
Tutorial: Positioning Using Poor-Man's and Statistical Factor AnalysisPRIVATE 


James D. Hess

There are three broad concepts associated with this tutorial: Differentia​tion, Positioning, and Mapping. Differentiation is the creation of tangible or intangible differences on one or two key dimensions between a focal product and its main competitors. Positioning refers to the set of strategies organizations develop and implement to ensure that these dif​ferences occupy a distinct and important position in the minds of customers.  Keble differentiates its cookies products by using shapes, chocolate, and coatings.  Mapping refers to techniques that help managers visualize the competitive structure of their markets as perceived by their customers. Typically, data for mapping are customer perceptions of existing products (and new concepts) along various attributes (using factor analysis), perceptions of similarities between brands (using multi-dimensional scaling), customer preferences for products (using conjoint analysis), or measures of behavioral re​sponse of customers toward the products.

A Positioning Questionnaire

This tutorial will show how to map products based upon stated perceptions in a positioning questionnaire about three toys.  The questionnaire is very basic to reduce confusion.

To what degree do you agree or disagree with the following statements for each of the following toys: puzzle, water squirt gun and toy telephone?  Enter your answers in the form below.





     Strongly
                                               Strongly





     Disagree  Disagree   Neither      Agree      Agree

1. It will hold a child's attention.    1.______  2.______  3.______  4.______ 5.______

2. It promotes social interaction.   1.______  2.______  3.______  4.______ 5.______

3. It stimulates logical thinking.     1.______  2.______  3.______  4.______ 5.______

4. It helps eye-hand coordination. 1.______  2.______  3.______  4.______ 5.______

5. It makes interesting sounds.      1.______  2.______  3.______  4.______ 5.______

One subject's responses to the 15 questions were:

	
	Question 1.

Attention
	Question 2.

Interaction
	Question 3.

Logic
	Question 4.

Eye-Hand
	Question 5.

Sounds

	Puzzle
	3
	1
	5
	2
	1

	Water Squirt Gun
	4
	3
	1
	4
	3

	Toy Telephone
	2
	4
	3
	4
	5


We want to develop statistics which summarize these 15 responses in a managerial meaningful way.  

Poor-Man's Factor Analysis


What drives the stated perceptions in the above toy survey?   There may be some latent attributes or factors of toys that determine the response made for the above toy questions.  Suppose that we determine the factors by "intuitive statistics," or poor-man’s factor analysis, as follows.  Toys are "fun" and "educational."  With these predetermined factors, let's measure fun by a combination of questions 1), 4) and 5).  It is not clear that they measure fun equally, but for simplicity suppose we calculate an equally weighted average of the responses to 1) Attention, 4) Eye-Hand and 5) Sounds for each toy.  Similarly let's measure educational by averaging the answers to 2) Interaction and 3) Logical.  The weights attached to each question in determining Fun and Educational are called the "factor loadings."  For the attribute “fun,” the factor loadings for each question are (1/3, 0, 0, 1/3, 1/3) and factor loadings for “educational” are (0, ½, ½, 0, 0).  The weighted averages are called “factor scores.”

Factor Scores




Educational


Fun


Puzzle



E = (1+5)/2 = 3.0

F = (3+2+1)/3 = 2.0


Water Squirt Gun

E = (3+1)/2 = 2.0

F = (4+4+3)/3 = 3.7


Toy Telephone

E = (4+3)/2 = 3.5

F = (2+4+5)/3 = 3.7


These factor scores can be put into a perceptual map:
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This perceptual map is based on the researcher’s intuition about the meaning of each question.  Next, we will use the respondent’s answers to determine the meaning.

Statistical Factor Analysis


Suppose there are k basic factors (in our case, “attributes” of products as perceived by the consumer) that drive the ratings that the respondent gives, much the same way that math and verbal ability drive the grades that a student gets in various classes.  The problem is that these factors, such as math ability, are hidden from view (latent) and must be teased out of data on “grades in courses” which are observable (manifest).  The basic “factor model” is 

X=’+U,





(1)

where X=[xij] n(p is the rating
 of product i on question j, =[if] n(k is product i’s score on factor f, =[fj] p(k is the loading of factor f onto question j, and U=[uij] n(p is a specific error.
 The k-dimensional factor score vector (i1,..ik) is the location of brand i on the perceptual map, where each factor is one of the basic attributes.  The k-dimensional factor loading vector (1j,..kj) tells the correlation of question j with the k factors.  Notice that X=’+U looks very much like a regression equation x=+u, but is not in a critically important way: both  and  are unobserved.  That is, we have to infer both the values of the independent variables  and the coefficients ’ from the manifest dependent variable rating X.  How can this magic be done?


Teasing Out the Factor Loadings: The object of factor analysis is to explain the brand-to-brand variation in ratings by basic factors/attributes.  The trick is that some questions are really just different variants of other questions, and we need to identify these variants.  In poor-man’s factor analysis this was done intuitively by the researcher.  In statistical factor analysis, we let the respondent’s answers determine this: how strongly correlated are the respondent’s answers to different questions?  Of course, SPSS or Excel can calculate the correlation coefficient, rjh, between questions j and h.  These correlations are put into an n ( n matrix R = [rjh].  It has 1.0s along the diagonal, and all elements are between -1 and +1. For the above n=5 questions about toys, the correlation matrix is
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Notice that answers to question 2 (Interaction) are very closely correlated with those of both 4 (Eye-Hand) and 5 (Sounds), with correlations 0.96 and 0.99.  This is surprising: we thought 2 would be correlated with 3 (Logical), but it has a correlation of -0.66.  Perhaps our poor-man’s factor loadings are wrong, in the sense that our intuition does not represent the respondent’s attitudes. To better understand these, we want to analyze the respondent’s correlation matrix, grouping together questions with highly correlated answers.  


The factor analysis method programmed into SPSS can be understood best using the following metaphor:  every number, say 739, can be decomposed in the following way: 739 = 7(102 + 3(101 + 9(100.  We have used decimal notation so much in our childhood, that this notation is almost second nature.  Much less second nature is the observation that any correlation matrix can be written as
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where v1, v2,.., vn are numbers called eigenvalues, ordered from largest to smallest.  Lj is an n-dimensional vector, called an eigenvector written as a column.
  The apostrophe notation Lj' again denotes the vector transposed so it is written as a row. The n ( n matrix v1L1L1' is the closest approximation you can make to the entire correlation matrix R working in just one dimension (along the eigenvector!), much like 7(102 is the closest approximation to 739 you can make with one digit.  The second term in the sum is the next best one-dimensional approximation, moving in a perpendicular direction, much like 3(101 adds to 7(102 the next best approximation of 739. The elements of 

are the factor loadings:
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To find the eigenvalues and factor loadings using SPSS, first construct a dataset where the rows are products and the columns are the questions. Select Data Reduction menu from the Analyze menu, and then select Factor analysis.  Select the questions you want to analyze (see figure below).


Click the Descriptives button and select Univariate Descriptives and under Correlation Matrix select the coefficients to see the correlations.  Click Continue.  Click Extraction and select Number of Factors and choose 2 (since we think the questionnaire measures two attributes).  Click Continue.  Click Ok to run factor analysis.  The correlation matrix will be 

	
	
	Attention
	Interaction
	Logical
	Eye-Hand
	Sounds

	Correlation
	Attention
	1.000
	-.327
	-.500
	.000
	-.500

	
	Interaction
	-.327
	1.000
	-.655
	.945
	.982

	
	Logical
	-.500
	-.655
	1.000
	-.866
	-.500

	
	Eye-Hand
	.000
	.945
	-.866
	1.000
	.866

	
	Sounds
	-.500
	.982
	-.500
	.866
	1.000


and the eigenvalues are found in the Total Variance Explained table: 

	
	Initial Eigenvalues
	
	
	Extraction Sums of Squared Loadings
	
	

	Component
	Total
	% of Variance
	Cumulative %
	Total
	% of Variance
	Cumulative %

	1
	3.445
	68.898
	68.898
	3.445
	68.898
	68.898

	2
	1.555
	31.102
	100.000
	1.555
	31.102
	100.000

	3
	-4.288E-18
	-8.577E-17
	100.000
	
	
	

	4
	-5.672E-17
	-1.134E-15
	100.000
	
	
	

	5
	-1.188E-15
	-2.376E-14
	100.000
	
	
	


The eigenvalues for the first two factors in the above example are 3.4445 and 1.5555 (notice: eigenvalues add up to n=5, which is the total variance of the answers to the 5 questions because SPSS has standardized each of them to have variance 1.  The factor loadings, F’, are found in the Component Matrix

	 
	Component
	

	 
	1
	2

	Attention
	-.166
	.986

	Interaction
	.986
	-.166

	Logical
	-.771
	-.637

	Eye-Hand
	.986
	.166

	Sounds
	.937
	-.349


The factor loadings are correlations between the factor and the question.  Recall that we had noticed that answers to question 2 (Interaction) are very closely correlated with those of both questions 4 (Eye-Hand) and 5 (Sounds).  The fact that the ratings for questions on Interaction, Eye-Hand, and Sounds are heavily loaded on the first factor suggests that, indeed, there is a common attribute that is driving the answers to these three questions. The factor 1 might be called “fun.” The square of these correlations tells the proportion of the variation in the answers to the questions accounted for by the factor.  For example, Factor 1 accounts for (-.771)2=0.59 of the variation in the answers to the Logical question.  If you sum these squares down the column, they add up to the eigenvalue (3.45 for Factor 1=Fun).  Hence, we can also say that the factor Fun accounts for 3.4/5 or 69% of all the variance in the answers.


The second factor is most heavily loaded on “attention,” so we might interpret this perceptual dimension as a “fascination” factor (notice that the direction of a factor is essentially arbitrary). We graph the factor loadings on a factor map.
  This helps us to interpret what left-right and what up-down means in the graph.  The interpretation of the factors may be improved by rotating the factors to try to make the factors close to either +1 or 0.  See the section on factor rotations.
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Factor Scores: Perceptual Position of Products.  If we have the factor loadings from parsing the correlation matrix, how do we judge the amount of the perceptual attribute for each product?  That is, what is the factor score zik?   Looking back at equation (1), X=ZF’+E, if we know F’, then finding factor scores Z can be done via regression.
 The regression coefficients that explain the standardized ratings using the factor loadings as explanatory variables are the factor scores. (In equation 1, xij and fkj are known and the values zik are found as regression coefficients.)  Of course, SPSS will do all of this for you automatically as described below, but this is the “gist” of what SPSS is doing.


We want to explain the standardized scores for each toy (we will use Puzzle for illustration) using the factor loadings for Fun and Fascinating as the explanatory variables. The average answer to the Attention question was 3, so the puzzle answer was 0 standard deviations from the mean, etc. (see table below).  If we run a regression to explain the column of standardized puzzle answers using the columns of factor loadings for Fun and Fascinating as the x variables, the coefficients of Fun and Fascinating are –1.12 and -0.19 (try this yourself).  These are the factor scores that puzzle has on Fun and Fascinating.

	
	
	
	
	
	
	Y variable
	X variables

	
	Puzzle
	Gun
	Phone
	Mean
	Stdev
	Puzzle

standardized
	Fun
	Fascinating

	Attention
	3
	4
	2
	3.00
	1.00
	0.00
	-.166
	.986

	Interaction
	1
	3
	4
	2.66
	1.53
	-1.09
	.986
	-.166

	Logical
	5
	1
	3
	3.00
	2.00
	1.00
	-.771
	-.637

	Eye-Hand
	2
	4
	4
	3.33
	1.16
	-1.16
	.986
	.166

	Sounds
	1
	3
	5
	3.00
	2.00
	-1.00
	.937
	-.349



Factor scores are created automatically upon request by SPSS.  To see how, again click Data Reduction menu from the Analyze menu, and then select Factor analysis.  Now click on Scores and select Save as Variables, click Continue.  When you click Ok to run factor analysis, the two factor scores will be added by SPSS to the dataset as variables fac1_1 and fac2_1, with scores for each toy.  

[image: image8.emf]


You can graph the toys on the two dimensional perceptual map of factor scores by clicking Graphs while in the SPSS Data Editor. Select Scatterplot, Simple, Define and put fac1_1 on the x-axis, fac2_1 on the Y-axis, and Set Markers by the “toys.”  Click Ok and you will have a graph of the perceptual map.  You can combine this with the factor loading graph (see footnote 3) by copying and pasting both graphs into PowerPoint and editing the two together, as seen below.
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Factor Rotations. Factor analysis was created by Charles Spearman at the beginning of the 20th Century as he tried to come up with a general measure of intellectual capability of humans. There is no natural meaning of up-down, left-right in factor analysis.  This has caused a huge controversy in the measurement of “intelligence.” Roughly speaking, Spearman designed a battery of test questions that he felt would be easier to answer if you were smart (however, see Stephen Jay Gould’s The Mismeasure of Man, 1996, for a sobering examination of the problems with IQ tests).  Spearman then invented factor analysis to study the responses to these questions and found factor loadings for the questions that looked like those below. 
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From his newly created factor analysis, Spearman concluded that there was a powerful factor that he called “general intelligence” that explained the vast majority of the ability to answer the questions correctly.  In the above graph, this “intelligence” factor is the vertical dimension labeled Spearman’s g.  
Several decades passed before someone noticed that the location of the axes is essentially arbitrary in factor analysis.  They could be rotated without effecting the analysis, other than interpretation of the factors.  If a cluster of questions could be made to point along just one axis, then the resulting “factor” is easier to interpret because those questions essentially load only on one factor.  With the Spearman intelligence data, this rotation might produce: 

In this graph, there appears to be not one “general intelligence, but rather two separate types of intelligence, which might be called “verbal” and “math” intelligences.  Since the discovery of factor rotations, most psychologists have rejected the idea that there is a single IQ that effectively measures intelligence (but see Gould’s book for a case study of the inability to kill a bad idea).


If we rotated the perceptual map for toys ninety degrees we would have the following (don’t tilt your head and undo the rotation, please!)
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The location of the three toys is almost identical to that of poor-mans factor analysis (squirt gun and telephone have almost the same vertical dimension, telephone is located to the right, and puzzle is below and horizontally between the other toys.)  However, the interpretation of up-down and left-right is different: left-right might be “action-packed vs. thoughtful” and up-down might be “social vs. individual.”

SPSS has the ability to rotate the factors to try to improve the interpretation of the factors.  To do this, when running SPSS Factor Analysis, click Rotation and select Varimax before doing the analysis.  The factors will then have been rotated to give the best interpretation.

Appendix: Technical Remarks for "Quantoids"


The eigenvalue is a root of the equation (R-vI(=0.  There are n roots to this equation.  The eigenvector is the solution of the linear equation, (R-vI)L=0, subject to the restriction that L have Euclidian length 1.0.  The approximation of the 15 different correlations found in the symmetric correlation matrix from the Factors 1 and 2 plus the two eigenvalues (a total of 9 numbers: factor loadings contain 7 independent numbers, since each has a length of 1.0 and they are perpendicular) is:







Compare this approximation to the actual correlations.  The match is excellent.

Factor Model
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x = mean-centered manifest indicator vector of latent factors

 = factor loading coefficients

 = latent common factors, k<<p, E[]=0, Var[]=I

u = unique factor E[u]=0, var[u]= (diagonal) and Cov(, u)=0
var[x]==E[xx’]=E[(+u) (+u)’]=E[’’+u’+u’+uu’]

         = E[’]’+0+0+E[uu’]

=’+
 has ½ p(p+1) unique values

 and  have pk+p coefficinets

Typically pk+p <<½ p(p+1)  or k<< ½ (p-1): explain p with less than half as many factors
Non-uniqueness with rotation
T = orthoganal rotation matrix:  TT’=I=T’T
x=TT’+u=[T][T’]+u

  = **+u,  and *, * are equally good at explaining the data.

In the initial calculations, we usually eliminate this rotational indeterminacy by forcing  to satisfy ’-1 = diagonal. 

If we standardize x, then we are looking for a correlation matrix not covariance matrix:
R=’+.  Along the diagonal of R are 1’s, so ii= 1 - j ij2.  This last term is called the commonality.  If we knew then we would want to break R- into its “square roots” like ’.  By spectral decomposition R-=PLP’, where P are the eigenvectors and L is a diagonal of eigenvalues.  R-=(PE1/2)(E1/2P’) =, so we need to set =PE1/2.

Interpretation

a. x’=’+u’  or Cov(x,)=I+0 =.  Hence  the factor loadings, are the correlations of the latent factor  and the indicator x.

b. The eigenvalue is the variance explained by the factor and since the x’s are standardized, this variance must sum to p in total.

c. Communalities tell the proportion of the variation of each variable explained by the common factors.

d. Square of factor loading is proportion of variation in an indictor explained by that factor.  Since 0.72(0.5, we tend to look more closely at factor loadings above 0.7

Factor Scores

xij=ji+uij  but uij is not iid.   Rather than OLS, let’s estimate using GLS: i=(j’j)-1j-1Xi.  The term =(j’j)-1j-1 is the “factor coefficient matrix” in SPSS output.
� The ratings should eventually be z-scored, but in SPSS, you do not need to standardize the ratings because the factor analysis software has been programmed to make these calculations on your behalf without prompting.


� Or more directly, �EMBED Equation.2���. 


� It is unnecessary to know the details on the calculations of eigenvalues and eigenvectors, since SPSS does this for you automatically, but quantoids may see a short derivation in the Appendix.





� You can have SPSS draw this graph for you.  In Analyze, Data Reduction, Factor Analysis click Rotation and check Loading Plots. 


� Careful.  The errors are not distributed identically and so more care must be taken generally, but for simplicity let’s use ordinary least squares for each product.  SPSS is more sophisticated, thank goodness.
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