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Abstract

Consumer researchers seeking to explain the probability of a binary outcome in an experiment often attend to the moderation of one treatment variable’s effect by the value of second. The most commonly used method for analyzing such data is logistic regression, but because this method subjects the dependent variable to a nonlinear transformation, the resulting interaction coefficients do not properly reflect moderation effects in the original probabilities. Significant moderation effects may result in non-significant interaction coefficients and vice versa. We illustrate the problem, discuss possible responses, describe how to correctly test moderation effects on probabilities, and demonstrate that addressing this problem makes a practical difference.
Consumer researchers often conduct experiments with binary dependent variables such as whether consumers choose one type of item or another, take action or defer action, repurchase the same brand or switch brands, etc. Most commonly, researchers analyze the resulting data with logistic regression. From the year 2000 to date, there were 68 papers in JCR that reported analyses of binary dependent variables, and 66 used some form of logistic regression.
 

While logistic regression addresses important statistical problems associated with the analysis of binary dependent variables, it introduces a problem of its own: because the dependent variable is subjected to a non-linear transformation, the interaction coefficients obtained from a logistic regression do not properly reflect moderation effects in the original data (Ai and Norton 2003; Hoetker 2007). As a result, significant moderation effects may test as non-significant interaction coefficients and vice versa, with obvious implications for the research. However, this point is not typically addressed in texts on categorical data analysis (e.g., Agresti 2002; Maddala 1983; McCullagh and Nelder 1989), and perhaps as a consequence, we believe it is not generally well known to researchers. For example, none of the 68 aforementioned JCR papers note this problem.


Here we illustrate the problem, discuss what to do about it, and show that addressing the problem can make a practical difference in results obtained by consumer researchers.

Illustration of the Problem


The nature of the problem can be seen in Table 1. Imagine that a researcher studying consumers’ probabilities of exhibiting Y=1 (versus Y=0) conducts a 2(2 experiment with two factors, X1 (two levels, Low and High) and X2 (two levels, Low and High), and obtains results as shown in Table 1, Panel A. Specifically, there is a probability of .05 that a participant exhibits Y=1 in condition (X1=Low, X2=Low), .15 in (X1=High, X2=Low), .25 in (X1=Low, X2=High), and .35 in (X1=High, X2=High). As may be seen in Panel A, the effect of changing factor X1 from Low to High is .10 (=.15-.05) in condition X2=Low and .10 (=0.35-0.25) in condition X2=Low. The moderation effect of X2, or the difference in effects of X1 across levels of X2, is zero. Factor X2 does not moderate the effect of X1.

(Table 1 about here)


As is widely known, statistical problems arise if such data are analyzed with a simple linear probability model (regression or ANOVA). To address these problems, logistic regression transforms the dependent variable from probability to the log-odds ratio: if p is the probability, then ln(p/(1-p)) is the log-odds or logit transformation. 

Panel B of Table 1 shows the same results subjected to a log-odds ratio transformation as would occur in a logistic regression. The moderation effect on log-odds of X2 is not zero; instead, there now appears to be substantial moderation. What has happened is as follows. In applying a nonlinear transformation to the scale of the dependent variable, the differences between X1=Low and X1=High have been changed. These changes do not alter the inherent meaning of those differences, that X1 has an effect on the dependent variable. However, the “difference-in-differences” across levels of X2 has also been changed, and this change does alter the inherent meaning of the comparison. Such changes will occur whenever a nonlinear transformation is applied, regardless of whether it is logit or some other nonlinear transformation.

To complete the story, in Panel C of Table 1, the probability of Y=1 in condition (X1=High, X2=High) is adjusted so that the apparent moderation effect in log-odds will vanish. Here, the probability of Y=1 in condition (X1=High, X2=High) equals .53 while the other conditions remain unchanged. The effect on probabilities of changing factor X1 from Low to High is .10 (=.15-.05) in condition X2=Low but .28 (=.53-.25) in condition X2=High. In other words, the effect of changing factor X1 on the probability of choice is almost three times as large in condition X2=High versus X2=Low. There is a substantial moderation on probabilities. 


However, when these data are subjected to a logit transformation (Panel D), the moderation on log-odds is zero. The effects of X1 on the log-odds ratio are the same across levels of X2, and the interaction coefficient obtained from a logistic regression will be zero. In other words, just as zero moderation in the original probabilities corresponds to non-zero interaction in the logit transformed data (Panels A and B of Table 1), zero interaction in the transformed data corresponds to non-zero moderation in the original probabilities (Panels C and D). 
What to Do About the Problem

One can imagine at least three ways of responding to this problem. First, one can simply state moderation hypotheses for binary dependent variables in terms of log-odds ratios rather than probabilities. In the example given above, we have presumed that the hypothesis of interest takes the form: “the effect of factor X1 will be moderated by factor X2 such that the difference in probabilities between X1=Low and X1=High is different in condition X2=Low versus X2=High.” One could restate the hypothesis as: “the effect of factor X1 will be moderated by factor X2 such that the difference in log-odds ratios between X1=Low and X1=High is different in condition X2=Low versus X2=High.” If the hypothesis is restated in this fashion, then testing the significance of the interaction coefficient in a logistic regression will fit the hypothesis precisely. However, this approach is unsatisfactory because methods should follow theory, not vice-versa. We wish to fit the test to the hypothesis, not the hypothesis to the test. In this regard, there is typically no theoretical or practical appeal in the pattern of results implied by the restated log-odds hypothesis. For example, in Table 1, there is intuitive appeal in saying that there is zero moderation effect if changes in X1 produce a .10 increase in the probability of Y=1 regardless of the value of X2.  There is no obvious appeal in saying that there is zero moderation effect if changes in X1 produce a .10 increase in the probability of Y=1 when X2=Low and a .28 increase when X2=High (i.e., when the logistic regression finds no interaction).

A second possibility is to use a linear probability regression or ANOVA procedure to test interaction effects. This approach has the advantage of testing unaltered moderation effects. For example, in Table 1, it would show zero moderation for the data in Panel A and non-zero moderation for the data in Panel C.  However, it suffers from the same problems that long ago led data analysts to develop logistic regression; conditional expectations can be outside the possible range [0, 1] for probabilities, errors are not distributed normal, and there is heteroskedasticity in the errors that produces biased standard errors and improper t-statistics. 

The third response is to use a procedure that correctly calculates the moderation effect as the difference-in-differences of probabilities and correctly estimates the standard deviation and hence the statistical significance of this moderation effect. Here, we will show how this can be done for 2x2 designs where logistic regression has been used, and we will discuss how the procedures may be extended to more complex designs.
Developing a Correct Test of the Moderation Effect

The moderated logistic regression explains the probability, denoted , of the focal outcome as a function of two manipulated variables and their interaction:
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(1)
The experimental manipulations of Xis are dummy coded so the probabilities can be denoted 11, 10, 01, 00, depending on the value of (X1,X2).  What is the proper interpretation of the coefficient of the interaction term 12 that is reported in logistic regression statistical software packages?  Inverting the logistic function results in ln(/(1-))= 0+1X1+2X2 +12X1X2, so 12 equals the differences-in-differences in log-odds: 
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(2)
If the interaction coefficient 12 corresponds to differences-in-differences in log-odds, what corresponds directly to probabilities? Let us denote the moderation effect on probabilities as 12, and define it as the differences-in-differences of probabilities as expressed by the logistic function:
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   (3)
We use the term “interaction coefficient” for parameter 12 and the term “moderation effect” for parameter 12. Traditional statistical software does not provide the value for the moderation effect 12, although it is straightforward to compute from the estimated coefficients via equation (3).  Notice, the moderation effect on probabilities depends on intercept 0 and the coefficients 1 and 2, not just the interaction coefficient 12, and this is why 12 and 12 can be so different in the examples shown in Table 1.  
Ai and Norton (2003), who developed a similar analysis for continuous covariates, recommend that the standard error of 12 be estimated by the delta method. In Appendix 1, we show how this may be done in a 2(2 experiment. This will allow one to test the significance of the moderation effect 12.


Also, for specific statistical software, it may be possible to adjust the code to directly produce appropriate statistics for 12.  In Appendix 2, we provide code that may be used with SAS procedure NLMIXED to estimate a moderated logistic regression and all of the correct statistics for testing the moderation effect. Applications of this procedure are discussed in the next section. More general cases (e.g., multiple two-way moderation effects, higher order moderation effects, etc.) may be extended by appropriately specifying the interaction effect based on the example code provided in Appendix 2. 
Demonstration that Correct Testing Can Make a Difference
To show that addressing this problem can make a practical difference in results, we consider four specific examples published in JCR as well as the results of a broad numerical simulation. In selecting examples, we focused on studies that reported a marginally significant interaction coefficient from a logistic regression. For each example, we estimated the interaction coefficient in the logistic regression (12) as well as the moderation effect (12) using the procedure shown in Appendix 2.

Empirical examples
Muthukrishnan and Kardes (2001), in their study 1A,  expected initial choice ambiguity (low vs. high) to moderate the extent to which usage experience (limited vs. extensive) led subjects to develop a persistent preference for the attributes of the initially chosen brand. Results appeared to support this expectation: in the low ambiguity condition, 62% of subjects with extensive experience vs. 23% of subjects with limited experience chose an item with the focal attributes on a second choice, while comparable numbers the high ambiguity condition were 33% vs. 25%. A logit analysis found the interaction coefficient to be only marginally significant (12 = 1.368, p = .073). However, the moderation effect confirms Muthukrishnan and Kardes’s expectation with statistically significant results (12 = .301, p = .039).
Scott et al. (2008), in their study 3, expected dietary restraint (restrained vs. unrestrained) to moderate the effect of food type (small food/small packages vs. large food/large packages) on the probability that subjects would eat the full amount of a 240 calorie offering. Results appeared consistent with their expectation; among restrained eaters, 4% of subjects who were offered large food in a large package vs. 18% of subjects who were offered small food in small packages ate the full amount of the offering, while comparable numbers for unrestrained eaters were 31% vs. 12%. Again, a logistic regression found the interaction coefficient to be only marginally significant (12 = -2.803, p = .057), but the moderation effect is in fact statistically significant (12 = -.329, p = .041).
Manning and Sprott (2009) in their study 2B, expected general price level of the alternatives (lower vs. higher) to moderate the effect of price ending (just-below vs. round; e.g., $2.99 vs. $3.00) on the probability that subjects would choose the lower-priced of two mementos. Results appeared consistent with their expectation; at a higher price level, 57% of subjects presented with just-below pricing vs. 37% of subjects presented with round pricing chose the lower-priced alternative, while comparable numbers at a lower price level were 21% vs. 24%. A logistic regression found the interaction coefficient to be only marginally significant (12 = .940, p = .060), but once again, the moderation effect is significant without restrictions (12 = .221, p = .029).
A somewhat different example comes from Xu and Wyer (2007). In their study 1, the authors considered whether the likelihood of deciding to make a purchase was influenced by preference-decision order (express preference first vs. make decision first) and decision revocability (revocable vs. irrevocable). Revocability appeared to have a substantial moderating effect on the effects of preference-decision order; when the decision was irrevocable, 70% of “preference first” subjects vs. 21% of “decision first” subjects decided to make a purchase, while comparable numbers when the decision was revocable were 23% vs. 12%. Xu and Wyer said the effect was “worth noting,” but the interaction effect as tested in logistic regression was not even marginally significant (12 = -1.341, p = .140). However, the moderation effect is solidly significant (12 = -.37, p = .013). Xu and Wyer sensed that they were looking at a moderated effect, and their instinct was correct, but testing the effect with the logistic interaction rather than the proper moderation term failed to show it.

Table 2 summarizes these four examples. In all four cases, the previously non-significant or marginally significant results become significant when the correct moderation effects are tested. This need not be the direction of change, as Table 1 and the analysis below will indicate, but the results are enough to show that the interpretation of consumer research can be affected by this issue. The results also lead one to wonder how many studies ended up in a file drawer because they failed to find significance for interesting moderation effects that did in fact exist.  
(Table 2 about here)

Simulation results
How likely is it that 12 and 12 will tell different stories about significance, as in these examples? To answer this question, we conducted simulations of a balanced 2(2 experiment with 25 and 50 observations per cell, respectively, and allowed the observed probability for the dependent variable in each cell to vary from .02 to .98 in increments of .02. In other words, we allowed the governing probabilities for the four cells to equal .02, .02, .02 and .02; then .02, .02, .02 and .04; and so on through .98, .98, .98 and .98. We compared the significance level (significant at p ≤ .05, marginally significant at .05 < p ≤ .10, or not significant) for 12 and 12 in each case. Aggregate results are shown in Table 3. 
(Table 3 about here)

Table 3 shows the following. First, of course, significance levels for the two statistics generally agree; at cells sizes of 25, significance levels for 12 and 12 essentially matched 88.3% of the time (49.9% + 3.1% + 35.3%), and at cell sizes of 50, significance levels matched 88.4% of the time.  Second, at least for the range of probabilities considered here (.02 through .98), the correctly calculated moderation effect 12 is more likely than the logistic interaction coefficient 12 to be found significant. For example, at cell sizes of 25, 12 was significant or marginally significant in 58.0% of the cases while 12 was significant or marginally significant in 63.6% of the cases. This implies that researchers who hypothesize moderation effects on probabilities of choice are more likely to confirm this hypothesis when they correctly test the effects on probabilities rather than log-odds ratios, as seen in the four JCR studies shown in Table 2. Third, however, it is also possible that the interaction coefficient from log-odds ratios will produce higher significance, so one cannot simply assert that the interaction coefficient test obtained from logistic regression is a more conservative test of moderation effect. Fourth, the relative likelihood of Type I errors (12 is significant when 12 is not) versus Type II errors (12 is not significant when 12 is) depends on the sample size. With larger cell sizes, it becomes less likely that 12 understates the significance of the moderation effect and more likely that 12 overstates it.  
In summary, we have noted a general problem in analyzing binary dependent variables with procedures such as logistic regression, to wit, that the nonlinear transformations used to address statistical problems also have the unfortunate effect of altering moderation effects. We have illustrated the problem, discussed possible responses to it, described procedures that may be used to test moderation effects correctly, and demonstrated that addressing the problem can make a practical difference in results. We believe that this problem is not currently well known to consumer researchers, and we hope that our comments are useful in this regard.
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Table 1: Illustration of the Problem

	A: Probability of Y=1

	
	X1=Low
	X1=High
	Difference

(Simple Effect of X1)
	
	Difference-in-Difference

(Moderation Effect of X2)

	X2=Low
	.05
	.15
	.10
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	.00

	X2=High
	.25
	.35
	.10
	
	

	B: Log-odds ratio transformed data

	
	X1=Low
	X1=High
	Difference

(Simple Effect of X1)
	
	Difference-in-Difference

(Interaction Coefficient of X2)

	X2=Low
	-2.94
	-1.73
	1.21
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	-.73

	X2=High
	-1.10
	-.62
	.48
	
	

	C: Revised Probability of Y=1

	
	X1=Low
	X1=High
	Difference

(Simple Effect of X1)
	
	Difference-in-Difference

(Moderation Effect of X2)

	X2=Low
	.05
	.15
	.10
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	.18

	X2=High
	.25
	.53
	.28
	
	

	D: Revised log-odds ratio transformed data

	
	X1=Low
	X1=High
	Difference

(Simple Effect of X1)
	
	Difference-in-Difference

(Interaction Coefficient of X2)

	X2=Low
	-2.94
	-1.73
	1.21
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	.00

	X2=High
	-1.10
	.11
	1.21
	
	


Table 2: Illustrative Examples from Journal of Consumer Research

	Study
	Dependent Variable
	Moderation Effect Tested
	p-value of Interaction Coefficient (12
(as reported in paper)
	p-value of Moderation Effect (12

	Muthukrishnan and Kardes 2001, study 1A
	Proportion of subjects that chose the brand that contained the focal attributes at time 2
	Ambiguity (low/high) ( Experience (limited/extensive)
	.073
	.039

	Scott et al. 2008, study 3
	Whether people ate the entire 240 calories versus some quantity less than all of the food
	Dietary restraint (restrained/unrestrained) ( Food type (small/large)
	.057
	.041

	Manning and Sprott 2009, study 2B
	Choice of lower-priced alternatives
	Price level (lower/higher) ( Price-ending condition (just-below/round)
	.060
	.029

	Xu and Wyer 2007, study 1
	Likelihood of deciding to make a purchase
	Decision revocability (yes/no) ( Order of preference-decision (preference first/decision first)
	.140
	.013


Table 3: Simulated Significance of 
Moderation Effect 12 versus Interaction Coefficient 12 in a 2x2 Design*
	A. Twenty-five subjects per cell

	
	Interaction Coefficient (12

	
	Significant
	Marginal
	Insignificant

	
	p ≤ .05
	.05 < p ≤ .10
	p >.10

	Moderation Effect (12
	p ≤ .05
	49.9%
	3.4%
	4.0%

	
	.05 < p ≤ .10
	.5%
	3.1%
	2.8%

	
	p > .10
	.0%
	1.1%
	35.3%

	B. Fifty subjects per cell

	
	Interaction Coefficient (12

	
	Significant
	Marginal
	Insignificant

	
	p ≤ .05
	.05 < p ≤ .10
	p >.10

	Moderation Effect (12
	p ≤ .05
	62.6%
	2.2%
	4.1%

	
	.05 < p ≤ .10
	1.1%
	1.8%
	1.9%

	
	p > .10
	.7%
	1.6%
	24.0%


*Numbers in the table represent the percentage of simulated cases in each corresponding significance condition for 12 and 12.

Appendix 1:  Delta Method of Computing Standard Errors of Moderation Effect

The moderation effect is measured by
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(4)
where the logistic function is 
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.  As a nonlinear function of the parameters of the logistic regression, the variance of 12 may be measured using the delta method (Greene 2007, pp. 1055-6).  This method takes a linear approximation to (4) and calculates the variance of that linear approximation.  Specifically, the asymptotic variance of 12 is 
[image: image11.wmf]12

12

V

'

V

*

12

f

Ñ

f

Ñ

=

f

, where V is the variance-covariance matrix of  the maximum likelihood estimators of (0, 1, 2, 12) and (12 is the gradient of 12 evaluated at the estimated coefficients (0*, 1*, 2*, 12*).  The variance-covariance matrix V is an output option for the typical logistic regression software. The gradient of the moderation effect equals
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In the case of a balanced 2(2 experimental design, the gradient is easily calculated from the observed frequencies as
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The statistical significance of the moderation effect on probability of choice is tested by the t-statistic 
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Appendix 2: Annotated SAS Code for Testing Moderation Effects in a 2x2 Experiment with a Binary Dependent Variable
/*---------------------------------------------------------------------------

 SAS code for two-way interaction effects in binary data using logistic regression. The following code will run “as is” for any 2x2 experiment, changing only the data and DF value.
---------------------------------------------------------------------------*/

/*--------------------------------------------------------------------------

   this is the test dataset (named “test”)

   n is the number of subjects in a treatment condition, 

   k is the number of subjects choosing “1” in that treatment condition,

   X1 and X2 are the dummy variables for the two treatment conditions

--------------------------------------------------------------------------*/

data test; 

   input n k X1 X2; 

   datalines; 

   30   7 0 0

   33   4 0 1

   33  23 1 0

   28   6 1 1

run;
/* call proc nlmixed, specifying the degree of freedom (DF) to be n-k 
where n is the number of observations and k is the number of parameters */

proc nlmixed data=test DF=120;

  /* parms specifies the initial values of the parameters to be estimated
  for a 2x2 experiment; these can be set at any value, here are set at 0.1
       b0 is the intercept, 

       b1 and b2 are the coefficients for main effects, 

       b12 is the interaction coefficient */

  parms b0=0.1 b1=0.1 b2=0.1 b12=0.1; 
  /* specifying the basic utility model for a 2x2 experiment */

  u = b0 + b1*X1 + b2*X2 + b12*X1*X2; 

  /* the next 2 lines formulate a logit model; these can be used as is

  even if the research design is modified from 2x2 */

  p = exp(u)/(1+exp(u));

  model k ~ binomial(n,p); 

  /* estimating the moderation effect between X1 and X2 for a 

  2x2 experiment */

  estimate 'phi12' exp(b0+b1+b2+b12)/(1+exp(b0+b1+b2+b12)) + exp(b0)/(1+exp(b0)) - exp(b0+b1)/(1+exp(b0+b1)) - exp(b0+b2)/(1+exp(b0+b2)); 

run;
/* end of code */

� The other two papers used probit analysis. While we focus on logistic regression because of its ubiquity, the issue that we discuss also applies to probit analysis and any other procedure that subjects the dependent variable to a non-linear transformation.
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