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From {2.24) and (2.8) we have, for t,>T,

—Ji(to)m® < liminft [ f{1)~ U(T)]

£+ O

< limsup ¢t~ 'n[ f(t)— U(T))

ts + 20

<~ Ifto)® (2.30)

However, from Lemma 17 and (2.13), both Jy(¢,) and J;(t;) converge to
K{~U(T)) as ty—+ 0. We conclude that lim,_, , ¢ ™' In[ f(£) — U(T)] exists
and equals — K(- U(T))n> ,

Proor or Tueorem 1. The proof is contained in Lemmas 3, 6, 9, 10, 15,
and 19,
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ABSTRACT

The optimal decision rules for force commitments are obtained in mathematical
studies of C° (command, control, and communication). Recursive equations for the
solution of the C° problem are derived for a perturbation model with linear
time-varying dynamics, Air and ground commanders are assumed to have perfect
intelligence with degraded communication’ between them. Numerical results are
given for several amphibious assaults.
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INTRODUCTION

The primary output of mathematical models of C* (command, control,
and communication) is optimal decision rules for force commitments to be
employed by subordinate headquarters in coordinating their activities to
achieve objectives laid down by superordinate headquarters. The decision
rules make use only of information available to each subordinate com-
mander, and that information is determined by intelligence and communica-
tion networks.

Consider a C* problem in which there are two subordinate commanders,
both striving to coordinate their decisions to attain the tactical objective set
down by superordinate headquarters. In an amphibious campaign, the blue
naval force lands ground troops and provides close support. The objective is

to move inland a certain distance in a %o@.mmm time. It is desired to attain-

the objective at minimum expected cost. ,

Some general concepts of ¢ are discussed in Refs. [1], [2], and [3].
Recursive equations for the solution 0! the C? problem are derived for the
time-invariant linear dynamics with c uadratic costs in Ref. [4]. The blue
paval air and ground commanders are assumed to have perfect intelligence
with degraded communication. In this model, each day blue air knows red
air strength and blue ground knows red ground strength from intelligence
activities; but due to comrnunication outages, they cannot communicate with
each other. Other communication and intelligence patterns are considered in
other papers in this series. In this paper, equations are derived for linear
time-varying dynamics. This is an important generalization of the previous
results in that the dynamics now vary as the campaign progresses. The
general equations are derived for a perturbation model followed by the
recursive equation solution. The recursive equations are shown to be similar
to those derived in Ref. [4]. Numerical results are given for campaigans with
time-invariant and time-varying dynamics.

C* MODEL

The C® model to be derived is a perturbation model with linear time-vary-
ing dynamics and quadratic costs. It is assumed that the scenario for the
main forces has already been planned. Thus only perturbations about the
planned scenario are considered. For example, assume that the main objec-
tive is to move inland a distance of 200 miles in 21 days. The perturbed
objective might be to move inland an additional 21 miles. The red air and
ground strengths, p and g, are the perturbation strength increments (or
decrements) about the main strengths in the 21 day campaign.

Let N be the duration of the campaign, and let the distance to the
perturbed objective be sq. Consider K days remaining with the front line at
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the perturbed position s. The new perturbed position of the front line is ,

S=S(s,p,q. &, 3), (1)
where

S=new perturbed position increment of the front line about the
planned position with K-1 days remaining,

s=current perturbed position increment of the front line about the
planned position with K days remaining,

p,q=red air and ground perturbed strength increments (or decrements)
about the main strengths, respectively, with K days remaining,

a, B =Dblue naval air and ground perturbed strength increments (or decre-
ments) about the main strengths, respectively, with K days remain-
ing.

The daily cost increment (or decrement) is given by
C=C(s,p,q,a,8.K). (2)

An additional cost is assessed if the front line at the end of the campaign is at
some perturbed position increment s other than s,. This terminal cost is

b=(s). 3)
The red air and ground commanders make the decision to employ
strength increments p and g respectively each day. The decision making of
the enemy is simplified by assuming that p and g are random variables with
joint probability density function
w=w(p,q)- (4)
Furthermore, assuming that p and q are independent random variables, the
joint probability function can be expressed as the product
w(p.q)=P(p)Q(q)- (5)
The minimum expected cost is defined by
g (s)=the expected cost increment (or decrement) of a
campaign beginning with the front line at s, of

mﬂ:mmosN,mb&mgﬁoﬁsmmso@mgﬁmo@cosom% Amv
decisions, :

K=0,1,2,...,N, all s.

Using Bellman's principle of optimality [5], the functions Ex+1(8) and ge(s)
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are related by the recurrence equation

geca(s) = min \?n??9§5

+ge[S(s,p.q.2,8) ]} P(p) Q(q) dpdg,

v

K=0,12,...N-L (7)
All integrals on p and g are from ~ co to o0. When no time remains,
go(s) =(s). . (8)

The conditions for obtaining the minimum are

0= 3 [ Benlop g )Ola)da. o)

)
0= %\Si?i,smié% (10)
where

Be . (5,p:q,e B)=Cls,p.q. 0. B, K) + gc[ S(s.p. 9, B) ] (11)

Equations (9) and (10) can then be written

0= [ {Culs.p.g. B.K) + [ Slopr g )]

X 8, (s.p.q- 8)} Q(q) dg. (12)

0= [{Cylsp.q. . B.K) +&[Sls.p-g-20 B)]

X S4(s.p,q.,B)} P(p)dp, (13)
K=0,1,2,...,N—1, where

a=a(K+1,5,p), (14)

B=B(K+1s.q), (15)

anomzs@&nwsoémoaw.‘@m&nmﬁmsm@,mbmzc@ mnocba. wboimoav;&
ground strength. ,
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Equations (12) and (13) are the dynamic headquarters-by-headquarters
optimality conditions. They state that at every decision making opportunity,
each headquarters is to make the decision which reduces the marginal
conditional expected cost of the remainder of the process to zero.
For linear time-varying dynamics with quadratic costs, the new perturbed

position of the front line is assumed to be a function of the old perturbed
position plus a linear combination of the strengths:

m“.w'TQHQITOmm!GQWU(IQ&Qu AM@V
where

Cy=Cy(K), Cy=Cy(K), C3=C5(K), Cy=Cy(K).

The perturbed daily cost is assumed to be proportional to the losses, which in
turn are proportional to the strengths utilized. The ground losses are reduced
by the air strength for close support missions. Thus the daily cost is assumed
to be

C= Cya+(Cy— Cya) B+ § Cya®+ 3 Cy 8%, (17)

where

The terminal cost is assumed to be

$(s)=A(s = 50)". (18)

From general control theoretical considerations, the minimum expected cost
has the form _

mx?vnbx.vaxu+qx%. (19)

where the coefficients, pg, ok, and 7, are computed for K stages remaining,
Differentiating Eqs. (16), (17), and (19) and substituting into Eqgs. (12) and
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(13), the following equations are obtained:
O“ .\.AAQW:I quvlwn Q@Q

+?x+wqx?,+Owcl.melO%lOEZQLOEV%, (20)

f

onfhoma C.a)+ Co B
+ﬁax+wqx?+OWQ+Om\wiQu%tpe;@mvwgv&? (21)
which are a system of Fredholm integral equations for the functions « and f.

RECURSIVE EQUATIONS

The recursive equations for the solution of Egs. (6) and (7) are derived as
follows. Making use of the equations

[otads=1, @)

[q0la)dg=7, @

and similar relations for p, Eqgs. (20) and (21) can he written as the linear
Fredholm integral equations

1
alp)= s | (G200 [ Q9
“L1TK
+92C,CyrxG—Cs— C,0,; lmﬁwqxu.quzﬁymuu%,w. (24)
N ¢,—~20,Com) [ alp)E(P)d
mgv!mnf e (¢ Lok p)Eip)ap
2'K 9

+2C,Cyri P —Cs™ Cyox —2C,Tgs + A7y QNQE,W. (25)

We shall solve these integral equations observing that they have degenerate
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kernels. Define two new parameters

o, =1B(q)Q(q) g, (26)

and
v,= [ p) P(p)dp- (27)
Substituting A(g) into Eq. (26),

1
2C2r, +Co

v =

TO‘\!wQHquxvcmlTmeO@qu

- Q@ll QMQN - NQNQ.NA.W +Ng\7‘ QMQ.»N\..W. Ammv
Substituting a( p) into Eq. (27),

1
TGk + Gy

Ua

“

[(Cy— 2C,Cory )0, +2C,Cyre§

~ Cy— Cyox —2C 75 +27 C,C3 B . (29)
To simplify the notation, express Eqs. (28) and (29) in the form

v, = B,(Byvy — Bys + By), (30)
vy = By Byv, — Bgs + By). (31)

Substituting v, into Eq. (30) and v, into Eq. (31), it can be shown that
v, = D)+ Dgs, (32)
vy = Dy+ D,s, (33)
where the D,’s are functions of the B;’s. Then substituting Eq. (32) into Eq.

(24) and Eq. (33) into Eq. (25), it can be shown that the optimal decision
functions are

a(K +1,s,p)=ug + vgs +wgp, (34)

BIK+1,8,q)=x¢c + yps + 2 G, (35)
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where

uy =BsBy,D;+ BsBy,
vg = BsByDy— BsBg,
wy =27, C,C3Bs,
x¢ = BByDs+ BBy,
yg = B1BaDy— B, B,

2 =275 CoCyBy,

1
By=—— :
P o0k +Cy

B,=C;—2C,Cyrxs
By=2C,y,
B,=2C,Cyrgp— Co~ Caox + 27 CoCud,
B;=2C,Cyryp—Cs— Co0k»

1

B.= ,
2CH +Cy

o

Bg=2Cy7x,
mdﬁ NQu Q.»o.mn@sl: le\. QwQNA +N\ﬂmh O_.Qm w‘uxv
B;=2C,CyrcG~ Cs= Cr0x

B
D, = ! (B,BsB;+ By},
V= 1 B,B? aA 2BsBr+ By)

Dy= — DL (B,BBs+B)
©= BB, -
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(36)
(37)
(38)
(39)
(40)

(41)

(42)

(43)
(44)
(45)
(46)
(47)

(48)
(49)

(50)

(51)

Optimal Tactics for Close Support Operators 207
Do=— P (BB B+E) ()

sTi1-BBB, o
D= — 55 _(B,BB,+By) (54)

= 1_B,BIB, 9D P37F Dg/-

Note that S can be expressed in terms of these coefficients and s, p, and g.

Substituting the optimal a and B into Eq. (16), the new position of the front
line becomes

=g+ Cy(ug + vgs+ wyp) + Co(x +ygs+ 2¢q)— Csp—Cyq
= Cyug + Coxg +(1+ Cyoxg + Gy yx)s +(Crwg = Co)p+ (Cozx — C,)q.
(35)

The expected cost, g 41(s), 18 obtained by substituting Eqs. (16), (17), and
(18) into Eq. (7):

Zxa1(8)= Bm\f:omain@: vam;‘wnmnfwn@mm
+pg Fog(s+ GVQ+me|G%!QEV

+rg(s+ Q~Q+me|Quﬁipavwwiﬁvﬁugv&o%. (56)

Substituting Egs. (34) and (35) into Eq. (56),

mx+wgu.\“\AOmA:x+cx%+SN%V

+ ﬁﬁml Colug+ogs+ Exﬁ:?x + S%.vaxﬂ

+ 1 Cylug +ogs+ Sxﬁvw + L Colatg + yxs + 2« va + py

+ o[ s+ Cilug +vgs+ wyp)+ Colxg + yxs +2¢q) — Csp—Cyq ]

+ 7[5+ €)1 + vgs + wep) + Gyl + yes+24q)— Cap— OAHLJ

X P{p)Q(qidpdq. {5
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To simplify the notation, express Eq. (57) in the form

- 2
mzi?vlbxﬁ;.qximlvqxiu

H\\Aﬁm:mxfﬁmcxw.f Cswyp + Cexg
+ Coq — Caltag + wiep) (2 + 7 q)
+[ Cqyx — Colug + wyp)yx — Col g + 2cq) ok | s — Crogis™
+1 QL Ul + 2uy wip + wrp® + 2(ugox + Ve WgP)S+ cm,uw”_
+wQ@Tm+w&zuxa+umam+m?x§+nz8a+Smwﬁ
+py+og(A +As+Apt AgQ)
+\_.xT\:+>wu+>ivm+w§w+>uﬁ+>5v>%+>w%5

X P(p)Qlg)dpdg. (58)

Integrating and setting the constant terms and the coefficients of s and s®
equal, it can be shown that

pg+1= Cstig + Cswyp + Coxg + Cozxq
— Cylug + wip)(xx + %)+ wﬁm?m +2ugwyp+ SMW.MV
+ wﬁoﬁam +2x 2 + 75 7 v+.ox + Qfo.*.\wwm‘Tx:mv
+ 1| ATH2(A A P+ AAT+ AGALPT) T AS p*+A2q® ), (59)
og+1= Cstx + Co Yy — Col iy + wieP)yx — Co(k + 2 G ) vg
+ Cylugvg + vgwiP) + Colxxyx + Yxaxq)

+qx>n+qu>w§w+>um+\fmvv (60)

- 1
TR+1= Crogyx + 3 Cevi +35Co yz + 1 AS, (61)
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where
A= Ciug + Coxg, (62)
Ay=1+Ciog+ Cyyg, (83)
Ay=Cywg—Cy, . (64)
A, =Cozg — Cy (65)

The recursive relations are given by Egs. (59), (60), and (61), supple-
mented by Egs. (36) to (41) and (42) through (54). These equations are
similar to those derived in Ref. [4]; however, they are now considered to be
perturbation equations.

NUMERICAL RESULTS

Numerical results were obtained using the recursive equations derived in
the previous paragraphs. At each stage the coefficients in the equations for
the optimal blue air strength, a(p), and the optimal blue ground strength,
B(g), are computed. The new position of the front line is computed in Eq.
(55) using the optimal decisions.

Consider a campaign with the following duration, N, and additional
distance to be covered, sy :

N =21 days,

$5=21 miles.
The average red strengths are assumed to be
p=1 and g=1

The second moments of p and g are given by

Assume the coefficients in Egs. (15), (16), and (17) are constants with the
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exception of Cy:

C,=01, GCe=01,  0,=05,
C,=1, C,=001, 0,=05
C,=01, . Cg=002,  A=10
Ci=1, C,=0.02,

The coefficient Cs in the cost equation is proportional to the red antiair
strength and may vary during the course of the campaign as the red antiair
fortifications are destroyed. Then for different values of Cs the optimal air
and ground decisions, a(p) and B(gq), for K=21, 11, and 1 stage to go are as
follows: ;

Case I, C; Constant

Cs=0.005.
K=21:
o p) =158 —2573X 107 % +3.376 X107,
Blq)=1928—4.503 X107 +3.267X 107%.
K=11:
o p)=1848— 4911 X 1077 +6.748X 107,
\ Eauw.qmm‘m.mﬁxS&ia.mwmxsi&.
K=1:

a( p)=11.56—0.5369s +0.5p,
Blg) =19.71-0.9398s +0.99q.

Case II, Time-Varying Cs
Cy(K)=0.005+0.0005K.

K=21:

o p)=0.7773 = 2.573X 107 % +3.376 X 107 p,

Blq)=1.787~ 4503 X 10~ % +3.267X 10-%.
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K=1L
alp)=1546-4911X 107 % +6.748X 107,

B(q)=2.685—8.594 X 10" % +6.325 X 107,

o p)=11.54—0.5369s+0.5p,
Blg) = 19.71— 093965 +0.99q.

In case 1, the coefficient Cg is constant. Considering the campaign as a
whole with 21 days and 21 miles to go, and starting with the front line at
s=0, if the red air and ground strengths are constant and equal to their
average values of 1 (e, p=p=1 and g=g=1), then the optimal blue air
and ground strengths are also constant and given by

a(p)=1.359 and B(g)=1.961.
The daily cost given by Eq. (17) is

C=Csa+(Cs— O.\Qv.m.fwﬁxsm.*, wﬂmmw

=0.00679 +0.169+0.018+0.038
=(.233

In case II, Cs(K) decreases as the campaign progresses. If the red air and
ground strengths are equal to their average values, then a p)=0.7776 and
B(3)=1.819 at the beginning of the campaign, and they gradually increase to
a(p)=1444 and B(g)=2.15 at the end of the campaign. The front line
moves forward at the increment of 0.8 miles per day at the beginning of the
campaign, gradually increasing to 1.2 miles per day at the end of the
campaign. The front line moves forward at a lower rate at the beginning of
the campaign where the coefficients of the daily cost are higher, and moves
forward at a higher rate near the end of the campaign where the coefficients
are lower.

It should be noted that the optimal decisions are the perturbed strength
increments about the main strengths, and the positions are the wmﬁcmcma
position increments of the front line about the planned position. In the
examples given, a(p), f(§), and the minimum expected cost increments are
all positive.
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In this paper the air and ground commanders were assumed to have
partial intelligence with degraded communication between them. Future
papers will consider different combinatisns of intelligence and communica-
tion capabilities.
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ABSTRACT

Two extensions of the usual application of invariant imbedding to the solution of
linear boundary value problems are presented. The invariant imbedding formulation
of a linear two point boundary value problem in which functional relationships are
given between the variables at either one or both of the boundary points is presented.
Also, extension of invariant imbedding to linear multipoint boundary value problems
is given. Using these extensions singly or in combination, a general multipoint
boundary value of linear ordinary differential equations can be solved. In addition,
the problems of infinite initial conditions and /or indeterminate initial derivatives are
resolved. Numerical examples demonstrate the feasibility and accuracy of the
method.

INTRODUCTION

In recent years a technique known as invariant imbedding has been
applied to a growing number of problems [1-4]. Invariant imbedding is a
powerful tool that finds frequent application in the numerical solution of two
point boundary value problems (TPBVP) of differential equations. While
invariant imbedding has some interesting mathematical and physical implica-
tions, one of its most useful properties is its ability to convert two point
boundary value problems into initial value problems.

At present, a substantial body of literature is being produced bearing the
name invariant imbedding. Analysis of that literature shows that at least
three distinct approaches to the problem are being outlined all under the
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