting Eqgs.
(21), (22), (34) into Eq. (16):

frn(s)= _.*. {Cs(ux + vxs + wkp + rxq) +Mﬁmt Crlux + vgs + wip +rxq)]

X (X + yS + 2xp + trq) +3Calux + vks + wip +r«q)’
+3Colxk + yxs + zxp + 1kq) + Lk
+ SRA\D— + Ags +>uﬁ +>An~v

+ 0k (A, + Ass + Asp + Asq) P (p)Q(q) dp dg. (39)

Making use of the equations
[Perar=1, [0 da-1, (40)
[ [ rPer0@) dpda = (1)
[[eroro@dpda=a, @)

integrating, and settin g the coefficients of the constant terms, s, and 52 equal,
it can be shown that

{x+1=CsA¢+ CeAs— CilugAs+ wi (xkp + 2xp” + k)
+re(xxq + z2xPg + txq )]
+3Cs[ux’ + 2(uxwip + uxreq + wxrepq) + w NMM+ r’q’]
+3Co[xi® + 22k + xtkd + 2xtkpd) + 26D+ 17971+ Lk
+nx (A1 +Asp+Alg)
+0c[AL +2(A1435 + A1 4G + AsAdpd) + AP AL, (43)
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nx+1= Csvg + Ceyx — CrAsvx — CrAsyk + Cslux + wip + rxd) vk
+Colxx +zxp + tkq)yx + Az +20x (A1 + Asp + Asg) Az,

(44)
Ok +1=—Crokyk +3Csvk +3Coyk + 0xA3, (45)

where
As=xx +zxP + Ixq, (46)
Ag = ux + wip + req. 47)

The second moments of p and q are .

P =pton g =qtoh, (48)
where j and § are the average values and ¢, and o, are the standard
deviations of p and q.

The recursive relations are given by Egs. (43)-(45) supplemented by
Eqgs. (23)~(30) and (31)-(33). These equations may be considered to provide
cither (a) the optimal daily decisions & and B for the total campaign with the
main objective so, or (b) the optimal daily decision increments a and 8 for
the perturbed objective s.

4. Numerical Results

Numerical results were obtained using the recursive equations derived
in the previous paragraphs. At each stage, the coeflicients in the equations
for the optimal blue air strength o and the optimal blue ground strength 8
are computed. The new position of the front line is computed in Eq. (34)
using the optimal decisions.

Consider a campaign with the following duration N and additional
distance to be covered sq:

N =21 days, 5o =21 miles.
The average red strengths and standard deviations are assumed to be
p=4=1, op =0,=0.5.

Assume that the coefficients in m@m. (12)-(14) are constants, with the
exception of Cs:

Ci=0.1, Ci=10, Cz=0.02,
C;=1.0, Cs=0.1, Co=10.02,
Cy=0.1, (5=001, A=10.
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The coefficient Cs in the cost equation is proportional to the red anti-air
strength and may vary during the course of the campaign as the red anti-air
mozmmnmmo:w are destroyed. Then, for various choices of Cs(K), the optimal
air and ground decisions @ and B for K =21, 11, 1 stages to go are as
follows:

Case I, Constant Cs. Cs=0.005.

K=21, «=1.330-2.573%x10*(s—0.1p—q),
K=21, B=1912-4.503x10"(s-0.1p—q);
K=11, a=1794-4911x10"%s-0.1p—q),
K=11, pB=2723-8.594x107*(s-0.1p—q);

K =1, =11.47-0.5369(s —0.1p —q),
K =1, B =19.66-0.9396(s —0.1p —q).

Case II, Time-Varying Cs. Cs(K)=0.005+0.0005K.

K =21, a=0.7493-2.573x10"%(s~0.1p—q),
K =21, B=1770-4.503x10"*(s-0.1p—q);
K=11, a=1493-4911x10"%(s-0.1p—q),
K=11, p=2.654-8.594x10"*(s-0.1p—q);
K=1, a=11.45-0.5369(s —0.1p - q),
K=1, B =19.67—0.9396(s ~0.1p —q).

In Case I, the coefficient Cs is constant. Considering the campaign as a
whole with 21 days and 21 miles to go, and starting with the front line at
s =0, if the red air and ground strengths are constant and equel to their
average values of one, i.e.,

p=p=1 and q=4=1,
then the optimal blue air and ground strengths are also constant and given by
. «=1359 and £=1961.
The daily cost given by Eq. (15) is
C = Csa +(Cs— Cra)B +1Csa” +3CoB*
=0.00679 +o.3@ +0.018+0.038 =0.233.

The front line will move forward at the increment at approximately one mile
per day. ;
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In Case 1I, Cs(K) decreases as the campaign progresses. If the red air
and ground strengths are equal to their average values, then

a=07776 and pB=1.819
at the beginning of the campaign and gradually increase to
a=1444 and B=2.153

at the end of the campaign. The front line moves forward at the increment of
0.8 miles per day at the beginning of the campaign and gradually increases to
1.2 miles per day at the end of the campaign. The frontline moves forward at
a lower rate at the beginning of the campaign where the coefficients of the
daily cost are higher, and moves forward at a higher rate near the end of the
campaign where the coefficients are lower.

It should be noted that, in the examples given, the optimal decisions are
the perturbed strength increments about the main strengths and the posi-
tions are the perturbed position increments of the front line about the
planned position. Furthermore, «, 8, and the minimum expected cost
increments are all positve.

The optimal decisions correspond closely to those obtained for perfect
intelligence with no communications in Ref. 5 and for no intelligence and no
communications in Ref. 6. The optimal decisions for perfect intelligence and
perfect communications in this paper have the general form

= Ux +US + Wgp + rxq,
B = xx +Yks +zxp +1xq.

For no communications between the blue air and ground commanders, the
coefficients rx and zx are

g =Zg = 0.
For no intelligence and no communications,
S\kH\NHNKHMNHO.

The coefficients of s are numericaily the same in all three cases of intelli-
gence and communications. If the red air and ground strengths are equal to
their average values, then the optimal decisions for perfect intelligence and
perfect communications are identical to those with perfect intelligence and
no communications, and no intelligence and no communications, assuming
that the C; coefficients given above are the same. The optimal decisions for
no intelligence and no communications do not depend directly on p and q.
The minimum expected cost is highest for the latter case and lowest for
perfect intelligence and perfect communications. The minimum expected
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cost increases as the standard deviations o, and o, are increased. The effect
of increasing the standard deviations is to increase {x s in Eq. (43).

In this paper, the air and ground commanders were assumed to have
perfect intelligence and perfect communications. Future papers will
no:mmamw detailed comparisons of the effects of intelligence and com-
munications on tactics and costs.
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TECHNICAL NOTE

On the Discrete-Time Regulator Problem in
Infinite-Dimensional Spaces’

S. A. POHJOLAINEN?

Communicated by Y. C. Ho

Abstract. The linear, discrete-time regulator problem is considered in

infinite-dimensional spaces without posing in advance any positivity

conditions on quadratic criterion. The convergence of the finite-time

optimum solution is studied, when time increases to infinity with a
" stable, stabilizable, and detectable system.

Key Words. Linear optimal control, Hilbert spaces, infinite-dimen-
sional spaces, discrete-time systems.

1. Infroduction

The linear discrete-time quadratic optimum control problem in infinite-
dimensional Hilbert spaces is considered almost on minimum conditions,
i.e., without posing in advance any positivity conditions on Q and R in the
quadratic criterion. The problem is formulated in spaces of control and state
sequences in which the existence and uniqueness of the optimum solution
reduces to a positivity condition of an operator, whose properties are based
on system parameters. The optimum solution, when it exists, proves to be a
linear and bounded function of the initial state. Then, the discrete Riccati
operator is defined and the optimal control law may be derived.

Similar results are deduced in infinite-time set with a stable system.
Then, the convergence of the finite-time solution is studied and, under a
strict positiveness hypothesis, it turns out to be uniform in the initial state
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note.
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