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How Do You Properly Diagnose Harmful Collinearity in Moderated Regressions?

ABSTRACT

Most marketing researchers diagnose collinearity in moderated regression models using correlation-based metrics such as bivariate correlations and variance inflation factors. The rationale for the central role of correlations in any collinearity diagnosis stems from the prevailing assumption that there is a one-to-one correspondence between the terms ‘collinearity’ and ‘correlation’ such that low correlations automatically imply low collinearity.  In this paper, we demonstrate that it is possible to have highly collinear relationships in a model, yet have negligible bivariate correlations among the individual variables.  As such, collinearity diagnostics typically used by marketing scholars are likely to misdiagnose the extent of collinearity problems in moderated models. We develop a new measure, C2, which accurately diagnoses the extent of collinearity in moderated regression models and hence assesses the quality of the data. More importantly, this C2 measure can indicate when the effects of collinearity are truly harmful and how much collinearity would have to disappear to generate significant results. We illustrate the usefulness of the C2 metric using an example from the brand extension literature. 
Keywords:  Moderated models, Interactions, Collinearity
INTRODUCTION

Moderated regression models are ideal for testing contingency hypotheses which suggest that the relationship between any two variables is dependent upon a third (moderator) variable (Irwin and McClelland 2001).  The interaction effect in a moderated regression model involving quantitative variables, say U and V, is empirically estimated by including a cross-product term, U(V, as an additional exogenous variable. As a result, there is likely to be strong linear dependencies among the regressors, and these high levels of collinearity in the data may lead to inaccurate regression estimates and possibly flawed statistical inferences (Aiken and West 1991).

Indeed, marketing scholars utilizing moderated models, which have become method of choice for testing contingency hypotheses, are concerned with collinearity issues. A review of the influential marketing journals over the years 1996 – 2008 shows that 80 papers that used interactions expressed collinearity concerns, including 18 citations in the Journal of Marketing Research, 43 in the Journal of Marketing, 12 in Management Science, five in Marketing Science, and two in the Journal of Consumer Research.
 Correlation coefficients and variance inflation factors (VIFs) were the most commonly used diagnostics to assess collinearity problems in over eighty percent of the papers that reported one or more collinearity metrics. Low correlations or low values of VIFs are considered to be indicative that collinearity concerns are minor.

What happens if collinearity problems are suspected in the data? Marketing researchers typically employed some form of data transformation such as mean-centering (n = 45 papers), standardizing (n = 5), or residual-centering (n = 7) the data to alleviate collinearity issues. Despite recent evidence that data transformations do not alleviate collinearity problems (c.f. Echambadi and Hess 2007), why do researchers employ data transformations? The logic is simple. By transforming the data, these researchers attempt to reduce the correlations between the exogenous variables and the interactions, and these reduced correlations are assumed to reflect reduced collinearity (see Irwin and McClelland, 2001, p. 109). A few papers reported dropping variables that were highly correlated with other exogenous variables to remedy collinearity problems.

Fundamental to the central role of correlations in both collinearity diagnostics and alleviation is the inappropriate belief that correlations and collinearity are synonymous. Most empirical marketing researchers, as evidenced by the results from the content analysis, believe that low correlations
 are indicative of low collinearity. For example, marketing papers that simulate collinearity always use correlations as a way to simulate collinear conditions such that high or low correlations are indicative of high or low collinearity, respectively (see Mason and Perreault 1991; Grewal, Cote, and Baumgartner 2004). However, low correlations do not automatically imply low collinearity (Belsley 1991). It is possible to have low bivariate correlations between variables in a highly collinear model. As such, correlation-based collinearity metrics such as variance inflation factors (VIFs) are likely to misdiagnose collinearity problems. 

Belsley (1991) has persuasively argued in the general regression context that diagnosing collinearity should be done with a combination of conditioning indices of the data matrix and the variance-decomposition proportions.  However, there is no obvious value of the condition index that defines the boundary between degrading and truly harmful collinearity.  Belsley (1991) developed a universal procedure to formally test whether there is inadequate signal-to-noise in the data, but this is not easily implemented and therefore does not appear to be used by marketing researchers.

In this paper, we narrow the focus to moderated regression models where the exogenous data matrix consists of [1 U  V UoV], where 1 is the unit vector corresponding to the intercept and UoV is the Hadamard product of the two data vectors U and V.  The collinearity problem revolves around whether U is collinear with the interaction variable UoV, since obviously U goes into the construction of this interaction term.  In this context, we develop a new measure of collinearity denoted C2 that indicates the extent of collinearity problems in the moderated data matrix.  Specifically, C2 reflects the quality of the data.  This measure would take on the value of 0.0 if the data were equivalent to a well-balanced 2(2 experimental design of U and V, and equals 1.0 if there is perfect collinearity in the moderated data matrix.   

More importantly, the magnitude of the collinearity measure C2 can indicate whether a non-significant linear effect would become significant if the collinearity in the data could be reduced and if so, how much collinearity must be reduced to achieve this significant result.  Specifically, if the t-statistic of U exceeds 1.0 but falls short of the traditional critical value of 1.96, many researchers would keep the insignificant U in the model because it contributes to improvement in adjusted R2 (see Haitovsky 1969).  However, if C2 exceeds ¾, then reduction of collinearity to that a well-designed experiment would on its own make the coefficient of U statistically significant.   That is, the value ¾ provides a dividing line between degrading and harmful collinearity with the interaction term.  The usefulness of C2 is demonstrated using empirical data from a study of brand extensions.  Finally, we explicitly derive the linkage between our C2 measure and the sample size required to achieve statistical power of 80% in order to provide guidelines to empirical researchers on adequate sample size requirements after due consideration for “quality of data” issues. 
COLLINEARITY AND CORRELATIONS
Correlations refer to linear co-variability of two variables around their means.  In geometric terms, correlation refers to the cosine of the angle between the vectors formed by the mean-centered variables. See angle  in Figure 1. If this angle is 90 degrees, then the two variables are uncorrelated. Computationally, correlation is built from the inner product of these mean-centered variables: 
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FIGURE 1
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A GEOMETRIC REPRESENTATION OF CORRELATION AND COLLINEARITY
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Legend: U and V are N-vectors of the observations and 
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  andare orthogonal projectors of U and V onto the 1 unit vector, i.e., mean-centered vectors.  The cosine of the angle  is the correlation between the vectors while the cosine of the angle is the collinearity of the two vectors.

Collinearity, on the other hand, refers to the presence of linear dependencies between two raw, uncentered variables (Silvey 1969).  In Figure 1, collinearity can be viewed as the cosine of the angle  between the vectors formed by the variables themselves (Belsley 1991, pp. 19-20).  Computationally, collinearity is indicated by the magnitude of the determinant of the inverse of the cross product data matrix with columns U and V, 
[image: image7.wmf](

)

1

]

V

U

[

]'

V

U

[

-

.  Generalizing this to more than two variables indicates that as the number of variables increases, the number of ways
in which collinearity can occur increases.
 
Demonstration that correlation and collinearity can be unrelated 

Figure 2 provides a graphical representation of the various possible scenarios pertaining to high and low correlation and collinearity with just two independent variables, U and V alone, i.e., a model without an intercept term.  

FIGURE 2

GRAPHICAL DEMONSTRATION THAT BIVARIATE CORRELATION CAN BE UNRELATED TO BIVARIATE COLLINEARITY 
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Low Collinearity
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  andare orthogonal projectors of U and V onto the 1 unit vector, i.e., mean-centered vectors.  The cosine of the angle  is the correlation between the vectors while the cosine of the angle  is the collinearity of the two vectors.

An examination of the four panels in Figure 2 shows that all four conditions are possible including high bivariate correlation but low bivariate collinearity (panel 3)  In fact, Belsley (1991) demonstrates that a model with p ( 3 variates can be perfectly collinear and still have no absolute values of bivariate correlations between any two of them that exceeds l /(p - 1).  
This point that correlation and collinearity can be unrelated can be illustrated using a computational example as well.  Consider a data matrix with 3 observations of U and V, 
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. This suffers from both perfect correlation rUV = +1.0 and perfect collinearity, 
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 also suffers from severe (but not perfect) collinearity, 
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 but has zero bivariate correlation, rUV = 0.00.  By inserting more zeros before the last significant digit in this data, one can make collinearity more severe without changing the zero correlation.  

Do low Variance Inflation Factors always imply low collinearity? 
We have just been reminded that one cannot look at correlation and unconditionally conclude something about collinearity.  These problems of inappropriate collinearity diagnostics also apply to variance inflation factors (VIFs).  A diagonal element of the inverse of the correlation matrices is known as the VIF for the corresponding variable and equals the reciprocal of one minus the squared multiple correlation coefficient (R2) from regressing that particular variable on all the other explanatory variables. The VIFs are easy to compute and high VIF values indicate high collinearity as well as inflated variances.
  Because VIFs are based on the correlation matrix, they suffer from the same shortcomings as correlation coefficients. In particular, low VIFs do not guarantee low collinearity (Belsley 1991). Consider a variant of the above numerical illustration with
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.  The VIFs for both U and V equal 1.0, the smallest possible value, but there is severe collinearity, 
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. In summary, there can be a serious collinearity problem that is completely undetected by VIFs.
COLLINEARITY IN MODERATED REGRESSION
Consider a moderated variable regression 
(1) Y= 01+1U+2V+3UoV+,
where U and V are ratio scaled variables in N-dimensional data vectors, UoV is the Hadamard product of U and V, and 1 is a vector of all ones called the intercept variable. Without loss of generality, we will focus on how unique the values of U are compared to 1, V and UoV.  By construction, the term UoV carries some of the same information as U and could create a collinearity problem. Suppose that we regress U on these three other independent variables, U=1+V+UoV+ and computed the ordinary least squares (OLS) predictor, 
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In Figure 3, the angular deviation  of U from the plane defined by [1, V, UoV] is given by cos2()=1-e’e/U’U, where e is the regression residual vector. This looks similar to the R-square from this regression, RU2=1-e’e/U’HU, where H is the mean centering matrix H=I-11’/n.

FIGURE 3

COLLINEARITY IN MODERATED REGRESSION 
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  is the OLS estimator of U. The angle  measures the collinearity of the two vectors while the angle  determines R2 and VIF.

Specifically, cos2()=1-(1-RU2)U’HU/U’U or

(2)




[image: image27.wmf])

R

1

(

N

/

U

'

U

U

R

)

(

cos

2

U

2

2

U

2

-

+

=

q

.

The smaller the angle , the closer the collinearity of U to [1, V, UoV] and the larger is cos2().  Notice that cos2() increases with RU2 and equals 1.0 when RU2=1.0.  As we have just been reminded, low correlations do not necessarily imply low collinearity, and we see that when RU2=0, the cos2() is not necessarily equal to 0, unless the mean of U is zero.  Put another way, the VIF of U may close to 1.0, and yet there is a serious collinearity problem.  Both these measures detect the angle  in Figure 3, not the collinearity angle .
For moderated regression, we propose a new metric that would accurately assess collinearity in moderated regression and also be easier to interpret than condition indices or signal-to-noise ratios. Specifically, we would like to linearly rescale cos2() given in Equation (1) so that the rescaled score equals 0 when the collinearity is equal to an easily interpreted benchmark.  Although a benchmark of zero collinearity is theoretically appealing, it is practically meaningless as this situation is implausible in a moderated model.  The benchmark that we have chosen is a 2(2 balanced design experiment.

We use a balanced design because collinearity in field studies occurs due to the uncontrollability of the data-generating mechanism (Belsley 1991, p. 8).  Experiments, on the other hand, are appropriately controlled with the spurious influences eliminated and hence collinearity must be less of a problem. The relative superiority of experimental designs for detecting interactions has been demonstrated (see McClelland and Judd 1993).  As such, a 2(2 well-balanced design makes an ideal benchmark against which the collinearity in the data can be compared.  Next, we discuss the collinearity present in a well balanced 2(2 experimental design.

What is the level of collinearity in a well-balanced 2(2 experimental design?

In the case of experimental design with a sample of size N, the balanced design produces a design matrix [1, U, V, UoV] where U and V take on values of 0 and 1 divided into blocks with N/4 subjects (there are four pairs of values of U and V in a 2(2 design). One such block is


[image: image28.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

0

0

0

1

0

1

0

1

0

0

1

1

1

1

1

1

V

U

V

U

o

1

.
In the Technical Appendix, we show that the collinearity angle, θ, between U and [1, V, UoV] is given by 
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. For a well balanced design, =arccos(sqrt(3/4))=30o gives the collinearity between U and the plane defined by [1, V, UoV].  It may be surprising to note that there is collinearity between U and [1, V, UoV], even for a well-balanced experimental design, but clearly U shares information with both 1 and UoV.
Development of the C2 Metric 

We now turn to the linear rescale of cos2() given in Equation (1) so that the rescaled score equals 0 when the collinearity is equal to the benchmark, i.e. a 2(2 balanced design experiment where U and V take on values of 0 and 1.  Note that we assume that U and V are ratio scaled, so that this experiment must have one value that is a natural zero.  One cannot create a zero by addition or subtraction without changing the meaning of the variable.  For example, U might be doses of a drug and in the experiment some subjects are given zero (0) doses (the placebo) while others are given one (1) dose.  Obviously, if the dose was 10 milligrams, we could adjust the units of measurement to scale this to 1.  If we were to effect-code the variable (U equals -1 and +1), this would ignore the natural zero. 
We would like to rescale by choosing coefficients A and B so that Acos2()+B equals 0 when =30o and equals 1 when =0o.  Solving A3/4+B=0 and A+B=1 gives A=4, B= –3 and the collinearity score C2 is defined as follows.
Theorem: In the moderated variable regression (1), the collinearity score for U that equals 0 if the data came from a well-balanced experimental design and equals 1.0 if there is perfect collinearity within [1, U, V, UoV] is given by
(3)
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where RU2 is the R-square from regressing U on 1, V and UoV.

A collinearity score for V, CV2, comparable to (3) can be calculated as well.  

The collinearity score was derived from the uncentered R-square and therefore is not based upon correlations, but we find it appropriate to express it in terms of the centered RU2 which we have seen is correlation-based.  The uncentered sum of squares term U’U assures that CU2 is a measure of collinearity, free from the problems of centered R-square.
Notice that CU2=1 if and only if RU2=1.   However, CU2=0 does not say that all collinearity has been eliminated, only that it has been reduced to the same level as that found in a well-balanced experimental design.  If RU2 approaches 0, then CU2 approaches 1-4Var(U)/[U’U/(N-1)] and this could still be large. To see this, suppose that the data set is replications of
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where we set e=4, and assume that the value of ui is determined by the relationship 

U=10 1+1 V +0.1 UoV + .  A regression of U on [1 V  UoV] gives RU2 = 0.2 and VIF=1.3 but cos2()=0.9, so =21o. The collinearity score is CU2=0.6.  That is, the data is quite a bit more collinear than a well designed balanced 2(2 experimental design, but this would not be detected by looking at RU2 or its related VIF.  The measure CU2 in equation (3) accurately detects it. 
Of course, while collinearity degrades the precision of moderated variable regression analysis, this does not mean that it is a serious problem.  Collinearity is harmful when coefficients that may otherwise be significant lose statistical significance due to collinearity problems.  In the next section, we provide guidelines using the measure CU2 to diagnose whether there is truly harmful collinearity.

A MEASURE OF HARMFUL COLLINEARITY
The statistical significance of the coefficient 1 of the variable U in the moderated regression (1) is typically evaluated by its t-statistic, which can be written as

(4)
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where a1 is the OLS estimate of 1, s is the standard error of the estimate, and 
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(5)
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Recall that for a well designed balanced 2(2 experiment CU2=0.  If there was a way to reduce the collinearity from its current level to that of a well-balanced experiment where CU2=0, then the t-statistic would rise to 
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If the t-statistic satisfies inequality (6), then the collinearity is harmful.  If one could reduce the collinearity to that of a well-balanced experiment, then the estimator of 1 would be significant.  If 
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How much must collinearity be reduced to achieve a significant result?

Instead of focusing on whether the insignificant estimate would become significant if collinearity was that of a balanced experiment, one could ask, “What proportion of the collinearity would have to disappear to make the given t-statistic significant?”  If collinearity is reduced by a proportionality factor 1- , then the resulting t-statistic would grow to equal 
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For example, suppose that the obtained insignificant t-statistic is t=1.4 and the collinearity measure is CU2=0.8, then eliminating 24 percent of this existing collinearity between U and [1, V UoV] would achieve significance for the coefficient of U at =0.05. 

Threshold C2 score

Haitovsky (1969) has shown that if a t-statistic exceeds 1, then its variable contributes to the improvement of adjusted R2.  Many applied researchers would keep an insignificant variable in their model so long as it contributes to an improvement of adjusted R2.  From (6), if CU2 = ¾ , then reducing collinearity to that of a well-balanced experiment would effectively double the t-statistic for the coefficient of U in (1).   Hence, if the variable U in a moderated variable regression is insignificant at α=0.05 with more than 60 degrees of freedom, but is kept in the equation because it contributes to adjusted R2, then if CU2> ¾ , this variable would become statistically significant if the collinearity could be reduced to that of a well balanced experiment. In other words, a simple threshold for harmful collinearity is a CU2 score of  ¾.

It must be borne in mind that a CU2 score of ¾ is just a simple threshold. When the CU2 score is considerably higher than ¾, realized t values that are much smaller than 1.0 may reflect harmful collinearity. For example, for a CU2 score value of 0.99 and tcrit of 1.96, a realized t value as low as 0.20 is indicative of harmful collinearity, and statistical significance can be achieved in this case by a reducing collinearity to the levels found in a well balanced experiment. 
EMPIRICAL APPLICATION
Brand extensions, wherein firms use established brand names to enter into completely different product classes (e.g. Honda submersible pumps), is a popular strategy to mitigate the risks of introducing completely new products (Aaker and Keller 1990). Numerous scholarly studies have investigated the determinants of brand extension attitudes (e.g. Aaker and Keller 1990; Sunde and Brodie 1993). Based on a comprehensive re-analysis of several different brand extension studies conducted across the world, Bottomley and Holden (2001, p. 499) suggest an important empirical generalization: brand extension attitudes (Attitude) are primarily based on the interaction effects of the quality of the parent brand (Quality) with the degree of transferability fit (Transfer) between the original and the extension product classes. We use the brand extension domain as the empirical context and use the specific interaction between Quality and Transfer as our example to illustrate the collinearity exercise. Specifically, we use two separate data sets collected by Aaker and Keller (1990) and Sunde and Brodie (1993), designated as A&K and S&B henceforth, to demonstrate the value of our C2 scores.
 

Similar to Bottomley and Holden (2001), we used OLS to estimate the moderated model. The estimated regression equation is as follows: 
(8)

Attitude = β0 + β1 Quality + β 2 Transfer + β 3 Quality ( Transfer + (,

where Attitude is operationalized by a composite two-item measure of perceived overall quality of the brand extension and the likelihood of trying the extension; Quality refers to the perceived quality of the parent brand; and Transfer refers to the perceived transferability of the skills and resources of the parent brand to the extension product class. β0 represents the intercept, β1 and β2 represent the simple effects of Quality and Transfer respectively, and β3 represents the interaction effect of Quality and Transfer. All variables are measured on a 7-point scale.

Correlation Matrices and OLS results
Table 1 presents the inter-correlations for all three measures for both A&K and S&B data sets. The correlations between Quality and Transfer are low in both data sets. However, the correlations between Quality and the multiplicative interaction term are moderately high (0.50 in both the A&K and S&B data sets) while the correlations between Transfer and the interaction term are extremely high (0.86 in both data sets). In addition, the last row provides the correlations between the various independent variables and the dependent variable, i.e. brand extension attitudes. All the correlations with brand extension attitudes are reasonably high providing some hope that all proposed effects are likely to be significant. 

TABLE 1

CORRELATION MATRICES FOR THE A&K AND S&B DATA 

	
	A&K DATA 
	
	
	
	
	
	S&B DATA 
	
	
	
	

	
	
	1
	2
	3
	4
	
	
	1
	2
	3
	4

	1
	Quality
	1.00
	
	
	
	1
	Quality
	1.00
	
	
	

	2
	Transfer
	.08
	1.00
	
	
	2
	Transfer
	.08
	1.00
	
	

	3
	Q(T
	.50
	.86
	1.00
	
	3
	Q(T
	.50
	.86
	1.00
	

	4
	Attitude
	.28
	.34
	.43
	1.00
	4
	Attitude
	.36
	.42
	.53
	1.00


Table 2 presents the results of the OLS regression for both A&K and S&B data sets. 
TABLE 2 

OLS REGRESSION RESULTS AND COLLINEARITY DIAGNOSTICS 

	Variables
	
	
	
	A&K
	
	S&B

	Intercept
	Parameter Estimate
	
	
	    1.92**
	
	1.74**

	
	t-statistic
	
	
	9.09
	
	8.16

	Quality (Q)
	Parameter Estimate
	
	
	    .15**
	
	0.13**

	
	t-statistic
	
	
	3.67
	
	3.26

	
	VIF
	
	
	3.63
	
	3.82

	
	C2
	
	
	 .91
	
	0.91

	Transfer (T)
	Parameter  Estimate
	
	
	.07
	
	0.02

	
	t-statistic
	
	
	1.42
	
	0.43

	
	VIF
	
	
	10.85                                  
	
	11.14

	
	C2
	
	
	.91
	
	0.92

	Q (T 
	Parameter  Estimate
	
	
	   .04**
	
	0.06**

	
	t-statistic
	
	
	     3.84
	
	5.63

	
	VIF
	
	
	   14.28
	
	14.77

	
	C2
	
	
	0.92
	
	0.92

	
	Largest Condition Number
	
	
	24.32
	
	24.99

	
	R2
	
	
	0.19
	
	0.30

	
	Adj. R2
	
	
	0.19
	
	0.30

	
	1 / 1 – model R2
	
	
	1.23
	
	1.43

	
	Sample Size
	
	
	2112
	
	1651


*  p < 0.05  
**  p < 0.01

OLS results from Table 2 show that the simple effect of Quality and the interaction effect are significant in both data sets; however, the simple effect of Transfer is not significant in either data set. Did the high correlations for Transfer in both data sets cause these insignificances? Now we turn to examining other collinearity diagnostics to ascertain whether collinearity caused the insignificance for the Transfer estimate.  

Variance Inflation Factors 
Table 2 shows the variance inflation factors (VIF) for each variable. Using traditional criteria employed by marketing scholars wherein VIFs greater than 10 are considered problematic (Mason and Perreault, 1991), the VIFs for Transfer and the interaction terms in both the A&K and S&B data sets are high and may provide cause for concern.
 
Freund and Wilson (1998) suggest a more stringent threshold for VIFs. They imply that, for models with low overall model R2, estimates that have smaller VIFs may still be unstable. Hence they recommend comparing the VIF for a specific variable to a global VIF cutoff as measured by the formula: 1/(1 – overall model R2).  Since the model R2 for A& K data is 0.19, 1/(1 – model R2) is 1.23. Considering this cutoff, the values of VIFs for all three variables are higher than 1.23. For S&B data, the overall model R2 is 0.30, 1/(1 – model R2) is 1.42 indicating that all three variables may have inflated standard errors. 

Condition numbers and variance decomposition proportions

The spread of the eigenvalues of X’X may be used to assess the condition of the data (Ofir and Khuri 1986).  The condition number measures the sensitivity of the coefficient estimates to changes in the data (Belsley 1984). Interestingly, the condition numbers for both data sets is less than recommended level of 30 implying that the model is not plagued by serious collinearity problems (Belsley 1991). 

Belsley, Kuh, and Welsch (1980) proposed the use of eigenvalues and eigenvectors to form variance-decomposition proportions (see Table 3) to assist in identifying the specific linear dependencies.  Relatively large values (over 0.5) in any row corresponding to a small eigenvalue may help identify specific variables involved in that linear dependency (see Freund and Littell 1991). 
TABLE 3

VARIANCE DECOMPOSITION PROPORTIONS TO DIAGNOSE LINEAR DEPENDENCIES FOR THE A&K AND S&B DATA

	Number 
	Eigen 
	Intercept
	Quality
	Transfer
	Q(T

	
	Value
	
	
	
	

	A&K 
	
	
	
	
	

	1
	3.677
	.002
	.002
	.001
	.001

	2
	.240
	.027
	.021
	.022
	.023

	3
	.075
	.078
	.086
	.074
	.062

	4
	.006
	.892
	.890
	.903
	.914

	S&B
	
	
	
	
	

	1
	3.680
	.002
	.002
	.001
	.001

	2
	.236
	.026
	.021
	.019
	.023

	3
	.077
	.069
	.083
	.069
	.057

	4
	.005
	.902
	.894
	.910
	.918


The column labeled eigenvalue in Table 3 consists of the eigenvalues of the correlation matrix of the set of independent variables. The severity of multicollinearity is revealed by the variability of these eigenvalues. Again, what variability is calamitous and what variability is appropriate is arbitrary.  Interestingly, the square root of the ratio of the largest eigenvalue to the smallest eigenvalue gives the condition numbers in Table 2. 

The other columns in Table 3 provide additional information to identify which specific variables are involved in the near-linear dependencies. For example, in A&K data, 89% of the variance of Quality estimate, 90% of the variance in the Transfer estimate, and 91% of the variance of the interaction coefficient are associated with eigenvalue number 4 implying a near-linear dependency among these three variables. However, only Transfer is insignificant in the A&K data. Similarly, for S&B data, all three variables, Quality, Transfer, and the interaction effect, Quality ( Transfer are associated with potential near-linear dependencies. Again, only Transfer seems to have been affected in terms of statistical significance. 
In summary, collinearity diagnostics do not always tell the same story. Some diagnostics (for example, VIFs and correlations in our case) indicate major collinearity problems in the data whereas other diagnostics (e.g. condition numbers) reveal no such severity. However, based on the overall evidence from the various collinearity diagnostics, it is possible to conclude that collinearity has caused problems for the simple effect of Transfer in both these data sets and that absence of collinearity would have made the result statistically significant. The crucial issue though is whether these insignificant regression estimates for Transfer could have become significant in non-collinear data is not easily answered by any of these collinearity diagnostics. Apart from accurately assessing collinearity, our proposed metric, C2, attempts to answer this question that has vexed most applied researchers at some point or the other. 

Did collinearity degrade the estimates of Transfer?


For both A&K and S&B data, the simple effects of Transfer are insignificant. As discussed in the previous section, a CU2 score of zero indicates that the design matrix is akin to a well balanced 2(2 experimental design.  Table 2 provides the CU2 scores for all the variables. In the A&K data, the CU2 for Transfer is 0.91 implying that the design matrix is far away from being a perfectly balanced 2(2 design. Similarly, the CU2 score for Transfer is 0.92 in S&B data indicating the presence of collinearity in the S&B model.  These CU2scores for both A&K and S&B data are well over the threshold C2 cutoff of 0.75 indicating the presence of collinearity. 

Now that we have established the presence of collinearity, the critical question is whether the collinearity in the estimated model degraded the significance of the simple effects for Transfer in both cases. In other words, would the simple effects of Transfer in these two cases have become significant if the collinearity had been reduced to that of a perfectly balanced 2(2 design? Inequality (6 )provides the answer. 
For A&K data, for the Transfer variable, the CU2 score is 0.91 and the t-statistic obtained is 1.42. For a two-tailed test, the critical t-statistic (tcrit) value is 1.96. Substituting these values in equation (6), we find that the realized (non-significant) t value of 1.42 is greater than the value of 0.59 obtained from 
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, thereby satisfying the inequality condition. This result indicates that the presence of collinearity in the data was indeed harmful and in fact degraded the estimates of Transfer. The estimate of Transfer would have become statistically significant in A&K data if the collinearity in the data was indeed reduced to the levels found in perfectly balanced 2(2 experimental designs.

For S&B data, the CU2 score for Transfer is 0.92 and the t-statistic is 0.43. Substituting these values in equation (6), we find that the realized t value of 0.43 is much smaller than 0.55, the value obtained from substituting the values in
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; hence the inequality condition is not satisfied leading us to conclude that a reduction in collinearity to that of a well balanced 2(2 experimental design would not have helped Transfer variable to achieve statistical significance in the S&B data.

How much collinearity must be reduced for Transfer to become significant?

Now that we have established that collinearity did possibly cause adverse effects for Transfer in the A&K data, we turn to quantifying the reduction in collinearity required to make this effect significant. At =0.05, for a two-tailed test, the critical t-statistic is 1.96. Substituting the values of CU2 score (0.91) and the realized t-statistic (1.42) into the threshold in (7), we learn that eliminating 8.95% of the existing collinearity in the model could have provided a significant result for Transfer. 
CONCLUSIONS
Grewal, Cote, and Baumgartner (2004) suggest that the literature on collinearity can be organized in three major areas: (i) conditions under which collinearity will occur, (ii) how collinearity can be diagnosed, and (iii) how collinearity should be managed so as to avoid its deleterious effects. To the first area, we note that occurrence of collinearity is inevitable in moderated regression models because the interaction term natural contains information similar to the linear terms, and this problem is mentioned by a large number of researchers in marketing. With respect to the second area, our content analysis reveals that most empirical marketing researchers use the terms correlation and collinearity interchangeably, or at least imply that there is a one-to-one correspondence between correlation and collinearity. This is a bit disappointing because it has been well-known for a long time that collinearity and correlation are not synonyms (see Belsley 1984).  Because low values of correlations may mask high levels of collinearity, it is clear that correlation-based metrics may misdiagnose the presence of collinearity. To make the measurement of collinearity simple, accurate, and easily interpretable, this paper proposes a new metric, C2 that measures the presence of collinearity in moderated variable regression relative to a benchmark of a 2(2 well-balanced experimental design. 
Mere presence of collinearity by itself is not a problem; it becomes a problem only when the estimates are dramatically degraded.  Many papers in our content analysis suspected collinearity to be the reason for insignificant results (for example, Rao and Mahi 2003). While existing collinearity diagnostics cannot decipher when collinearity is actually harmful and does affect statistical inferences, our C2 metric, in conjunction with the t-statistic of a variable, can do just that. A C2 score greater than 0.75 may indicate collinearity problems that may degrade the regression estimates. We suggest that researchers employ this procedure to pinpoint whether this insignificant estimate could have become significant if the collinearity was reduced to that of a 2(2 well balanced experimental design.  If the answer is negative, i.e. the estimate would not have become significant even under low levels of collinearity, then collinearity problems can be definitively eliminated as a reason for the insignificance. Researchers can focus elsewhere and concentrate their efforts on different issues that could have caused this insignificance including measurement issues, poor reliabilities, poor procedures employed, or maybe even poor theory. 
It has been noted that the effects of collinearity are indistinguishable from the effects of small sample sizes or micronumerosity (Goldberger 1991) that tends to inflate standard errors and enhances uncertainty in the results (Woolridge 2001). To alleviate collinearity problems, researchers recommend collection of more (and better) data (Judge et al. 1988). What is the quantity of data that needs to be collected to insure against the deleterious effects of collinearity?
 We provide an answer to this question. 

Maxwell (2000, p. 438) recommends that researchers use the following formula to compute the required sample sizes at 80% statistical power.  
(9) 
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where N is the required sample size, βU is the regression estimate of U, and p is the number of independent variables.  

Re-arranging (6) and substituting these values in (9), we obtain the following equation:
(10)
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Equation (10) ties the sample size required to our C2 score. All else equal, if the quality of the data is degraded, as reflected by increasing CU2 scores, then the sample size would have to increase to hold the power of the test constant.  Since collinearity problems may not be remedied after the data are collected, researchers can use equation (10) to plan the key design factors to ensure an 80% powerful test.  To our knowledge, this is the first attempt in the literature at connecting the “quality” of data issues to “quantity” of data considerations. 
A discussion of the third area described by Grewal, et al. (2004) regarding methods to reduce collinearity would expand the scope of this paper, so we merely refer readers to Belsley (1991), Mason and Perreault (1991), and Echambadi and Hess (2007).  
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TECHNICAL APPENDIX

We write out the data matrix of a well-balanced experimental design where the data has been arranged in four blocks of N/4 elements each.
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The dependent variable U has blocks 
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Suppose that we regressed U on three variables U=1+V+UoV+  and computed the OLS predictor 
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With the data matrix for a well balanced experimental design given above,
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([1 V UoV]/ [U])= 
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Using (A1) and (A2), the OLS estimators are,
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(A3)
Using the estimators in (A3) we can easily calculate the vector of predicted values from the equation 
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� We have used the term interactions to include both multiplicative and quadratic moderators.


� There are no accepted guidelines on what constitute high correlations. Grewal, Cote, and Baumgartner (2004) in a study of collinearity in structural equation models refer to correlations of over 0.8 as extreme, and correlations between 0.6 and 0.8 as being very high. 


� This point is corroborated by Belsley (1991) who states “k variates are collinear or nearly dependent, if one of them lies almost in the space spanned by the remaining (k-1) variates , that is, if the angle between one and its orthogonal projection on the others is small.”


� Stewart (1987) created a new metric called collinearity indices that were actually shown to be the square root of the variance inflation factors by Marquardt  (1987).  As such, the logic for VIFs extends to collinearity indices as well.  


� The cos2() is the “uncentered” R-squared, sometimes denoted � EMBED Equation.3  ���, because U’U in the denominator is the uncentered sum of squares rather than sum of squares of deviations from the mean. 


� See Theil 1971, p. 166, for a derivation.


� We thank Stephen Holden for providing us with data sets from the Aaker and Keller (1990) and Sunde and Brodie (1993) studies. 


� There are no formal criteria for determining problematic VIF values and as such consideration of 10 as a cutoff is completely arbitrary (Freund and Wilson 1998). This cutoff of 10 for VIFs is originally drawn from Marquardt (1970, p. 610) who writes, “the maximum variance inflation factor usually should be larger than 1.0 but certainly not as large as 10.”


� Extant marketing research literature shows that the harmful effects of collinearity can be offset under conditions of large sample sizes, large overall model R2 values, large effect sizes, and high reliabilities (c.f. Mason and Perreault 1991; Grewal, Cote, and Baumgartner 2004).  However, collinearity conditions in these studies were simulated using correlations.
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